B6985

End to 9-21-84 Hr to Brooks

•

Benchmark Problems for Waste Package Computer Codes

Draft Report

Submitted to:

Division of Waste Management Office of Nuclear Materials Safety & Safeguards U.S. Nuclear Regulatory Commission Washington, D.C. 20555 NRC FIN B6985

Submitted by:

CorSTAR Research, Inc. 7315 Wisconsin Avenue Suite 702 North Bethesda, Maryland 20814

NUREG/CR-XXXX

Benchmark Problems for Waste Package Computer Codes

Draft Report

Manuscript Completed: Date Published:

Prepared by: W. Coffman, D. Vogt, M. Mills

CorSTAR Research, Inc. 7315 Wisconsin Avenue Suite 702 North Bethesda, MD 20814

.

Prepared for: Division of Waste Management Office of Nuclear Material Safety and Safeguards U.S. Nuclear Regulatory Commission Washington, D.C. 20555 NRC FIN B6985

ABSTRACT

This report provides benchmark problems for computer codes that can be used for analysis of a high-level waste package. Problems with analytical solutions, hypothetical waste package design problems, and problems simulating field experiments are presented. Types of problems include heat transfer, stress analysis, radiation shielding, corrosion and leaching, and near-field geochemistry. Specific phenomena addressed include thermal conduction, convection, and radiation; elastic and plastic stress analysis; creep; particle transport for shielding analysis; empirical analysis of corrosion and leaching; and elevated temperature geochemistry.

			Page
ABSTI	RACT	• • • • • • • • • • • • • • • • • • • •	iii
LIST	OF F	IGURES	vii
LIST	OF T	ABLES	xi
ACKN	OWLED	GMENTS	xvi
1.0	INTR	ODUCTION	1
	1.1 1.2 1.3 1.4 1.5 1.6	Background Scope of This Report Processes Considered Previous Work Model Verification and Validation Problem Specifications	2 2 3 5 7 8
2.0	THER	MAL ANALYSIS CASE PROBLEMS	11
	2.1	Steady-State Radial Conduction Heat Transfer in a	11
	2.2	Steady-State Radial Conduction Heat Transfer in a Series of Concentric Cylindrical Annuli for a Specified	16
	2.3	Transient Temperature Response of a Solid Cylinder	21
	2.4	One-Dimensional Transient Temperature Distribution	28
	2.5	Hypothetical Problem to Simulate the Steady-State	35
	2.6	Hypothetical Radial Heat Transfer Analysis of PWR	43
	2.7	Hypothetical Calculation of Canister Temperature Distribution Subsequent to Being Filled with a Hot Glass Waste Form	77
3.0	MEÇH/	ANICAL ANALYSIS PROBLEMS	81
	3.1	Radial and Tangential Stress Components at the Inner and Outer Surfaces of a Thick-Walled Cylinder with a	81
	3.2	Horizontal Simply Supported Beam Subjected to Vertical Motion at Both Supports as Defined by a	89
•	3.3	A Mass Supported by a Thin Rod and Subjected to a Step Load Causing Tension in the Rod and Plastic	96
	3.4	Displacement and Velocity of Mass When a Package is Dropped on a Rigid Floor and the Subsequent Maximum Displacement of the Mass and Maximum Spring Force	102

CONTENTS

CONTENTS (continued)

	3.5	Determine the Natural Frequencies and Normal Modes	111
	3.6	Determine the Stress in a Pretensioned Body Which	118
	3.7	Elastic Stability of a Thin Tube of Infinite Length	123
	3.8	with External Pressure Loading Creep Deformation of a Finite Length, Hollow	129
	3.9	Elastic Cylinder Due to External Pressure Hypothetical Prediction of Deformation Including	135
	2 10	Progressive Creep for a Waste Package	120
	5.10	Steady-State Temperature Distribution in a Waste Package	120
	3.11	Hypothetical Analyses of Canister Stresses Subsequent to Being Filled with a Hot Glass Waste Form	142
	3.12	Hypothetical Calculation of Stress Due to Uniform External Pressures on a Waste Package	146
4.0	RADI	ATION SHIELDING PROBLEMS	150
	4.1	Hypothetical Radiation Shielding Problem	150
	4.2	Levels	155
	4.3 4.4	Boiling Water Reactor Fuel Assembly Radiation Level Hypothetical Thin-Walled Waste Package Shielding Problem	169 183
	4.5	Hypothetical Thick-Walled Waste Package Shielding Problem	186
5.0	EMPII	RICAL CORROSION AND LEACHING PROBLEMS	193
	5.1	Simple and Complex Waste Package Concepts Used in	193
	5.2	Solute Transport by Diffusion Across an Infinitely Long Cylindrical Segment	196
6.0	WAST	E PACKAGE GEOCHEMICAL CODE BENCHMARK PROBLEMS	204
	6.1 6.2	Low-Temperature (<150°C) Basalt Analog without Boiling . Three-Phase, High-Temperature (>150°C) Equilibrium	210 216
	6.3	Hypothetical Radionuclide Equilibrium Speciation	221
_	6.4 6.5	Reaction-Path Problem with Cooling Reaction Kinetics Problem	233 239
REFE	RENCES	s	253
APPE	NDIX /	4	A 1

.

