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ABSTRACT

This report defines the parameters and variables appearing in computer

codes that can be used for thermal and structural analysis of a high-

level waste package. Typical values and ranges of data values are pre-

sented. The data in this report were compiled to help guide the selec-

tion of values of parameters and variables to be used in code bench-

marking. The report also presents the underlying theory of waste pack-

age analysis.
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1.0 INTRODUCTION

1.1 Background

The effective management of high-level radioactive wastes is essential

to protect the public health and safety. The Department of Energy (DOE),

through responsibilities inherited from the Energy Research and Develop-

ment Administration (ERDA) and the Atomic Energy Commission (AEC), and

the authority granted in the Nuclear Waste Policy Act, is charged with

the safe disposal of these wastes. The Nuclear Regulatory Commission

(NRC), through authority granted by the Energy Reorganization Act of

1974, which created the NRC, and the Nuclear Waste Policy Act, is

responsible for the regulation of high-level waste management.

The Environmental Protection Agency (EPA) has the authority and respon-

sibility for setting general standards for radiation in the environment.

The NRC is responsible for implementing these standards in its licensing

actions and for ensuring that public health and safety are protected.

The NRC has promulgated technical criteria for regulating the geologic

disposal of HLW which incorporate the EPA standard. (The draft EPA

standard was published in the Federal Register dated December 29, 1982.)

NRC's technical criteria are intended to be compatible with a generally

applicable environmental standard. The performance objectives and cri-

teria address the functional elements of geologic disposal of HLW and

the analyses required to provide confidence that these functional ele-

ments will perform as intended. These technical criteria are described

in 10 CFR Part 60 (Code of Federal Regulations).

In discharging its responsibility, the NRC must review DOE repository

performance assessments and independently evaluate the performance of

the repositories that the DOE seeks to license. Because of the complex-

ity and multiplicity of these performance assessments, computerized

simulation modeling is used. Computer simulation models provide a means

to evaluate the most important processes that will be active in a reposi-

tory, thereby permitting assessment and prediction of repository behavior.
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Another factor necessitating the use of models is that the time frames

associated with high-level waste management range from decades to tens

of thousands of years.

Accordingly, the NRC is developing models and computer codes for use in

supporting these regulations and in reviewing proposed nuclear waste

management systems. The DOE independently is also developing models and

computer codes for use in assessing repository sites and designs. The

analytical model and code development effort must include a procedure

for independent evaluation of the tools' capability to simulate real

processes. Codes must be evaluated to determine their limitations and

the adequacy of supporting empirical relations and laboratory tests used

for the assessment of long-term repository performance.

1.2 Scope of This Report

This report is one in a series that deals with the independent evaluation

of computer codes for analyzing the performance of a high-level radio-

active waste repository. The codes used for repository performance

assessment have been divided into the following categories: (1) re-

pository siting, (2) radiological assessment, (3) repository design, (4)

waste package performance, and (5) overall systems.

Repository siting requires consideration of events at a distance from

the repository. Far-field processes include saturated flow, unsaturated

flow, surface water flow (flooding routing), solute transport, heat

transport, combined solute and heat transport, geochemistry, and geome-

chanical response.

Radiological assessment includes the development of source terms, the

calculation of radionuclide concentrations in the environment, and the

analysis of food pathways, dose to man, and expected mortality rates.

Repository design covers areas often called "near field." The processes

in the repository design area include heat transport, flow in fractured

media, and rock mechanics.
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The waste package area deals with the very near field, primarily the

interactions that take place within the waste package and the waste

package's interactions with the repository host rock. Included are heat

transfer, stress analysis, and chemical interactions such as corrosion.

Overall systems include subcategories of the other categories. For

example, overall systems codes may consider aspects of radiological

assessment, waste package performance, economic cost (e.g., cost/benefit

analysis), repository performance, natural multibarrier performance, or

probabilistic aspects of repository performance.

This report considers only codes for the thermal and mechanical analysis

of a waste package. Parameters associated with corrosion and leaching

are being reviewed by others (see Section 1.3 below).

The first step in computer code benchmarking is to select the codes

potentially useful for thermal and structural analysis. The next step

is to summarize the nature of each selected code and then to prepare

benchmark problems for code testing. As a prerequisite to designing

benchmark problems, the data that will be used in the problems should be

summarized. Thus, three reports will be issued on waste package codes:

(1) a model summary report, (2) a data set report, and (3) a report

describing the benchmark problems to be used in code testing. This

report is the data set report for waste package codes.

1.3 Processes Considered

The major processes that must be considered in the analysis of a high-

level waste package are thermal processes, structural mechanics, radia-

tion degradation, and chemical degradation (e.g., corrosion and leach-

ing). Other contractors have summarized the information base relating

to waste package radiation and chemical degradation (References DA-82

and DA-82a). Therefore, this report mainly addresses thermal processes

and structural mechanics. This report does not address fracture mechanics

because the primary structural loading of the waste package will be in

3



compression, whereas fractures generally grow in materials that are

loaded in tension. Compressive loading closes fractures and results in

no growth.

In Section 2 of the report, the three heat transfer modes (conduction,

convection, and radiation) important to waste package thermal analysis

are discussed. Recommended values for material properties and parameters

are given, and several important heat transfer correlations are identi-

fied.

In Section 3, the basic mechanical principles used for waste package

analysis and the values of material properties are identified. Section 3

emphasizes the need for structural criteria that limit the total strain

during the service life of the waste package.

Appendices A, B, and C address thermal expansion, Mohr's diagrams, and

material yield criteria. The information in these appendices can be

found in most engineering texts but is included here to increase the

usefulness of this document as a primer providing basic information for

thermal and structural analyses. Appendix D presents selected thermal

property data from the HEATING code data library.

1.4 Data Limitations and Inadequacies

In addition to providing values of key parameters, this report identifies

limitations and inadequacies in the existing data. Some of the more

important limitations are summarized below:

Thermal analyses incorporating phase changes
impose the complication of different material
properties for the two phases. In order to
analyze phase change problems accurately, it
is necessary to understand the algorithms used
by computer programs to perform phase change
calculations. Phase change algorithms are not
standardized, and a modeling approach used with
one code may not work with another. (See
Section 2.1.4)
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Before sealing of a repository, ventilation will
be a significant mechanism for heat removal.
Ventilation will remove heat primarily by
convection with some contribution from radiation.
(See Section 2.1.5)

The thermal properties of bentonite and bentonite
rock mixtures are a function of both the density
of the material and the moisture content. In
general, the thermal conductivity of bentonite
rock mixtures increases as density and moisture
content increase. Because of the great variation
of these properties, it will be necessary to perform
thermal measurements on the bentonite or
bentonite rock mixtures prior to their use in
a repository. (See Section 2.2.1.5)

* Natural convection under geological repository
conditions will be a very complex process. While
the correlations presented in this report may be
useful in repository analysis, additional data and
new correlations may be developed to better reflect
repository operating conditions. (See Section 2.2.2.3)

* In general, the use of formulas or analytical
approaches to solve thermal and mechanical
problems is restricted to relatively simple
geometries and constant material properties.
For detail design analysis, it is likely that
more complex finite difference or finite element
methods will be required for accurate assessments.
(See Section 3.1.2)

* The mechanical loading on waste packages is expected
to have a duration that is among the longest of all
engineered structures. Since the temperature of the
waste package will be elevated for several hundred
years, it is important that the adequacy of waste
package structures be judged on the basis of total
strain. Both creep strains and instantaneous elastic
deformation must be considered. Design stress analysis
methods based only on instantaneous strains are prob-
ably not adequate for estimating waste package mechan-
ical performance. (See Section 3.2.3.1)

Elastic constants (for example, Young's modulus and
Poisson's ratio) can vary depending on whether a
material is loaded in tension or compression. Data
presented in this report are for materials loaded
in tension. (See Section 3.2.3.2)
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Elastic constants and failure parameters for
bentonite will be highly dependent on the water
content of the bentonite and the ratio of bentonite
to host rock. Experimental data should be gathered
for specific mixtures under projected repository
conditions. (See Section 3.3)

Creep of materials is generally characterized by
the stress level of that material, the temperature
of the material, and the time it has been exposed
to those environmental conditions. Because of the
long time periods of loading for waste package
structures, it will be difficult to gather creep
data representative of actual repository conditions.
Although methods exist for extrapolating creep measure-
ments over short time periods to longer time periods,
these methods are not adequate if one must predict
the onset of tertiary creep. (See Section 3.2.3.5)

The creep data presented in this report are for specimens
loaded in tension. Creep rates for compressive loading
may differ from those reported here. (See Section
3.2.3.5)
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2.0 THERMAL ANALYSIS

* The two physical sciences used in the analysis of thermal system per-

formance are heat transfer and thermodynamics. Heat transfer is the

science that predicts the rate at which thermal energy exchange occurs

within bodies and between bodies that may be either in contact or sepa-

rated by atmospheres or unoccupied space. For regions of space occupied

by material substances, heat transfer predicts the spatial temperature

distribution associated with the transfer of thermal energy.

Thermodynamic principles apply to energy transformations including heat,

work, and the physical properties of materials involved in the trans-

formations. Thermodynamics deals with systems in equilibrium in which

processes continue between state points.

2.1 Heat Transfer Phenomena

Engineered systems such as engines, boilers, and compressors frequently

rely on the transfer of heat at high rates to prevent excessive tempera-

ture increases. High temperatures can cause materials to lose their

strength resulting in component failure under imposed service loads.

There are three primary modes of heat transfer:

Conduction heat transfer occurs when the kinetic
energy of molecules (which is proportional to
their absolute temperature) is transferred by
collisions to portions of the material that are
at a lower temperature.

a Convective heat transfer occurs between solid
surfaces and a fluid when the solid boundaries
are not in temperature equilibrium with the
fluid. Mass transport plays a major role in
the convective heat exchange process.

a Radiation heat transfer occurs between a body
and any other body that can be seen directly
from the first body (or indirectly via reflected
rays), providing that the intervening medium is

7



transparent or partially transparent (transmissivity
is greater than 0) and the two bodies are at
different temperatures. A vacuum is the medium
that allows the greatest net radiative heat
transfer.

These heat transfer modes act individually or together depending on the

physical conditions and the temperature differential that drives them.

It is generally recognized that convective heat transfer involves con-

duction in the fluid region as well as convection. The two processes

are treated together and referred to as convection.

2.1.1 Conduction

In 1822, J.B.J. Fourier observed that heat flux is proportional to the

temperature difference and inversely proportional to the distance between

planes at different temperatures:

* .o. &T
A Ax

(2.1)

where

* = heat flux [e/tL2]*

q = heat flow rate [e/tJ

A = heat transfer area [j2]

T = temperature [e]

x = direction of heat flow t9]

* When an equation is presented, the generalized dimensions of the
various quantities are given in brackets. They are: = length or
distance; t = time; f = force; m = mass; = degree of temperature
change or temperature; e = energy (which is equal to the product of f).

8



Fourier stated his law on a differential basis in terms of the quantity

k = thermal conductivity of a material [e/tl6]

such that

q = - kA dTdx

(2.2)

This law divided the thermal evaluation process into an experimental

part, determining the thermal conductivity, and an analytical part,

using the thermal conductivity to relate the temperature gradient of the

heat flow rate.

The conservation of energy principle can also be applied to a control

volume, resulting in:

net heat conducted
to the control
volume per unit
time

heat generated in
the control
volume per unit =
time

increase of
thermal energy
stored in the
control volumej

4

Combining Fourier's law for a cylindrical geometry and the conservation

of energy principle yields the following equation:

a (kr ) + aZ kBT + a a) at
TZ az 7 (Te ) atp

(2.3)

where:

T = temperature [e]

k = thermal conductivity [e/tte]
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r, , z = radial, circumferential and longitudinal
coordinates for describing the cylindrical
geometry I]

= volumetric heat generation rate [e/ti3]

p = material mass density [m/93]

c = material's specific heat [e/me]

t = time It]

On the left side of Equation 2.3, the first three terms account for

radial, axial, and circumferential conduction, respectively. For waste

packages, the first term should predominate in most analysis applications.

The second term will be retained in a small portion of the analyses, and

the third term will virtually always be negligible. The q term is used

to represent the production of thermal energy in the waste package due

to decay heat. Generally, in waste package analysis, the heat genera-

tion is assumed to be uniform throughout the waste canister's contained

volume.

The term on the right side of Equation 2.3 accounts for energy storage,

which is associated with an increase in the temperature of the material.

This is the sensible heat effect. Latent heat effects associated with

additional stored energy if the material were to change to a more vola-

tile phase are not included in Equation 2.3. For most continua, conduction

occurs without phase change. It is easier to include latent heat effects

associated with phase change in the finite element or finite difference

representations of the conduction differential equations than it is to

include them on a continuous function basis. The allocation of stored

energy between sensible and latent heat in a region generally requires

special treatment. For steady-state thermal processes, the right side

of Equation 2.3 is zero. For the waste package, the heat will typically

be generated in a region represented by a solid, conducting cylinder and

transferred radially by conduction to the next annulus.
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2.1.1.1 Radial Steady-State Conduction with Heat Generation and
Constant Thermal Conductivity in a Solid Cylinder

When circumferential and axial conduction is neglected, Equation 2.3 be-

comes

r dr (rdr) °
.(2.4)

for steady-state, one-dimensional conduction with heat generation in a

cylinder with constant thermal conductivity.

Two boundary conditions are:

at r = dT 0dr

at r = T Tmax
(2.5)

The solution is

*2 2]

T=T [ro (r) 
max 4k'Tr

(2.6)

where r is the outside radius of the solid cylinder. If the outside

temperature, To (at r = r), is known from a previous calculation, the

centerline temperature Tmax at r = 0 can be determined from

*2

T =To + 0
max .4k

(2.7)
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2.1.1:.2 Radial Steady-State Conduction without Heat Generation
and with Constant Thermal Conductivity in a Hollow Cylinder

Equation 2.3 reduces to

(2.8)

for radial steady-state conduction without heat generation and with

constant thermal conductivity in a region with inside radius ri and

outside radius r. Two boundary conditions are:

r = r T= To (To known)

r r dT - - (q, r, , k known)

(2.9)

The second

rate [e/t]

annulus is

boundary condition is Fourier's law, and q is the heat flow

through the annular region. The heat generation within the

assumed to be zero.

The solution is

T To 0 -TrW in (rO)
\rJ

(2.10)

For waste package analysis, the temperature at the inside surface is

usually of interest and is given by

T = T + in r)

(2.1 1)
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The waste package performance assessment programs WAPPA and BARIER assume

that the heat flow q (from the waste form) and the outside temperature

To are known. They progressively use Equation 2.11 across each barrier

until they reach the waste form where they use Equation 2.7 to calculate

the maximum waste form temperature at the centerline of the waste package.

2.1.1.3 Two-Dimensional Conduction

The following steps have been used to obtain analytical solutions of

two-dimensional transient conduction problems:

(a) Taking the Laplace transform of the time variable

(b) Solving the second-order elliptic differential
equation in space by assuming a product solution
of two functions in the independent variables
(r, z for the radial and axial conduction typical
for waste packages)

(c) Taking the inverse Laplace transform of the
spatial solution to reenter the time domain

For steady-state, two-dimensional conduction, steps (a) and (c) can be

omitted. The difficulty encountered in obtaining analytical solutions

increases as heat generation is included and the boundary conditions

become more complicated.

It is not practical to attempt to obtain analytical solutions for steady-

state or transient two-dimensional conduction in a series of regions

(engineered barriers) due to the difficulty in matching temperature

solutions at interfaces. It is more convenient to use discrete numeri-

cal representations (finite element and finite difference-based algebraic

equations) that can handle all of the annuli simultaneously and solve

for the temperature distribution in the waste package.

13



2.1.2 Convection

Convective heat transfer occurs in fluid-occupied regions when a solid

boundary and fluid are at different temperatures. This mode of heat

transfer is driven by the mass transport of the flowing fluid. The

solid boundary and the flowing fluid act as two bodies exchanging heat

from the one at higher temperature to the one at lower temperature.

Heat transfer between a solid and a fluid involves a temperature gradi-

ent in the fluid near the wall. The region over which this gradient

extends is known as the thermal boundary layer or convective film. Out-

side this boundary layer, the fluid temperature remains at the undis-

turbed bulk fluid temperature. The temperature gradient in the boundary

layer is accompanied by a density gradient. For a quiescent fluid re-

gion, the density gradient is acted on by gravity, and the fluid tends

to flow, causing mass transfer and heat exchange from a hot wall to the

fluid or from the fluid to a cold wall. If the fluid flow past the hot

or cold surface is caused only by the density gradient induced by the

temperature gradient, the heat transfer is known as natural convection

or free convection. If the flow past the hot or cold surface is caused

by other means, such as momentum imparted to the fluid by a fan or pump,

the heat transfer is known as forced convection.

The basic equation for convective heat transfer was stated by Newton in

1701:

q = hA(Th - Tc)
(2.12)

where

q = heat flow rate [e/t]

h = convective heat transfer coefficient [e/tU2 ]

A = area of heat transfer surface [L2]
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Th = representative temperature of hot body [el
Tc = representative temperature of cold body (bulk
I fluid temperature when Th is wall temperature) [e)

Newton's equation postulates that, for convective heat transfer, the

heat flow rate can be represented by the product of a single coefficient

and the temperature difference. Thus, Newton's equation defines a quantity,

the convective heat transfer coefficient, h, that must be quantified for

particular convection conditions. The heat transfer coefficient depends

on the solid surface configuration, fluid type, and flow regime and is

often determined empirically. The few analytical solutions that exist

suggest functional forms of empirical correlations.

The flow velocity at the solid boundary is zero, and conduction is the

primary means of transporting heat through a very thin sublayer region

of the boundary layer adjacent to the wall. Except for liquid metals,

the thermal conductivity of fluids is relatively low compared to the

conductivity of materials that typically are used in solid surfaces of

heat transfer equipment. Away from the solid boundary but through most

of the boundary layer, convective heat transfer depends primarily on the

mass transport mixing currents. In order to transfer heat to or from

the boundary layer at a fixed rate, a lower temperature difference

(Th - Tc) is needed if the flow velocity is high. A high velocity

promotes turbulence and greater mass transfer between the hot and cold

regions of the boundary layer. A low velocity, on the other hand, is

compatible with laminar flow and very little transverse mixing.

2.1.2.1 Forced Convection

Forced convection heat transfer theory is based on analytical principles

for heat transfer and fluid mechanics. These principles involve the use

of control volumes in the fluid region. The principles of mass, momentum,

and energy conservation are applied to these control volumes. For laminar

15



boundary layer flow in the x direction along a flat plate, as shown in

Figure 2.1, the mass conservation equation for incompressible, two-

dimensional, steady flow is

+ av0=

(2.13)

where the two terms represent the fluid flow in the control volume in

the x and y directions and where

= local fluid velocity in the x direction [t]

= local fluid velocity in the y direction [t]

The momentum conservation principle applied to steady-state laminar flow

yields

-~~~ ~2-OaU + va = a 
ax ay By2

(2.14)

where

v =/p = fluid kinematic viscosity [L2 /t]

ji = fluid dynamic viscosity [m/It]

p = fluid mass density [m/i 3]

x,y = coordinates as defined in Figure 2.1 [i]

and where the left side represents the net efflux of momentum from the

control volume due to exchanges of mass with the surroundings at differ-

ent velocities, and the right side represents the net viscous shear

force exerted on the fluid in the control volume.
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streamli ne

flat plate in z-x plane

Figure 2.1

Conrol Volume in the Laminar Boundary Layer on a
Flat Plate
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Applying the conservation of energy principle to steady-state laminar

flow yields

i T V vT a T
ax By v (2.15)

where

T = fluid temperature at a point [el

a = kc = fluid thermal diffusivity [i 2/t]

k = fluid thermal conductivity[e/tt6]

c = fluid specific heat [e/me]

p = fluid mass density [m/p3]

The terms on the left side of Equation 2.15 represent the net rate at

which energy leaves the control volume due to fluid mass crossing its

boundaries at different temperatures and the right side represents net

thermal energy conducted into the control volume.

The momentum and energy differential equations are similar in that both

are parabolic, and for v = a, the temperature and velocity distributions

are identical. From this observation, it follows that the transfer of

momentum is analogous to the transfer of heat within the laminar boundary

layer when the Prandtl number (Pr = v/a) is unity. Moreover, for a

plate with a constant surface temperature Ts, the momentum and energy

equations have physically and mathematically similar boundary conditions:

Boundary Conditions
Momentum Equation Energy Equation

y =O = O v = 
y =O a T - Ts = O
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(2.16)

where reflects the bulk fluid condition outside the boundary layer.

Pohlhausen in 1921 published an analytical solution to the temperature

distribution in the laminar boundary layer by assuming the same func-

tional form chosen by Blasius in 1908 for the velocities in his momentum

equation solution. A derivation of these solutions is given in Refer-

ence H-81.

The solution involves the Nusselt and Reynolds numbers

local basis as

defined on a

Nux = hxX
k

(2.17)

Re = pux
1'

(2.18)

Pr = 
x a

(2.19)

where

Nu = local Nusselt number

Rex = local Reynolds number

[ 

I I
Pr = local Prandtl number

hx = local heat transfer coefficient [e/tU2 el

x = distance along plate in direction
to the local region of interest

of flow
[t]
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k = fluid thermal conductivity [e/te)]

p = fluid mass density Em/93]

u = fluid velocity in x direction parallel
to plate [/t]

p = dynamic viscosity of fluid [m/it]

v= kinematic viscosity of fluid
(v = / P) IQ/t

a= thermal diffusivity of fluid [L2/t]

The solution to the laminar thermal boundary layer equations is

Nux = 0.332 Rexl/2 Prl/3.

(2.20)

Typically, it is more convenient to know the average Nusselt number over

a length of plate L

(2.21)

where

L = length of plate in flow direction
of interest for convection [x]

h = average heat transfer coefficient over
length of plate L [e/tk2e]

so the associated average heat transfer coefficient can be evaluated.

The average Nusselt number can be evaluated using

L
NW-~~ h dx

Nu k |O x (

(2.22)
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where hx, obtained from Equations 2.17, 2.18, and 2.20, is

hx ' 0.332 k AL (pu1/20332k 112 r1/3

(2.23)

The solution to Equation 2.22 is then given by

Nu = 0.664 ReL1/2 Prl/3

(2.24)

The associated average heat transfer coefficient for the length L of the

plate is

h = 0.664(k/L)ReLl/2 Prl/3

(2.25)

when the flow in the boundary layer is laminar.

Analytical solutions have been determined for the laminar boundary layer

and for simple geometries. For turbulent boundary layer flow, experimen-

talists have assumed that similar relationships hold between the non-

dimensional quantities (Nu, Re, and Pr) such that

Nu = C Rem Prn

(2.26)

The values of C, m, and n can be evaluated for sets of laboratory data

to develop empirical correlations. Alternatively, the empirical process

has also suggested modifications in the functional forms that have been

used in correlating the Nusselt number and heat transfer coefficient.
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2.1.2.2 Free or Natural Convection

Consider the pane of glass shown in Figure 2.2, with an outside surface

temperature of 160C and an outside air bulk temperature of -180C. The

heated air moving upward next to the outside surface of the glass forms

a region of flow that is known as a boundary layer. At its inner edge,

the velocity is zero, and the air temperature is equal to the temperature

of the glass pane's outer surface. Within the boundary layer, heat

transfer occurs primarily by conduction, but the overall transfer rate

process is treated as convection. At the outer edge of the boundary

layer, the temperature of the air is equal to the ambient air tempera-

ture (T or the bulk fluid temperature), and the velocity equals zero.

This is true because the air at rest at the edge of the boundary layer

is not in a forced flow condition and therefore cannot sustain any shear

force. If the temperature gradient were not zero at that point, heat

would be conducted out of the boundary layer causing an extended density

gradient and more upward flow.

The consequence of these temperature and velocity profiles is that no

heat flows from the glass through the boundary layer to the air at

ambient temperature. All of the heat goes into the moving boundary

layer which has temperature and velocity profiles as depicted in Figure

2.3 and a mean temperature intermediate to that of the glass pane and

the ambient air. Note that the temperature of the boundary layer, which

is one of the heat exchange media, is not used in Newton's equation.

Rather, the ambient air temperature outside the boundary layer is used.

The reason for this choice is simply that the ambient fluid has a unique

temperature value while the boundary layer has an unquantified tempera-

ture distribution.

The same assumptions apply in the application of the mass and energy

conservation principles to natural convection as for forced convection,

yielding the same mathematical relationships. However, the momentum

conservation principle includes a net force resulting from the pressure

gradient and a gravitational force term which must be retained. For
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T = -180C
U=V=o

glass in 
x-z plane

Figure 2.2

Natural Convection Boundary Layer along Outside
Surface of a Warm Pane of Glass in Cold Ambient Air
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Figure 2.3

Velocity and Temperature Profiles
in Natural Convection
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forced convection, these forces were neglected since they are much smaller

than the viscous force term. Thus, the equations resulting from the

mass, momentum, and energy conservation principles are:

au + .= 7
x By (2.27)

u au +

ax = [ga(T-T )] + a2 u
ay

(2.28)

U T + V aT = v

for the conditions

(2.29)

y = 
y = 6
y = 6

Fluid momentum

= v = 
= = 

au = 
By

Thermal energy

T = TW
T = T.

aT = 
By

(2.30)

where 6 is the boundary layer thickness.

Solutions for laminar flow are

T-T
co (1 -'.)

(2.31)
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Bu 2= S (Tw-TJ f 2

(2.32)

where x is a representative axial velocity which varies with x, and the

heat transfer expressed in terms of Nusselt number is

Nu = 0.508 Gr 1/4 Pr112

(0.952 + Pr)1/4

(2.33)

where Gr and 6 are the Grashof number and the volumetric coefficient of

thermal expansion

Gr = gx 3 (TwT1)
X

(2.34)

~1Bv\
V (T)p

(2.35)

where

Grx = Grashof number [ ]

g = local acceleration of gravity [Q/t2]

0 = volumetric coefficient of thermal expansion D-11

x = distance along plate in direction of flow
to point of interest [I]

T = temperature [el

v = fluid kinematic viscosity [i2/t]

v = fluid specific volume [Z3/m]
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By integrating hx over the interval from 0 to L and dividing by L, the

average heat transfer coefficient, h, over that region is determined to

be

A = 4 hx=L

(2.36)

From Equations 2.33 and 2.36, the average Nusselt number is

1/4
NuL = 0.677 GrL

and from Equations 2.21

can be expressed as

hL = 0.677 k GrL
L

Pr1/2

(0.952 + Pr)1/4

(2.37)

and 2.37, the average heat transfer coefficient

4 Prl/2

(0.952 + Pr)1/4

(2.38)

The analytical solutions given above suggest the functional form of

experimental correlations for other geometric configurations.

2.1.3 Radiation

2.1.3.1 Ideal Radiation Emission

Electromagnetic energy is radiated from the surfaces of all bodies as a

result of their temperature. Thermal radiation has an energy corres-

ponding to electromagnetic wavelengths over the range of about 10-4 to

10-7 meters. Statistical mechanics theory developed by Planck in 1900
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yielded an expression for the energy density of radiation per unit volume

and per unit wavelength as a continuous function of the wavelength

8œffhck 5

exp(U -1 (2.39)

where

T = temperature of body (OK) [e]

h = Planck's constant = 6.625 x 10-34(J.sec) [et]

k = Boltzmann's constant = 1.381 x 10-23(J/molecule -OK)

c = velocity of light = 3.0 x 1010 (cm/sec) [o/t]

A = radiant energy wavelength (cm) [-]

U = radiant energy density per unit volume
X per unit wavelength (J/cm4) [e/j4]

[e/molecule e]

In 1900, Boltzmann integrated this function over the spectrum from 0 to 

(all possible wavelengths) and determined the total radiant energy emitted

by a body that will not transmit or reflect any incident radiation (a

black body) to be

Eb = aT4

(2.40)

where

Eb = total radiant thermal energy

a = Stefan-Boltzmann constant

T = surface absolute temperature

flux [e/ti2]

[e/tQ2 64 ]

[8]
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Earlier, in 1879, Stefan had deduced experimentally that this was the

functional form of the total radiant energy emitted by a black body.

Statistical mechanics and laboratory observations were in agreement in

yielding a simple expression for the radiant thermal energy flux in-

volving a single constant.

Once this functional form for the total energy leaving a body has been estab-

lished, other engineering questions must be answered before net radiation

heat transfer between two real bodies can be quantified. They include:

(1) How much of the radiation emitted by body 1
is incident on body 2 and vice versa?

(2) Of the energy incident on real surfaces
(non black bodies), how much is absorbed,
reflected, and transmitted?

(3) If there is a partially absorbing medium,
such as a gas or glass, between the principal
hot and cold surfaces, what effect does it
have on the net radiative heat transfer?

Radiation properties of the materials and the geometry of the radiating

surfaces must be described and used along with the total radiant energy

flux expression for a black body to quantify the net radiant energy

transfer rate between real bodies.

A grey surface is one that emits only a fraction of the radiation emitted

by a black body. For the grey surface,

E = aT4

(2.41)

where < 1.0, and for a black body

Eb = T4

(2.42)
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giving

Eb

(2.43)

The quantity is the emissivity, a material surface property. For a

black body, = 1 and for a grey body, 0 < <1. For a grey body, 

can be treated as a function of temperature. In some cases, it is ac-

ceptable to consider as a constant.

If a black body, p, exchanges heat only by radiation and only with an-

other body at the same temperature,

Pate incident radiant energyl[is being absorbed by body p =
ERate of energy loss by1
[radiation from body p 

OA = EbA
(2.44)

If the black body, p, is replaced with a grey body, q, at temperature

equilibrium, then

4Aa' = EA

(2.45)

where

4= the radiation energy flux incident on either body [e/t k2]

a'= the absorbtivity of body q
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Equations 2.44 and 2.45 yield

Eb

(2.46)

Equations 2.43 and 2.46 indicate

= '

(2.47)

for all temperatures.

