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Outline

• Applications
• Specific codes

− key features and validations
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Needs

• Predict mechanical performance of fuel under NOC
• Design and/or qualify new products and/or operating 

conditions, e.g. ACR
• Predict operating values of key design parameters

− under on-power conditions, e.g. internal gas pressure
− account for important effects, e.g. irradiation embrittlement

• Confirm design margins
• Provide initial conditions for accident analysis codes

− e.g. ELESTRES providing input to ELOCA
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Benefits

• Part of suite of tools for fuel qualification
− tests:  in-reactor + out-reactor 
− modeling:  codes, spreadsheets
− operating experience and engineering judgment

• Analyses add to proof tests
− add on-power effects to out-reactor tests 
− extrapolate to untested combinations
− relatively inexpensive and fast 

• Provide margins and insights 
• Flag potential issues early in the design stage 
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Categories

• Thermal integrity
− ensure operating temperatures stay within acceptable limits
− 3 assessments

• Structural integrity
− ensure operating stresses and strains stay within acceptable limits 
− 14 assessments

• Compatibility 
− ensure fuel and its neighbors fit 
− 2 assessments
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Thermal Integrity

• Pellet temperature at element’s axial center
− sufficient margin to melting
− ELESTRES code

• Pellet temperature at axial end of the fuel 
element

− sufficient margin to melting
− FEAT code 

• Braze voids in bearing pads
− prevent rapid rise in local temperature
− FEAT code
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Structural Integrity

• Fuel clad (5 assessments)
• Fuel element (4 assessments)

− endcap and vicinity 
• Fuel bundle (5 assessments)

− endplate
− endplate-to-endcap weld
− overall deformation and strength of the bundle
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Structural Integrity of Fuel Clad

• Collapsibility (LONGER)

• Longitudinal ridging (LONGER)

• Collapsibility into axial gap 
−(LONGER)

• Stress corrosion cracking at ridge 
(INTEGRITY, HISTOBUN)

• Load following (ELESTRES + FEAST) => SCC + fatigue
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Structural Integrity of Fuel Element

• SCC: Internal gas pressure (A) (ELESTRES)
• SCC: Pellet expansion (A) (ELESTRES+FEAST)
• Bonding within weld line (B) (FEAST)
• Endcap strength (C) (FEAST)
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Structural Integrity of Fuel Bundle
• Refueling strength (BEAM, ANSYS/ABAQUS)

• Power ramp strength (BEAM, ABAQUS)

• Fatigue:  lateral, axial (BEAM, H3DMAP/ABAQUS)

• Buckling: BOW
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Compatibility
• Crevice corrosion:  FEAT

− restricted cooling, elevated temp
− concentration of LiOH, accelerates corrosion
− local temperature less than critical

• Bow, sag, droop:  BOW
− circumferential delta-temp, delta-length
− gravity, hydraulic drag
− thermal, elastic, creep effects
− prevent overheating and jamming
− maintain sufficient clearances with neighbors
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Specific Fuel Codes

• Specific in-house fuel performance codes
− key features, illustrative validations

• Used for fuel design assessments for last 20 years
• Many validations and documentations over the years

− experimental data
− independent analytical results

• Rigorous configuration management
• Formally qualifying all fuel codes

− ISO 9001-2000 
− CSA N286.7 Standard
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ELESTRES
• Used to calculate temperature, fission gas release, internal pressure, 

and clad strain including circumferential ridge
• Temperature

− heat generation, heat conduction, flux depression, thermal conductivity, 
gap/contact, finite difference, 100 radial annuli

• Fission gas release
− microstructural models, generation, diffusion, grain boundary sweep, 

bubble growth and interlinkage, release via tunnels 
• Strain

− densification, fission product swelling, thermal expansion, elasticity, 
plasticity, creep, cracking, radial and axial gaps, finite element, 2-
dimensional

• Validation against ~ 130 irradiations
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ELESTRES: Pellet Temperature
EXP-FIO-142
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ELESTRES: Fission Gas
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ELESTRES: Clad Strain
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BOW
• Used to calculate deflections of fuel elements:  bow, sag and

droop
• Circumferential and axial temperature gradients in clad and 

pellets
− neutron flux gradients, dry patches, non-uniform heat transfer 

coefficient, and coolant temperature
• Hydraulic drag, gravity, length differentials, creep
• Endplates, pellets (including cracking), appendages, neighboring

fuel elements and pressure tubes 
• As-fabricated bow, variations in material properties, etc.
• Finite element method
• Validation against 5 experimental measurements plus 46 

independent analytical solutions (generally within 1%)
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BOW vs. WL Tests
Eccentric heaters
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CANFLEX-DI: Bundle FLX007Z
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FEAT
• Used to calculate local peak temperatures

− end-temperature peaking, crevice corrosion between bearing pad 
and pressure tube, braze void between clad and bearing pad

• 2-D heat conduction, non-linear heat transfer
• Steady-state or transients (e.g. LOCA)
• Flux depression (diameter, enrichment, burnup) 
• Variations in material properties (thermal conductivity, specific 

heat and density)
• Time-dependent boundary conditions
• Multiple bodies (gaps between pellet and clad)
• Finite elements: arbitrary shapes 
• Validation against 4 test measurements and 27 independent 

analytical solutions
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FEAT vs. Analytical Solutions
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FEAT vs. Measurements
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FEAST
• Used to calculate detailed local stresses, strains

− near endcap, at ridge 
• Work density calculation for input into stress corrosion cracking
• Thermal, elastic, plastic, creep, stress relaxation
• Finite element method, 2-dimensional, non-linear stress analysis
• Validated against

− 2 experimental measurements
− 18 independent analytical solutions (max diff. of ±1% for half the 

cases, peak deviation among all cases ±5%) 
• Also captures well the observed cracking near endcap junctions
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FEAST:  Endcap Strains

-0.05

0.00

0.05

0.10

0.15

0.20

0 1 2 3 4 5 6 7 8 9 10

Distance from the Reference Edge (mm)

H
oo

p 
St

ra
in

 (%
)

   2224 N, FEAST
   4448 N, FEAST
   6672 N, FEAST
   measured # 1
   measured # 2

ENDCAP SHEATH



Pg 25

FEAST:  Stress Concentrations
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FEAST:  Endcap Cracking 
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LONGER
• Used to calculate clad collapse due to coolant pressure
• 48 data points
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HISTOBUN
• Used to predict core-wide defect probability
• Contains several correlations for stress-corrosion cracking
• Automated link to physics codes
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HISTOBUN (continued)
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INTEGRITY

• Mechanistic calculation of environmentally-assisted 
cracking
− single power ramps (stress corrosion cracking)
− multiple power ramps (stress corrosion fatigue)
− cyclic power changes (corrosion assisted fatigue)

• More confident extrapolations to relatively data-sparse 
regions
− extended burnups
− design changes (e.g. pellet shape, element diameter)
− specification ranges (e.g. diametral clearance)
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FUELOGRAM   INTEGRITY
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Summary

• Computer codes are an essential part of suite of tools 
for fuel qualification, along with tests, operational 
experience and engineering judgments

• Analytical assessments of thermal integrity, structural 
integrity, and compatibility

• 19 types of assessments, 11 computer codes
• Mechanistic models give additional confidence in 

extrapolations to relatively data-sparse regions
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