•

LIST OF FIGURES

Number	Legend	Page
2.1-1	Hollow Cylinder with Steady-State Radial Conduction for Which the Radial Temperature Distribution Will Be Determined	12
2.2-1	Three Concentric Cylindrical Annuli a, b, and c in Which the Temperature Distribution Is to Be Determined for Known Volumetric Heat Generation Rate q''' in the Region ($0 \le r \le w$) and Known Value of Surface Temperature T ₄	17
2.3-1	Cylinder of Radius a Initially in Temperature Equilibrium with Surrounding Atmosphere at Temperature T_i . At Time Zero the Surrounding Atmospheric Temperature Is Increased to a Value $T_{\infty} = T_f$	22
2.3-2	Dimensionless Temperature Distribution in a Long Circular Cylinder Subjected to a Sudden Change in Environmental Temperature	25
2.4-1	Slab from Semi-Infinite Freezing Liquid With One Boundary at $T = -45^{OF}$	29
2.5-1	N Concentric Cylindrical Annuli with Known Outside Temperature T_0 , Surrounding a Waste Region of Radius r_W in Which a Known Volumetric Heat Generation Rate of q''' Exists. Each Region Can Have a Unique but Constant Thermal Conductivity Value	36
2.6-1	Elevation View of PWR Fuel Assembly Loaded into Canister	44
2.6-2	Cross-Section View of PWR Fuel Assembly Loaded Into Canister	45
2.6-3	Canister Thermocouple Locations	48
2.6-4	Comparison of Calorimetry Data with Predicted Decay Heat Curve for Fuel Assembly B43	49
2.6-5	Comparison of Calorimetry Data with Predicted Decay Heat Curve for Fuel Assembly D15	50
2.6-6	Canister Lid Thermowell Tube Identification	51
2.7-1	Canister into Which Molten Glass Waste Form Is Poured	78
3.1-1	Hollow Cylinder r _i ≤r≤r _o with Steady-State Radial Temperature Distribution for Which Radial and Tangential Stress Components Will Be Analyzed	84

List of Figures (continued)

Number	Legend	Page
3.2-1	Simply Supported Beam with Support Motion y _S (t)	9 0
3.2-2	Maximum Relative Displacement and Maximum Vertical Acceleration Plotted as Response Spectra for Beam Supports Motion	91
3.3-1	(a) Mechanical Model and (b) Force (R) Versus Deflection (y) Response Characteristic of the Rod and c) the Load History (F) Versus Time (t). In (a) the Friction Joint p Slips When the Load Reaches R_m Representing Plastic Yielding of the Rod	97
3.4-1	Package System Used in Drop Dynamics Analytical Simulation	103
3.5-1	Two Degree of Freedom System for Which the Natural Frequencies and Mode Shapes Will Be Determined	112
3.5-2	Equilibrium Position, Fundamental Frequency and First Mode Shape and Second Natural Frequency and Mode Shape for Two Degree of Freedom Violating System	117
3.6-1	Bolt of Length 1 in Unloaded State Which Is Initially Stressed to $\sigma o = 10,000$ psi and Allowed to Stress Relax Due to Creep	119
3.7-1	Long, Thin-Walled Circular Cylinder Loaded with External Pressure	124
3.7-2	Compressive Yield and Buckling Failure Required for a Long Cylinder. External Pressure Is Plotted Against Cylinder Geometric Feature (r/t)	125
3.8-1	Finite Length Hollow Cylinder Subjected to External Pressure Loading	130
3.8-2	Iso-LMP Stress-Strain Curves for 15% Cold Worked Zircaloy in the 550 to 750°F Temperature Range	133
3.9-1	Hollow Cylindrical Overpack Reinforcement Structure for a Waste Package for Carrying External Pressure Loading	136
3.10-1	n Concentric Cylindrical Annuli with Known Outside Temperature T_O , Surrounding a Waste Region of Radius r_W in Which a Known Volumetric Heat Generation Rate $q^{\prime\prime\prime}$ Exists. Each Region Can Have Its Unique Set of Mechanical Properties	140