2.1.3.2 Material Radiation Properties

Of the total radiation incident on a body, a fraction can be absorbed;

another fraction reflected; and the remainder transmitted through the

body, indicated in Figure 2.4, such that

a + p + = 1

(2.48)

where

a = absorbtivity

p = reflectivity

T' = transmissivity

[]

I[I

I[I
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incident
radiation reflected

radiation radiation

<.5~~~~~~:1

transmitted radiation

Figure 2.4

Incident Thermal Radiation Being Absorbed,
Reflected, and Transmitted
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Most solid materials do not transmit any thermal radiation so

a' + p' = 1

in those cases. For a black body P' = T = 0.

Energy that is reflected by or transmitted through a body maintains a

character (wavelength) associated with the temperature of the body from

which it was radiated. After energy has been absorbed by a body, future

radiation has a radiant energy flux which is related to the temperature

of that body.

2.1.3.3 Geometric Aspects of Radiative Heat Transfer

To quantify net radiative heat exchange, a "view factor" must be de-

termined. The view factor, Fn, is defined as the fraction of radiant

energy leaving the surface m that is incident on surface n. The view

factor is a nondimensional quantity (0 Fmn < 1).

Consider two black bodies that exchange heat with one another. The net

heat transfer from body 1 to body 2 is

Q12 = Ebl Al F12 - Eb2 A2 F21

(2.49)

When they are in temperature equilibrium with each other (Ti = T2),
Q12 = 0, and Eb = T14 = Eb2 = T24 so that

Al F12 = A2 F21

(2.50)

which is a reciprocity relationship. It applies in general to any two

surfaces (grey body or black body).
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For the two black bodies shown in Figure 2.5, the net energy exchange

can be stated as

1ne-= (Ebl-Eb2) k |1f 2 'ri C 2 c 1 1 2

A2 A1 (2.51)

where hemispherical uniformity of radiation emission intensity is assumed,

and

1 12= A2F21 I cos 2 cos 1d 1 cIA2

A2 A1 (2.52)A2 AI

This result is convenient but not precisely accurate because the actual

intensity of the radiation emitted is generally non-uniformly rather

than uniformly distributed over a hemispherical surface as assumed in

the above equation.

..1.3.4 Grey Body Radiation Heat Transfer

For grey bodies (0 < c= a' <1), the radiation heat exchange is more com-

plex because part of the incident energy is always reflected from the

surface it reaches. The assumption of spatially uniform radiation in-

tensity from diffuse surfaces used previously for the black body heat

transfer description will be retained. To account for the net inter-

action between two bodies, it is convenient to define:

J = radiation leaving a surface (radiosity) [e/ti2]

G = incident radiation on a surface (irradiation) [e/ti2]

Assuming typical grey bodies that are opaque (T' = 0),

J = Eb + P'G

(2.53)
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Angles, Area Elements, and Separation Distance Terms
Used in Evaluating Radiation View Vectors
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where the first term on the right side of Equation 2.53 accounts for

energy leaving the grey body, and the second term accounts for surface

reflection of incident radiation. Since a' + p' = 1, this can be written

as

J = Eb + (1 - a')G

(2.54)

The net energy leaving the surface is

q = AJ-G)

q = A [Eb

= A Eb + (l-a')G - G]

- aG]

(2.55)

Using Equation 2.54 in conjunction with Equations 2.55 and 2.47,

Eb - J
q = -

(2.56)

This is an important relationship as it can be used in the same way as

Ohm's law to relate heat flow to potential difference and resistance

values. In this relationship, q, which has units of [e/t], is analogous

to electrical current; Eb - J, which has units of [e/tt2], is analogous

to voltage difference; and (-E)/A, which has units of [1/02], is

analogous to electrical resistance.

Thus, for two grey bodies that see each other, a radiative heat transfer

network is
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Ebf
JI J2 E

b2

I _ C

r;IA I

Gry Body Fctor

2-

View
Factor

Gray Body Factor

Since Ebl - Eb2 = a (TI4 - T24) and letting

-1
Rg = A

g IA
+ IF 2

C2

(2.57)

the heat exchange between the two grey bodies is given by

qnet
1-2

a(T 4-T 4 )

R9
(2.58)

For two long concentric cylinders, as shown in the sketch below, F12 = 1,

il

I _ c- 

c IA I AIl
2

Two Concentric Cylinders Exchanging Heat by Radiation
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and Equation 2.58 can be rewritten as

aA1 (T 1
4-T 2

4)
1 = I 1 21 Al 2

El - T2 £2T
(2.59)

Many cases can be treated in a similar way

thermal circuit elements for the geometric

by developing the appropriate

configuration.

It is sometimes

separated by an

sketch below).

necessary to evaluate heat

absorbing and transmitting

exchange between two surfaces

medium such as a gas (see

I 29

Assuming that the gas does not reflect (p' = 0), then T' = 1- d .

The direct net exchange between 1 and 2 is

ql-2 ~ 1/~~2(l- )

and from 1 to the gas is

o - Ebg

l_g l/(AlFlgeg)

(2.60)

(2.61)
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The radiation network becomes

bg

I
A F Ig Cg

JIl

A2 F2g g

J 2 fb2

- f 2

f 2A2

I I I
Il 1 1A1F 12(' -eg)

It is usually easier to evaluate the overall resistance R between 1 and

2 after evaluating the individual resistances numerically rather than

functionally. For an equivalent network

R 3 R 4

bl / b2

Rl R 5 R2

with R, R2, R3, R4, and R5 evaluated numerically, the net heat radiated

from surface 1 to 2 is

a(T 1 4 - T2 4)

q, =- R R RR* ~ 1 
R54-R6 (2.62)

where R6 = R3 + R4.
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2.1.4 Finite Increment Mathematical Models

The finite element and finite difference methods are used to analyze

complex heat transfer processes. These methods use a set of algebraic

equations to represent the energy conservation principle at discrete

intervals of time and space in place of continuous differential equa-

tions. The finite increment equations are written in terms of the un-

known temperature values at specified node locations. These equations

are coupled because each node temperature depends on that of its neigh-

boring nodes with which it directly interacts by exchanging heat. With

the finite increment method, a number of regions that have different

material property values can be represented, because properties such as

thermal conductivity, density, and specific heat are treated numerically.

This is a great advantage over continuous differential equations which

apply only in regions in which these parameters are continuous. For

multiple regions, the analytical effort required to solve the differential

equations when two-dimensional temperature variations are involved is so

great that this method becomes infeasible. Also, continuous differential

equations are much more difficult to solve if the properties are temperature-

dependent. With the finite increment methods, material property values

can be reevaluated after each solution based on the most recent local

temperature values.

The general form of the equations used in finite increment methods to

describe dynamic thermal equilibrium is

[E] IT} + [R { } JQJ

(2.63)

where [] and [K] are the diagonal capacitance and generalized conduct-

ance matrices whose elements are determined from

i j 6 j P C V1

(2.64)

40



ij k A
Ii Ax1~ (2.65)

where

6.. = Kronecker delta = 1 for i = j and for i j

p = mass density of material associated with node i [m/-3]

c: = specific heat of material associated with node i [e/me)

V:= volume of material associated with node i [y3]

C .. = temperature specific energy capacity for node i
from diagonal matrix [e/0]

kij = thermal conductivity for conduction temperature
interactions between nodes i and j [e/tQH]

Axij = distance between nodes i and j []

Aij = heat transfer area for thermVl interaction
between nodes i and j [ I

Kij = thermal conductance between nodes i and j [e/te

Qi = heat generation in the region associated with
node i from heat generation vector IQ1 [e/t]

Ti = temperature at node i from vector ITS [e]

and where ITI, ITl, and Qtare the temperature vector for the assemblage

of nodes, the time derivative of the temperature vector and the vector

of heat generation rates associated with the various nodes, respectively.

This equilibrium relationship is formulated in many finite increment

programs by defining K differently in regions where convection is

occurring. This relationship may be expressed as

Kij = hij Aij

(2.66)
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where

hij = convective heat transfer coefficient applicable
to exchange between nodes i and j [e/ti eO

Similarly, radiation is frequently represented by an equation of a form

identical to Newton's equation

qr = hrA (Th - Tc)

(2.67)

where

qr = radiation heat transfer rate [e/t]

hr = equivalent radiative heat transfer coefficient
for radiation [e/tX2 ]

Th = temperature of hot body surface [8]

Tc = temperature of cold body [e]

The heat transfer coefficient for radiation is defined as

hr = F12 (Th2 + Tc2)p (Th + Tc)p
(2.68)

where the subscript p indicates hr is evaluated based on the values of

Th and Tc in the previous iterations. When Equation 2.68 is multiplied

by the heat transfer area and the current temperature difference

(Th - Tc), the heat flow rate is determined. The thermal conductance

representing radiation heat exchange for finite increment models is

determined from

Kij = (hr)ij Au
(2.69)
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where

(hr)ij = radiative heat transfer coefficient applicable 2
to thermal radiation exchange between nodes i and j [e/tt e]

The dynamic thermal equilibrium equation has another term on the left

side when a phase change (assumed to be positive when going from a less

volatile phase 1 to a more volatile phase 2) is occurring. The equation

would be of the form

[* ) ~tI + [R] T} + U = QI

where

di P Vi Ufg R

djji V U R.13 Pi 1 if 

liquid-gas

solid-liquid

(2.70)

where Pi, V, and the vectors fT), {T), and {QI are as previously

defined and where

Ufg = internal energy to gasify a unit
mass of liquid ?e/m]

uis = internal energy to liquify a unit
mass of solid [e/m]

R = rate at which finite spatial region
associated with node i is experiencing
phase change [l/t]

Uij = rate of energy increase causing phase change
in spatial region associated with node i [e/tJ
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The quantities R are generally not specified directly. They may be

calculated on the basis of algorithms that allocate stored energy

between sensible and latent heat. Phase changes impose the complication

of different material properties for the two phases. It is necessary to

understand the procedures involved in various programs that allow phase

change as these procedures are not standardized.

2.1.5 Thermal Loads and Constraints

Thermal loads are typically specified in terms of a volumetric heat gen-

eration rate in a particular region of space. For a waste package, this

is likely to be a uniform heat generation rate for the inside of the

canister in its initial undeformed condition. The heat generation is a

consequence of the nuclear decay reactions. The parameters required for

the calculation of this decay heat generation as a function of time are

discussed in an earlier report in this series (Reference MI-83).

Two methods are commonly used for calculating the decay heat. The first

is a semi-empirical method which requires a knowledge of the fuel irradi-

ation history; the recoverable energy per fission of U235, pu239, and

U238; and the number of fissions per initial fissile atom. The second

method is more detailed and case specific. It involves the use of a

depletion code like ORIGEN (Reference OR-77). In addition to the compo-

sition of the fuel and its irradiation history, ORIGEN requires the input

of the following parameters: spectrum averaged cross sections; fission

product yields; radioactive decay constants, decay modes, and branching

coefficients; radioactive chain decay information; and photon yields.

Calculations are made to describe the decay heat rates for the actual

waste geometry and then re-expressed as a spatially uniform rate based on

the canister internal volume.

An important thermal load that must be considered in conjunction with

repository operation is the loss of heat associated with ventilation.

Ventilation will be required both for the initial burial of the waste and

its possible retrieval from the repository at a later time. The primary
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mechanism for ventilation heat transfer is convection. The important

convection parameters such as the Reynolds number, Prandtl number, and

Nusselt number have been discussed in Section 2.1.2.1 of this report. If

temperature differences exist between different parts of a repository,

such as the waste package and repository walls, then the overall heat

loss should include thermal radiation heat exchange. Heat loss from

ventilation is discussed in an earlier report in this series (Reference

CU-83).

Thermal constraints are temperature conditions that the temperature dis-

tribution solution must satisfy. The temperature at various locations

can be fixed or specified as a function of time. Similarly, thermal

gradients can be specified at planes. Alternately, since the thermal

conductivity is generally known, the constraint can be specified as a

heat flux for the particular plane.

2.1.6 Conservation Equations

The conservation of energy principle applies throughout a heat exchange

medium. The finite element method applies the principle only at each of

the nodes used to describe the medium.

For conduction in the geometry shown in Figure 2.6, the energy conser-

vation principle applies to each of the five degrees of freedom - the

five nodes located at the center of the elements.
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Figure 2.6

Plate Consisting of Five Cubic Elements of Unit Dimension
on a Side with One Node per Element Located at Its Center
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(2.71)

where the material has

where:

a spatially uniform and isotropic conductivity and

C = L3cP

(2.72)

K = Lk

(2.73)

Qi(t) = L3qi(t)
(2.74)

where:

L = side dimension of cubic element [I]

c = specific heat of the material [e/me]

k = material isentropic thermal conductivity [e/tte]

qi(t) = transient heat generation rate per unit volume
for the ith element [e./Q t]

P = material mass density [m/Q3]
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In matrix notation, the energy conservation equations become

IC] {;} + [K] = Q(t)

(2.75)

The quantities C and K can also be functions of time because they can

be re-evaluated (just as Q(t)) at the end of each time step at which

Equation 2.75 is solved. The set of simultaneous differential equations

represented by Equation 2.75 is sometimes known as the temperature

equilibrium equation in that it represents the dynamic relationship

between temperature values and heat generation.

For steady state analyses, Equations 2.71 and 2.75 reduce to

K 0 -K 0 0 Tl Q1

o K -K 0 0 T2 Q2

-K -K 4K -K -K T3 Q3

o 0 -K K 0 T4Q4

o 0 -K 0 K T5 Q5

(2.76)

and

[K] IT) = QJ

(2.77)

Various elements used in the finite element method are defined in terms

of several nodes. Procedures contained in the computer software allocate

portions of the element properties such as volume, area, etc., to each

node.

Equation 2.77 can be solved by matrix methods. The general matrix

Equation 2.75 can be solved by direct integration, starting with some

known initial state of the system.
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After the temperature distribution has been determined consistent with

the particular temperature boundary and initial conditions, the solution

can be checked at each node using the individual equations of Equation

2.75. These equations are no longer coupled since the temperature values

have been determined. The purpose of the check is to determine whether

thermal equilibrium exists; that is, does the left side of Equation 2.75

equal the right within an acceptable tolerance at each node? The equi-

librium check need not be performed after each solution to Equation 2.75.

If the equilibrium check is not satisfied, the temperature distribution

should be modified and the check re-performed until satisfied.

2.1.7 Simulated Thermal Responses

When sufficient boundard conditions are applied (along with initial con-

ditions for transients), a unique spatial temperature distribution can be

obtained as the solution to Equation 2.75. This temperature distribution

is the fundamental response of a thermal analysis. From the temperature

distribution, gradients and heat fluxes can be calculated for various

planes. From these temperatures, the sensible heat storage and heat

conduction can be evaluated.

2.2 Thermal System Variables and Parameters

This section of the report presents a collection of data that will quan-

tify the physical properties of the thermal system that affect the con-

duction, convection, and radiation thermal energy transfer. These data

are provided here to aid waste package performance analysts by reducing

the effort involved in analytical modeling of the waste package physical

characteristics. The following materials are considered:

• Cast iron

* Low carbon steel

* Stainless steel

* Zircaloy
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Titanium alloy - Ticode-12

* High-level waste glass

* Uranium dioxide

* Bentonite

* Air

* Helium

* H20 - liquid

* H20 - steam

These data were compiled during an investigation of limited scope and

are not always completely defined over the expected range of interest

for waste package design. Analysts may need to augment the data pre-

sented here with their own investigations in various areas, particularly

if material compositions differ from those chosen for the data summaries

in this report. The data are taken from published sources believed to

be reliable. The data are empirical, and different observers disagree

with regard to quantifying various physical parameters. For example, in

1967 an international conference presented more complete steam (and

liquid) properties for H20. Much attention was devoted to differences

that stemmed from different observations, which were probably the result

of both imprecise observation techniques and differences in the design

and control of the experiment.

2.2.1 Conduction Parameters

Three independent quantities must be defined in order to perform conduction

analyses. They are:

k - thermal conductivity [e/tQ6]

c - specific heat [e/me]

- mass density [m/_t3]
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Thermal diffusivity depends on the values of these three independent

quantities:

a = k thermal diffusivity [Li

(2.78)

The thermal conductivity of gases is dependent on their pressure and

temperature. For liquids and solids, the thermal conductivity is de-

pendent on the material temperature. In some cases, this dependency can

be neglected and the conductivity considered as constant. For example,

if a steady-state analysis is being performed in which the temperatures

can be estimated to within 250C, it is usually acceptable when dealing

with solids to treat the thermal conductivity values as constants

evaluated at the estimated average temperature.

2.2.1.1 Thermal Conductivity

Thermal conduction is the flow of thermal energy from one region at a

high temperature to an adjoining region at a lower temperature. It is a

result of energy transferred through a substance by its free electron

migration and kinetic energy exchange due to molecular collisions in

which the molecules have vibrational kinetic energies proportional to

their temperature. Fourier's law provides a functional definition of

thermal conductivity of a substance by relating it to other observable

quantities:

q = -kA dT

(2.79)

and

(2.80)
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where

* = heat flux [e/tQ2 ]

q = heat transfer rate

A = heat transfer area

k = thermal conductivity

[e/tJ

[2,2]

[e/tU6]

T = temperature

x = distance along heat transfer direction [Ul

The SI unit for thermal conductivity is watt per meter degree Celsius,

W/(m-OC). Conversions for thermal conductivity units are:

1 cal/(cm-s-OC) = 418.68 W/(m-OC)

1 cal/(cm-s-OC) = 241.9 Btu/(hr-ft-OF)

1 Btu/(hr-ft-OF) = 1.731 W/(m-OC)

1 Btu/(hr-ft-OF) = 0.2162 (lbf/sec-OF)

2.2.1.2 Specific Heat

Sensible heat manifests itself inside a material as the sum of molecular,

kinetic, and potential energies. The sensible heat term describes the

change in stored energy in terms of temporal change in a material's

temperature:

pc dT
(2.81)

where

Qss = increase in stored energy in the form
of sensible heat [e/tU3]
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P = material mass density [m/QE3]

c = material specific heat [e/mt]

T = material temperature 16)

t = time [t]

This sensible heat term appears in the general (transient) conduction

equation developed from the energy conservation principle. The specific

heat is the thermal energy addition to a unit mass of material necessary

to raise its temperature by one degree.

For finite element and finite difference programs, it is frequently

advantageous to deal with the energy storage on a unit volume basis

rather than a unit mass basis. This is done by replacing the specific

heat (c) with the product of the specific heat and the mass density:

c = pc

(2.82)

The sensible heat storage term becomes

dT
QS = dt

(2.83)

where c is the volumetric heat capacity. The volumetric heat capacity

is the additional thermal energy that will raise the temperature of a

unit volume of material by one degree. Specific heats that are a material

property (c) will be presented in this report. If an analyst needs

volumetric heat capacities, they can be computed using Equation 2.82.
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The general thermodynamic definition of specific heat is

cp ( Bh 
p (2.84)

V (2.85)

where

cp = specific heat evaluated during a
constant pressure polytropic process [e/me]

cv = specific heat evaluated during a constant
volume polytropic process [e/me)

h = specific enthalpy [e/m]

u = specific internal energy [e/m]

T = temperature [5)

The SI unit for specific heat is a joule per kilogram degree celsius

J/(kg-OC). Another typical unit is kcal/(kg-OC). Conversion factors

are:

1 kcal/(kg-OC) = 4186.8 J(kg-OC)

1 cal/(g-OC) = 4186.8 J/(kg-OC)

1 Btu/(lb-OF) = 4186.8 J(kg-OC)

For an ideal gas, the difference between cp and cv is a constant, Ru:

Ru = cp - cv

(2.86)

54



For real gases, a similar difference is noted in the specific heat terms.

The ideal gas law constant Ru is given by

Ru = 1.987 (cal/g-mole OK)

Ru = 8.314 x 107 (g cm2/sec2 g-mole OK)

Ru = 1544. (ft - lbf/lb-mole OR)

Ru = 1.987 (Btu/lb-mole OR)

The gas constant for a specific gas is obtained by

R = R/Mw

(2.87)

where Mw is the molecular weight. Values are:

Mw

(lb/lb-mole)Substance

R

(ft-lbf/lbm0 R)

53.35

386.20

Air

Helium

28.967

4.003

For liquids and solids, there is a very small difference in the two

specific heat terms. Liquids and solids are usually treated as incom-

pressible.

2.2.1.3 Mass Density

The mass density of a material, p, is defined as the mass per unit volume.

For gases, the mass density is a function of both pressure and temper-

ature. For an ideal gas,

p
P (RT

(2.88)
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where

p = mass density

P = pressure

R = gas constant

[m/£31

[f/ £2]

[e/m@]

Ru = 1.987

Mw = gas ml

[e/(m-mole e]

olecular weight [m/m-mole]

[elT = absolute temperature

For a liquid or solid, the mass density varies with temperature but usu-

ally doesn't vary significantly with pressure so that

p = p(T)

(2.89)

For a solid, the equation describing this density change (derived in

Appendix A) is:

- _ P= 3&T
p

where

a = mean temperature coefficient of thermal
expansion [1/0]

(2.90)

For liquids, the data are usually tabulated in terms of either the mass

density or the specific volume versus temperature at fixed values of

pressure.

For virtually all substances, the mass density increases with decreases

in temperature. For gases, the mass density also increases with increas-

ing pressure.
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The specific volume of a substance is the volume required to contain a

unit mass of the material at a given thermodynamic state, such as a

specific temperature and pressure. The specific volume is the reciprocal

of the mass density:

Vi= I
p

(2.91)

where

v = specific volume

p = mass density

[Qt3/m]

[m/Q3)

Thus, only one of these two properties needs to be known.

When a substance is heated and is free to expand, it experiences a thermal

strain,

d = dT

(2.92)

without

change,

experiencing any stress. Over limited ranges of temperature

the elongation of a specimen can be described by

AL = L

(2.93)

where

E = strain

L = original

]

length [i J
[2.)AL = incremental length
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For this same limited temperature change,

AL = aLAT

(2.94)

and the thermal strain is

= AL = TL

(2.95)

where

a = coefficient of thermal expansion [li/]

AT = T2 - T = temperature increase from state 1
to state 2 [e]

The term cLAT has a limited range of application in the calculations of

Equations 2.94 and 2.95 because a is a physical characteristic of a

material which varies with temperature. A mean value can be determined

by

T2

= -T-

TI

adT

(2.96)

where

a = mean coefficient of thermal expansion
over the range T1 T < T2

When the temperature of a substance is increased, the substance experi-

ences a fractional volume change according to
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AV 3&AT

(2.97)

and for constant mass

AV _ AP
V P

(2.98)

so that the fractional change in mass density is

- P 3AT
p

(2.99)

where

a = mean coefficient of thermal expansion [1/e]

AT = temperature increase to]

These relationships are developed in Appendix A. They can be used to

determine approximately how the mass density varies with temperature for

a solid when the thermal expansion coefficient data are known.

The SI unit for mass density is g/m3. Other typical units are kg/m 3 and

lbm/ft3. Conversion factors are:

1 kg/m3 = 1000 g/m3

1 kg/m3 = 0.0624 lbm/ft3

Since specific volume is the inverse of mass density, these conversion

factors can be used for specific volume.
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2.2.1.4 Latent Heat

Within a heat transfer region, a phase change can occur when the pres-

sure and temperature have a particular combination of values so that two

phases of a substance coexist in equilibrium. The heat transfer can

continue without temperature change and with the material changing phase

either giving up energy when going to a less volatile phase or absorbing

energy when going to a more volatile phase.

Latent heat derives its name from the fact that the internal energy of a

substance can change without a change of temperature. This occurs when

a material gradually changes phase with a step function difference in

internal energies between the two phases.

The science of calorimetry, which preceded the development of the thermo-

dynamic laws, devised the concept of latent heat. This early work involved

important physical observations, but some were not stated as precisely

as needed for consistency with the thermodynamic laws and principles

that were developed later. In its early definition, latent heat was

considered the amount of heat which must be added to a unit mass of a

substance to cause it to change phase in a constant pressure, constant

temperature, frictionless process. The definition is expressed as follows:

Q = mqL = mAu + W

(2.100)

where

Q = total heat added [e]

m = mass of substance changing phase [ml

qL = latent heat per unit mass [e/m]
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Au = change in specific internal energy of material [e/m]

W = work done by volume change by the entire system
of mass m without friction [e]

Latent heat can also be defined as a material property rather than heat

flow during a process. For an open system, the stream flowing into the

system can do work on the system, and the stream flowing out of the

system can have work done on it by the system.

The work in either stream is

W = FL = pAL = pV

(2.101)

where

W = flow work per unit time [e/t]

F = total force exerted on the quantity
of fluid flowing across boundary
(inlet or outlet) per unit time [f/t]

L = length of fluid mass flowing
across boundary in unit time [2w]

p = pressure at inlet (or outlet) [f/Z2]

A = area of flow into or out of system [92]

V = volume of fluid flowing across boundary
in unit time [I3/t]

Equation 2.101 can be written on a per unit mass basis

w = pv

(2.102)
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where

v = specific volume of fluid crossing boundary [Q,3/m]

w = work per unit mass [e/m]

Pressure and specific volume are properties of the fluid. Thus, the

flow work is a property of the fluid. The enthalpy is a fluid property

defined as

h = u + pv

(2.103)

where

h = specific enthalpy per unit mass [e/m]

u = specific internal energy per unit mass [e/m]

p = pressure [f /I2]

v = specific volume t 3/m]

Latent heat is defined as the difference between the specific enthalpy

of one phase of a pure substance at saturation conditions and the spe-

cific enthalpy of another phase of the pure substance at the same pres-

sure and temperature.

The latent heat terms are

hfg = h - hf

(2.104)

hif = hf - hi

(2.105)
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hig = h - hi
(2.106)

where g, f, and i represent the gas, liquid, and solid phases. Equa-

tions 2.104, 2.105, and 2.106 represent the latent heat associated with

liquid-gas, solid-liquid, and solid-gas transformations respectively.

2.2.1.5 Material Conduction Properties

Tables in this section present the conduction properties, thermal conduc-

tivity (k), mass density (), specific heat (c), and thermal diffusivity

(a), for each of the following solid materials:

* Cast iron (Tables 2.1 and 2.2)

a Carbon steel (Tables 2.3 and 2.4)

* 304 stainless steel (Tables 2.5 and 2.6)

* Ticode 12 (Tables 2.7 and 2.8)

* Zircaloy 2 (Tables 2.9 and 2.10)

* Zircaloy 4 (Tables 2.11 and 2.12)

* Bentonite (Tables 2.13 and 2.14)

a High-level waste glass (Tables 2.15, 2.16, 2.17, and 2.18)

* Uranium dioxide (Tables 2.19 and 2.20)

The thermal properties of bentonite and bentonite-rock mixtures are a

function of both the density of the material and the moisture content.

In general, the thermal conductivity of bentonite-rock mixtures increases

as density and moisture content increase.

These same properties are also presented as a function of pressure and

temperature for air and helium at low pressure, saturated liquid water,
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and dry saturated steam (Tables 2.21 - 2.28). For water and steam,

saturation properties including specific volume (reciprocal of mass

density) and specific enthalpy are presented in Tables 2.29 and 2.30.

Thermal conductivity, specific volume, and specific enthalpy are pre-

sented in Tables 2.31 - 2.36 as a function of pressure and temperature

for

* Subcooled liquid water

* Superheated steam

* Saturated liquid water

• Saturated steam
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Table 2.1

Cast Iron Conduction Properties
Including Thermal Conductivity (k), Mass Density (p),
Specific Heat (c), and Thermal Diffusivity (a = k/pc)

in English Units

T
(OF)

32
212
572

932

k
(Btu/hr-ftOF)

33.0
31.8
27.7
24.8

p
(lbm/ft 3 )

474
472
469
466

C
(Btu/Ibm0 F)

0.110

0.110

0.110

0.110

a
(ft 2/hr)

0.633
0.612
0.537
0.483

Source: KR-61 (kc)
BA-78 (p)
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Table 2.2

Cast Iron Conduction Properties
Including Thermal Conductivity (k), Mass Density (p),

Specific Heat (c), and Thermal Diffusivity (a = k/pc) in Metric Units

T
(0C)

0

100

300

500

k
(watts/mOC)

57.1

55.0

47.9

42.9

p(kg/m 3 )

7593

7561

7513

7465

c
(watt-hr/kgOC)

0.128

0.128

0.128

0.128

a
(m2/hr)

0.0588

0.0569

0.0499

0.0449

Source: Derived from data in Table 2.1
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Table 2.3

Carbon Steel Conduction Properties
Including Thermal Conductivity (k), Mass Density (p),
Specific Heat (c), and Thermal Diffusivity (a = k/pc)

in English Units

T
(OF)

70

100

150

200

250

300

350

400

450

500

550

600

650

700

750

800

850

900

950

1000

k
(Btu/hr-ftOF)

36.0

36.6

35.7

34.9

34.0

33.2

32.3

31.6

30.6

29.8

29.0

28.3

27.5

26.8

26.0

25.4

24.6

23.8

23.2

22.6

p
(lbm/ft3)

490.3

490.0

489.5

489.0

488.6

488.1

487.5

487.0

486.5

485.9

485.3

484.7

484.1

483.5

482.8

482.2

481.5

480.9

480.2

479.5

c
(Btu/lbm0F)

0.113

0.114

0.115

C.117

0. 119

0.121

0.123

0.125

0.127

0.129

0.131

0.133

0.136

0.139

0.142

0.146

0.150

0.155

0.160

0.165

a
(ft 2/hr)

0.651

0.656

0.635

0.609

0.585

0.562

0.539

0.519

0.495

0.475

0.456

0.439

0.417

0.399

0.379

0.361

0.340

0.319

0.302

0.286

Source: ASME-71 (k, a, p)

c = k/pa
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Table 2.4

Carbon Steel Conduction Properties
Including Thermal Conductivity (k), Mass Density (p),
Specific Heat (c), and Thermal Diffusivity (a = k/pc)

in Metric Units

T
(0C)

21.1

37.8

65.6

93.3

121.1

148.9

176.7

204.4

232.2

260.0

287.8

315.6

343.3

371.1

398.9

426.7

454.4

482.2

510.0

537.8

k
(watts/mOC)

62.3

63.3

61.7

60.4

58.8

57.4

55.9

54.7

52.9

51.5

50.2

48.9

47.6

46.4

45.0

43.9

42.5

41.2

40.1

39.1

p(kg/m3)

7853

7849

7842

7834

7826

7818

7809

7801

7792

7783

7774

7764

7754

7744

7734

7723

7713

7702

7691

7680

c
(watt-hr/kgOC)

0.131

0.132

0.133

0.136

0.138

0.140

0.143

0.145

0.148

0.150

0.152

0.154

0.158

0.162

0.165

0.170

0.174

0.181

0.186

0.191

(m2/hr)

0.0605

0.0609

0.0590

0.0566

0.0544

0.0523

0.0501

0.0482

0.0460

0.0441

0.0424

0.0408

0.0387

0.0371

0.0352

0.0335

0.0316

0.0296

0.0281

0.0266

Source: Derived from data in Table 2.3
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Table 2.5

304 Stainless Steel Conduction Properties
Including Thermal Conductivity (k), Mass Density (p),
Specific Heat (c), and Thermal Diffusivity (a = k/pc)

in English Units

T
(OF)

70

100

150

200

250

300

350

400

450

500

550

600

650

700

750

800

850

900

950

1000

k
(Btu/hr-ftOF)

8.38

8.40

8.67

8.90

9.12

9.35

9.56

9.80

10.0

10.2

10.5

10.7

10.9

11.1

11.4

11.6

11.8

12.0

12.2

12.4

(lbm/ft 3)

501.5

501.1

500.4

499.7

499.0

498.3

497.5

496.8

496.1

495.3

494.6

493.8

493.0

492.2

491.5

490.7

489.9

489.1

488.3

487.5

c
(Btu/lbm°F)

0.111

0.111

0.113

0.115

0.116

0.118

0.120

0.121

0.123

0.124

0.126

0.127

0.129

0.130

0.132

0.133

0.134

0.136

0.137

0.137

a
(ft 2/hr)

0.150

0.150

0.153

0.155

0.157

0.159

0.160

0.163

0.164

0.166

0.169

0.171

0.172

0.174

0.176

0.178

0.180

0.181

0.183

0.185

Source: ASME-71 (k, p, a)

c = k/pa

69



Table 2.6

304 Stainless Steel Conduction Properties
Including Thermal Conductivity (k), Mass Density (p),
Specific Heat (c), and Thermal Diffusivity (a = k/pc)

in Metric Units

T
(0C)

21.1

37.8

65.6

93.3

121.1

148.9

176.7

204.4

232.2

260.0

287.8

315.6

343.3

371.1

398.9

426.7

454.4

482.2

510.0

537.8

k
(watts/m°C)

14.49

14.53

15.00

15.39

15.77

16.17

16.53

16.95

17.30

17.64

18.16

18.51

18.85

19.20

*:9.72

20.06

20.41

20.75

21.10

21.45

P c
(kg/m3) (watt-hr/kgOC)

8030

8023

8012

8001

7990

7978

7966

7955

7943

7931

7919

7907

7894

7882

7869

7856

7844

7831

7818

7805

0.130

0.130

0.132

0.134

0.135

0.136

0.139

0.141

0.143

0.144

0.146

0.147

0.149

0.150

0.153

0.155

0.156

0.158

0.159

0.160

a
(m2/hr)

0.0139

0.0139

0.0142

0.0144

0.0146

0.0148

0.0149

0.0151

0.0152

0.0154

0.0157

0.0159

0.0160

0.0162

0.0164

0.0165

0.0167

0.0168

0.0170

0.0172

Source: Derived from data in Table 2.5
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Table 2.7

Ticode 12 Conduction Properties
Including Thermal Conductivity (k), Mass Density (p),
Specific Heat (c), and Thermal Diffusivity (a = k/pc)

in English Units

T
(OF)

k
(Btu/hr-ftOF) (lbm/ft 3 )

c
(Btu/lbmOF)

a
(f t2/hr)

32

75

282

282 0.13

11.0

600 282

Source: TI
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Table 2.8

Ticode
Including Thermal
Specific Heat (c)

12 Conduction Properties
Conductivity (k), Mass Density (p),
, and Thermal Diffusivity (a = k/pc)
in Metric Units

T
(0C)

k
(watts/mOC) (kg/rm3 )

c
(watt-hr/kgOC)

a
(m2/hr)

0.0
23.9

4510

4510 0.151

- 19.03

315.6 - 4510

Source: Derived from data in Table 2.7
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Table 2.9

Zircaloy 2 Conduction Properties
Including Thermal Conductivity (k), Mass Density (p),
Specific Heat (c), and Thermal Diffusivity (a = k/pc)

in English Units

T
(OF)

212

392

572

752

932

1112

k.
(Btu/hr-ftOF)

7.74

8.38

9.02

9.83

10.6

11.5

(lbrn/ft 3 )

409.1

408.3

407.5

406.7

405.9

405.1

c
(Btu/lbm0F)

0.0731

0.0774

0.0817

0.0860

0.0903

0.0946

a
(ft2/hr)

0.259

0.265

0.271

0.281

0.289

0.300

Source: SC-65
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Table 2.10

Zircaloy 2 Conduction Properties
Including Thermal Conductivity (k), Mass Density (),
Specific Heat (c), and Thermal Diffusivity (a = k/pc)

in Metric Units

T
(OC)

100

200

300

400

500

600

I:
(watts/mOC)

73.39

14.49

15.60

17.00

19.33

19.89

(kg/m 3 )

6551

6538

6525

651 2

6499

6486

c
(watt-hr/kgOC)

0.0850

0.0900

0.0950

0.1000

0.1050

0.1100

a
(m 2/hr)

0.0240

0.0246

0.0252

0.0261

0.0269

0.0279

Source: Derived from data in Table 2.9
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Table 2.11

Zircaloy 4 Conduction Properties
Including Thermal Conductivity (k), Mass Density (p),
Specific Heat (c), and Thermal Diffusivity (a = k/pc)

in English Units

T
(OF)

70

212

392

572

752

932

1112

k
(Btu/hr-ftOF)

8.19

8.64

9.21

9.78

10.35

10.92

11.48

P*
(1bm/ft 3 )

409.7

409.1

408.3

407.5

406.7

405.9

405.1

c
(Btu/lbm0 F)

0.0840

0.0714

0.0638

0.0576

0.0556

0.0538

0.0546

a
(ft 2/hr)

0.238

0.296

0.354

0.417

0.458

0.500

0.519

* Assumed to be equal to Zircaloy 2 density.

Source: SC-65
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Table 2.12

Zircaloy 4 Conduction Properties
Including Thermal Conductivity (k), Mass Density (p),
Specific Heat (c), and Thermal Diffusivity (a = k/pc)

in Metric Units

T
(0C)

21

100

200

300

400

500

600

k
(watts/moC)

14.17

14.94

15.92

16.90

17.89

18.87

19.86

p(kg/m 3 )

6560

6551

6538

6525

6512

6499

6486

c
(watt-hr/kgOC)

0.0976

0.0830

0.0742

0.0670

0.0646

0.0625

0.0635

a
(m2/hr)

0.0221

0.0275

0.0328

0.0387

0.0425

0.0465

0.0482

Source: Derived from data in Table 2.11
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Table 2.13

Bentonite Conduction Properties
Including Thermal Conductivity (k), Mass Density (p),
Specific Heat (c), and Thermal Diffusivity (a = k/pc)

in English Units

T
(OF) (Btu/hr-ft0F)

p.
(lbm/ft 3 )

c**
(Btu/lbm°F)

a
(f t2/hr)

Bentonite

68
140
248

0.058
0.075
0.110

83.65
83.65
83.65

0.22
0.22
0.22

0.0030
0.0042
0.0059

Berntonite

68
140
248

0.064
0.093
0.127

92.39
92.39
92.39

0.22
0.22
0.22

0.0032
0.0046
0.0068

Bentonite expanded with water

68
140
248

0.075
0.133
0.214

78.03
78.03
78.03

0.46
0.46
0.46

0.0022
0.0038
0.0061

Bentonite expanded with water

68
140
248

0.116
0.168
0.249

76.79
76.79
76.79

0.46
0.46
0.46

0.0032
0.0048
0.0071

* Note different densities

** Calculated c = k/pa

Source: Derived from data in Table 2.14
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Table 2.14

Bentonite Conduction Properties
Including Thermal Conductivity (k), Mass Density (p),
Specific Heat (c), and Thermal Diffusivity (a = k/pc)

in Metric Units

T
(0C)

Bentonite

k:
(watts/mOC)

.10

.13

.19

(kg/m3)

1340
1340
1340

c**

(watt-hr/kg°C)
a

(mn2/hr)

20
60

120

0.26
0.26
0.26

0.00028
0.00039
0.00055

Bentonite

20
60
120

.11

.16

.22

Bentonite expanded with water

1480
1480
1480

1250
1250
1250

0.25
0.25
0.25

0.53
0.53
0.53

0.00030
0.00043
0.00063

0.00020
0.00035
0.00057

20
60
120

.13

.23

.37

Bertonite expanded with water

20
60
120

.20

.29

.43

1230
1230
1230

0.53
0.53
0.53

0.00030
0.00045
0.00066

* Note different densities

** Calculated c = k/pa

Source: SI-83
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Table 2.15

Defense High-Level Waste Glass Conduction Properties
Including Thermal Conductivity (k), Mass Density (p),
Specific Heat (c), and Thermal Diffusivity (a = k/pc)

in English Units

T
(OF)

68

212

392

572

752

932

1112

k
(Btu/hr-ftOF)

0.504

0.562

0.634

0.707

0.779

0.851

0.924

(1 bm/ft 3 )

171.7

171.2

170.7

170.2

169.7

169.4

166.8

c
(Btu/lbm0F)

0.196

0.237

0.271

0.296

0.314

0.328

0.338

a
(ft 2/hr)

0.0150

0.0139

0.0137

0.0140

0.0146

0.0153

0.0164

Source: Derived from data in Table 2.16
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Table 2.16

Defense High-Level Waste Glass Conduction Properties
Including Thermal Conductivity (k), Mass Density (p),
Specific Heat (c), and Thermal Diffusivity (a = k/pc)

in Metric Units

T
(0C)

20

100

200

300

400

500

600

k
(watts/mOC)

0.872

0.972

1.097

1.222

1.347

1.472

1.598

(kgym3)

2750

2743

2735

2726

2718

2713

2672

c
(watt-hr/kgOC)

0.228

0.276

0.315

0.344

0.365

0.381

0.393

a
(m2/hr)

0.00139

0.00128

0.00127

0.00130

0.00136

0.00142

0.00152

Source: WE-83
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Table 2.17

Commercial High-Level Waste Glass Conduction Properties
Including Thermal Conductivity (k), Mass Density (p),
Specific Heat (c), and Thermal Diffusivity (a = k/pc)

in English Units

T
(OF)

k
(Btu/hr-ftOF) (lbm/ft 3 )

C
(Btu/lbm0F)

a
(f t2/hr)

32

68

212

392

572

752

932

0.46

0.47

0.52

0.58

0.64

0.69

0.75

193.5 .17 .014

NOTE: These are estimated values

Source: Derived from data in Table 2.18
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Table 2.18

Commercial High-Level Waste Glass Conduction Properties
Including Thermal Conductivity (k), Mass Density (p),
Specific Heat (c), and Thermal Diffusivity (a = k/Pc)

in Metric Units

T
(0C)

0

20

k
(watts/mOC) (kg/rm3)

c
(watt-hr/kgOC)

a
( m2/hr )

0.8

0.82 3100 0.2 0.0013

100 0.9

200 1.0

300 1.1

400 1.2

500 1.3

NOTE: These are estimated values

Source: WE-83
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Table 2.19

Uranium Dioxide Conduction Properties Including
Thermal Conductivity (k), Mass Density (p), Specific

Heat (c), and Thermal Diffusivity (a = k/Pc)
in English Units

T
(0)

68

212

392

572

752

932

1112

1292

1472

1652

1832

k
(Btu/hr-ftOF)

4.71

4.07

3.49

3.07

2.71

2.44

2.21

2.10

1.87

1.73

1.63

(lbm/ft 3 )

683.9

c
(Btu/lbm0F)

7.45

6.16

6.48

5.41

5.08

4.76

4.60

4.43

4.47

a
(ft 2/hr)

0.00924

Source: Derived from data in Table 2.20
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Table 2.20

Uranium Dioxide Conduction Properties Including
Thermal Conductivity (k), Mass Density (p), Specific

Heat (c), and Thermal Diffusivity (a = k/pc)
in Metric Units

T
(0C)

20

100

200

300

400

500

600

700

800

900

1000

k
(watts/m 0C)

8.15

7.05

6.04

5.31

4.69

4.22

3.83

3.64

3.24

3.00

2.82

(kg/rm 3 )

10,960

C
(watt-hr/kg C)

8.66

7.16

7.53

6.28

5.90

5.53

5.34

5.15

5.19

a
(m2/hr)

0.000859

Source: WE-73
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Table 2.21

Air Thermal Conduction Properties at One Atmosphere Pressure
Including Thermal Conductivity (k), Mass Density (p),

Specific Heat (cp), and Thermal Diffusivity (a = k/pcp)
in English Units

T
(OF)

0

32

100

200

300

400

500

600

700

800

900

1000

(Btu/hr-ft 0F)

0.0133

0.0140

0.0154

0.0174

0.0193

0.0212

0.0231

0.0250

0.0268

0.0286

0.0303

0.0319

(1 bm/ft 3 )

0.086

0.081

0.071

0.060

0.052

0.046

0.0412

0.0373

0.0341

0.0314

0.0291

0.0271

(Btu/lb9M°F)

0.239

0.240

0.240

0.241

0.243

0.245

0.247

0.250

0.253

0.256

0.259

0.262

a
(ft2/hr)

0.646

0.720

0.905

1.20

1.53

1.88

2. 27

2.68

3.10

3.56

4.02

4.50

Source: KR-61
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Table 2.22

Air Thermal Conduction Properties at One Atmosphere Pressure
Including Thermal Conductivity (k), Mass Density (P),
Specific Heat (cp), and Thermal Diffusivity (a = k/pcp)

in Metric Units

T
(0C)

-17.8

0.0

37.8

93.3

148.9

204.4

260.0

315.6

371.1

426.7

482.2

537.8

k.
(watts/mOC)

0.0225

0.0242

0.0259

0.0294

0.0329

0.0363

0.0398

0.0432

0.0467

0.0502

0.0519

0.0553

(kg/m3) (watt-hr/kg0C)

1.38

1.30

1.14

0.961

0.833

0.737

0.657

0.593

0.545

0.497

0.465

0.432

0.28

0.28

0.28

0.28

0.28

0.29

0.29

0.29

0.29

0.30

0.30

0.30

a
(m2/hr)

0.060

0.067

0.084

0.111
0.142

0.175

0.211

0.249

0.288

0.331

0.373

0.418

Source: Derived from data in Table 4.21
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Table 2.23

Helium Thermal Conduction Properties at One Atmosphere Pressure
Including Thermal Conductivity (k), Mass Density (),

Specific Heat (cp), and Thermal Diffusivity (a = k/pcp)
in English Units

T
(OF)

0

200

400

600

800

k
(Btu/hr-ftOF)

0.078

0.097

0.115

0.129

0.138

(1 bm/ft 3 )

0.01200

0.00835

0.00640

0.00520

0.00436

(Btu/lbEM°F)

1.24

1.24

1.24

1.24

1.24

a
(f t2/hr)

5.25

9.36

14.5

.0.0

25.5

Source: KR-61
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Table 2.24

Helium Thermal Conduction Properties at One Atmosphere Pressure
Including Thermal Conductivity (k), Mass Density (),

Specific Heat (cp), and Thermal Diffusivity (a = k/pcp)
in Metric Units

T
(0C)

-17.8

9,3.3

204.4

315.6

* 426.7

k
(watts/mOC)

0.135

0.168

0.199

0.223

0.239

(kg/rn3)

0.192

0.134

0.103

0.0833

0.0698

(wattcgr/kgOC)
a

(m2/hr)

1.44

1.44

1.44

1.44

1.44

0.488

0.870

1.35

1.86

2. 37

Source: Derived from data in Table 2.23
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Table 2.25

Saturated Liquid Water Thermal Conduction Properties
Including Thermal Conductivity (k), Mass Density (p),

Specific Heat (cp), and Thermal Diffusivity (a = k/pcp)
in English Units

T k p C a
(OF) (Btu/hr-ft0F) (lbmft3) (Btu/bmOF) (ft2/hr)

32 0.319 62.4 1.01 5.07 x 10-3

50 0.332 62.4 1.00 5.33 x 10-3

100 0.364 62.0 0.998 5.88 x 10-3

150 0.384 61.2 1.00 6.27 x 10-3

200 0.394 60.1 1.00 6.55 x 10-3

250 0.396 58.8 1.01 6.69 x 10-3

300 0.395 57.3 1.03 6.70 x 10-3

350 0.391 55.6 1.05 6.69 x 10-3

400 0.381 53.6 1.08 6.57 x 10-3

450 0.367 51.6 1.12 6.34 x 10-3

500 0.349 49.0 1.19 5.99 x 10-3

550 0.325 45.9 1.31 5.05 x 10-3

600 0.292 42.4 1.51 4.57 x 10-3

Source: KR-61
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Table 2.26

Saturated Liquid Water Thermal Conduction Properties
Including Thermal Conductivity (k), Mass Density (p),

Specific Heat (cp), and Thermal Diffusivity (a = k/pcp)
in Metric Units

T
(0C)

0.0

10.0

37.8

65.6

93.3

121.1

148.9

176.7

204.4

232.2

260.0

287.8

315.6

k
(watts/m°C)

0.552

0.575

0.630

0.665

0.682

0.685

0.683

0.676

0.659

0.635

0.604

0.562

0.505

p(kg/rm 3)

1000

1000

993

980

963

942

918

891

859

827

785

735

679

cp
(watt-hr/kgOC)

1.17

1.16

1.16

1.16

1.16

1.17

1.20

1.22

1.26

1.30

1.38

1.52

1.76

(m/hr)

4.72 x 10-4

4.96 x 10-4

5.47 x 10-4

5.85 x 10-4

6.11 x 10-4

6.22 x 10-4

6.20 x 10-4

6.22 x 10-4

6.02 x 10-4

5.91 x 10-4

5.58 x 10-4

5.03 x 10-4

4.23 x 10-4

Source: Derived from data in Table 2.25
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Table 2.27

Dry Superheated Steam at Atmospheric Pressure Thermal Conduction
Properties Including Thermal Conductivity (k), Mass Density (p),

Specific Heat (cp), and Thermal Diffusivity (a = k/pcp)
in English Units

T
(OF)

212

300

400

500

600

700

800

900

1000

k
(Btu/hr-ftOF)

0.0145

0.0171

0.0200

0.0228

0.0257

0.0288

0.0321

0.0355

0.0388

p
(lbm/ft 3 )

0.0372

0.0328

0.0288

0.0258

0.0233

0.0213

0.0196

0.0181

0.0169

(Btu/lbEMOF)

0.451

0.456

0.462

0.470

0.477

0.485

0.494

0.500

0.510

a
(ft 2/hr)

0.864

1.14

1.50

1.88

2.31

2.79

3.32

3.93

4.50

Source: KR-61
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Table 2.28

Dry Superheated Steam at Atmospheric Pressure Thermal Conduction
Properties Including Thermal Conductivity (k), Mass Density (p),

Specific Heat (cp), and Thermal Diffusivity (a = k/pcp)
in Metric Units

T
(0C)

100.0

148.9

204.4

260.0

* 315.6

371.1

426.7

482.2

537.8

k
(watts/mOC)

0.0251

0.0296

0.0346

0.0394

0.0444

0.0498

0.0555

0.0614

0.0671

P(kg/rm3)

0.596

0.525

0.461

0.413

0.373

0.341

0.314

0.290

0.271

cp
(watt-hr/kgOC)

0.524

0.530

0.537

0.546

0.554

0.564

0.574

0.581

0.593

2
(m2/hr)

0.0804

0.106

0.140

0.175

0.215

0.259

0.308

0.364

0.418

Source: Derived from data in Table 2.27
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Table 2.29

Saturated Liquid and Saturated Steam Properties Including Pressure (Psat),
Temperature (Tsat)- Saturated Liquid Enthalpy (hf), Saturated Dry
Steam Enthalpy (ha), Saturated Liquid Specific Volume (vf), and

Saturated Dry Steam Specific Volume (vg) in English Units

lPbsat
(lbf/in2)

hf
(Btu/lbm)

h
( Btuyl bm)

Vf
(ft 3/lbm) (ft3/bm)

0.0886
0.0886
0.1780
0.3389
0.6152
1.0697
1.7891
2.8890
4.5195
6.8687
10.1690
14.6960
20.7800
28.7960
39.1760
52.4110
69.0340
89.6390
114.8700
145.4300
182.0700
225.5300
276.7300
336.5200
405.8000
485.5900
576.9000
680.8200
798.4600
931.0100

1079.8000
1246.1000
1431.4000
1637.3000
1865.8000
2118.7000
2398.5000
2708.4000
3053.5000
3090.2000
3127.5000
3164.7000
3203.9000
3208.2490

32.00
32.02
50.00
68.00
86.00
104.00
122.00
140.00
158.00
176.00
194.00
212.00
230.00
248.00
266.00
284.00
302.00
320.00
338.00
356.00
374.00
392.00
410.00
428.00
446.00
464.00
482.00
500.00
518.00
536.00
554.00
572.00
590.00
608.00
626.00
644.00
662.00
680.00
698.00
699.80
701.60
703.40
705.20
705.47

-0.018
0
18.053
36.055
54.027
72.003
89.987
107.960
125.970
143.990
162.050
180.190
198.330
216.560
234.880
253.280
271.810
290.430
309.170
328.090
347.180
366.480
385.960
405.740
425.770
446.110
466.830
487.980
509.570
531.750
554.630
578.270
602.780
628.580
656.090
686.190
718.870
757.560
813.450
822.480
832.800
846.560
873.640
900.730

1075.28
1075.28
1083.03
1091.20
1098.93
1106.67
1114.41
1121.72
1129.03
1136.34
1143.65
.150. 53
1156.96
1163.43
1169.44
1175.46
1181.05
1185.78
1190.51
1194.38
1197.88
1200.83
1202.98
1204.70
1205.13
1205.13
1204.29
1202.12
1199.54
1195.24
1189.22
1181.91
1172.45
1160.85
1146.23
1127.74
1120.80
1066.68
1002.20
991.02
977.25
958.77
922.66
900.73

0.016021
0.016021
0.016024
0.016047
0.016088
0.016145
0.016212
0.016292
0.016383
0.016483
0.016593
0.016715
0.016843
0.016984
0.017134
0.017296
0.017469
0.017653
0.017850
0.018060
0.018284
0.018525
0.018783
0.019065
0.019361
0.019688
0.020042
0.020431
0.020860
0.021338
0.021873
0.022483
0.023186
0.024014
0.025020
0.026254
0.027887
0.030338
0.035560
0.036681
0.038123
0.040205
0.044850
0.050777

3304.320000
3301.980000
1704.670000
926.417000
527.457000
313.088000
192.937000
122.980000
80.815600
54.594100
37.816900
26.789100
19.383400
14.283400
10.705100
8.147720
6.288190
4.915120
3.886290
3.105090
2.504410
2.037330
1.670120
1.378540
1.144840
0.955858
0.801797
0.675143
0.570225
0.482670
0.409052
0.346678
0.293386
0.247494
0.207705
0.172658
0.141038
0.111213
0.078969
0.074964
0.070479
0.064873
0.055583
0.050777

Source: CO-66

93



Table 2.30

Saturated Liquid and Saturated Steam Properties
Including Pressure (Psat), Temperature (Tsat),

Saturated Liquid Enthalpy (hf), Saturated Dry Steam
Enthalpy (h), Saturated Liquid Specific Volume (vf), and
Saturated ry Steam Specific Volume (vg) in Metric Units

v - Specific Volume
(cm3/g)

Tempera-
ture(OC)

0
0.01

10
20
30
40

50
60
70
80
90

100
110
120
130
140

150
160
170
180
190

200
210
220
230
240

250
260
270
280
290

300
310
320
330
340

350
360
370

371
372
373
374
374.15
to.10

p
Pressure
(Bar)

0.006108
0.006112
0.012271
0.023368
0.042418
0.073750

0.12335
0. 19919
0.31161
0.47358
0.70109

1.01325
1.4327
1.9854
2.7011
3.6136

4.7597
6.1804
7.9202
10.027
12.553

15.550
19.080
23.202
27.979
33.480

39.776
46.941
55.052
64.191
74.449

85.917
98.694

112.89
128.64
146.08

165.37
186.74
210.53

213.06
215.63
218.2
220.9
221.2

Water

1.00021
1.00021
1.0004
1.0018
1.0044
1.0079

1.0121
1.0171
1.0228
1.0290
1.0359

1.0435
1.0515
1.0603
1.0697
1.0798

1.0906
1.1021
1.1144
1.1275
1.1415

1.1565
1.1726
1.1900
1.2087
1.2291

1.2512
1.2755
1.3023
1.3321
1.3655

1.4036
1.4475
1.4992
1.562
1.639

1.741
1.894
2.22

2.29
2.38
2.51
2.80
3.17

Steam

206,288
206,146
106,422
57,836
32,929
19,546

12,045
7,677.
5,045.
3,408.
2,360.

1,673.
1,210.

891.
668.
508.

392.
_06.
242.
193.
156.

127.
104.
86.
71.
59.

50.
42.
35.
30.
25.

21.
18.
15.
12.
10.

8.
6.
4.

4.
4.
4.

h - Specific Enthalpy
(Joules/g)*

Water Steam

-0.0416 2501
0.000611 2501

41.99 2519
83.86 2538

125.66 2556
167.47 2574

209.3 2592
.6 251.1 2609
.3 293.0 2626
.3 334.9 2643
9 376.9 2660

0 419.1 2676
1I 461.3 2691
71 503.7 2706
32 546.3 2720
66 589.1 2734

57 632.2 2747
85 675.5 2758
62 719.1 2769
85 763.1 2778
35 807.5 .786

19 852.4 2793
265 897.7 2798
062 943.7 2802
472 990.3 2803
674 1037.6 2803

056 1085.8 2801
149 1135.0 2796
599 1185.2 2790
133 1236.8 2780
537 1290 2766

643 1345 2749
316 1402 2727
451 1462 2700
967 1526 2666
779 1596 2623

805 1672 2565
943 1762 2481
93 1892 2331

68 1913 2305
40 1937 2273
05 1969 2230
47 2032 2146
17 2095 2095

* To convert to watt-hours/g, divide by 3600.
Source: CO-66
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Table 2.31

Thermal Conductivity (k) of Subcooled Liquid Water and Superheated Steam
as a Function of Temperature and Pressure in English Units (Btu/hr-ft-OF)

Temperature, OF

Pressure.
psia 32.000 122.000 212.000 302.000 392.000 482.000 572.000 662.000 705.470 752.000 797.000 842.000 887.000 932.000 1022.000 1112.000

14.504 0.32010 0.37615 0.01404 0.01652 0.01924 0.02213 0.02513 0.02837 0.02999 0.03178 0.03351 0.03525 0.03698 0.03929 0.04333 0.04738
72.519 0.32022 0.37632 0.39770 0.39833 0.01965 0.02253 0.02542 0.02831 0.02999 0.03178 0.03351 0.03525 0.03698 0.03929 0.04333 0.04738
145.038 0.32033 0.37649 0.39787 0.39857 0.02080 0.02311 0.02542 0.02889 0.03056 0.03236 0.03409 0.03582 0.03756 0.03987 0.04391 0.04738
362.596 0.32074 0.37696 0.39845 0.39920 0.38557 0.02542 0.02658 0.02947 0.03114 0.03293 0.03467 0.03640 0.03813 0.04045 0.04449 0.04796
725.191 0.32137 0.37777 0.39937 0.40036 0.38695 0.35997 0.03062 0.03120 0.03232 0.03409 0.03582 0.03756 0.03929 0.04102 0.04507 0.04911
1087.790 0.32201 0.37857 0.40030 0.40145 0.38834 0.36170 0.03756 0.03467 0.03467 0.03582 0.03756 0.03929 0.04045 0.04218 0.04622 0.05004
1450.380 0.32264 0.37938 0.40117 0.40261 0.38973 0.36344 0.31640 0.03929 0.03817 0.03813 0.03929 0.04102 0.04218 0.04391 0.04796 0.05142
1812.98C 0.32328 0.38019 0.40215 0.40377 0.39111 0.36517 0.31900 0.04680 0.04345 0.04218 0.04218 0.04276 0.04449 0.04565 0.04969 0.05258
2175.570 0.32391 0.38100 0.40307 0.40436 0.39244 0.36690 0.32166 0.06067 0.05062 0.04680 0.04565 0.04565 0.04680 0.04796 0.05142 0.05431
2538.170 0.32455 0.38181 0.40400 0.40481 0.39383 0.36864 0.32426 0.23574 0.06014 0.05258 0.05027 0.04911 0.04911 0.05027 0.05316 0.05605

2900.760 0.32519 0.38262 0.40492 0.40712 0.39521 0.37037 0.32686 0.24383 0.07458 0.06182 0.05547 0.05316 0.05258 0.05258 0.05489 0.05778
3208.250 0.32573 0.38330 0.40571 0.40810 0.39639 0.37184 0.32956 0.24775 0.13369 0.07260 0.06135 0.05708 0.05552 0.05503 0.05636 0.05925

Source: CO-66



Table 2.32

Thermal Conductivity (k) of Subcooled Liquid Water and Superheated Steam
as a Function of Temperature and Pressure in Metric Units (milliwatts/meter-OK)

Temperature, C

Pressure
Bar

1

10

25

50

75

100

125

150

175

200

0

569*

569

570

571

573

575

577

579

581

583

585

50

643

644

644

645

647

649

651

653

655

657

659

100

24.8

681

681

682

684

686

688

689

691

693

150

28.7

687

687

688

690

691

693

695

696

698

200

33.2

33.8

35.1

665

668

670

672

674

676

679

250

38.2

38.6

39.3

42.9

618

622

625

629

633

636

300

43.4

43.8

44.4

46.5

52.5

63.7

545

552

559

565

350

49.0

49.4

49.9

51.6

55.4

60.8

68.8

81.3

104

442

375

51.9

52.3

52.8

54.3

57.6

62.0

67.9

75.9

87.5

106

400

54.9

55.3

55.7

57.2

60.2

63.9

68.6

74.5

82. '