List of Figures (continued)

Number	Legend	Page
3.11-1	Canister into Which Molten Glass Waste Form is Poured	143
3.12-1	Waste Package Structure with Uniform External Pressure Loading	147
4.4-1	Reference Spent Fuel Waste Package for Borehole Emplacement	185
4.5-1	Reference Commercial High-Level Waste Form	189
4.5-2	Typical Thick-Walled Waste Package	190
5.2-1	Diagram for Benchmark Problem 5.2	197
5.2-2	Normalized Concentration Curve for $B/A = 2$	200
5.2-3	Normalized Concentration Curve for B/A = 4	201
5.2-4	Normalized Concentration Curve for $B/A = 8$	202
6-1	Temperature-Versus-Time Curves for Different Components of a Vertically Emplaced Spent-Fuel Waste Package in a Repository Located in Basalt	209
6.1-1	Alteration Mineral Zones Found in the Reykjavik and Reykir Low-Temperature Areas. The Rock Temperature of the Zone Borders Are Very Approximate	215
6.2-1	Empirically Determined Stable Mineral Assemblages for Geothermal Waters in Icelandic Basalts in the Temperature Range of 0-300°C and Pressure Less Than 14 MPa	220
6.3-1	Eh-pH Diagram for Part of the System U-Si-S-COH-O at 25°C and 10 ⁻⁵ Pa Pressure	231
6.4-1	Degree of Saturation of the Red Sea Geothermal Brine with Respect to Various Hydrothermal Minerals, Expressed as a Ratio of Ion Activity Product to Solubility Product Constant (IAP/K _{SP}) for Each Mineral	240
6.5-1	Effect of Temperature on Measured pH Values for Simulated Spent Fuel Plus Basalt	246
6.5-2	Effect of Temperature on Calculated pH Values for Simulated Spent Fuel Plus Basalt	247

List of Figures (continued)

Number	Legend	Page
6.5-3	Effect of Temperature on Sodium and Silicon Concentrations for Simulated Spent Fuel Plus Basalt	248
6.5-4	Effect of Temperature on Chloride and Sulfate Concentrations for Spent Fuel Plus Basalt	249
6.5-5	Effect of Temperature on Iodine Concentrations for Simulated Spent Fuel Plus Basalt	250
6.5-6	Effect of Temperatures on Strontium and Uranium Concentrations for Simulated Spent Fuel Plus Basalt	251
6.5-7	Effect of Temperature on Cesium and Molybdenum Concentrations for Simulated Spent Fuel Plus Basalt	252

<u>.:</u>

LIST OF TABLES

Number	Legend	Page
2.4-1	Values of the Parameter	32
2.4-2	Time-Dependent Temperature Distribution in a One- Dimensional Slab Undergoing Phase Change	33
2.5-1	Analytical Solution for Temperature Distribution	42
2.6-1	Fuel Assembly B43 Temperature Test Summary	46
2.6-2	Fuel Assembly D15 Temperature Test Summary	47
2.6-3	Fuel Assembly Internal Temperature Measurement Test Thermocouple Locations	52
2.6-4	Fuel Assembly Internal Temperature Measurement Test Thermocouple Data Fuel Assembly: B43	53
2.6-5	Fuel Assembly Internal Temperature Measurement Test Thermocouple Data Fuel Assembly: B43	54
2.6-6	Fuel Assembly Internal Temperature Measurement Test Thermocouple Data Fuel Assembly: B43	55 .
2.6-7	Fuel Assembly Internal Temperature Measurement Test Thermocouple Data Fuel Assembly: B43	56
2.6-8	Fuel Assembly Internal Temperature Measurement Test Thermocouple Data Fuel Assembly: B43	57
2.6-9	Fuel Assembly Internal Temperature Measurement Test Thermocouple Data Fuel Assembly: B43	58
2.6-10	Fuel Assembly Internal Temperature Measurement Test Thermocouple Data Fuel Assembly: B43	59
2.6-11	Fuel Assembly Internal Temperature Measurement Test Thermocouple Data Fuel Assembly: B43	60
2.6-12	Fuel Assembly Internal Temperature Measurement Test Thermocouple Data Fuel Assembly: B43	61
2.6-13	Fuel Assembly Internal Temperature Measurement Test Thermocouple Data Fuel Assembly: B43	62
2.6-14	Fuel Assembly Internal Temperature Measurement Test Thermocouple Data Fuel Assembly: B43	63
2.6-15	Fuel Assembly Internal Temperature Measurement Test Thermocouple Data Fuel Assembly: B43	64

)