92.6

425 450 475

58.0 61.1 64.2

58.3 61.4 64.5

58.8 61.8 65.0

60.2 63.3 66.4

63.0 65.9 68.9

66.3 68.9 71.7

70.2 72.4 74.9

74.9 76.4 78.4

80.7 81.0 82.4

87.9 86.5 86.9

96.9 93.1 92.1

500

67.4

67.7

68.2

69.6

72.0

74.7

77.6

80.8

84.3

88.3

92.6

550

73.9

74.3

74.7

76.1

78.4

80.9

83.5

86.3

89.3

92.5

96.0

600

80.6

80.9

81.4

82.7

85.0

87.4

89.8

92.4

95.1

98.0

101695 700 681 639 571 454 126 107

* Non-stable phase

Source: CO-66



Table 2.33

Specific Volume
Steam as

(v) of Subcooled Liquid Water and Superheated
a Function of Temperature and Pressure
in English Units (ft3/lbm)

Temperature, OF

Pressure
psia 32.000 122.000 212.000 302.000 392.000 482.000 572.000 662.000

14.504
72.519
145.038
362.596
725.191
1087.790
1450.380
1812.980
2175.570
2538.170

0.01602
0.01602
0.01601
0.01600
0.01598
0.01596
0.01594
0.01592
0.01590
0.01588

0.01621
0.01621
0.01620
0.01619
0.01618
0.01616
0.01614
0.01612
0.01611
0.01609

27.166
0.01671
0.01671
0.01670
0.01667
0.01665
0.01664
0.01662
0.01660
0.01657

31.011
0.01747
0.01746
0.01745
0.01742
0.01740
0.01737
0.01735
0.01732
0.01730

34.807
6.809
3.300
0.01851
0.01847
0.01843
0.01839
0.01836
0.01832
0.01828

38.53930
7.598
3.727
1.394
0.02001
0.01995
0.01988
0.01981
0.01974
0.01968

42.27150
8.36941
4.13104
1.584
0.726
0.428
0.02238
0.02222
0.02207
0.02193

45.98770
9.13186
4.52348
1.75717
0.832
0.520
0.359
0.258
0.184
0.02749

to

2900.760 0.01586 0.01607 0.01656 0.01727 0.01823 0.01962 0.02178 0.02667
3208.250 0.01585 0.01606 0.01654 0.01725 0.01821 0.01958 0.02168 0.02619

Source: CO-66 (continued)



Table 2.33 (continued)

Temperature, OF

Pressure
psia 705.470 752.000 797.000 842.000 887.000 932.000 1022.000 1112.000

14.504 47.78260 49.70390 51.54590 53.40400 55.26210 57.10420 60.82030 64.52050
72.519 9.49703 9.88631 10.26110 10.63760 11.00920 11.38560 12.13200 12.87690
145.038 4.71071 4.90631 5.10013 5.29075 5.48136 5.67037 6.04359 6.42332
362.596 1.83764 1.92216 2.00225 2.08234 2.16243 2.24092 2.39629 2.55007
725.191 0.87777 0.92520 0.96957 1.01298 1.05543 1.09723 1.17908 1.25934

1087.790 0.55537 0.59122 0.62406 0.65562 0.68605 0.71584 0.77335 0.82909
1450.380 0.39178 0.42287 0.45043 0.47621 0.50072 0.52475 0.57040 0.61381
1812.980 0.29118 0.32052 0.34535 0.36809 0.38940 0.41631 0.44834 0.48470
2175.570 0.221 0.25068 0.27455 0.29553 0.31475 0.33317 0.36697 0.39853

Xo 2538.170 0.168 0.19958 0.22313 0.24331 0.26125 0.27807 0.30883 0.33702

2900.760 0.120 0.15938 0.18373 0.20359 0.22089 0.23675 0.26510 0.29089
3208.250 0.05078 0.13099 0.15710 0.17710 0.19399 0.20931 0.23617 0.26046



Table a.34

Specific Volume () of Subcooled Liquid Water and Superheated Steam as a Function
of Temperature and Pressure in Metric Units (cm3/g)

Temperature, OC

Pressure
Bar

1
to 5
o 10

25
50
75

100
125
150
175
200

0

1.0002
0.9999
0.9997
0.9989
0.9976
0.9964
0.9952
0.9940
0.9928
0.9915
0.9904

50

1.0121
1.0119
1.0117
1.0110
1.0099
1.0088
1.0077
1.0066
1.0055
1.0044
1.0033

100 150

1696 1936
1.0433 1.0906
1.0431 1.0903
1.0423 1.0894
1.0410 1.0878
1.0398 1.0862
1.0386 1.0846
1.0373 1.0830
1.0361 1.0813
1.0348 1.0798
1.0336 1.0782

200 250

2173 2406
425.1 474.4
206.0 232.7

1.1556 87.0
1.1531 1.2495
1.1507 1.2452
1.1483 1.2409
1.1460 1.2367
1.1436 1.2327
1.1414 1.2288
1.1391 1.2251

300

2639
522.5
257.9
98.9
45.34
26.71
1.397
1.387
1.378
1.369
1.360

350

2871
570.1
282.4
109.7
51.93
32.44
22.44
16.14
11.49
1.716
1.665

375

2987
593.7
294.5
114.9
54.90
34.75
24.53
18.25
13.91
10.57
7.68

400

3103
617.2
306.5
120.0
57.76
36.91
26.40
20.01
15.65
12.46
9.95

425

3218
640.6
318.4
125.0
60.53
38.96
28.12
21.56
17.14
13.93
11.47

450 475

3334 3450
664.1 687.5
330.3 342.2
130.0 135.0
63.24 65.89
40.93 42.83
29.73 31.26
22.98 24.31
18.45 19.65
15.19 16.31
12.71 13.79

500 550 600

3565 3779 4028
710.8 757.4 803.9
354.0 377.5 401.0
139.9 149.6 159.2
68.50 73.61 78.62
44.69 48.28 51.76
32.76 35.61 38.32
25.59 27.99 30.26
20.80 22.91 24.88
17.36 19.28 21.04
14.78 16.55 18.16

Source: CO-66



Table 2.35

Specific Enthalpy (h) of Subcooled Liquid Water and
Superheated Steam as a Function of Temperature and Pressure

in English Units (Btu/lbm)

Temperature, OF

Pressure,
psia

14.504
72.519

145.038
362.596
725.191

1087.790
1450.380
1812.980
2175.570
2538.170

32.000 122.000 212.000 302.000 392.000 482.000 572.000 662.000

0.026
0.202
0.421
1.075
2.171
3.259
4.342
5.417
6.492
7.567

89.987
90.116
90.331
90.847
91.793
92.739
93.685
94. 587
95.490
96.436

1150.53
180.318
180.447
181.006
181.780
182.597
183.414
184.231
185.047
185.864

1193.95
271.810
271.896
272.326
272.971
273.659
274. 347
275.035
275.722
276.410

1236.52
1228.35
1216.74
366.655
367.085
367.601
368.074
368.547
369.020
369.536

1279.080
1273.06
1265.32
1238.67
466.832
466.875
466.918
466.961
467.047
467.133

1321.640
1317.350
1311.760
1293.70
1257.58
1209.86
577.413
576.124
575. 264
574.404

1365.070
1362.060
1357.760
1344.000
1319.07
1291.12
1257.15
1215.02
1157.41
714.995

CDCD

2900.760 8.642 97.382 186.681 277.098 370.009 467.262 573.544 707.686
3208.250 9.553 98.148 187.374 277.682 370.446 467.444 572.815 702.946

Source: CO-66 (continued)



Table 2.35 (continued)

Temperature, OF

Pressure,
psia 705.470 752.000 797.000 842.000 887.000 932.000 1022.000 1112.000

14.504
72.519

145.038
362.596
725.191
1087.790
1450.380
1812.980
2175.570
2538.170

1386.670
1383.660
1379.770
1368.090
1346.480
1322.680
1295.780
1264.860
1227.60
1180.48

1409.350
1406.770
1403.330
1393.020
1374.100
1353.890
1331.960
1307.460
1280.370
1248.980

1431.710
1429.560
1426.120
1416.660
1400.320
1382.700
1364.640
1343.570
1321.210
1297.140

1454.500
1451.920
1449.340
1440.310
1426.120
1410.210
1393.880
1376.250
1357.330
1337.550

1476.850
1474.700
1472.550
1464.390
1451.060
1436.870
1422.680
1408.060
1390.870
1374.100

1499.640
1497.920
1495.340
1488.460
1476.420
1463.530
1450.630
1437.300
1423.110
1408.920

1546.080
1544.360
1542. 210
1536.620
1526.300
1515.980
1505.230
1494.480
1483.300
1471.690

1592.080
1591.650
1589.930
1584.770
1576.170
1567.140
1558.540
1549.510
1540.060
1530.600

C)

2900.760 1112.42 1212.010 1270.480 1316.490 1356.470 1393.450 1460.090 1521.140
3208.250 900.731 1174.090 1244.960 1297.160 1340.790 1380.320 1449.880 1512.750



Table 2.36

Specific Enthalpy (h) of Subcooled Liquid Water and Superheated Steam
as a Function of Temperature and Pressure in Metric Units (Joules/g)*

Temperature, OC

Pressure
Bar 0 50 100 150 200 250 300 350 375 400 425 450 475 500 550 600

0 2502 2595 2689 2784 2880 2978 3077 3178 3229 3280 3332 3384 3436 3489 3597 3706

1 0.06 209.3 2676 2777 2876 2975 3074 3175 3227 3278 3330 3383 3435 3488 3596 3705

5 0.47 209.6 419.4 632.2 2857 2961 3064 3168 3220 3272 3325 3371 3430 3484 3592 3702

10 0.98 210.1 419.7 632.4 2830 2943 3051 3158 3211 3264 3317 3371 3425 3478 3587 3698

°IO 25 2.50 211.3 421.0 633.4 852.8 2881 3009 3126 3184 3240 3295 3350 3406 3462 3574 3686

50 5.05 213.5 422.8 634.9 853.8 1085.8 2925 3068 3134 3196 3257 3317 3375 3434 3550 3666

75 7.58 215.7 424.7 636.5 855.0 1085.9 2814 3003 3079 3149 3216 3280 3342 3404 3526 3645

100 10.1 217.9 426.6 638.1 856.1 1086.0 1343 2924 3017 3098 3172 3242 3309 3374 3501 3625

125 12.6 220.0 428.5 639.7 857.2 1086.1 1340 2826 2946 3041 3125 3201 3273 3343 3476 3604

150 15.1 222.1 430.4 641.3 858.3 1086.3 1338 2692 2861 2978 3073 3157 3235 3310 3450 3582

175 17.6 224.3 432.3 642.9 859.5 1086.5 1336 1663 2755 2905 3017 3111 3196 3271 3423 3560

200 20.1 226.5 434.2 644.5 860.6 1086.8 1334 1646 2605 2819 2955 3062 3155 3241 3396 3538

*To convert to watt-hours/g, divide by 3600

Source: CO-66



2.2.2 Convection Parameters

Convection data are presented for the following fluids: helium, air,

water, and steam. These data may be used to calculate the convective

heat transfer coefficient, h, so that the rate of heat exchange between

a solid boundary and the fluid in the boundary layer can be evaluated.

The convection heat transfer equation is

q = h AT - T)

(2.12)

and

*= q/A

(2.107)

where:

= heat flux [e/tt2]

q = rate of heat transfer from surface to fluid [e/t]

A = surface area over which heat transfer is being described [z2]

h = heat transfer coefficient [e/te2

T = surface temperature of the solid boundary [i]

T, = fluid temperature outside the boundary layer [i]

The convective heat transfer coefficient depends on a variety of param-

eters related to flow conditions, fluid properties, and solid boundary

configurations. In addition, the coefficient will vary with position on

the solid surface. Equations 2.12 and 2.107 prescribe how the heat flux

can be calculated, but the calculation is predicated on the hypothesis that

the heat transfer coefficient can be evaluated. Because the heat transfer

coefficient varies with position, it is convenient to evaluate and use

the areal average heat transfer coefficient. Equation 2.22 can be used

to obtain the areal average Nusselt number and Equation 2.21 to obtain

the areal average heat transfer coefficient. Experimentally, heat transfer
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coefficients are often given on an areal average basis. The heat trans-

fer rate can then be determined from Equation 2.12.

This section describes the parameters required for the evaluation of

convective heat transfer coefficients.

2.2.2.1 Dimensionless Parameters

For some conditions, the thermal boundary layer equations can be solved

but an analytic solution is typically not attempted when natural or

forced convection is encountered. The principal value of available

solutions is that they can be used to suggest the functional form of the

interdependence of system properties including the heat transfer coeffi-

cient, thermal conductivity, position along convecting surface, fluid

thermodynamic and transport properties, and fluid velocity.

When a new geometric configuration is encountered, convection heat trans-

fer coefficients can be described by a previously used general correla-

tion. The general correlation is tailored to the new configuration by

the assignment of appropriate values to the constants which appear as

coefficient and exponential terms in the correlation. The empirical

data are used to quantify these constants by fitting the data to the

correlation. Alternatively, some investigators prefer to alter the

algebraic form of the correlation to be fitted to the experimental data.

For convective heat transfer, four dimensionless groups are commonly

used:

Nusselt Number = f u 
T (2.108)

Reynolds Number Re PUL [ (
Ij (2.109)
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Grashof Number = Gr = 2 t ]

(2.110)

Prandtl Number = Pr = [ ]
a (2.111)

where

L = characteristic dimension of the solid boundary
(L = diameter for pipe and duct flow) [I]

h = boundary layer heat transfer coefficient [e/tQ2)

k = fluid thermal conductivity [e/tke]

p = fluid mass density [m/.t3]

u = velocity of fluid t/t]

1= fluid dynamic viscosity [m/Yt]

g = local gravitational acceleration [L/t2]

= volumetric coefficient of thermal expansion [1/l]

AT = absolute value of the temperature difference between the
wall and the temperature of the fluid at the outside
edge of the boundary layer (= IT - Tl) [e]

v = fluid kinematic viscosity (v = I/P) [L2/t]

a = fluid thermal diffusivity (a = k/pcD where
cp = fluid specific heat at constan pressure) [L2/t)

Physically, the Nusselt number is the ratio of convective heat transfer

capability (which involves some conduction) of the moving fluid in the

boundary layer to the conduction heat transfer capability of the fluid

next to the solid boundary. The Reynolds number is the ratio of fluid

inertial force to fluid viscous force in the boundary layer. The Grashof

number is used in natural or free convection analogous to the way the
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Reynolds number is used in forced convection. The Grashof number is the

ratio of buoyant forces to viscous forces in the boundary layer. The

Prandtl number is a property of the fluid. It is the ratio of the kine-

matic viscosity to the thermal diffusivity.

The volumetric coefficient of thermal expansion is defined as

1vaT

p

= - for an ideal gas (2.112)

where

a = volumetric coefficient of thermal expansion [1/l

v = specific volume [Z3/m]

For fluids which do not behave as ideal gases, can be approximated as

pco-
= p (T - TV)

(2.113)

in terms of conditions on both edges of the boundary layer, where

T, v, and P are the fluid temperature, specific volume, and mass density.

These properties are evaluated at the film temperature defined as the

average between the wall temperature Tw and the free stream temperature

T .
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Though less common than the four just presented, many other dimensionless

groups are used in describing convection. These groups include:

Stanton Number = St = R. = h

(2.114)
u L

Peclet Number = Pe = Re Pr = 
a

ghr3==Rayleigh Number Ra = GrPr V

(2.116)

Modified Grashof Number = Gr'= GrNu = 2
v k

(2.117)

2.2.2.2 Forced Convection

Section 2.1.2.1 presented the laminar boundary layer equations for a

flat plate with a solution given by Blasius. The work of Nusselt (about

1915) led to the completely non-dimensional form of the forced convection

equation, which was stated as

Nu = C Rem Prn

(2.118)

where C, m, and n are constants.

This general form is common for the turbulent as well as for the laminar

boundary layers for both external surfaces (i.e., unconfined flow) such
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as walls and for internal surfaces (i.e., confined flow) such as pipes

or ducts. For confined flow in ducts or pipes, the diameter is typi-

cally used as the characteristic dimension in the Nusselt and Reynolds

numbers in place of characteristic length, L, or position, x, measured

in the downstream direction.

If the duct is not round, the hydraulic diameter, Dh, is used where

= _4 (flow area)
Dh (wetted perimeter)

(2.119)

Typically, the objective of laboratory experiments is to define the

parameters C, m, and n for a given convection configuration and flow

conditions.

In a pipe, the transition from laminar flow to turbulent flow occurs

when the Reynolds number (based on the areal average flow velocity)

reaches a value of about 2,000 to 3,000. A value of 2,300 is commonly

used in engineering analyses. For a flat plate, when the Reynolds number

is based on a characteristic length equal to the plate dimension in the

flow direction, the laminar to turbulent flow transition usually occurs

in the range 100,000< ReL < 1,000,000. In engineering analyses, a value

of 3.2 x 105 is commonly assumed to be representative.

In the upstream region of the plate, the boundary layer is laminar. The

heat transfer is excellent at the leading edge but diminishes rapidly in

the downstream direction as shown in Figure 2.7 until the transition to

turbulent flow occurs. The heat transfer diminishes because the lamina

that are established in this region support a temperature gradient and

tend to insulate the plate. In the transition region, the flow lines

are broken up by fluid swirl and less temperature gradient can be sus-

tained across the boundary layer. Downstream where turbulence is es-

tablished, the fluid is well mixed and contacts the surface at a high

frequency and thus acts as a colder and/or more accessible sink than in

the laminar region. This discussion assumes the plate to be hot and the

fluid cold.
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The heat transfer rate increases very rapidly in the transition region.

Figure 2.7 shows these regions and qualitatively indicates how the heat

transfer rate varies with axial position. This figure illustrates the

relatively high average heat transfer rate that can be sustained in the

turbulent boundary layer region. The laminar region is not very effec-

tive for heat transfer because the transfer rate diminishes rapidly with

distance along the plate in the flow direction and tends to have a small

average value. For these reasons, most heat transfer equipment is de-

signed for turbulent flow and higher heat transfer coefficients with the

associated higher convection heat transfer rates.

As the thermal boundary layer increases to equal the inside radius in

pipe flow, the free stream no longer exists. Thus, T, is not used in

pipe flow as the fluid reference temperature for convection calcula-

tions. The fluid reference temperature is based on the average tempera-

ture of all the mass flowing past a given cross-section of the pipe and

is referred to as the bulk fluid temperature, Tb, given by

RJ Pu(r)cpTrdr
T = 0
b R

J pu(r)cprdr

(2.120)

where

p = fluid mass density [m/k3]

u(r) = fluid velocity which is a function of radius
at any cross-section [9/t]

cp = constant pressure specific heat of the fluid [e/m ]

T = fluid temperature [el

R = inside radius of pipe [2]

r = denotes radial position in the flow stream [t]
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A similar relationship would be used for flow channels that are not

round. The heat transfer rate between the tube wall and the fluid flowing

in the pipe is given by

q = hA (Tw - Tb)

(2.12)

In regions where the boundary layer thickness is much smaller than the

distance separating solid surfaces, non-planar surfaces are often treated

as flat plates.

For laminar flow along a flat plate, the Nusselt number and heat transfer

coefficient which resulted from the Blasius-Pohlhausen solution are:

a) For local conditions

Nux = 0.332 Rexl/2 PrI/3

(2.121)

hx = 0.332 (k/x) Rexl/2 Pr1/3
(2.122)

and

b) For the average values over the plate

Nu = 0.664 ReL1/2 Pr1/3
(2.123)

h = 0.664 (k/L) ReL1/2 Pr1/3
(2.124)

For turbulent flow along a flat plate, Whittaker has provided the fol-

lowing correlation:

NuL 0.036 PrO.43 (ReO.8 - 9200)

(2.125)

hL = 0.036 PrO 43 (ReO.8 - 9200)k/L

(2.126)
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for gases and
1/4

NuL = 0.036 PrO-43 (ReO.8 _ 9200) (p/tUw)

(2.127)

hL = 0.036 PrO_43 (ReO.43 - 9200) (/iw)14 k/L

(2.128)

for liquids. Except for the viscosity correction term, all fluid prop-

erties are evaluated at the film temperature Tf defined as

Tf = (Tw + T/2

(2.129)

where

Tw = wall temperature [e]

T = free stream temperature [e]

For laminar flow in

energy equation can

number:

a pipe of diameter d, at low Reynolds numbers, the

be solved to give an exact solution for the Nusselt

Nud = hd/k

(2.130)

Nud = 4.36

(2.131)

h = 4.36k/d

(2.132)

In 1930, Dittus and Boelter correlated the heat transfer coefficient for

convection with turbulent flow inside automobile radiator tubes. The
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correlation is widely accepted and used for flow in ducts, channels,

pipes, etc., and is given by

Nud = 0.023 RedO.8 PrO-4

(2.133)

hd = 0.023 Red 0 8 PrO. 4(k/d)

(2.134)

wheie the fluid properties are based on the fluid bulk temperature given

by Equation 2.120.

Numerous correlations are available for various boundary configurations,

flow conditions, and parameter ranges. This report presents representative

correlations. The waste package thermal analysts will need to consult

other sources for comprehensive treatment of forced convection correlations.

2.2.2.3 Natural Convection

Natural convection was described in Section 2.1.2.2. A principal dif-

ference between natural and forced convection is that the velocity profile

diminishes to zero at the outer edge of the thermal boundary layer in

natural convection. In forced convection, it reaches the free stream

velocity value at the outer edge of the hydrodynamic boundary layer.

The thermal and hydrodynamic boundary layers have the same thickness for

natural convection.

The Grashof number plays a role in natural convection heat transfer

correlations analogous to that of the Reynolds number in forced convec-

tion. The transition from laminar to turbulent boundary layer flow

occurs for values of the Grashof number near 4 x 108.

A number of correlations have been presented for various configurations

and flow conditions. Fishenden and Saunders (Reference FI-50) suggested
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average values of Nusselt numbers and heat transfer coefficients when

the Nusselt and Grashof numbers are based on properties evaluated at the

film temperature given in Equation 2.129. These correlations for liquids

and gases in the range of 105 < GrPr < 108 are:

(1) Vertical plane surfaces and

cylinders of large diameter

(characteristic dimension is

height, L)

(2) Horizontal or vertical

cylinders (characteristic

dimension is length, L)

NuL = 0.56(GrLPr)0.25

(2.135)

hL = 0.56(k/L)(GrLPr) 0 . 2 5

(2.136)

NuL = 0.47(GrPr)0 -25

(2.137)

hL = 0.47(k/L)(GrPr)0 .25

(2.138)

(3) Horizontal plane facing

upward (characteristic

dimension is side

length, L)

(4) Horizontal plane facing

downward (characteristic

dimension is side length, L)

NUL = 0.54(GrPr)0 -25

(2.139)

hL = 0.54(k/L)(GrPr)0- 25

(2.140)

Nu = 0.25(GrPr)0.25

(2.141)

hL = 0.25(k/L)(GrPr)0 -25

(2.142)

For gases where GrPr > 108, the correlations are

(I) Vertical plane surfaces and
cylinders of large diameter

(characteristic dimension
height L)

(2) Horizontal or vertical

cylinders (characteristic

dimension is length L)

NuL = 0.12(GrLPr)0.33

_ (2.143)

hL = 0.12(k/L)(GrLPr)0 .33

(2.144)

NUL = 0.l0(GrPr)0 .33

(2.145)

hL = 0.l0(k/L)(GrPr)0 -33

(2.146)
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(3) Horizontal plane facing NUL = 0.14(GrPr)0*33

upward (characteristic (2.147)

dimension is side length L) hL = 0.14(k/L)(GrPr)0*33

(2.148)

For water in the turbulent region NGr > 4 x 108 where GrPr > 2 x 109,

Geidt (Reference GE-61) indicates that experimental data are well repre-

sented by

Nu = 0.17(GrPr)0 .33

(2.149)
h = 0.17 (k/L) (GrPr)0-33

(2.150)

where L is the vertical dimension.

2.2.2.4 Fluid Convection Properties

Fluid properties that are needed to evaluate convection correlation

terms include the fluid dynamic viscosity, , and the volumetric coef-

ficient of thermal expansion . Data are presented in Tables 2.37-

2.46 for: air and helium at low pressures, saturated liquid water, dry

saturated steam, subcooled water, and superheated steam. The specific

volume tables for subcooled water and superheated steam that were pre-

sented in Section 2.2.1 can be used to calculate using

l1 av
V ( aT ) p

(2.151)
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Table 2.37

Air Thermal Convection Properties at Atmospheric Pressure
Including Dynamic Viscosity (p), Mass Density (p),
Volumetric Coefficient of Thermal Expansion (),

and Kinematic Viscosity (v) in English Units

T
(OF)

0

32

100

200

300

400

500

600

700

800

900

1000

x 106
(lbm/ft-sec)

11.1

11.7

12.9

14.4

16.1

17.5

18.9

20.0

21.4

22.5

23.6

24.7

p
(lbm/ft3)

0.086

0.081

0.071

0.060

0.052

0.046

0.041

0.037

0.034

0.031

0.029

0.027

(1/OF)
v x 106
(ft 2 /sec)

0.00218

0.00203

0.00179

0.00152

0.00132

0.00116

0.00104

0.000943

0.000862

0.000794

0.000735

0.000685

130

145

180

239

306

378

455

540

625

717

815

917

Source: KR-61
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Table 2.38

Air Thermal Convection Properties at Atmospheric Pressure
Including Dynamic Viscosity (), Mass Density (),
Volumetric Coefficient of Thermal Expansion (),

and Kinematic Viscosity (v) in Metric Units

T
(0C)

-17.8

0.0

37.8

93.3

148.9

204.4

260.0

315.6

371.1

426.7

482.2

537.8

l x I o 6

(kg/m-sec)

16.5

17.4

19.2

21.4

24.0

26.0

28.1

29.8

31.8

33.5

35.1

36.8

p(kg/m 3 )

1.38

1.30

1.14

0.961

0.833

0.737

0.657

0.593

0.545

0.497

0.465

0.432

a
(1/oC)

0.00392

0.00365

0.00322

0.00274

0.00238

0.00209

0.00187

0.00170

0.00155

0.00143

0.00132

0 .001 23

v x 106
(m2 /sec)

12.0

13.4

16.9

22.3

28.8

35.3

42.8

50.3

58.3

67.4

75.5

85.2

Source: Derived from data in Table 2.37
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Table 2.39

Helium Thermal Convection Properties at Atmospheric Pressure
Including Dynamic Viscosity (), Mass Density (p),
Volumetric Coefficient of Thermal Expansion (),

and Kinematic Viscosity (v) in English Units

T
(OF)

0

200

400

600

800

lax 106
(lbm/ft-hr)

11.4

14.8

17.8

20.2

22.9

p
(lbm/ft 3 )

0.0120

0.00835

0.00640

0.00520

0.00436

a v x 106
(l/OF) (ft2/hr)

0.00218

0.00152

0.00116

0.000943

0.000794

950

1770

2780

3890

5240

Source: KR-61
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Table 2.40

Helium Thermal Convection Properties at Atmospheric Pressure
Including Dynamic Viscosity (it), Mass Density (p),
Volumetric Coefficient of Thermal Expansion ().

and Kinematic Viscosity (v) in Metric Units

T
(0C)

-17.8

93.3

204.4

315.6

426.7

x 106
(kg/m-sec)

17.0

22.0

26.5

30.1

314.1

P(kg/m3)

0.192

0.134

0.103

0.0833

0.0698

a
(h/OC)

0.00392

0.00274

0.00209

0.00169

0.00142

V x 106
(m2 /sec)

88.3

164.4

258.3

361.4

486.8

Source: Derived from data in Table 2.39
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Table 2.41

Saturated Liquid Water Thermal Convection Properties
Including Dynamic Viscosity (), Mass Density (),
Volumetric Coefficient of Thermal Expansion (),

and Kinematic Viscosity (v) in English Units

T
(OF)

32

50

100

150

200

250

300

350

400

450

500

550

600

x 103
(lbm/ft-sec)

1.20

0.880

0.458

0.292

0.205

0.158

0.126

0.105

0.091

0.080

0.071

0.064

0.058

p(lbm/ft 3 )

62.4

62.4

62.0

61.2

60.1

58.8

57.3

55.6

53.7

51.6

49.0

45.9

42.4

a
(1/OF)

-0.04

0.05

0.20

0.31

0.40

0.48

0.60

0.69

0.80

0.90

1.00

1.10

1.20

V x 106
(ft 2 /sec)

19.3

14.0

7.40

4.77

3.41

2.69

2.20

1.89

1.70

1.55

1.45

1.39

1.37

Source: KR-61
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Table 2.42

Saturated Liquid Water Thermal Convection Properties
Including Dynamic Viscosity (), Mass Density (),
Volumetric Coefficient of Thermal Expansion (),

and Kinematic Viscosity (v) in Metric Units

T
(0C)

0.0

10.0

37.8

65.6

93.3

121.1

148.9

176.7

204.4

232.2

260.0

287.8

315.6

x 103
(kg/m-sec)

1.79

1.31

0.682

0.435

0.305

0.235

0.188

0.156

0.135

0.119

0.106

0.095

0.086

p
(kg/m3)

1000

1000

993

980

963

942

918

891

860

827

785

735

679

a
(1/OC)

-0.072

0.09

0.36

0.56

0.72

0.86

1.08

1.24

1.44

1.62

1.80

1.98

2.16

VX 106
(m2 /sec)

1.78

1.31

0.681

0.443.

0.317

0.250

0.204

0.176

0.157

0.144

0.135

0.129

0.127

Source: Derived from data in Table 2.41
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Table 2.43

Dry Superheated Steam at Atmospheric Pressure Thermal
Convection Properties Including Dynamic Viscosity (),

Mass Density (p), Volumetric Coefficient of
Thermal Expansion (B), and Kinematic

Viscosity (v) in English Units

T p x 106 p a v x 106
(OF) (lbm/ft-sec) (lb/ft3) (1/OF) (ft2/sec)

212 8.70 0.0372 0.00149 234

300 10.0 0.0328 0.00132 305

400 11.3 0.0288 0.00116 392

500 12.7 0.0257 0.00104 494

600 14.2 0.0233 .0.000943 609

700 15.6 0.0213 0.000862 732

800 17.0 0.0196 0.000794 867

900 18.1 0.0181 0.000735 1000

1000 19.2 0.0169 0.000685 1136

Source: KR-61
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Table 2.44

Dry Superheated Steam at Atmospheric Pressure Thermal
Convection Properties Including Dynamic Viscosity (),
Mass Density (), Volumetric Coefficient of Thermal

Expansion ( ), and Kinematic Viscosity (v) in
Metric Units

T
(OC)

100.0

148.9

204.4

260.0

315.6

371.1

426.7

482.2

537.8

x 106
(kg/m sec)

12.9

14.9

16.8

18.9

21.1

23.2

25.3

26.9

28.6

p
(kg/m3)

0.596

0.525

0.461

0.412

0.373

0.341

0.314

0.290

0.271

a
(1/0C)

0.00268

0.00238

0.00209

0.00187

0.00170

0.00155

0.00143

0.00132

0.00123

v x 106
(m2 /sec)

21.7

28.3

36.4

45.9

56.6

68.0

80.5

92.9

105.5

Source: Derived from data in Table 2.43
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Table 2.45

Dynamic Viscosity (p) of Subcooled Liquid Water and
Superheated Steam as a Function of Temperature and Pressure

in English Units (lbm/ft-hr)

Temperature, OF

Pressure,
psia

14.504

72.519

145.038

362.596

725.191

1087.790

1450.380

1812.980

2175.570

2538.170

2900.760

3208.250

32.000 122.000 212.000 302.000 392.000 482.000 572.000 662.000

4.23996

4.23657

4.23246

4.22012

4.19932

4.17851

4.15795

4.13714

4.11634

4.09578

4.07497

4.05733

1.31647

1.31672

1.31720

1.31817

1.31986

1.32180

1.32349

1.32542

1.32712

1.32881

1.33075

1.33218

0.02929

0.67517

0.67565

0.67662

0.67832

0.68001

0.68170

0.68340

0.68509

0.68678

0.68848

0.68991

0.03423

0.43834

0.43858

0.43955

0.44076

0.44221

0.44366

0.44511

0.44632

0.44777

0.44923

0.45046

0.03914

0.03875

0.03834

0.32537

0.32706

0.32876

0.33021

0.33190

0.33359

0.33529

0.33674

0.33817

0.04408

0.04388

0.04369

0.04301

0.26271

0.26441

0.26634

0.26828

0.27021

0.27191

0.27384

0.27548

0.04899

0.04894

0.04891

0.04877

0.04853

0.04819

0.22328

0.22449

0.22570

0.22745

0.22836

0.22959

0.05382

0.05395

0.05416

0.05443

0.05528

0.05620

0.05719

0.05903

0.06144

0.17853

0. 17998

0.18162

705.470

0.05628

0.05642

0.05657

0.05705

0.05789

0.05888

0.06004

0.06148

0.06331

0.06591

0.07031

0.10402

Source: CO-66 (continued)



Table 2.45 (continued)

Temperature, OF

Pressure,
psia

14.504

72.519

145.038

362.596

725.191

1087.790

1450.380

1812.980

2175.570

2538.170

2900.760

3208.250

752.000 797.000 842.000 887.000 932.000 1022.000 1112.000 1202.000 1292.000

I%
L,

0.05883

0.05898

0.05912

0.05956

0.06036

0.06128

0.06232

0.06353

0.06498

0.06674

0.06906

0.07183

0.06130

0.06142

0.06157

0.06198

0.06275

0.06360

0.06454

0.06561

0.06684

0.06829

0.06998

0.07177

0.06377

0.06389

0.06401

0.06442

0.06515

0.06594

0.06682

0.06778

0.06887

0.07011

0.07151

0.07288

0.06621

0.06633

0.06648

0.06686

0.06754

0.06829

0.06911

0.07001

0.07100

0.07207

0.07327

0.07442

0.06868

0.06880

0.06892

0.06931

0.06996

0.07066

0.07144

0.07226

0.07318

0.07414

0.07521

0.07622

0.07361

0.07371

0.07383

0.07417

0.07480

0.07545

0.07613

0.07685

0.07765

0.07848

0.07937

0.08017

0.07852

0.07862

0.07874

0.07906

0.07964

0.08024

0.08087

0.08152

0.08222

0.08295

0.08372

0.08442

0.08346

0.08356

0.08365

0.08397

0.08450

0.08506

0.08564

0.08624

0.08687

0.08752

0.08822

0.08882

0.08837

0.08847

0.08856

0.08885

0.08936

0.08987

0.09043

0.09098

0.09156

0.09217

0.09280

0.09333



Table 2. 46

Dynamic Viscosity () of Subcooled Liquid Water and Superheated
Steam as a Function of Temperature and Pressure in Metric Units (micropoise)

Temperature, C
Pressure
Bar.

1

S
10
25

rIo) 50

75

100

125

150

175

200

0

17500*
17500

17500

17500

17500

17500

17500

17500

17400

17400

17400

50 100 150

5440 121.1 141.5

5440 2790 1810

5440 2790 1810

5440 2800 1820

5450 2800 1820

5450 2800 1830
5450 2810 1830
5460 2810 1840

5460 2820 1840

5460 2820 1850

5460 2830 1860

200 250

161.8 182.2

160.2 181.4

158.2 180.6

1340 177.8

1350 1070

1350 1080

1360 1080

1360 1090

1370 1100

1380 1100

1380 1100

300 350 375 400 425 450 475 500 550 600 650 700

202.5 223 233 243 253 264 274 284 304 325 345 365

202.3 223 234 244 254 264 274 284 305 325 345 366

202.2 224 234 244 255 265 275 285 305 326 346 366

201.6 225 236 246 256 266 276 287 307 327 347 367

200.6 229 240 250 259 .269 279 289 309 329 349 369

199.2 232 244 253 263 273 282 292 312 332 352 372

905 236 249 258 267 276 286 295 315 334 354 374

911 244 254 263 271 280 289 299 318 337 357 376

917 254 262 269 276 285 294 302 321 340 359 379

924 723 273 276 282 290 298 307 324 343 362 381

930 735 291 286 289 296 303 311 328 346 365 384

* The entry shown for 0°C and 1 bar relates to a etastable liquid state. The stable state is solid here.

Source: CO-66



2.2.3 Radiation Parameters

2.2.3.1 Stefan-Boltzmann Constant

The Stefan-Boltzmann constant is:

a= 0.1712 x 10-8 Btu/hr-ft2-OR4

a= 1.355 x 10-12 cal/sec-cm2-0K4

a = 5.67 x 10-8 W/m2 _OK 4

2.2.3.2 Emissivity Data

Table 2.47 presents surface emissivity data for various solid materials

of interest in waste package design.

2.2.3.3 View Factors

For waste package analysis, the most frequently encountered geometry of

bodies between which radiation heat exchange occurs is expected to be

concentric cylinders. This is fortunate because, if the cylinders can

be treated as infinite in length (a treatment compatible with the vast

majority of one-dimensional conduction analyses), the view factor for

the smaller cylinder is unity. This assumes there is no absorbing

medium between the surfaces such as a gas or that the medium has a

negligible effect if it is present.
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Table 2.47

Values of Surface Emissivity
for Solid Materials

T

(OF)

Cast Iron

recently machined 72
machined and heated 1620
machined and heated 1810
smooth, oxidized 130
smooth, oxidized 520

Carbon Steel

oxidized steel 390
oxidized steel 1100

Stainless Steel

304-42 hrs at 5300F 220
polished 100

£

0.44
0.6
0.7
0.78
0.82

0.79
0.79

0.62
0.13

Sources: GE-61, oxidized steel, smooth oxidized cast iron
BA-78, 304-42 hrs at 5300F

polished stainless steel
HO-81, machined cast iron, machined and heated cast iron
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Analysts who encounter other geometric configurations between which

radiative heat transfer is occurring can use Equation 2.52 and Figure

2.5 to evaluate the view factor by performing the double integral. The

following references can be consulted for tables and graphs of view

factors: BA-78, PE-73, HO-67, and SI-68.
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3.0 STRUCTURAL MECHANICS

3.1 Analytical Techniques

3.1.1 Objectives of Analysis

The purpose of analytical structural mechanics, as it relates to waste

package performance, is to evaluate conditions in a constrained structure

when expected service loads act on that structure. The conditions are

monitored as responses, such as displacements, deformations, strains,

and stresses. Mechanical analysis is performed and structural conditions

are monitored so that the responses for all the anticipated loading

cases can be evaluated against responses that have been found to allow

acceptable service for the life of the structure.

3.1.2 Structural Analysis Approaches

Structural analysis tends to follow one of two approaches. The first

approach is the use of formulas that typically are solutions to contin-

uous differential equations. These formulas are usually taken from

strength of materials, mechanics of materials, and theory of elasticity

texts for structures whose geometry, loading, constraints, and material

properties are well defined. Formulas are available for most problems

that can be solved analytically with reasonable resources. The formulas

are precise analytical solutions that aid in the understanding of mechanics

and complement information gained experimentally. The formulas should

be used only for conditions similar to those in the analytical problem

for which the solutions were derived. The proper application of formu-

las is instructive, straightforward, and reliable. However, for complex

problems, analytical solutions are often not available.

The second method of analysis is the use of finite increment techniques,

including finite element and finite difference methods. The use of

finite increment methods requires specifying a structure as an assem-

blage of discrete interactive parts. This simplification in problem
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formulation reduces the differential equations describing structural

response to algebraic equations and allows analysis of more intricate

structures than does the "formula" method.

These finite increment methods are usually applied using a computer and

computer program to order and automate the solution procedure. Such

programs typically solve a set of coupled algebraic equations for the

displacement of points (nodes) whose coordinates are defined for the

structure before application of the loads. The equations are coupled

because the nodes are connected to various other nodes by elements with

particular stiffness characteristics.

By specifying the stiffness characteristics of each element of the con-

strained structure and applying displacement compatibility of elements

and force equilibrium at a common node, one can evaluate: the deflection

of nodes; deformation of structural elements between nodes; the forces

and strains in structural elements at various nodes; and finally the

stresses in the elements. Adjacent elements with heterogeneous character-

istics such as different materials can be represented. This is in contrast

to the differential equations which are applicable to a continuum. Thus,

the finite increment methods are very adaptable to solving actual problems.

This adaptation involves up-front simplifications yielding sets of alge-

braic equations that can be solved using computer methods. Finite incre-

ment methods can generally be applied successfully to most simple and

complex engineering mechanics problems.

In general, the use of formulas is restricted to relatively simple geom-

etries (e.g., slabs, cylinders, or spheres) and constant material proper-

ties. Since many engineering structures have complex geometries, the

use of formulas is often restricted to conceptual design analysis, design

tradeoffs, or scoping studies. Geometrically complex structures that

undergo inelastic deformation (e.g., plastic deformation due to yielding

or creep) generally can not be analyzed using formulas.

By contrast, finite increment methods can be applied to more complex

geometries, varying material properties, and inelastic deformation.
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Often in the design and analysis of a structure, formulas are used for

the initial screening and selection of candidate designs. Candidate de-

signs are then analyzed in more detail using finite increment methods.

3.2 Mechanics Principles

3.2.1 Displacement, Deformation, and Strain

A structure should be able to carry the imposed loading conditions en-

visioned during its service life without incurring significant dis-

tortions. This is necessary to maintain stability and to maintain

tolerances with interfacing equipment. Also, the design of the struc-

ture must be adequate to prevent instantaneous failure.

Distortion causes common structural materials such as steel to lose

ductility.* If large distortions occur, the material may become

brittle in local regions and fracture. Theories of failure have been

developed for various classes of materials, but ductile structural

metals such as steels usually experience shear failure when loaded

excessively. Shear failure is described in Appendix C (see the Tresca

criterion). Limiting deformation is the most direct means of preventing

structural failure.

Many conditions must be specified in order to perform this analysis of a

structure. One must specify the location of the structure in space.

Geometric deformation conditions due to loading are described in terms

of the displacements u, v, and w along the Cartesian coordinates x, y,

and z or, along the polar coordinates, r, , and z, at a general point

in the structure.

*Ductility is the capability of the material to deform without cracking
or rupturing. A brittle material is one that has very little ductility.
For example, soft copper is a ductile material, while glass has very
little ductility.
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The state of strain at a point is unique but can be expressed in various

coordinate systems, one of which is typically advantageous in offering a

simpler analysis of a given structure. Strains are nondimensional defor-

mations, defined in terms of displacements, that have been normalized to

the initial dimensions. Strain at a point in a continuous structure is

a tensor quantity having a particular plane, direction, and magnitude

associated with its various components. One normal strain component is

associated with each coordinate direction. The normal strain components

are defined mathematically as

C = au; C B;E aw

(3.1)

-where

CX, Y, £Z are the normal strains and

u, v, w are the displacements from the initial
shape in the x, y, and z directions

The differential displacement is the deformation component of the ma-

terial. The x and y directed components of normal strain are shown in

Figure 3.1.

Similarly, there are three components of shear strain. There is one

associated with each of the three orthogonal coordinate system planes

that intersect at the point (x, y, z). The shear strain due to forces

(shear stresses) acting along perpendicular planes is equal to the de-

crement of an initial right angle drawn on the material that was coinci-

dent with the two coordinate system planes before the strain (i.e.,

prior to the loading being applied). The strain component associated

with the xy plane is:

Yxy = + 8

(3.2)
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V+ AV
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V+AVA - V
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YAboO
Ay

0

B

= 
Y V

x
B

I
i U+ Au

a) Pure normal strain in x direction and in y direction due to forces (axiol
stresses) acting in x and in y directions

Y

C

-u + Au
'Txy =a+ B

OY lim AUxyAy--O Ay
+li Av

Ax-!O Ax
A

- u
KY auaxy a y +v

+ x

V+ AV

I

V

I B 
-. p x
0 Ax

b) Pure strain in x - y plane due to forces (sheor stresses) acting along x - z
and y - z planes

Figure 3.1

Strain Components Related Geometrically to Displacements
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Figure 3.1 shows how shear strain components are related geometrically

to displacements.

The three shear strain components can be written in terms of the dis-

placements as

au + V v + aw au + aw
xy By Dx yz z ay Yxz zT ax

(3.3)

where

YxyYyz. Yxz = shear strains

u, v, w = displacements from the initial shape to the
strained state in the x, y, and z directions,
respectively

The strain matrix consists of six strain components with potentially

unique magnitudes* and is used with sign conventions to describe the

state of strain at a point. In matrix form, the strain is defined in

terms of the component magnitudes as:

Cx
1
2 Yxy

1
2 Y'xz

2
f Yxy

1
.-. Yyz

1
2 xz

1
2~ l'yz

(3.4)

*As a consequence of force equilibrium (Section 3.2.2),
Yxy = Yyx Yyz = Yzy, and Yxz = Yzx
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The matrix elements denote the magnitudes of strains. Both the magnitude

and direction of the strains are shown in Figure 3.1.

Principal strains at a point in the structure are the normal strains

occurring along a set of coordinates which are normal to a set of three

intersecting orthogonal planes on which there is no shear strain. These

planes will remain fixed in space as strains are induced. The normal

vectors may change magnitude but not direction. These planes are the

principal planes, and the normals are the principal directions. The

strains in the principal directions are the principal strains. Mohr's

diagrams for principal strains are discussed in Appendix B. The principal

strains cl2 ,2 and c3 are the three real roots of the equation

E3 Ic E2 + 12 C - 1 = 0

(3.5)

where the coefficients I , I2, and 13 are the strain invariants:

Iel = ex + y+ C = -CI + 2 +C3 (3.6)

E2 X y £y z +Cx Z 4 4 4 1c2 +2 3+C1C3

Y 2 2
I£ = eYz x Y Z - ZXO x ~4 4

(3.7)

4 + 4 = C1 23

(3.8)

The first strain invariant is equal to the volumetric strain and is

often referred to as the dilation. The notation is:

=V -= I
V el

(3.9)
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where

A = volumetric strain

V = original volume

6 = change in volume

The direction cosines of the principal plane ( , , and n) with respect

to an arbitrary plane, p, are given by

2. ( ) + (EPE2) (p-E 3 )

(E 1 -C2 ) (-c 3 )

(3.10)

2= (C_)2 2) ( -E 3 )

(E 2 -E 3 ) ( 2 - 1 )

(3.11)

n2= ( 2 (Ep-) E 2)

(C 3 E1) (3 c2)

(3.12)

where Yp and p are the shear strain and normal strain for plane p. The

Mohr diagram methods discussed in Appendix B are used to determine the

principal strains and their directions.

To aid in envisioning and handling the strain tensor, it is conceptual-

ized in two parts: a spherical part and a deviatoric part. The spherical

part is:

'3 0 0

sj= 0 A3 0sij= 4
L0 0 W(3.13)
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where sij is the spherical strain tensor and represents a dilation (or

shrinking) of the original geometry with an associated change in volume.

The deviator strain is given by

A 1 
CX - 3 Y XY

di
1
.2 Yxy

_1
- 2 'Yxz

E 3

1
f~ Yyz

1
E Yxz

1
2 Yyz

£ - 3

I
2 YXY

2f YXZ

-

1
.I .#xy 2i Yxz

1

ez. Yy

e y

1 y
f2 y

(3.14)

where

dij = deviatoric strain

ex, ey, ez = deviatoric strain components

a = mean strain

The deviatoric strain tensor represents a change in shape without any

change in volume. Failure in ductile structural metals is closely related

to the state of deviatoric strain and relatively independent of the

spherical strain. Deviatoric strain invariants exist but are not com-

monly used and thus not included here.

The maximum shear strains are given by:

Y I 2 31

(3.15)

Y2 'l - 31

(3.16)
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Y3 E1 - 21

(3.17)

The largest of the three maximum shear strains is the key index of fail-

ure for ductile metals.

For some types of analyses, particularly those dealing with energy methods,

strain rates are used. The strain rates are defined as:

Cx = ax Ey ay' az

(3.18)

av av'
v = y+ aY xy ay ax 

3 v avz
Yz= IY + ayiyz az ay 

i=V +av av
Yxz= +axz az ax

(3.19)

where

VX, Vy, VZ

= normal axial strain rate components

= shear strain rate components

= time rate of displacement in x, y, and z
directions respectively

All of the preceding relationships given for strains are equally valid

for strain rates. Strain rate tensors, deviatoric strain rates, strain

rate invariants, principal strain rates, and principal shear strain

rates are used in various relationships.

In 1828, Poisson

the magnitude of

applied load) to

studied material behavior and found that the ratio of

strain in a lateral direction (in which there is no

that in the direction coincident with uniaxial loading
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varies with material type. When a tensile load is applied, there is an

elongation strain (conventionally positive) in the loading direction and

a contraction strain (conventionally negative) in each of two directions

which are orthogonal to the loading direction and mutually orthogonal.

The Poisson ratio, which is a property of a material, is defined as

= -(lateral strain)
axia strain

(3.20)

3.2.2 Internal Loads and Stresses

Loads, including forces and moments, are transmitted internally through-

out a structure. Both uniform and nonuniform forces may act over a

cross-sectional area due to these internal loads. It is necessary to

determine the local material loading due to its variation with position.

Ultimately, loads must be compared to the load-carrying ability of the

material so that conclusions regarding structural adequacy can be made.

The structural load and the material's load-carrying capability are

specified conveniently on a uniform force per unit area basis. This

quantity is called stress or allowable stress for the material. Stress'

is a convenient basis for judging structural adequacy of low-performance

structures (those subject to short term loading, room temperature, and

no plastic deformation).

Because internal loads in a cross section vary with position, it is nec-

essary to base the stress on a very small area at a point in the cross

section, which can be compared to the material allowable stress. The

definition of normal stress component is

limit ( (2

A -, o A (3.21)
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where

F = net traction load on area A in the x direction If]

A = cross-sectional area [t2J

ax = stress component in x direction
(tensile stress is conventionally
positive) [f/Q2]

This equation is typically written
Fx

x~ A

(3.22)

where

Fx = axial force in x direction If]

A = area in yz plane of cross section [12]

It is understood that the force on a small local area must be considered

if a nonuniform load distribution is present. The gross cross-sectional

quantities can be used if the force is uniformly distributed over the

area.

Any force acting on the plane of the cross section can be specified in

terms of two orthogonal forces, Fy and Fz, acting on one of the faces

parallel to the yz plane. In general, these forces vary with position

over the cross section and are specified for the local infinitesimal

area at a point to give the following shear stress components at that

point:

l imit F)
xy A (

(3.23)
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limit
Tx = TAO \"/0

(3.24)

where

T = shear stress component perpendicular to the x
3' direction in the y direction [f/i2]

Tx = shear stress component perpendicular to the
x direction in the z direction [f/y2]

These equations are typically written:

xy= A
(3.25)

F2

(3.26)

where

Fy =

Fz =

A =

force in y direction

force in z direction

area in yz plane

[f]

[f]

[.t2]

The force on a small area at a particular point must be considered when

a significant variation of F or Fz occurs over A.

For a general point in a structure (where the load components act in all

three directions, Fx, F and Fz, and the cross-sectional area does not lie
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in a single coordinate system plane), there are three normal stress com-

ponents ( a , and z) and six shear stress components (xy, Tyx

Txz, TZx, Tyzx ST zy The first subscript of the shear stresses denotes

the axis to which the stress is normal and the second the direction of

the associated force component causing the stress. Because of the dif-

ferent directions of the shear stresses, in general, the vectors:

TXz zTX

Tyz Tzy

(3.27)

The Tj are tensor components that act on different planes and have

different directions. The differences in the Txy and Tyx components can

be investigated for a body acted upon by pure shear as shown in Figure

3.2. Moment equilibrium can be applied at point 0 about the z axis:

+E;M 0= = ITYXI (XbZ)AY - [Txy I (AYAZ)x

(3.28)

which indicates

|Tt I = I I
ITxyl Iyx

(3.29)

which means the two components have equal magnitudes. This is also true

for

IT = IT Iyz zy

(3.30)
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y

T x

(a) Element in pure shear (no traction stresses) with two of six shear stress
components being non-zero

y
Ty x

C

f1TXy

x
0

Ty x

(b) Two dimensional x-y view of the pure shear element of (a.

y

_ g J p 

(c) Two dimensional view of deformed shape of pure shear element.

Figure 3.2

Two of the Possible Six Shear Components Acting on (a) 3D Element;
(b) 2D Element; and (c) the Deformed Shape Due to Strain Angles (a and )
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|T I = ITzxI

(3.31)

Equation 3.29, which results from moment equilibrium, requires

(3.32)

as shown in Figure 3.2(c) and also in Figure 3.1(b), providing that the

material is isotropic. This means the deformation is symmetric about a

line through points 0 and C in these figures.

The general state of stress at a point is defined if the three traction

stress components and six shear stress components shown in Figure 3.3

have specified magnitudes. The faces they act on and their conventional

positive directions are defined in Figure 3.3. The back faces have

normal and shear stress components in opposite directions.

The stress matrix consists of six components with potentially unique

magnitudes and is used with our sign conventions of Figures 3.1 and 3.3

to describe the state of stress at a point:

Cx TXY XZ

[a] TXY y TYZ

Txz Tyz z

(3.33)

where

ax, y, ax = traction stress components
(negative if compressive)

Txy T t Txz = shear stress components
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Y T.-
I

y

f I 
- 7A

I1/
_

1.1

~11I

--- ---- x y

5

Tzy

W

I
xz

rzX

O X

COMDPONENTS OF ST RESS (POSITIVE DIRECTION SHO WN)

Figure 3.3

General State of Stress at a Point Defined in Terms of Three
Traction Components and Six Shear Components. The Back

Faces Have Oppositely Directed Traction and Shear
Components Which Are Not Shown.
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Principal stresses at a point in the structure are the traction (tension

or compression) stresses occurring along a set of coordinates which are

normal to a set of three mutually orthogonal planes on each of which

there is no shear stress. The principal stresses occur normal to the

principal planes and are coincident with principal strains. A set of

principal stresses can be found for any generalized state of stress.

The Mohr diagram method presented in Appendix B illustrates the process

graphically.

The principal stresses al, c2, and 3 are the three real

equation

S3 - I1S + I2S - I3 =0

roots of the

(3.34)

where

I1 = x + y + a 

(3.35)

I2= ax + ayz - T2 T2 - T 2Txz
(3.36)

I3 = aXayaz + 2TxyTy xz - ayz - xz Ty
x YZ C~yT z - z xy(3. 37)

For a particular state of stress, the coefficients in Equation 3.34 are

related to a unique set of principal planes and are independent of the

in'tial coordinate system used to specify the structure's geometry and

loading. The coefficients are known as the stress invariants and can be

defined in terms of the principal stress components as
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I= a + a2 + 3

(3.38)

I2 = aI2 + a2a3 + a1a3
(3.39)

I3 a102a3
(3.40)

To aid in envisioning and handling the stress tensor, it is conceptual-

ized in two parts: a mean part and a deviatoric part. The mean stress

am is defined as:

1m 1 a + a)

3 (al + a2 + 3) = 3 (x 3y z 3

(3.41)

The mean stress, also known as the spherical stress, is independent of

direction. For the special case of

II
ox y z m 3

(3.42)

the mean stress is defined as the hydrostatic stress. Physically, the

hydrostatic state of stress has very little influence on failure. The

spherical stress tensor is written

am

0

0 0 

Sij am~ij - CYm 0

0 0 am
(3.43)
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where

Idij is the Kronecker delta or substitution tensor
defined by 6ij = 0 for i j and ij = 1
for i =j

The stress deviator tensor is given by

D.j = aj - S.j

(3.44)

or

aX- O xy rxz

D.. Tyz

LTzx

ay am Tyz

Tzy az am

(3.45)

The stress deviator tensor in terms of the principal stress is

o -° a 0 0

D.. =
13

0 a2 - a 0

0 0 03 - aM

(3.46)-
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or from Equation 3.45

S*

TZX

for a general state of stress

TX TzTxy Txz-

S* T
y yz

Tzy S*zy z

(3.47)

where S, S and S are the deviatoric stress components.

Since any state of stress in general has invariants, the deviatoric

stress tensor can be shown to have invariants defined as

j = S * + S + S =0 (3.48)1 X y z (.8

=E (S*2 + S2 + S*2 + 2T 2 + 2T2 + 2 2)
= y z 2 Y2 z xz

f1 2 2 2

(3.49)

J3 =

S
x

¶xy

Tx z

Txy

Sy

Tyz

Txz

Tyz

Sz

= 1/3 (S 3 + S 3 + S 3)

(3.50)

where S1, S2, and 3 are the principal deviatoric stress components.

Parameters formulated in terms of the stress invariants are used to

indicate stress conditions in a structure. Their values can be compared

to experimentally determined values at failure for the same material
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type to judge structural adequacy. For example, the octahedral normal

and octahedral shear stresses are defined as:

0oct 3 1(1+ 02 +03) (3.51)

oT I 3 (S2 + S2 + S 2) =
TOct 3 2 3

where

0oct = octahedral normal stress

� �2_5 J 2�
(3.52)

Toct = octahedral shear stress

These stresses act on a plane intersecting the principal axes at equal

angles. The name of these stresses derives from the fact that the plane

surface that they act on makes up one-eighth of a regular octahedron

about the origin.

The maximum shear stress is a very important quantity as it is a direct

index to the failure of ductile materials. It is given by

Tmax = max (TAs TB' C

(3.53)

where TA, TB, and TC are the maximum shear stress on a two-dimensional

basis

1TA = T 102 Cll

TB = l= 3 1

TC =2 |2 31
(3.54)
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and where l, 02, and 3 are the principal stresses.

The maximum shear stresses on a two-dimensional basis, TA, TB, and

Tcoccur on planes that are at 450 to the principal stress directions

determined on a two-dimensional basis.

3.2.3 Constitutive Relationships

3.2.3.1 Types of Constitutive Relationships and Their Uses

Constitutive relationships are mathematical expressions that describe

the essence of the primary physical interaction that occurs in a solid

body or structure. The relationship is between the response expressed

in terms of strain and the stresses that are a direct consequence of the

internal loads carried by the structure.

The constitutive relationship is the most basic relationship between the

variables in a structural analysis method as it describes the fundamen-

tal cause-effect relationship between internal loading per unit area

(stress) and the response stated in terms of strain. The relationship

is defined in mathematical form and contains parameters whose values

pertain to a particular material type. The relationship is usually

limited to a particular category of strain. These strain categories are

typically:

* Instantaneous linear elastic

* Instantaneous plastic

• Long-term creep

The first two strain categories are instantaneous effects; the third is

cumulative over the time of loading. The third method can produce cumu-

lative strains over time along with the instantaneous strains from either

of the first two categories. Generally, creep strain increases with

higher stress levels and higher material temperatures.
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When a tensile specimen fails, the failure for the material is reported

in terms of either reduction of area at the point of failure or elonga-

tion per unit length in one of several standard gauge length sections in

which the failure occurred. These data are closely related to strain.

Strain is a more general index from which to judge structural adequacy

than is stress. If structural service is such that the instantaneous

response is in the linear elastic or plastic range and the loading dura-

tion is short and temperatures not excessive (about 30 years and 7000F

is acceptable for many structural steels), then creep strain contribu-

tions to failure can be neglected. When time of loading and/or tempera-

ture values are high, neglecting the creep strain can lead to faulty

conclusions regarding structural adequacy. Both instantaneous and creep

strains cause the ductility of the material to be consumed. Since the

loading on waste packages is expected to have a duration that is among

the longest of all engineered structures and the temperature is elevated,

it is important that the adequacy of these structures be judged on the

basis of total strain. Analysis programs for assessing waste package

systems deal with the overall effects of the radiation, corrosion, leaching,

and thermal models and attempt to facilitate a waste package barrier

structural adequacy evaluation. Stress analysis methods based only on

instantaneous strains are not adequate for this determination.

Figure 3.4 outlines some key considerations involved in applying struc-

tural criteria. An infrastructure of criteria has not yet been developed

for the waste package, so Figure 3.4 should be considered conceptual.

At level 1, the structural loading and geometry are reviewed to see if

thermal loads are applied. Thermal loads result if the structure is

constrained against free expansion and part or all of the structure is

at a temperature different from the temperature that existed when no

loads were present and the constraints exerted no reaction loads.

If thermal loads do occur, then the thermal strain T occurs compatible

with the temperature conditions, T; constraints, c; element stiffnesses,

k; and the condition that each node remains in force equilibrium, e.
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Figure 3.4

Conceptual Structural Criteria Application Procedure
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At level 2, the mechanical load case, concurrent with the thermal load,

results in a linear-elastic strain response. The instantaneous elastic

strain IE is a function of the internal loads, ; element stiffness, k;

constraints, c; and the condition of force equilibrium, e, is maintained

at each node.

At level 3, a stress analysis can be made. The purpose of the stress

analysis is to determine whether yielding has occurred for the concur-

rent instantaneous thermal and mechanical load cases or individually if

there is no concurrency. This check could be made for metals with either

the Tresca or von Mises yield criteria as presented in Appendix C. If

yielding has not occurred and creep effects are known to be negligible,

a stress analysis may be adequate as an overall structural analysis

approach. If plastic deformation has occurred, strain limits are appro-

priate and best suited to judging structural adequacy. For a yielded

structure, the instantaneous plastic strain IP can be evaluated for

ductile metals using the Prandtl-Reuss equations with the von Mises

yield criterion. The procedure is similar to evaluating the instantaneous

elastic strain IE except that the loads are applied incrementally and

summed for the entire loading.

For cases where loads are of long duration, temperatures are elevated,

and stress levels are high, the creep strain can be significant in com-

parison to the instantaneous strains. Creep strains tend to consume the

ductility of metals and cause metals to approach failure. When a struc-

ture may be susceptible to creep, rational design requires that the

creep strain be evaluated (or estimated). This is typically accom-

plished by using a correlation for creep strain, cc, with the state of

stress, ; time duration of loading, t; and temperature T as independ-

ent parameters.

After the instantaneous strains are evaluated at levels 1, 2, and 3 and

the creep strain is evaluated at level 4 for particular concurrent thermal

and mechanical load cases, the total strain can be evaluated at level 5.

At level 6, the design adequacy is evaluated by comparison to allowable
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strain values. The strains resulting from various load set combinations

should be superimposed to obtain the response to all concurrent loading.

Strains should be categorized as membrane or bending stress and individual

limits imposed. To evaluate waste package performance, criteria need to

be defined for the various strain categories.

3.2.3.2 Generalized Linear Elastic Mechanical and Thermal
Constitutive Relationships

In 1678, Robert Hooke published a linear constitutive relationship for

elastic materials when loaded in tension. This constitutive relation-

ship is known as Hooke's law and, when generalized to include thermal

strains for either tension or compression loads for an isotropic material

in three dimensions, becomes

E I a - + T
ij ij ij G

(3.55)

_ E
2(1 + v)

(3.56)

=X a +0 az

(3.57)

where

E = elastic (or Young's) modulus [f/i2]

v = Poisson's ratio [ 

G = shear modulus [f/t2]

a = coefficient of thermal expansion t1/0]
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T = temperature elevation above reference
temperature [6)

6ij = Kronecker delta, = 1 for i = j and = 0
for i j

6ij

*ijE

= stress tensor [f/Q 2]

= elastic strain tensor

and where the constitutive equation can be written in terms of the strain

components as

ElI

£ E =1 [a,

£y E [ay

£ E 1p[

- v(a + )]
- +

- v(a + or)]

- (OX + ay)I

+ aT

+ CLT

+ cXT

E E
xy = Y

E _ EE -z

= G

= G Tyz

= 2(l + v) T
E xy

= 2(1 + V) T
E yz

E E 1 2( + v)
£xz Yxz 'r xz E T xz

(3.58)

Equation 3.58 can be presented in matrix form as:
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E
ex

E
C y

E

1

- E

V-E

V
r

EVEr

v
- r

V
-
1T

10 0 0

ayCy

xy

E EEyz

Exz

I

o 0 0 1

o 0 0 1

1
0 0 0

o 1 0 
G

0 0 0

0

-4

0 0 T YZ

zx0 0 0 0 0 -G 0

ya T )

(3.59)

Hooke's law applies to isotropic materials. For orthotropic materials,

the properties E, -v, G and a used in the formulation have values that

can be different in each of the three coordinate directions.

The generalized Hooke's law can be written for the stress tensor as

o X = t5. (E - 3aT) +1i ) 1 3 GI[ij + (E - aT)]

(3.60)

where

eE = E + E + E = 1

(3.61)

and where is known as Lame's constant and G is the shear modulus.

Lame's constant, , can be expressed in terms of the elastic modulus, E,

and the Poisson ratio,v :
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vE
X (1 + v) (1 - 2v)

(3.62)

The other functions in Equation 3.60 have been defined previously.

The Cartesian stress tensor written

ponents is

in terms of the various strain com-

a X~ c (E + E Eax = X (X +C + - 3T) + 2G(eE - aT)
x.

° = X(£ E + E + E E - 3T) + 2G(e E
y

- aT)

z = X( E + E + E _ 3aT) + 2G(s E aT)

a = GE E =T. = GY E

aY = G E = =GY E(1yz= Gyz T =Gyz

Gc E = Txz = GY E
xz

(3.63)

In Equations 3.60 and 3.63 for the normal stress components, the first

term is the stress associated with dilation or volume change, and the

second term is the deviatoric stress associated with distortion of the

shape as strain progresses.

Equation 3.63 applies to isentropic material behavior and can be written

in matrix form as
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IE
ax I (X+2G) A A 0 0 0 -(3X+2G) Cx

oly A (X+2G) A 0 0 0 -(3X+2G) CyIE

ozXA (X+2G) 0 0 0 -(3X+2G) IE

Txy = - 0 G 0 O0 yyIE
IE

0 0 0 0 G 0 0 Y IE

Txz 0 0 0 0 0 G YxzIE

aT

(3.64)

For orthotropic material behavior, E, G and may have different values

in each of the coordinate directions.

The coefficients of thermal expansion for structural metals are typically

very small (10-5 < a < 10-6) when a is expressed in [1/OF] units.

For this reason, the thermal strains are usually treated along with the

elastic strains. The elastic strains are frequently small in comparison

to plastic strains. Thermal strains in structural metals are frequently

neglected if plastic strains occur. However, an analyst must be cognizant

of the magnitude of the strain components that are being neglected rela-

tive to those that are retained.

The values of E, V, G, X, and the bulk modulus, K, are all referred to

as elastic constants. Only two of these are independent, and thus any

two can be used to describe the material behavior. In terms of the

modulus of elasticity and Poisson's ratio, the shear modulus, Lame's

constant, and the bulk modulus are given by:

G= E
2(1 + v)

(3.56)
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Ev
=(1 + )(l - 2)

(3.62)

_ E
K ( - 2v)

(3.65)

Table 3.1 gives the complete set of relationships between the elastic

constants. These constants are listed in Tables 3.2 through 3.17 for a

number of materials of interest in waste package analysis.

3.2.3.3 Yield Strength, Ultimate Tensile Strength, and Ultimate
Compressive Strength

Most structural engineering materials have an initial linear elastic

region in which deformation can be treated as reversible and time-

independent. At the proportional elastic limit, the stress-strain

relationship begins to display nonlinear behavior. At the elastic limit

(frequently indistinguishable from the proportional elastic limit), some

non-recoverable plastic deformation remains after the release of the

load. If the stress is increased above the elastic limit, the stress-

strain relationship departs more and more from a linear relationship.

When a specimen that has been loaded beyond the elastic limit is un-

loaded, a permanent deformation is observable. This deformation is the

basis for determining the yield strength. The stress that causes a 0.20

percent permanent strain upon specimen unloading is defined as the 0.20

percent yield strength.

The ultimate tensile strength is the maximum stress in tension sustained

by a material at failure. The ultimate compressive stress is the maximum

stress in compression sustained by a material in failure. Most ductile

materials (e.g., mild steels) exhibit similar ultimate compression and
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Table 3.1

Relationships between Isotropic Elastic Constants

CY
r'1)

LAME CONSTANTS YOUNG'S MOD. POISSON'S RATIO BULK MOD.

= G(SHEAR MOD.) v K

A,G __ __A 2G A 3A 2G
A + 2(A + G)

AE _E-3A) + (E-3A) + 8E _ -(E+A) + 4(E+X )2 + 8A 2 (3X+E) + ¶(3A+E)Z _ 41E
4 4A6

A,v __ A (1-2v) A(+v) (1-2v) _Al+v
Zv v 3v

1,K __ 3 (K-A) 9K(K-A) A
2 3K-A __ _

G,E (2G-E)G __ _ E-2G GE
E-3G Yu 3 -

G.v 2Gv -_ _2G(l+v)
T -v 2G(l+v) 3(1-2v)

G,K 3K-2G __ 9KG __
3K+G I G

E,v vE E _E
(14v) (1-2v) Z(T+vJ 3(1-2v)

E,K 9K-E 3EK I [ 3K]
vK_ 3Kv K- 33K]

V,K 3Kv 3Kfil2vj 3K(1-2v)



Table 3.2

Zircaloy 2 Tubing Mechanical Properties as a Function
of Temperature in English Units

T
(OF)

E
(106 psi)

V

(-) (106 psi)
(

(106 psi)
K

(106 psi)
a

(10- 6 /OF)

Longitudinal Transverse

75
100
200
300
332
400
500
600
700
800
900

1000
1100

13.8
13.7
13.2
12.7
12.5
12.2
11.7
11.2
10.7
10.2

9.7
9.2
8.7

.32

.41

5.24

4.43

9.06

20.41

12.6

23.2

4.62
4.62
4.62
4.62
4.62
4.62
4.62
4.62
4.62
4.62
4.62
4.62
4.62

6.58
6.58
6.58
6.58
6.58
6.58
6.58
6.58
6.58
6.58
6.58
6.58
6.58

Radial

8.71
8.81
8.71
8.71
8.71
8.71
8.71
8.71
8.71
8.71
8.71
8.71
8.71

Cn

Legend

E - Elastic Modulus - Longitudinal Direction
v - Poisson's Ratio
G - Shear Modulus (Lame's Constant L)
A - Lame's Constant
K - Bulk Modulus
a - Mean Coefficient of Thermal Expansion from 860F to Indicated Temperature

Coordinate definition
z - longitudinal
0 - transverse
r - radial

Source: SC-65



Table 3.3

Zircaloy 2 Mechanical Properties as a Function
of Temperature in Metric Units

T
(0C)

E
(MPa)

V

()
G

(MPa)
A

(MP a)
Is

(MPa)
a

1 o-6 /oC
TransverseLongitudinal Radial

23.9
37.8
93.3

148.9
166.7
204.4
260.4
315.6
371.1
426.7
482.2
537.8
593.3

9.52x104

9.45x104

9. 10x104

8.76x104

8.62x104

8.41x104

8.07x104

7.72x104
7.38x 104
7.03x104
6.69x104
6.34x104

6. 00x 1 04

0.32

0.41

3.61x104

3.06x104

6.25x104

14.08x104

8.69x104

16.14x104

8.32
8.32
8.32
8.32
8.32
8.32
8.32
8.32
8.32
8.32
8.32
8.32
8.32

11.84
11.84
11.84
11.84
.1.84
11.84
11.84
11.84
11.84
11.84
11.84
11.84
11.84

15.68
15.68
15.68
15.68
15.68
15.68
15.68
15.68
15.68
15.68
15.68
15.68
15.68

Legend

E - Elastic Modulus-Longitudinal Direction (Transverse Direction)
v Poisson's Ratio
G - Shear Modulus (Lame's Constant j)

- Lame's Constant
K - Bulk Modulus
a - Mean Coefficient of Thermal Expansion from 300C to the Indicated Temperature

Coordinate definition
z - longitudinal

- transverse
r - radial

Source: Derived from data in Table 3.2



Table 3.4

Zircaloy 4 Mechanical Properties as a Function
of Temperature in English Units

T E v G X K a
(OF) (106 psi) ) (106 psi) (106 psi) (106 psi) (10-6/OF)

Longitudinal Radial

75 15.4 0.296 5.94 8.62 12.58 - -

100 15.2 0.294 5.87 8.38 12.30 - -
200 14.3 0.287 5.56 7.49 11.19 2.75 1.60
300 13.5 0.280 5.27 6.71 10.23 3.00 2.22
400 12.6 0.273 4.95 5.95 9.25 3.20 2.31
500 11.8 0.266 4.66 5.30 8.40 3.33 2.82
600 10.9 0.259 4.33 4.65 7.54 3.45 3.24
700 10.0 0.252 3.99 4.06 6.72 3.52 3.52
800 9.2 0.245 3.69 3.55 6.01 3.60 3.72
900 8.3 0.238 3.35 3.05 5.28 3.65 4.00

1000 7.5 0.231 3.05 2.62 4.65 3.70 4.22
1100 6.6 0.224 2.70 2.19 3.99 3.72 4.39

Legend

E - Elastic Modulus
v - Poisson's Ratio
G - Shear Modulus (Lame's Constant )
A - Lame's Constant
K - Bulk Modulus
a - Mean Coefficient of Thermal Expansion from 860F to the Indicated Temperature

Coordinate definition
z - longitudinal
r - radial

Source: SC-65



Table 3.5

Zircaloy 4 Mechanical Properties as a Function
of Temperature in Metric Units

T
(0C)

E
(MPa)

V G
(MP a) (MPa)

K
(MPa)

a
(10- 6/OC)

Longitudinal Radial

23.9
37.8
93.3
148.9
204.4
260.0
315.6
371.1
426.7
482.2
537.8
593.3

10. 62x10 4
10. 48x 104
9.86xl0 4
9.31x104
8.69xjl04
8. 14104
7.52xj0 4
6. 9x1 04
6.34x104
5.72xlo
5.l7xl0 4
4.55xl04

0.296
0.294
0.287
0.280
0.273
0.266
0.259
0.252
0.245
0.238
0.231
0.224

4. lox 104
4.05x10 4

3.83x10 4

3.63x0
3.41x104
3.21x10 4

2.99x IO4
2.75x10 4

2.541 i4
2 31X10 4

2.lox 104
1 .86x 104

5.94x104

5.78x104
5.17xl04
4.63x104

4. lox 104
3.66x104

3.21x104

2.80x104
2.45x104

2. 10x104

1.81x104

1.51x104

8.68x104
8.48xl04
7.72x10 4

7.06x10 4

6.38x104
5.79x10 4

5.20xl04
4.63x10 4

4.14x104
3.64x104
3.21X10 4

2.75xl04

4.95
5.40
5.76
5.94
6.21
6.34
6.48
6.57
6.66
6.70

2.88
4.00
4.16
5.08
5.83
6.34
6.70
7.20
7.60
7.90

Legend

E - Elastic Modulus
v - Poisson's Ratio
G - Shear Modulus (Lame's Constant )
X - Lame's Constant
K - Bulk Modulus
a - Mean Coefficient of Thermal Expansion from 300C to the Indicated Temperature

Coordinate Definition
z - longitudinal
r - radial

Source: Derived from data in Table 3.4



Table 3.6

Carbon Steel Mechanical Properties as a Function
of Temperature in English Units

T
(OF)

70
100
150
200
250
300
350
400
450
500
550
600
650
700
750
800

E
(106 psi)

27.9

v

(-)

.29

G
(106 psi)

10.81

(1 A psi psK
(106 psi) (106 psi)

14.93 22.14

27.7

27.4

27.0

26.4

25.7

24.8

(10- 6 /oF)

6.07
6.13
6.25
6.38
6.49
6.60
6.71
6.82
6.92
7.02
7.12
7.23
7.33
7.44
7.54
7.65

Legend

E - Elastic Modulus
v - Poisson's Ratio
G - Shear Modulus (Lame's Constant )
K - Bulk Modulus
a - Mean Coefficient of Thermal Expansion from 700F to Indicated Temperature
A - Lame's Constant

Source: ASME-71



Table 3.7

Carbon Steel Mechanical Properties as a Function
of Temperature in Metric Units

T
(0C)

E
(MPa)

V

( -

G
(MP a) (MPa)

K
(MPa)

a
(10- 6 /oC)

21
37
65
93

121
14E
17(
204
232
26(
287
31!
34.
371
39f
42f

1.1
7.8
5.6

19.2x104 0.29 7.46x104 10. 30x104 15.27x104

3.3 19.1X10 4

1.1 -
3.9 18.9x104

6.7
1.4 18.6x104

2.2
D.0 18.2x104

5.6 17.7x104

3.3
1.1 17.1x104

3.9
6.7

Legend

E - Elastic Modulus
v - Poisson's Ratio
G - Shear Modulus (Lame's Constant j4

X - Lame's Constant
K - Bulk Modulus
a - Mean Coefficient of Thermal Expansion from 21.10C to the Indicated Temperature

10.93
11.03
11.25
11.48
11.68
11.88
12.08
12.28
12.46
12.64
12.82
13.01
13.19
13.39
13.57
13.77

Source: Derived from data in Table 3.6



Table 3.8

304 Stainless Steel Mechanical Properties as a Function
of Temperature in English Units

T
(OF)

E
(MP a) H

(-)

.29

G
(106 psi) (106 psi)

K
(106 psi)

22.4670
100
150
200
250
300
350
400
450
500
550
600
650
700
750
800

28.3 10.97 15.15

27.7

27.1

26.6

26.1

25.4

24.8

24.1

(10- 6 /OF)

9.11
9.16
9.25
9.34
9.41
9.47
9.53
9.59
9.65
9.70
9.76
9.82
9.87
9.93
9.99

10.05

Legend

E - Elastic Modulus
v - Poisson's Ratio
G - Shear Modulus (Lame's Constant p)
X - Lame's Constant
K - Bulk Modulus
a - Mean Coefficient of Thermal Expansion from 700F to the Indicated Temperature

Source: ASME-71



Table 3.9

304 Stainless Steel Mechanical Properties as a Function
of Temperature in Metric Units

T
(0C)

E
(MP a)

V

(-)

G
(MP a) (MPa)

K
(MPa)

15.49x104

(1O- 6 /oC)

21.1
37.8
65. 5
93.3
121.1
148.9
176.7
204.4
232.2
260.0
287.8
315.6
343.3
371.1
398.9
426.7

19.5x104 0.29 7.57x104 l0.45x104

19. 1x104

18.7x104

18.3x104

18.0x10 4

17.5x104

17. x 104

16.6x104

16.40
16.49
16.65
16.81
16.94
17.05
17.15
*17.26
17.37
17.46
17.57
17.68
17.77
17.87
17.98
18.09

Legend

E - Elastic Modulus
v - Poisson's Ratio
G - Shear Modulus (Lame's Constant )
A - Lame's Constant
K - Bulk Modulus
a - Mean Coefficient of Thermal Expansion from 21.10C to the Indicated Temperature

Source: Derived from data in Table 3.8



Table 3.10

Defense HLW Glass Mechanical Properties as a Function
of Temperature in English Units

T E V G A K a
(OF) (106 psi) (_) (106 psi) (106 psi) (106 psi) (106/OF)

* 10.00 0.20 4.20 2.76 5.51 6.78

Legend

E - Elastic Modulus
v- Poisson's Ratio
G -Shear Modulus (Lame's Constant i)
A - Lame's Constant
K - Bulk Modulus
a - Coefficient of Thermal Expansion

* Temperature not given, assume 680F

Source: Derived from data in Table 3.11



Table 3.11

Defense HLW Glass Mechanical Properties as a Function
of Temperature in Metric Units

T
(OC)

*

E
(MPa)

6.9x104

v

(-)

0.20

G
(MPa)

2.9x 104

A
(MPa)

1.9x104

K
(MPa)

a
(10- 6 /oC)

3.8x104 12.2

Legend

-a

E - Elastic Modulus
v - Poisson's Radio
G - Shear Modulus (Lame's Constant )
X - Lame's Constant
K - Bulk Modulus
a - Coefficient of Thermal Expression

* Temperature not given, assume 200C

Source: WE-83



Table 3.12

Commercial HLW Glass Mechanical Properties as a Function
of Temperature in English Units

T E v G K
(OF) (106 psi) (106 psi) (106 psi) (106 psi) (10-6[0F)

* 10.0 0.20 4.2 2.76 5.51 5.56

Legend

E - Elastic Modulus
v - Poisson's Ratio
G - Shear Modulus (Lame's Constant i)
A - Lame's Constant
K - Bulk Modulus
a - Coefficient of Thermal Expansion

* Temperature not given, assume 680F

Source: Derived from data in Table 3.13



Table 3.13

Commercial HLW Glass Mechanical Properties as a Function
of Temperature in Metric Units

T
(0C)

*

E
(MPa)

6.9x104

V

(-)

0.20

G
(MP a)

2.9x104

(MP a)

.9x104

K
(MPa)

a
(10-6/00)

3.8x104 10.0

Legend
J-

E - Elastic Modulus
v - Poisson's Ratio
G - Shear Modulus (Lame's Constant )
A - Lame's Constant
K - Bulk Modulus
a - Coefficient of Thermal Expansion

* Temperature not given, assume 200C

Source: WE-83



Table 3.14

Cast Iron Mechanical Properties* as a Function
of Temperature in English Units

T
(OF)

E
(106 psi)

23.6

V

(-)

0.271

G
(106 psi)

9.3

A
(106 psi)

9.4

K
(106 psi)

17.2
32
70

100
200
300
400
500
600

a
(10- 6 /OF)

6.503
6.626
6.724
7.048
7.372
7.697
8.021
8.346

Legend

E - Elastic Modulus
v - Poisson's Ratio
G - Shear Modulus (Lame's Constant 11)
A - Lame's Constant
K - Bulk Modulus
a - Average Linear Coefficient of Thermal Expansion Over the Temperature Range from

320F to the Indicated Temperature

* Malleable Iron

Source: BA-78



Table 3.15

Cast Iron* Mechanical Properties
of Temperature in Metric

as a Function
Units

T
(0C)

0.0
21.1
37.8
93.3
148.9
204.4
260.0
315.6

E
(MP a)

16.3x104

V

( -)

0.27 1

G
(MP a)

6.41xl04

(MPa)

6.48xl04

K
(MPa)

a
(10o-6/oC

11 .86xl0 4
11.71
11.93
12.10
12.69
13.27
13.85
14.44
15.02

-J

E - Elastic Modulus
v - Poisson's Ratio
G - Shear Modulus (Lame's Constant p)
X - Lame's Constant
K - Bulk Modulus
a - Average Linear Coefficient of Thermal Expansion Over the Temperature Range

OC to the Indicated Temperature

* Malleable Iron

Source: Derived from data in Table 3.14



Table 3.16

Ticode 12 Mechanical Properties as a Function
of Temperature in English Units

T
(OF)

E
(106 psi)

v

(-)

G
(106 psi)

6.2

A
(106 psi)

4.5

K
(106 psi)

a
(10- 6 /OF)

70 .21 8.6

600 5.3

-j

Legend

E - Elastic Modulus
v - Poisson's Ratio
G - Shear Modulus (Lame's Constant )
A - Lame's Constant
K - Bulk Modulus
a - Mean Coefficient of Thermal Expansion from 320F to Indicated Temperature

Source: TI



Table 3.17

Ticode 12 Mechanical Properties as a Function
of Temperature in Metric Units

T
(0C)

E
(MPa)

10. 3x104

V

(-)

0.21

G
(MPa)

4.3x104

X
(MPa)

3.1x104

K
(MPa)

( a
(10-6/oC)

21.1 5.9x104

315.6 9.54

Legend

E - Elastic Modulus
v - Poisson's Ratio
G - Shear Modulus (Lame's Constant ii)
X - Lame's Constant
K - Bulk Modulus
a - Mean Coefficient of Thermal Expansion from C to Indicated Temperature

Source: Derived from data in Table 3.16



tensile strength. Brittle materials (e.g., glass, geologic materials,

cast iron) have higher strengths in compression than tension.

Strength data for candidate waste package materials are presented in

Tables 3.18 through 3.31.

3.2.3.4 Plastic Constitutive Relationships

Materials loaded beyond their elastic limit deform plastically. Upon

unloading, the plastic portion of the deformation is retained. Thus,

the state of strain for plastic deformation is dependent on load history

as opposed to being a function of the state of stress. Good design

practice requires an analytical knowledge of plastic strains that result

from loading on an instantaneous basis. Because of the path dependence

of plastic strains on loading, an incremental theory of straining is

used.

Saint-Venant proposed in 1870 that the principal axes of the strain

components are coincident with the principal stress axes. In 1871, Levy

generalized (as did von Mises independently in 1913) the so-called

Saint-Venant constitutive relationships to include both normal and shear

stress and strain components as follows:

dc.. = S. .dX

(3.66)

which is also called a flow rule where:

cU*I = total instantaneous strain component directed
perpendicular to i and along j (elastic strain
is ignored so Ecj = EjP)

1jP = plastic strain component directed perpendicular
to i and along j
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Table 3.18

Carbon Steel Yield Strength as a Function of Temperature
in English Units

T Yield Strength (ay)
(OF) (kpsi)

212 24.0

392 21.9

572 21.3

752 20.6

932 19.4

1112 17.8

Source: ASME-71
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Table 3.19

Carbon Steel Yield Strength as a Function of Temperature
in Metric Units

T Yield Strength (ay)(C) (MPa)

100 165.5

200 151.1

300 146.9

400 142.0

500 133.8

600 122.7

Source: Derived from data in Table 3.18
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Table 3.20

304 Stainless Steel

T
(OF)

Yield Strength as a Function of Temperature
in English Units

Yield Strength(a y)
(kpsi)

212

392

572

752

932

1112

30.0

25.0

22.5

20.7

19.4

18.2

Source: ASME-71
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Table 3.21

304 Stainless Steel Yield Strength as a
in Metric Units

T
(0C)

100

200

300

400

500

600

Function of Temperature

Yield Strength (a )
(MPa)

206.8

172.4

155.1

142.7

133.8

125.5

Source: Derived from data in Table 3.20
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Table 3.22

Zircaloy 4 Strength Including Ultimate Tensile Strength
%TU), 0.2 Percent Offset Yield Strength (ay),
and Linear Elastic (Proportional) Limit

(ap) in English Units

T Gulmin aulavg aylmin a avg apimin "pi avg
(OF) (kpsi) (kpsi) (kpsi) (kpsi) (kpsi) (kpsi)

75 79 94 52 70 24.0 29.5

100 78 93 52 70 24.5 30.8

200 72 88 50 69 29.0 38.5

300 67 83 48 66 30.0 10.5

400 62 78 45 62 26.7 37.7

500 57 72 40 58 23.0 33.0

600 50 66 36 53 22.6 30.5

700 44 60 31 47 22.4 29.3

800 36 52 27 42 22.3 28.4

900 27 42 23 35 22.2 28.2

Sources: AE-69, BY-69, BY-70, WH-68, BA-67, BE-66, SC-65



Table 3.23

Zircaloy 4 Including Ultimate Tensile.Strength
(OU), 0.2 Percent Offset Yield Strength (y),

and Linear Elastic (Proportional) Limit
(ap) in Metric Units

T a Imin ulmin a Imin ay)I avg cpImin aD Iavg
(0C) aMPa) (MPa) TMPa) (MPa) MPa)

23.8 544.7 648.1 358.5 486.6 165.5 203.4

37.8 537.8 641.2 358.5 486.6 168.9 212.4

93.3 496.4 606.7 344.7 475.7 200.0 265.4

148.9 462.9 572.3 330.9 455.0 206.8 279.2

204.4 427.5 537.8 310.3 427.5 184.1 255.5

co 260.0 393.0 496.4 275.8 400.0 158.6 227.5

316.6 344.7 455.0 248.2 365.4 156.5 210.3

371.1 303.4 413.7 213.7 324.0 154.4 202.0

426.6 248.2 358.5 186.2 358.5 153.8 195.8

482.2 181.2 358.5 158.6 241.3 153.1 194.4

Source: Derived from data in Table 3.22



Table 3.24

Zircaloy 2 Ultimate Strength (u) and Yield Strength (y)
as a Function of Temperature in English Units

T
(OF)

212

392

572

752

932

(psi )
(Transverse) (Longitudinal)

Cy.(kpsi )
(Transverse) (Longitudinal)

69.0

59.3

51.0

42.0

36.0

72.0

64.0

58.0

48.8

40.0

58.0

49.5

42.5

36.0

29.5

45.0

42.5

38.0

31.0

26.0

Source: GO-68
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Table 3.25

Zircaloy 2 Ultimate Strength (au) and Yield Strength (ay)
as a Function of Temperature in Metric Units

T
(OC)

100

200

300

400

500

(MPa)
(Transverse) (Longitudinal)

(MPLa)
(Transverse) (Longitudinal)

475.7

408.9

351.6

289.6

248.2

496.4

441.3

399.9

336.5

275.8

399.9

341.3

293.0

248.2

203.4

310.3

293.0

262.0

213.7

179.3

Source: Derived from data in Table 3.24
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Table 3.26

Ticode 12 Strength Including Minimum Tensile
Strength (aujmig). Minimum 0.2 Percent Offset
Yield Strength (caymin), and Room Temperature

Typical Ultimate Strength (au) and Typical Yield
Strength (y) in English Units

T
(OF)

70

100

200

300

400

500

600

u min
(kpsi)

70.0

68.0

60.5

52.6

45.0

40.0

38.2

a Imin
(kpsi)

50.0

au
(kpsi)

82.9

(y
(kpsi)

64.7

Source: TI-82
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Table 3.27

Ticode 12 Strength Including Minimum Tensile
Strength (ulmin), Minimum 0.2 Percent Offset

Strength (ylmin), and Room Temperature Typical Ultimate
Strength (au) and Typical Yield Strength (ay) in Metric Units

T
(0C)

23.8

37.8

93.3

148.9

204.4

260.0

315.6

Imin
YMPa)

482.6

468.8

417.1

362.7

310.3

275.8

263.4

3Imin
TMP a)

344.7

(MPa) cry(MP a)

571.6 446.1

Source: Derived from data in Table 3.26
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Table 3.28

Cast Iron Yield Data* in English Units

% Carbon

3.3

3.7

4.0

4.1

4.3

4.5

4.6

4.8

(kpli)

47.7

40.9

35.1

32.5

29.3

25.0

22.4

20.4

Cy
(kpfi)

159.0

119.1

120.8

120.8

90.9

95.0

91.0

72.8

T
(kpsi)

60.8

47.3

47.6

44.6

37.0

35.5

33.0

29.6

* Ultimate tensile strength (at), ultimate compressive strength (c)
and ultimate shear () as a function of carbon content (the strength
of grey cast iron does not vary significantly with temperature in
the temperature range below 7000F)

Source: BA-78
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Table 3.29

Cast Iron Yield Data* in Metric Units

% Carbon

3.3

3.7

4.0

4.1

4.3

4.5

4.6

4.8

at
(MPa)

328.9

282.0

242.0

224.1

202.0

172.4

154.4

140.7

Oc
(MP a)

1096.2

821.1

832.9

832.9

626.7

655.0

627.4

501.9

(MPa)

419.2

326.1

328.2

307.5

225.1

244.8

227.5

204.1

* Ultimate tensile strength (at). ultimate compressive strength (c),
and ultimate shear (T) as a function of carbon content (the strength
of grey cast iron does not vary significantly with temperature in
the temperature range below 7000F)

Source: Derived from data in Table 3.28
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Table 3.30

Defense Waste Glass (1
Strength (at) and

Strength (c)

131 TDS*) Ultimate Tensile
Ultimate Compressive
in English Units

T
(OF)

at
(kpsi)

ac
(kpsi)

!100.068 9.0

* This glass melts at about 20500F.

Source: WI-84
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Table 3.31

Defense Waste Glass (131 TDS*) Ultimate Tensile
Strength (t) and Ultimate Compressive

Strength (c) in Metric Units

(0C)

20

a t
(MPa)

62.1

Cc
(MPa)

E89.5

*This glass melts at about 11500C.

Source: Derived from data in Table 3.30
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Sjj = stress deviator tensor

d = non-negative constant

Equation 3.66 can be written on a component basis as

de' dey' de,' de 1 de~ de 

x = -Y = dASx Sy Sz- Tyz Tzx TXY

(3.67)

These equations, known as the Levy-Mises equations, are a constitutive

relationship between strain and stress on a component basis. They state

that the ratio of the increment of the total instantaneous strain com-

ponent (with elastic strain being neglected) to the corresponding stress

deviator component is a single constant for all components. The assumption

that the elastic strains are negligible in comparison to the instantaneous

plastic strains limits the theory to large strain conditions such as

would be encountered in metal-forming applications rather than structural

responses where strains must be closely controlled. The Levy-Mises

equations (3.66 and 3.67) were restated by Prandtl in 1925 and Reuss in

1930 as

de jP = Sd
ij 13,

(3.68)

where ej is the instantaneous plastic strain component directed per-

pendicular to i and along j and the other quantities are as previously

defined.

On a component basis, the Prandtl-Reuss constitutive relationship for

instantaneous plastic strain is
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de' IP ' de IP dc IP de IP de
X - z = < = < = - d)

Sx y z Txy Tyz Izx
(3.69)

Equation 3.69 can be rewritten in terms of the principal strains and

stresses as

de IP _ IP de IP _ IP de IP de IP
1 - 2 3 3 - = dX

S1 2~ S2 - 3 3-

(3.70)

where the terms are the ratios of the diameters of the Mohr's circles

for instantaneous plastic strain to the diameters of the Mohr's circles

for the stress written in terms of the principal stresses.

The constant d can be shown to be equal to

3 eIP
dX = CT 

e (3.71)

The Prandtl-Reuss equations can be written for the instantaneous plastic

strain components in terms of the stress components as:

dex a= ° [x - 2 (ay+ yz)

de ~~r i

y ae [ 1 x -

z - a [az - (ax ay)]
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dy P

yyz

dy'PdYX

= 3 < yz

= 3 LcIPTZX
f e

(3.72)

where

ae = 3

(3.73a)

1/2
1 [Cy ,C 2 )2 + ( 2 a03) + c'e =_ 72- -' 

(3. 73b)

a = I72 + (y-az)2 + (az-aX) 2 + 6(T 2 + T 2 +
. 1/2

(3. 73c)

Eauations 3.73a through 3.73c express the von Mises yield criterion.
This criterion states that when the state of stress is equal to the
uniaxial yield stress in a tensile specimen, then yielding will occur.

In 1924, Henckey developed a deformation theory for plastic stress-
strain behavior in which the strains are related to the current state of
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stress. This theory is limited in its applicability because plastic

strains are typically dependent on the load path and better represented

by an incremental (local) relationship.

The Prandtl-Reuss constitutive relationship and von Mises yield cri-

terion as given in Equations 3.72 and 3.73 are frequently used to de-

scribe the instantaneous plastic stress-strain relationship.

3.2.3.5 Creep Constitutive Relationships

When tensile tests are performed, the stress-strain relationship depends

in part on the duration of the test. At elevated temperatures, there is

more dependence on test duration. As the duration of the test is increased,

the load at fracture decreases. Also, if two specimens are tested so

that they are stressed in the range that includes some plastic instan-

taneous strain but not rupture, the specimen that is subsequently sub-

jected to the longer duration loading will retain more deformation on

unloading. This time effect of loading on deformation or strain is

called creep. The creep strain retained on unloading is conceptually

similar to the instantaneous plastic strain discussed in the previous

section.

The structural analyst must be concerned with creep because the associ-

ated strain consumes part of the ductility of the material. Figure 3.5

shows the creep strain versus time superimposed on the instantaneous

elastic and plastic strains. The instantaneous elastic strain will

always precede the creep strain. The instantaneous plastic strain may

or may not occur, depending on the proximity of the state of stress to

yielding as discussed in the previous section and in Appendix C (von

Mises yield criterion). The primary creep is a short duration process,

on the order of a day, in which the structure "shakes down' or flows to

a more stable condition to resist the imposed loading condition. Second-

ary creep occurs within the time during which the rate of creep strain

can be approximated as a constant.
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The creep rate, which is the slope of the strain versus time curve of

Figure 3.5, is at a minimum in the secondary creep range. This is an

approximately constant strain rate region. The actual curve may be con-

cave downward over the initial time interval and concave upward over the

later time interval. In the tertiary creep range, the strain rate is

accelerating until rupture occurs. This is an unstable range, and the

stress levels should be kept low enough for the service temperature so

that the stable secondary creep range exceeds the service life of the

structure.

A typical family of creep curves for a given temperature and stress

level is shown in Figure 3.6. Creep tests are performed for a limited

number of hours, and the service life of a structure may be greater than

the test duration. Assumptions are typically made and data extrapolated

to longer loading durations. In general, structural system development

does not wait until creep test data are available for the entire loading

duration.

The family of creep curves shown in Figure 3.7 can be used in conjunction

with the instantaneous stress versus strain curve to give the stress

versus strain behavior for a given duration of the stress application.

These curves, known as isochronous stress-strain curves, give a clear

indication of creep effects in terms of the additional strain incurred.

Waste package performance objectives will require keeping the stress low

enough so that the required service life can be endured without exceeding

specified strain limits. There may be several strain limits, as higher

limits can be applied to bending than to membrane stress categories,

etc. For example, the ASME boiler and pressure vessel code specifies a

maximum membrane plus bending strain of 2 percent and a maximum membrane

strain of 1 percent away from welds.

In a review of the creep rate data for various steels, Timoshenko ob-

served that, initially, when the creep rate is decreasing (TI-56),
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rupture

tertiary creep

secondary
B 1 - ~ ~ creep

A

primary creep

* timl

0

Figure 3.5

Plot Showing Instantaneous Elastic Strain A, Instantaneous Plastic Strain B
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the excess of creep rate above the minimum (which
applies over the secondary creep range or at the
point of inflection if concavity changes from down
to up somewhere in the defined secondary creep range)
decreases geometrically as time increases arithmetically.

The creep rate can be written as a function of time as

~C dEC.= -c+abt
dt min +ae

(3.74)

in which a, b, and Emin are constants that can be determined from creep

curves such as those shown in Figure 3.8.

Equation 3.74 can be integrated in time to give:

C=C + t- a et
0 min b

(3.75)

where oc and Cin are as shown in Figure 3.8. cmin is the slope

of the creep curve at the point of inflection. The dotted line is tan-

gent to the creep curve at the point of inflection.

Another plot is constructed from Figure 3.6 by taking the slopes of the

curves at given time intervals and plotting them on a logarithmic scale

against time as shown in Figure 3.9. This set of curves for different

values of stress can be used to determine values of the constants a and

b in the last term of Equation 3.75. The exponential is a correction

term which is added to the linear value given by the first two linear

terms on the right side of Equation 3.75. The exponential term is used

to approximate the distance parallel to the strain axis between the

straight dashed line and the curve of Figure 3.8 on the left side of the

inflection point of the curve. For large values of time, the term can

be neglected because it decays exponentially.
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A study of experimental data by many investigators indicates that the

minimum creep rate can be represented empirically as a power function of

the stress value

Cmin =kn

(3.76)

where, for a family of curves as shown in Figure 3.6, k and n are constants

for a given material and temperature.

Creep data measurements require a long-term commitment of laboratory

facilities and monitoring by technicians. The three principal param-

eters governing the creep rate are stress state, duration of loading,

and temperature:

c = f(CytT)

(3.77)

where

cc creep rate [t-l]

C = state of stress [f/z 2]

t = duration of loading condition causing
the stress state [t]

T = temperature of material [8]

The developer of the correlation has some freedom in choosing the func-

tional form of the correlation. It is convenient if the independent

parameters are separated into three functions obeying the commutative

law

cc = f(a) ft(t)fT(T)

(3.78)
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This form is arbitrary and does not represent the true functional re-

lationship. Therefore, its derivatives are not meaningful. However,

functions of the form of Equation 3.78 provide representative values of

creep strain when properly developed. An appropriate set of constants

can often make a mediocre functional form yield acceptable values within

a limited range of the independent variables.

Data for a particular alloy and range of stress, temperature, and time

(of loading) are often difficult to obtain. Furthermore, most experi-

mental data are obtained from uniaxial tensile loading.

The most commonly used stress function is one given by Norton in 1929 as

f (a) = km

(3.79)

where k and m are experimentally correlated constants. Other correlation

forms have been proposed by McVetty in 1934, Soderberg in 1936, Johnson

in 1963, and Garafalo in 1965 (Reference PE-71).

Time functions are like stress functions in that they represent approxi-

mately the dependence of the creep strain within a limited range of

time. The physics of creep can not be inferred from these functions. A

time function was developed by Andrade in 1910

ft(t) = (+bt 1/3) exp(kt)-l

(3.80)

where b and k are empirically determined constants. Other time functions

were developed by McVetty in 1934 and Graham and Walles in 1955 (Reference

PE-71).
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For material absolute temperatures below about 40% of the melting tem-

perature, creep occurs primarily by a slip mechanism at grain boundaries.

This slip creep straining is very similar to instantaneous plastic strain-

ing. The creep straining occurs over an interval of time but can occur

at much lower stress levels than the instantaneous plastic strain. Dorn

in 1955 (Reference PE-71) suggested that the temperature function should

be of the form

fT(T) = exp ( R)
(3.81)

where

Q = material's activation energy [e/molecule]

R = Boltzmann's constant
(= 1.38066 x 10-23 Joules/molecule OK) [e/molecule 0]

T = material's absolute temperature [e]

It is also common for experimentalists to develop creep correlations

using a mixed stress and time function. Equation 3.77 is represented

as

C = f (at) f(T)
at

(3.82)

rather than by Equation 3.78. Marin gives various stress-time functions.

One given by Finnie in 1959 (Reference MA-62) is

k2 k3
fat(at) = k a t

(3.83)
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where

kj, k2, and k3 = empirical constants

a = tensile stress [f/L2]

t = duration of stress condition It]

Equations 3.77 through 3.83 are based on the creep correlation technique.

Because so many stress, time, stress-time, and temperature functions

have been developed, their detailed review is beyond the scope of this

report.

It should be remembered that the correlations are primarily for uniaxial

tensile loading and that they are data representations rather than mathe-

matical expressions of the physics of creep. Usually, creep correlations

apply over the secondary range of creep where the creep rate is nearly

constant over a significant period of time. Also, deviations from the

constant creep rate can be corrected for limited loading durations by

the last term in Equation 3.75.

In 1950, Drucker unified the flow rule relationships for elastic and

inelastic deformation by defining the plastic potential function

p= p(a.j)

(3.84)

as a scalar function of the stress components 0ij. He then expressed the

incremental creep shown in terms of the plastic potential function as:

d,. c = dX

(3.85)

and where

Cdc

d = e
t2 an 2p
V- 3 y mn Domn

(3.86)
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where deec = equivalent creep strain increment.

Equation 3.85 can be written as

c
dei i = DP 

3 Bomn B0 n

(3.87)

The plastic potential function is written in terms of an equivalent

stress. The stress components are summed so that the equivalent stress

is comparable to the uniaxial stress in a tensile test. The von Mises

equivalent stress is most often used although multicomponent creep data

verifying its applicability are very limited. The form of the von Mises

yield is given by Equation 3.73c for isotropic materials. Its derivative

is given as

ac'e CY (1+ C
aax e a 2 y z

(3.88)

If the potential function is assumed to have a form of

k2
p(ai j) = k e

(3.89)

and it is further assumed that

P(Gij) = J2 = (1-2) + ( 2-a 3)2 + (°3-° 1)2]

(3.90)

then the constants k and k2 can be determined from Equations 3.89 and

3.90:
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k = 1
13

k2= 2

(3.91)

c
The effective creep strain e can be defined as

dC 2 c~dc C

dee =V dij di

(3.92)

The constitutive relationship in incremental form becomes

c

deCi = S

(3.93)

where Sj is the stress deviator tensor.

Differentiating Equation 3.78 with respect to time gives

dEC - f ()dt(t) fTT
dt C dt T(T)

(3.94)

This is known as the time hardening law for uniaxial creep.

The flow law can be written on a multi-axis basis as

dc.C. = f ae df t(t)

dci = fe dt fT(T)dt

(3.95)
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The flow rule or constitutive relationship applies to constant volume

creep straining processes where straining is a result of deviatoric

stresses, S, only and where the axes of principal stresses and strains

coincide.

By substituting the value of ae/Da from Equation.3.88, Equation 3.95

can be written for the various incremental strain components as:

dcc = a e

y 7 : y
e

fa (a )r

dc fa(ae) [

dy = r T

'I df t(t)- I (a + cZ)]dt

1I df t(t)
- 2 (a:+ az) dt

- I (a + ay)] dft(t)

fT(T )dt

fT(T)dt

fT(T)dt

dft(t)

Ky dt fT(T)dt

c 3f r(a e)
dy =-
~yz G e

:3f (a )c = r e
dzX ae

df (t)
Lyz dt

d f ( t)
Lz x dt

fT(T)dt

fT(T)dt

(3.96)

This constitutive relationship is the most important analytical element

of the mechanics of creep. The discussion of creep can be extended to

encompass the creep strain's dependence on time and temperature so the

relative influence of these two parameters is appreciated. Response

curves are shown in Figure 3.10. These curves are generated by the

locus of constant strain points or failure points on a stress versus
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time-temperature parameter (TTP) plane. The curves are useful for se-

lecting a design stress based on an allowable creep strain for a given

load duration and material temperature.

It should be noted that the data in Figure 3.10 are based on uniaxial

tensile loading and uniaxial stress. For performance evaluation of an

actual structure, the state of stress may be bi-axial or tri-axial and

hence more complex. The upper curve shown in Figure 3.10 is known as a

stress rupture curve. It indicates what stresses cause failure for a

given load duration and temperature. The various curves can indicate

what limits on stress levels are needed to keep the creep strain and de-

formations within acceptable limits. The creep strain is related to the

total strain as

c ~~IC = - I

(3.97)

where

C= total strain at a point [ ]

cl instantaneous strain at a point due to
instantaneous elastic, thermal, and
instantaneous plastic deformations [ ]

c= creep strain at a point I I

The most commonly used TTP is the Larson-Miller parameter (LMP) published

by Larson and Miller in 1952:

TTP = LMP = T(kl + logl t)

(3.98)

where

T = absolute temperature (OR)
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ki = constant (usually 20.0)

t = time (hr)

Other TTPs have been developed by Dorn, Manson and Haeford, Fisher and

Dorn, and other investigators (Reference PE-71).

The fifth line in Table 3.32 presents the LMP value for a temperature of

2000C and a loading duration of 1,000 hours. As shown in the fourth

line, dropping the temperature by 10C allows the loading duration to

increase by a factor of 3.1 to 3,140 hours for the same value of the

LMP. In line seven, an increase of 500C to 2500C causes the loading

duration to drop to 6.32 hours. When the LMP is evaluated for different

temperature values, a very strong variation in the allowable loading

duration is apparent. For a given allowable stress or a given allowable

total strain, small increases in temperature drastically reduce the

allowable duration of the stress associated with the load condition.

Alternately, reducing the temperature greatly lengthens the allowable

load duration.

Tables 3.33 through 3.36 provide primary creep rates for potential waste

package structural materials.

3.3 Mechanical Properties of Packing Materials

The Department of Energy has proposed a number of packing materials to

impede the flow of water and migration of radionuclides from a waste

package. Many of the proposed backfill materials are clays or clay-rock

mixtures. The mechanical properties of these backfill materials will

vary widely depending on:

* Clay mineralogy

* Clay mineral content

a Water content and composition

Exchange cation composition (if any)
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Table 3.32

Different Temperature and Load Durations
Consistent with a Constant LMP

T T t LMP
(0C) (OR) (hrs)

50 581.4 4.80 x 1013 19585.2
(5.5 x 109 years)

100 671.4 1.47 x 109 19585.2
(1.7 x 105 years)

150 761.4 5.23 x 05 '9585.2
(6 years)

190 833.4 3.14 x 103 19585.2

200 851.4 1.00 x 103 19585.2

210 869.4 3.34 x 102 19585.2

250 941.4 6.32 x 10° 19585.2

300 1031.4 9.68 x 10-2 19585.2
(5.8 minutes)

400 1211.4 1.46 x 10-4 '9585.2
(0.53 seconds)

500 1391.4 1.19 x 10-6 19585.2
(4.3 x 10-3 seconds)

215



Table 3.33

Carbon Steel Creep Rate

The creep rate of 0.3% carbon steel at 3000C is given by

Ec = 2 x l- 38 a 6 .9

where

6c = creep strain rate (/hr)

a = stress (psi)

Source: TI-56
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Table 3.34

Zircaloy 2 Creep Rate

The creep rate of cold worked Zircaloy tubing is given by

E = 3.96 x 109 Sin h (70)

where

sc = creep strain rate (/hr)

a = stress (psi)

This correlation is applicable to stresses a <29,000 psi
and for a material temperature of 3000C.

Source: PH-69
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Table 3.35

304 Stainless Steel Creep Rates

(O Tmperatu SC)

300
300
300
300
300
300

400
400
400
400
400
400

500
500
500
500
500
500

600
600
600
600
600
600

700
700
700
700
700
700

800
800
800
800
800
800

148.9
148.9
148.9
148.9
148.9
148.9

204.4
204.4
204.4
204.4
204.4
204.4

260
260
260
260
260
260

315.6
315.6
315.6
315.6
315.6
315.6

371.1
371.1
371.1
371.1
371.1
371.1

426.7
426.7
426.7
426.7
426.7
426.7

Stress

5,000
10,000
15,000
20,000
25,000
30,000

5,000
10,000
15,000
20,000
25,000
30,000

',000
10,000
15,000
20,000
25,000
30,000

5,000
10,000
15,000
20,000
25,000
30,000

5,000
10,000
15,000
20,000
25,000
30,000

5,000
10,000
15,000
20,000
25,000
30,000

Cr hrite

1.25
2.01
9.57
3.33
1.05
3.24

2.03
3.65
2.04
8.53
3.30
1.24

4.67
9.42
6.18
3.13
1.48
6.86

E-23
E-23
E-20
E-18
E-16
E-15

E- 19
E-17
E-15
E-14
E-12
E-10

E-16
E-14
E-12
E-10
E-8
E-7

E-13
E-l1
E-9
E-7
E-5
E-4

E-1l
E-8
E-6
E-5
E-3
E-1

E-9
E-6
E-4
E-2
E+0
E+2

2.63
5.99
4.65
2.86
1.65
9.43

5.23
1.35
1 .24
9.28
6.59
4.63

4.68
1.37
1.51
1.37
1.20
1.03

Source: PH-69
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Table 3.36

Ticode 12 Creep Rate

T
Temperature

(OF) (OC)

a
Stress
(Ksi)

(X per
1000 hrs)

77
77
77
77

300
300
300

600
600
600
600
600

25
25
25
25

20.0
30.0
42.0
48.0

0
9.2x10-5
3.6x10-2
3.94x10-2

148.9
148.9
148.9

15.6
26.0
32.0

0
7.2x10-3
4.8x10-3

315.6
315.6
315.6
315.6
315.6

7.0
12.0
15.0
18.0
20.0

3.3x10-3
8.2x10-3
1 .4x10-2
1 .5x10-2
1 .86x10-2

Source: TI-84
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Degree of compaction

• Degree of cementation

* Fabric or structure

Environmental factors that affect the stress-strain behavior of clay

include temperature, stress history, strain rate, and confining pressure.

Since the mechanical properties of clay and clay-rock mixtures vary de-

pending on many factors, this section consists of a qualitative discussion

of material properties taken from Reference ME-83. Prior to use in a

repository, the packing material should be tested to determine the quanti-

tative material properties. General patterns of plasticity and strength

for several clay mineral types are discussed below.

3.3.1 Plasticity

Water content is one of the most important parameters affecting the stress-

strain behavior of clays. The plastic behavior of soils is conveniently

described by index properties known as Atterberg Limits, which are reported

in weight percent water. Table 3.37 gives Atterberg Limits for relatively

pure clays. The plastic limit is the approximate minimum water content

at which the material exhibits plasticity. The liquid limit is the approxi-

mate minimum water content at which the material behaves as a liquid.

Plastic behavior occurs only within a limited range of water contents,

defined by the plasticity index (PI = liquid limit - plastic limit).

Atterberg Limits are a function of.clay mineral content, clay mineralogy,

particle sizes, and the degree of aggregation.

Plasticity of clays involves a combination of attractive forces between

particles and the lubricating action of the adsorbed water on these par-

ticles. Plastic beh.avior occurs when sufficient water is adsorbed to

overcome these attractive interparticle forces and reduce the shear strength

of the clay significantly. The variation in values for plastic limits of

clay reflects the amount of interlayer water associated with each clay

(Reference GR-62). Clay structure and exchangeable cations are most
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Table 3.37

Plastic (PW) and Liquid (LW) Limits for
Common Clay Minerals

Clay
Ca+2

PW % LW 

Mg+2

PW LW 

Na+

FW LW PW LW 

Smectite (1) 65 166 59 158 57 161 93 344
(2) 65 155 51 199 57 125 89 433
(3) 63 177 53 162 60 297 97 700
(4) 79 123 73 138 76 108 86 280

Illite (5) 40 90 39 83 43 81 34 61
(6) 36 69 35 71 40 72 34 59
(7) 42 100 43 98 41 72 41. .75

Kaolin ite (8) 36 73
(9) 26 34

30 60
28 39

38 69
28 35

26 52
28 29

(1) Pontotoc, MS
(2) Cheto, AZ
(3) Belle Fourche, SD
(4) Omsted, IL (25% illite layers)
(5) Fithian, IL
(6) Jackson County, OH
(7) Grundy County, IL (5% smectite layers)
(8) Anna, IL
(9) Dry Branch, FL

Source: GR-62

221



important in determining plastic limits for smectites, while other clays

with few or no exchangeable cations show less variability. Na-smectites

have the largest plastic limits, and because of the large water content,

these values are not as well-defined as those for Ca- and Mg-smectites.

Smectites with Na+ and Li+ as exchangeable cations can adsorb the most

water before losing strength and exhibiting plastic behavior. The high

plastic limits associated with smectites result from their ability to

disperse into fine particles and maximize the amount of water that can be

adsorbed. The Na+ or Li+ exchange cations maximize the dispersion of

clay particles. Other clay minerals are not as effectively dispersed by

the presence of interlayer Na+ or Li+. These cations have a limited

effect in determining plastic limits of illites, for example.

The clay mineral content in a soil or clay also strongly affects its

plastic behavior. Figure 3.11 shows the relation between the plasticity

index and clay content for three clay mineral groups. It is apparent

that even small amounts of montmorillonite added to a non-clay material

such as sand will impart significant plasticity.

3.3.2 Strength

The strength of a material reflects the stress required to cause a loss

of load-bearing capacity or cracking. Unconfined compression tests of

clays and other materials are very common but are less relevant to clay

behavior in confined conditions in repository seals than are triaxial

shear strengths.

Values for shear strengths of clays depend on clay mineral composition,

particle size distribution, shape and arrangement of particles, and the

composition of the non-clay fraction (References GR-62 and GR-71). The

most important determinant of a clay's strength appears to be its moisture

content and, more specifically, how the water is oriented on the clay

surfaces. The clay mineralogy, the quantity of exchange sites, and the
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cations located in these sites are the major factors that determine the

thickness of adsorbed water layers. Smectites that have relatively thick

adsorbed water layers tend to have lower shear strengths than illites or

kaolinite that have thinner water layers.

The influence of clay mineral type and content is best illustrated by

observing effects on the residual friction angle, a measure of minimum

strength achieved at large shear displacements (Figure 3.12). Smectites

have lower shear strengths than kaolinite and illite; also, the clay

mineral content required to have a marked influence on shear strength in

clays is less for smectite (montmorillonite) than for other varieties.

The moisture content of the clay also greatly influences the shear strength

of a compacted clay. In clays that contain little water, the shear strength

is a log function of the moisture content, decreasing with increasing

moisture content (Reference GR-62). This exponential behavior does not

hold, however, at higher moisture contents because of the increasing

importance of adsorbed water layers and a shift from frictional to co-

hesive forces. Clays used in repository seals may be emplaced at rela-

tively low moisture contents, so their strength under compressive load

will be directly related to water saturation. Subsequent to closure,

however, clay seals and backfills may reach much higher moisture contents.

Clay strength must be known for a range of moisture contents.

The strength of clays is affected by parameters other than clay mineral

type and content, including stress history (e.g., precompaction), fabric

(especially as affected by compaction), confining pressure, the rate of

loading, the rate of deformation, and temperature. Pre-compacted materials

may display greater strength at the same effective normal stress than

materials that have not been pre-compacted. Strength frequently increases

in a clay with increased loading and deformation rates. The effect of

temperature on the strength of clays is highly variable and depends on

both the temperature during consolidation and the temperature during

shear. Increased confining pressure also results in increased strength

of the material.
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Effect of Clay Content and Clay Mineralogy, Including Hydrous Micas,
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Under some conditions, clay materials will undergo plastic deformation,

while other conditions can promote brittle behavior. Plastic behavior is

promoted by isotropic, dispersed clay fabric; freedom from cementation;

freedom from leaching and thixotropy; and a high moisture content.

3.4 Loads and Constraints

The finite element method uses nodes whose initial position and velocity

are specified. These nodes can be translated along three orthogonal axes

and rotated about each of the three axes. These six components allow for

the description of any general motion condition.

For a structure to perform its primary function of transmitting loads

without failing (generally without breaking or incurring excessive de-

formation), it must be constrained. The constraints have many forms de-

pending on the physical nature of the structural anchors and foundation.

To use the finite element method, the structural analyst must interpret

the physics of the structure and must specify a representative assemblage

of elements that are connected at nodes. Then, any or all of the six

degrees of freedom of any node can be constrained throughout the response

simulation. By specifying the various degrees of freedom that are con-

strained (eliminated) for any of the nodes in the model, the analyst

effectively constrains the structure. The constraints allow the loads

imposed on the structure to be reacted, causing loads (forces and moments)

and associated stresses internal to the structure.

Analytical problems that are solved using continuous functional relation-

ships typically involve the use of constraints in the form of algebraic

equations. They specify a particular point on the structure that is pre-

vented from translating or rotating in a particular direction. For

differential equations expressing displacement, the constraints are the

differential equation's boundary conditions.

For the finite element method of analysis, the external loads may be

specified as:
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* Forces and moments applied at specific nodes (this
is usually in terms of three force components and
three moment components for the coordinate systems)

* Pressures acting on a particular element face

* Gravitational body force acting on the mass
associated with each of the elements

Some programs allow for the centrifugal body force associated with the

mass of any element that is rotating at a specified velocity. This is

used in conjunction with particular element types for modeling rotating

cylinders or annuli.

External forces may also be applied indirectly by specifying the displace-

ment or rotation from a previous equilibrium position of various nodes.

This is done in terms of the three displacement components and three

rotational components that specify the position of a node.

The finite element method of analysis allows the treatment of various

types of loading and superimposes the responses. Very general loading

conditions are represented with ease. It is not practical to obtain ana-

lytical solutions for complex loading conditions.

3.5 Equations of Notion

Equations of motion describe the motion at discrete points or nodes.

These equations relate element conditions and behavior to node motion.

The mass of each element is allocated to the various nodes of the element.

The equation of motion then relates the element properties to the node

motion.

For a simple two degree of freedom (ul, u2) system as shown in Figure 3.13,

the equations of motion are:
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Figure 3.13

Simple Two Degree of Freedom System (Two Translations u and u2)
with Mass, Damping and Stiffness, and Transient Forcing Functions
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-C2
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[(kI+ k2) A:1 |uI |

L-k2 k2 U2 

=

F1 (t)

F2 (t)

(3.99)

where:

mi

Cj

ki

uj

u

Fi (t)

= mass at node i [mi

= damping of element i [ft/YQ]

= stiffness of element i [f/2.]

= displacement of node i [U]

= velocity of node i [t/t]

= acceleration of node i [Z/t 2]

= transient forcing function applied to node i If]

There is one equation of motion for each active degree of freedom for each

node. In general, each node has three translational and three rotational

degrees of freedom. The general form of Equation 3.99 in matrix notation

is:

[m] ul + [c] ut + [k] ul = F(t)j

(3.100)
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where:

[m]

[c]

[k]

IU)

= mass (and rotational inertia) matrix

= damping matrix

= stiffness (including rotational) matrix

= vector of node displacement (and rotations)

F(t) = node transient forcing function (including moments)

Equation 3.100, sometimes referred to as the dynamic equilibrium equation,

is a statement of how externally applied loads are distributed between

node displacement, velocity, and acceleration terms. The distribution is

governed by the physical aspects (stiffness, damping, and mass) of the

elements associated with the nodes. Various techniques are used to solve

Equation 3.100 depending on which affects are present and dominant. In

general, the solution u(t) is determined, from which u(t) and u(t) are

determined.

For structures subject to static loading where their

are of interest, Equations 3.99 and 3.100 become:

final displacements

kI + k2

-k2
k2 u2 1 F

(3.101)

k{ul = F}
(3.102)

where the quantities are as previously defined except that the force vec-

tor components do not vary with time. This is the relationship between

externally applied loading, element stiffness, and node displacement.
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3.6 Equilibrium Relationships

Structural performance is always in accord with the principle of force and

moment equilibrium. Structures that are subjected to static loading and

that have no sustained motion obey the equilibrium principle at all loca-

tions throughout the structure. The static equilibrium condition is ex-

pressed in terms of each of the six degrees of freedom of motion:

Fr = 0, EFe = Fz = O

EM = ° EM = °. Mz = O

(3.103)

where:

Fi = force exerted on a node in the i direction (externally
applied force component and internal element stiffness
type forces) If]

Mi = moment exerted on a node about a line parallel to
the i axis (externally applied moment component
and internal element rotational stiffness type
moments) [f9.]

Some structures experience accelerations associated with transient or

periodic motion during their responses to loading conditions. These

structures conform to a special form of the equilibrium principle which,

for a particle, includes pseudo force (and moment) components directed

opposite to the acceleration and having a magnitude equal to the product

of the translational (rotational) acceleration and the mass (mass moment

of inertia) of the particle. The finite element method includes procedures

for associating distributed mass from various elements with the accelera-

tion at discrete points (nodes). The node is usually the point of connection
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of the elements contributing mass to the node. The pseudo force and moment

components are named in honor of D'Alembert who stated the principle of

dynamic equilibrium in 1743. The dynamic equilibrium relationships are:

-Fr - = 0, F - ma6 = 0. F z - maz = 

EMr - rar = ZMe - a 6
0 , Z z=

(3.104)

where:

Fi = force exerted on a node in the i direction (externally
applied force component and internal element stiffness
and damping type forces) [If]

Mi = moment exerted on a node about a line parallel to the
i axis (externally applied moment component and internal
element rotational stiffness and damping type forces) [if]

m = mass associated with particle or node at which dynamic
equilibrium condition is being applied [m]

I = mass moment of inertia of the mass of a node about axis i [m2J

ai = translational acceleration of the mass in the i direction [t 23

a: = angular acceleration of the mass about the i axis [l/t2]

This dynamic equilibrium principle states that a particle can be consid-

ered to be in force equilibrium if the inertial force of the mass corres-

ponding to its current acceleration magnitude is included with the

external forces in the summation of forces on the particle.

This form of the equilibrium principle given by D'Alembert is consistent

with Newton's second and third laws (about 1664) and of profound conse-

quence to the development of analytical mechanics and in particular to

Hamilton's principle.
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The equilibrium condition is important because it is used to verify the

finite element solution. The finite element solution involves equations

of motion, load condition, and constraints, which are used to solve for

the structure displacement, which generally includes six degrees of free-

dom at each node, and the internal forces and moments at each node of each

element. The load path and displacements are established in accord with

the stiffness, damping, and mass distributions of the structure and the

nature and location of the constraints. The equilibrium relationship

requires the force and moment interactions among the elements to be in

force and moment equilibrium at each node with respect to each axis.

The equilibrium condition described in this section can be used as a check

on the solution accuracy. It must be satisfied to within an acceptable

tolerance. The force balance is similar to that given in the equation of

motion but differs in that it deals with internal forces, which have been

determined based on deflection, velocity, and acceleration calculated by

solving the equations of motion, which contain only external force terms.

The equations of motion are coupled and more difficult to solve than the

uncoupled equilibrium relationships.

Equilibrium checks are also useful when done for the entire structure.

They should indicate that the sum of the reactions in any of the six degrees

of freedom is of equal magnitude to the externally applied load (including

body forces such as gravity). The sum of all reactions (at the constraints)

should be opposite in direction to the externally applied loads.

3.7 Analytical Responses

The purpose of structural analysis is to simulate mathematically a con-

strained structure's response to a particular loading condition. The

response quantities of a finite element analysis generally include:

* Node positions (after loading)

41 Element deformation (between nodes based on position
before and after loading)
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* Element strain (at each node of the element based
on deformation and previous dimensions)

a Internal force and moment interaction for each
element at each node

Linear-elastic force versus displacement material behavior is most common

where a constant value of element stiffness is used. Optional response

quantities usually include the stress tensor components at each node of

each element.

When the structure and its model are especially complex, static loads may

be imposed in steps so that the finite element model will go through the

entire calculational procedure a number of times. This affords the program

the opportunity to perform node equilibrium checks and provides the analyst

with incremental response versus incremental loading information. For

structures that respond dynamically, solutions are obtained at discrete

time increments. The values of the externally applied loads can be changed

at the end of each time step. This solution technique allows for the responses

to be determined incrementally over time. In this process, equilibrium

checks are optional after each time step. Equilibrium is attained to within

a particular tolerance value when it is imposed. To speed up the calculation,

the analyst can specify a multiple of calculational time increments per

equilibrium check. When equilibrium checks are made, they are made for all

unconstrained degrees of freedom of all nodes.

Strains associated with changes of temperature of the structure are calcu-

lated as though the structure was free to expand without constraints (free

thermal expansion). The displacements are then considered in conjunction

with the constraints on the structure, the structural stiffness distribu-

tion, and node force and moment equilibrium. The constraints and element

stiffness give rise to internal forces and moments for which stresses can

be calculated on a linear elastic basis.

The analyst must also be concerned with instantaneous plastic or creep

strains. This involves specification of the parameters appearing in the
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pertinent constitutive relationship. These are used in place of the gener-

alized Hooke's law applicable to linear elastic behavior. The solution

procedure is very similar except that it is necessary to calculate the

stress tensor so that the instantaneous plastic flow rule can be evaluated

in terms of the current state of stress. The creep flow rule is evaluated

in terms of the current state of stress and the current duration of loading.

Responses of greatest interest to the waste package performance analyst are

those indicating pending undesirable performance. This undesirable perfor-

mance is likely to take the form of excessive strain either in regions of

the structure that experience instantaneous plastic strain or in regions

where creep strains accumulate over long durations of loading. In the ab-

sence of these two phenomena, elastic strain limits would be imposed by the

familiar technique of limiting the stress tensor. This is accomplished by

limiting the stress in accordance with one of the yielding criteria. Several

yielding criteria are described in Appendix C.
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APPENDIX A

RELATIONSHIP BETWEEN TEMPERATURE DEPENDENCE
OF MASS DENSITY AND TEMPERATURE
DEPENDENCE OF THERMAL EXPANSION

The mass density varies slightly with temperature for most structural

metals. Therefore, experimenters tend not to focus attention on the

temperature dependence of mass density. Frequently, only the room

temperature value is given in property tables. However, the thermal

expansion coefficient of temperature is frequently given as a function

of temperature. This appendix indicates how the thermal expansion coef-

ficient data can be used to quantify the dependence of mass density on

temperature.

Assume that an isotropic cube with a side dimension L at the initial

uniform temperature T is raised in temperature to T2. Geometrically,

each side will increase in length by an amount iL when the cube reaches

temperature equilibrium at T2. The increase in length

= aLAT

(A-1)

where

E = increase in length of one side of cube []

a = mean value of thermal expansion coefficient of
temperature in the temperature range from
Ti to T2 [9/zR]

L = initial length of cube side [R]

AT = T2 - T = increase in temperature of the cube [e]

During transition from the lower temperature T to the higher temperature

T2, the mass of the cube remains constant

ml = 2

P lVl = P 2V2

(A-2)
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where

im is mass of cube

p is mass density of

V is volume of cube

and the subscripts refer

T1 and T2.

Equation A-2 can be writi

pV = (p + Ap)(V + AV)

[m

the material [m/Z3]

[Q3]

to the two isothermal states at temperature

:en

where

P1 P

V1 = V

P2= + AP

V2 = + AV

The terms Ap and A are incremental quantities that are negative if

P2 < P1 or V2 < V1.

Dividing both sides by pV gives

= 1+ AP) (1 + aV)

1=1+ A + V + ()(AV)P V pX V)

and

AV -ap/P
Y (l+AP/P)

A 2



or

AV AP

- (A- 3)

when higher order terms are assumed to be negligible (i.e., p/p<<l).

The change in volume can also be related to the change in the side

dimension

AV =(L + T) 3 L3

which can be written as

= 3L=2-- -2 3
AV K + LAL + Ej

and

-t = 3a 0-2 -3
Y L + L2 L3

Substituting Equation A-3 in the previous relationship yields

-.~L- --p= 3,A + .,6 + _3

P L L2 L3

(A-4)

as the density variation term. Substituting Equation A-1 for AL gives

-AP = 3T + 3(&AT)2 + (&AT) 3

(A-5)
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For carbon steel in the temperature range (F < 1000'F)

& ~8.0 x I0-6 (in/in0F)

AT =1000(OF)

&AT = 8.0 x 10 3 (in).

Using Equation A-5

-AP = 3T + 3(aAT) + (&AT)3
p

_^ = 24 x 0 3 + 192 x 10 6+ 512 x 10 9
p

The magnitude of the second and third terms on the right side of the equation

is negligible in comparison to the first term. For carbon steel, the density

variation (-Ap), which decreases as the material increases in temperature by

10000F, is only 2.4%. The assumption used in stating Equation A-3

can also be reviewed:

1$1 '< 1.0

0.024 << 1.0

This is acceptable for engineering calculations where amounts up to

several percent are negligible in comparison to unity.

Equation A-5 can be simplified and written as

-up = 3&AT

(A-6)

where

p = mass density [m/0 J
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a = mean value of thermal expansion coefficient of
temperature over the temperature range from
Ti to T2 [2/t.e

AT = T2 - T = temperature increase between isothermal
states 1 and 2 [e]

AP = P2 - P = mass density increase of a given mass for
a specific temperature increase
(AT from T to T2) [m/.3]

-AP = Pl - P = mass density decrease of a given mass
for specific temperature increase
(AT from T to T2) [m/23]

Equation A-6 can be used to give an approximate but acceptable defini-

tion of the mass density's temperature dependence in terms of available

thermal expansion coefficient data over a common temperature range.

In this report, we choose not to ignore the temperature dependence of

the mass density and approximate it by using Equation A-6 when the

temperature coefficient of thermal expansion data is available. Analysts

who use these data will be free to decide whether to treat mass density

as a temperature-dependent property or as a constant property for the

temperature variations anticipated in their particular application.

This report presents consistent data to facilitate general analysis.

When finite element structural analysis methods are used, the analyst

must consider the effects of using temperature-dependent mass density.

Most finite element methods assume that no significant volume change

occurs with temperature changes. Therefore, constant (non-temperature-

dependent) values of density generally should be used. In this instance,

the mass of the structure is calculated as the product of the mass density

and the volume. To conserve mass, a constant mass density should be

used.
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APPENDIX B

MOHR'S DIAGRAMS

Mohr's diagrams are graphic techniques that are used primarily for

illustrating principal stresses and the maximum shear stress for a state

of stress and the principal strains and maximum shear strain for a state

of strain. In the case of stress, the maximum shear stress Tmax is a

key failure parameter for ductile materials as stated by the Tresca

criterion (see Appendix C, Equation C-1). Mohr's diagrams for stress

are more common than those for strain because structural analysis tends

to be done in terms of stress quantities.

In general, principal stresses are determined by extracting the three

real roots of Equation 3.34 with invariant coefficients as defined in

terms of stress components by Equations 3.35 through 3.37 and illus-

trated in Figure B-1. If the principal stress values are known, the

Mohr's diagram for stress can be constructed directly as depicted in

Figure B-2. The circles have diameters on the a axis equal to the

difference in principal stress values.

The three Mohr's circles are drawn on the OG plane. One circle circum-

scribes the other two, and each circle has a point in common with each

of the other two. The points in common are the principal stresses which

lie on the a axis.

The Mohr's diagram for stress is applicable to the case of plane stress,

e.g., in the x,y plane shown in Figure B-3. The sign convention defining

positive stress components for the purpose of constructing the Mohr's

diagram directly from the stress components is defined in Figure B-4.

For the plane stress case where stress components not in the x,y plane

are all zero, Equations 3.35-3.37 yield

I1 = ax + ay2

12 = axay - Txy

13 = 0

(B-i)
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Figure B-1

Infinitesimal Cube Used to Define the State of Stress at a Point in a
Structure. Stress Components Are Shown Only on the Positive Axis Faces.

Components of Equal Magnitude but Opposite Direction Act on
the Faces Which Project along the Negative Axes.

z
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Figure B-2

Mohr's Circles for Stress with Principal Stresses 01, oy, 03 and
Maximum Shear Stress Tmax = 1/2maaX{lf 2-all2-03l, l-a3l}
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Figure B-3

Two Dimensional x-y Plane View of Infinitesimal Cube Used to
Define State of Stress at Point p.
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Figure B-4

Sign Convention for Stress Components Used in Constructing
Mohr's Circle in the Generalized p-q Plane.

Components Are Shown in the Positive Direction.
(Note: This sign convention is only for constructing Mohr's Circle.)
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For this condition, Equation 3.34 can be factored to give

S(S 2 - IS + I2) = 0

(B-2)

The quadratic factor has a solution

l2 (a + ay) (9
+ 2

xy

(B-3)

and the maximum shear stress is given by

max - a )] 2 2

(B-4)

If the magnitudes of the components are

ax =

aY =

TXy =

20,000 (psi)

5,000 (psi)

Txy = 5,000 (psi)

(B-5)

and are directed as shown in Figure B-3, the Mohr's circle can be constructed

directly using the sign convention of Figure B-4 as shown in Figure B-5.



w = 5000
y

T = 5000
0X= 20,000

_7 = 5000

max Axis of stress

1t ' . I Mr D a

(a ,I )
y

Figure B-5

Mohr's Circle for Stress Components Directed as Defined in Figure B-3.
An Angle of in the xy Plane of the Structure Corresponds

to 2 e on the Mohr's Circle Plot
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The angle 6 is related to the stress components according to

1 t -1 _______ ]0 tan-

(B-6)

For any angle , the normal and shear stress components can be determined

from

06 2 ( + ) 1 I2) cos 26

(B-7)

60 (1 02) sin 26
(B-8)

Equation B-6 applies only to the x,y plane stress case of Equation B-5

and Figure -3. Equations B-7 and B-8 are written in terms of the two

principal stresses, al and 2, and are more general. These equations

apply to the intermediate size circle of Figure B-2, as well as to the

circle of Figure B-5. As shown in Figure B-5, an angle of e in the x,y

plane corresponds to an angle of 2 e on the Mohr's circle.

A Mohr's diagram for stress provides an opportunity to look at contrasting

cases of biaxial stress. Supposing that the normal stress component in

the y direction shown in Figure -3 is compressive, tending to compact

the material, instead of tensile, and that the other components remain

unchanged, then

cx = 20,000 psi
cy = -5,000 psi

'Exy = Ty = 5,000 psi

(B-9)
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The Mohr's circle shown in Figure -6 is much larger in diameter than

the circle in Figure B-3. The yielding criteria as given by Tresca

would indicate that the stress state with y of opposite sign to ax is

much worse than when they have the same sign (for the same magnitude).

This is consistent with the deviatorial stress causing the distortion.

The normal stress in the z direction is zero in the cases of Figures B-5

and -6. The mean stresses for Figure -4 are:

am = (20,000 + 5,000)/3

am = 8,333 psi

(B-10)

For Figure B-6

am = (20,000 - 5,000)/3

am = 5,000 psi

(B-li)

The deviator stress components for Figure -4 are:

Dij ij 6 ijam

11l,667 5,000 °

Dij = 5,000 -3,333 -

0 0 -8,333(

(B-12)
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Figure B-6

Mohr's Circle Stress in x-y Plane
Compressive Rather Than Tensile.
of the Structure Corresponds to

When y Directed Normal Stress Is
An Angle of e in the xy Plane

2 e on the Mohr's Circle Plot.
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The biaxial x,y states of stress for Figure B-6 are:

5,000 5,000 0

Dij 5,000 -10,000 0

0 0 -5,000

(8-13)

The state of stress represented in Figure B-6 is more severe than that

represented in Figure B-5 because the deviatorial stress components are

larger. An other way of considering the difference is that the first

case (Figure B-5) has a higher mean stress which does not contribute to

failure for ductile structural metals such as most steels.

A simple, uniaxially stressed tensile specimen and its Mohr's circle

for stress are shown in Figure B-7.

It is helpful when applying the Tresca criterion (Equation C-1) to con-

struct the particular Mohr's diagram for stress as shown for the three

examples in Figures B-2, B-5, and B-6. This procedure involves deter-

mining and displaying max for the particular state of stress that the

Tresca criterion compares to the value of Tmax in the uniaxial tensile

specimen at yielding.

A comparison of Equations 3.5 - 3.8 with Equations 3.34 - 3.37 indicates

that the Mohr's diagram for strain is analogous to the Mohr's diagram

for stress. In general, the three real roots of Equation 3.5 are the

principal strains for a particular state of strain as defined by the

components on the right side of the strain invariant relationships

(Equations 3.6 - 3.8). When the principal strains are determined, the

Mohr's diagram for strain can be constructed by the same procedure used

to construct Figure -2 for stress.

For biaxial (x,y) only straining, Equations 3.6 through 3.8 become
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Figure B-7

Mohr's Circle for a Simple Uniaxial Tension Specimen without Shear on the Cube.
Two of the Mohr's Circles Can Be Considered as Points (0,0).
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I = E + 

Y2

I 2 Exy - 4

(B-14)

and Equation 3.5 can be factored to give

E(E -_ E + T = 
elc2)c

(B-15)

The quadratic factor in Equation B-1S can be solved to give

- (C + ) +
C 2 2 x Y 2 

( Y \Y

(B-16)

where the first term on the right side is the abscissa (along the axis)

of the center of the Mohr's circle for strain and the last term is the

radius of the circle. The circle is shown in Figure B-8 for a case of

plane (xy) strain. The angle shown in Figure B-8 is related to the

strain components by

= Tan- 1
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Mohr's Circle for Strain
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APPENDIX C

MATERIAL YIELD CRITERIA

The state of stress at which yielding occurs is related to the yield

stress for a specimen in a simple tensile test by yield criteria. These

equations prescribe the means of determining how close, at a point, the

material's state of stress is to yielding. The state of stress that is

compared to the yield stress can be used as a generalized stress condition

for design. It would be legitimate to use it to indicate when the state

of stress reached a magnitude equivalent to a design criterion such as

75% of the yield stress in a uniaxial tensile specimen.

For ductile metals that are commonly used as structural materials, there

are two reliable and commonly used yield criteria. They are the Tresca

and von Mises criteria. The Mohr-Coulomb criteria is often used to

predict yielding of soils and geologic media.

Tresca Yield Condition

The Tresca criterion, published in 1868, postulates that yielding will

occur at a point when the maximum shear stress at that point is equal to

the maximum shear stress in a tensile specimen at yielding. For simple

tension, two of the principal stresses are zero, and the maximum shear

stress is

max =O05a°

(C-1)

where

Tmax = maximum shear stress [f/t2]

00 ,- tensile stress in simple tensile specimen
at yielding [f/k2]

C 1



The shear stress at a point for any stress state is determined from the

principal stresses as

Tmax = 05 max (ai - a21;102 - 31;103 - a)

(C-2)

Equations C-1 and C-2 are a statement of the Tresca criterion. They can

be combined to eliminate Tmax and give a relationship between the absolute

value of the maximum difference in principal stresses and the yield

stress for a uniaxially loaded tensile specimen:

a = max (lo - a2Jioa2 - -31;103 all)

(C-3)

Since the Tresca criterion is stated in terms of the principal stresses,

the principal stresses must be determined in terms of the stress compon-

ents. Either the equations given in Appendix B for biaxial stress, the

Mohr's diagram methods (biaxial stress), or Equation 3.34 (triaxial

stress) may be used to determine the principal stresses.

von Mises Yield Condition

The von Mises yield condition, developed in 1913, states that yielding

will occur at a point when the state of stress at that point reaches a

value as prescribed by the von Mises formula that is equal to the ten-

sile stress in a simple tensile test at yielding:

o [(al a2) + (a2 - a3) + (3 a)

(C-4)
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where

al, 2, 3 = principal stresses in the stress field [f/t2]

a = tensile stress in simple tensile
specimen at yielding [f/2]

The Tresca and von Mises yield surfaces for ductile metals are shown in

Figure C-1 in the Haigh-Westergaad stress space looking in along the

hydrostat, which is a line passing through all points where l = 02 =

a3- The Tresca yield surface projects as a hexagon on planes normal to

the hydrostat. The von Mises yield surface projects as a circle on this

plane and has a diameter equal to the major diameter of the hexagon.

These yield surfaces indicate that yielding occurs at the same stress

-magnitude in compression as in tension. These yield surfaces are inde-

pendent of position along the hydrostat and are thus independent of the

hydrostatic state of stress.

Mohr-Coulomb Criterion

For compressible soil type media (e.g., bentonite backfill), yielding is

reasonably well described in terms of the Mohr-Coulomb failure criterion.

This yield criterion relates shear stress on a plane to the normal stress

on the same plane. The criterion can be stated as

TY = c + on tan 

(C-5)

where:

Ty= shear stress at yield on shear plane [f/t2]

c = cohesion force per unit area [f/t2]

an= normal compressive stres ion shear plane when yielding
in shear occurs [fit ]

e = material internal angle of friction ]
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Figure C-1

Von Mises Yield Surfaces Projected on a Plan Normal to the
Line Intersection Points Where al = 2 = 3 .
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APPENDIX D

HEATING Thermal Property Data



Table D-1

HEATING Thermal Property Data*

Temperature-Dependent
Specific Heat (watt-hr/kgOC)

Temperature (C) Value Data Uncertainty**

Temperature-Dependent
Conductivity (watts/mOC)

Temperature (C) Value Data Uncertainty**Material

Aluminum 0
500

0.250
0.314

0
0

0
400
660

226.
222.
209.

2
2
2

Copper

Graphite

0

0

1083(M.P.)

-73
100
200
300
400
600

0
763

0.107
0.140

0
0

0
1083(M.P.)

402.
335.

0.116
0.262
0.326
0.372
0.411
0.468

0.122
0.223

0
0
0
0
0
(:

10
100
200
300
400
500

167.
151.
130.
113.
100.
92.

2

2
2
2
2

0
0

Iron 0

Iron, Nodular Cast
(Ferritic)

Iron, Nodular Cast
(Pearlitic)

Iron, Gray Cast
(Ferritic)
2.3-3.0%C

0
100
400
700

0
100
400
700

0
100
400
700

0.123
0.130
0.178
0.221

0.123
0.130
0.178
0.221

0.113
0.130
0.178
0.221

3
3
3
3

0
500

3
3
3
3

0
9(00

39.4
29.7

38.9
18.8

51.1
42.7
39.8

0
0

0
0

0
0
0

0
0
0
0

125
300
42,5



Table D-1 (continued)

Temperature-Dependent
Specific Heat (watt-hr/kg°C)

Temperature (C) Value Data Uncertainty**

Temperature-Dependent
Conductivity (watts/mOC)

Temperature (C) Value Data Uncertainty**Material

Iron, Gray Cast
(Ferritic)
3.2-3.8%C

Iron, Gray Cast
(Pearlitic)
2.3-3.0%C

Iron, Gray Cast
(Pearlitic)
3.0-3.2%C

Iron, Gray Cast
(Pearlitic)
3.4%C

Iron, Gray Cast
(Pearlitic)
3.7-3.8%C

Iron, Gray Cast
(Pearlitic)
4.12%C

Titanium

0
100
400
700

0
100
400
700

0
100
400
700

0
1U0O
400
700

0.113
0.130
0.178
0.221

0.113
0.130
0.178
(0.221

0.113
0.130
0.178
0.221

0.113
0.130
0.178
0.221

0.113
0.130
0.178
0.221

0.113
0.130
0.178
0.221

0.145
0.165
0.186

3
3
3
3

3
3
3
3

125
300
425

0
300
SOO

0
300
5oo

0
300
400
700

3
3
3
3

3
3
3
3

53.6
53.6
44.4

44.0
38.5
32.7

50.2
43.1
36.8

58.6
46.5
44.4
36.8

67.0
53.6
41.0

80.4
57.8
45.2

20.9
18.8
18.0

0
100
400
700

3
3
3
3

0
300
500

0
100
400
700

3
3
3
3

0
300
500

25
300
880

0
0
0

0
400
'CO



Table D-1 (continued)

Temperature-Dependent
Specific Heat (watt-hr/kg0C)

Material Temperature (C) Value Data Uncertainty**

Temperature-Dependent
Conductivity (watts/m0C)

Temperature (C) Value Data Uncertainty**

Zirconium 25
500

4130 Carbon Steel -18
204
427
648

1020 Carbon Steel 0
75

200
400
600

304 SS 0
400

0.079
0.088

0.145
0.145
0.172
0.209

0.122
0.144
0.157
0.169
0.198

* 0.140
0.157

0.0355
0.0366

.P.)0.0393
0.0395
0.0381

0.120
0.136
0.165

0
0

0
200

0
0
0
0
0

25

0
0
0
0

-18
204
427
(i48

0
0

0
100
500

32.7
23.4

43.1
42.3
38.6
32.2

71.2

13.4
16.3
21.8

34.6
33.9
31.7
29.3
25.1
20.9
16.7
15.6
15.1

13.4
22.6
36.8

Lead 0
100
327.5(M
327.6

1000

0
0
0
0
0

20
98.3

204.5
259.4
305.0
332.2
408.6
426.6
526.7

Inconel-X 0
200
700

0
0
0

0
400
900



Table D-1 (continued)

Temperature-Dependent
Specific Heat (watt-hr/kg0C)

Material Temperature (C) Value Data Uncertainty**

Temperature-Dependent
Conductivity (watts/mOC)

Temperature (OC) Value Data Uncertainty**

Inconel-600

Alumina (p= .5g/cm3)

. Alumina ( p = 1.9 /cm3)
Ln

0
200

0
100
200
300
500

0
100
200
300
500

0
100
300
600

0
100
200
300
400

0.122
0.151

0.202
0.258
0.285
0.308
0.326

0.202
0.258
0.285
0.308
0.326

0.174
0.209
0.256
0.285

0.190
0.237
0.276
0.303
0.319

0.17
0.21
0.27
0.30

3
3

0
400
500

0
0
0
0
0

350
800

0
0
(U
0
0

150
300
500

14.7
16.4
22.9

0.0419
0.176

5.23
3.77
2.93

1.05
1.13

1.09
1.76

1.47
1.82
2.35
2.81

Glass - Borosillicate 0
0
0
0

0
100

Glass - Pyrex

Glass - Soda Lime

0
0
0
0
0

0
600

0
100
500
900

3
3
3
3

100
300
5(;0
650



Table D-1 (continued)

Temperature-Dependent
Specific Heat (watt-hr/kgOC)

Temperature (C) Value Data Uncertainty**

Temperature-Dependent
Conductivity (watts/mOC)

Temperature (C) Value Data Uncertainty**Material

Uranium Dioxide (U02)

Sand - Dry

Sand - 4-10% Water

K Sand - Quartz, wet
O (4-23% water)

Argon

Helium

Krypton

Neon

0
100
200
400

1200
2000

25

25

25

0.065
0.073
0.079
0.084
0.092
0.095

0.0009

0.005

0.002

0.144

1.44

0.0337

0.287

0
0
0
0
0
0

0
200
300
500
700
800

5

5

5

8.79
7.53
6.28
5.53
5.15
5.19

0
0
0
0
0
0

25 0 0
100
300
500

25 0 0
100
200
500

0.0166
0.0214
0.0295
0.0351

0.142
0.170
0.21
0.291

0.0921

0.0456
0.0565
0.0661
0.0750
0.0908

0
0
0
0

0
0
0
0

0

0
0
0
0
0

25 0 25

25 0 0
100
200
300
500



Table D-1 (continued)

Temperature-Dependent
Specific Heat (watt-hr/kgOC)
ture (C) Value Data Uncertainty**

Temperature-Dependent
Conductivity (watts/mOC)

Temperature (C) Value Data Uncertainty**Material Tempera

Xenon

Air

25

100

0
100
400
700

0.0441

0.276

0.284
0.290
0.302
0.322

0

0

0
0
0
0

0
100
200
300
500

0
100
200
300
400

0
100
200
300
400

0.00586
0.00708
0.00842
0.00967
0.01206

0.0242
0.0318
0.0387
0.0449
0.0566

0.0240
0.0313
0.0380
0.0442
0.0483

0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

Nitrogen

* Source: A.L. Edwards, A Compilation
UCRL-50589, February 1969

of Thermal Property Data for Computer Heat-Conduction Calculation,

** Data uncertainty type descriptions

Data Uncertainty Type 0:
Data was good or no statement was made in data source restricting its accuracy. No conflicting data were
found in any other data sources. Most data in this category is probably accurate to within 5-10 percent
for specific heat and 10-20 percent for thermal conductivity.

Data Uncertainty Tyne 1:
Good data, but specific heat or thermal conductivty was reported only for a limited temperature range.
The temperature range has been extended by extrapolation and the resulting values are probably as accurate
as reported values.



Data Uncertainty Type 2:
Either the accuracy of the data was poor or values reported by different sources disagreed. The best values
were used whenever a judgment could be made, or average values were used with consideration given to data
for similar materials.

Data Uncertainty Type 3:
No data could be found in the literature; however, values are an estimate based on theoretical or empirical
grounds, or on data for similar materials. These estimates were included whenever they reported data for
similar materials.

Data Uncertainty Type 4:
No data could be found in the literature, and no accurate estimate could be made. The data, therefore, are
considered to be a rough estimate based, in most cases, on data for similar materials.

Data Uncertainty Type 5:
No data could be found in the literature and no estimate was made. A minimum requirement for inclusion of a
material in the alphabetical index and material data list is the availability of at least estimated constant
values of density, specific heat, and thermal conductivity.
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