Number	Legend	Page
2.6-16	Fuel Assembly Internal Temperature Measurement Test Thermocouple Data Fuel Assembly: D15	65
2.6-17	Fuel Assembly Internal Temperature Measurement Test Thermocouple Data Fuel Assembly: D15	66
2.6-18	Fuel Assembly Internal Temperature Measurement Test Thermocouple Data Fuel Assembly: D15	67
2.6-19	Fuel Assembly Internal Temperature Measurement Test Thermocouple Data Fuel Assembly: D15	68
2.6-20	Fuel Assembly Internal Temperature Measurement Test Thermocouple Data Fuel Assembly: D15	69
2.6-21	Fuel Assembly Internal Temperature Measurement Test Thermocouple Data Fuel Assembly: D15	70
2.6-22	Fuel Assembly Internal Temperature Measurement Test Thermocouple Data Fuel Assembly: D15	71
2.6-23	Fuel Assembly Internal Temperature Measurement Test Thermocouple Data Fuel Assembly: D15	72
2.6-24	Fuel Assembly Internal Temperature Measurement Test Thermocouple Data Fuel Assembly: D15	73
2.6-25	Fuel Assembly Internal Temperature Measurement Test Thermocouple Data Fuel Assembly: D15	74
2.6-26	Fuel Assembly Internal Temperature Measurement Test Thermocouple Data Fuel Assembly: D15	75
2.6-27	Fuel Assembly Internal Temperature Measurement Test Thermocouple Data Fuel Assembly: D15	76
3.1-1	Calculated Values of Radial and Tangential Stress Components	88
3.7-1	Values of (r/t) _{ref} at Which Failure Mode Changes Versus Compressive Yield Strength, σ _{Cy} , for Steel Type Materials Where E=30x10 ⁶ andv=0.3	128
3.11-1	In Development	145
4.1-1	Dose Buildup Factors and Attenuation Coefficients for 1 MeV Gamma Rays	153
4.1-2	Calculated Buildup Factors	154

Number	Legend	Page
4.1-3	Elemental Content of Type 04 Cement	156
4.2-1	Fuel Design Data for Point Beach 2	158
4.2-2	Typical Non-actinide (Impurity) Composition of LWR Oxide Fuels	159
4.2-3	Typical PWR Fuel Assembly Structural Material Mass Distribution	160
4.2-4	Typical Elemental Compositions of LWR Fuel Assembly Structural Materials	161
4.2-5	Fuel Assembly Operating Conditions	162
4.2-6	Gamma Detector Locations	164
4.2-7	Calculated Gamma Intensities for Gamma Radiation Sources in Spent Fuel	165
4.2-8	Exposure Rates from Fuel Assemblies	166
4.2-9	Exposure Rate from Repeated Fuel Assembly Measurements	167
4.2-10	Calculated and Measured Exposure Rates	168
4.3-1	In Development	171
4.3-2	Fuel Design Data for Dresden 2	172
4.3-3	Typical Non-actinide (Impurity) Composition of LWR Oxide Fuels	173
4.3-4	Assumed Fuel Assembly Structural Material Mass Distribution in a BWR	174
4.3-5	Fuel Assembly Operating Conditions	175
4.3-6	Gamma Detector Locations	177
4.3-7	Calculated Gamma Intensities for Gamma Radiation Sources in Spent Fuel	178
4.3-8	Exposure Rates from Fuel Assemblies	179
4.3-9	Exposure Rate from Repeated Fuel Assembly Measurements	180
4.3-10	Calculated and Measured Exposure Rates	181

۰.

Number	Legend	Page
4.4-1	Summary of Waste Package Design Characteristics	184
4.5-1	Summary of Alternate II (SSP) Waste Package Design Features	187
4.5-2	CHLW Characteristics	188
4.5-3	In Development	192
5.1-1	Verification Test for a Simple Waste Package Concept	194
5.1-2	Verification Test for Complex Waste Package Concept	195
5.2-1	Average Normalized Concentrations and Boundary Derivatives for Different Values of b/a	203
6-1	Candidate Geothermal Systems as Natural Analogs for High-Level Radioactive Waste Repositories	207
6.1-1	Comparison of Major-Element Composition of Basaltic Rock of the Umtanum and Middle Sentinel Bluffs Flow at the Hanford Site with Basaltic Rock of Southwest ' Iceland (in weight percent)	212
6.1-2	Major Ion Chemistry of Groundwater in the Umtanum and Middle Sentinel Bluffs Flow at Hanford Site Compared to the Geothermal Waters in the Icelandic Basalts	213
6.1-3	Input Data for Low-Temperature Basalt Analog Benchmark Problem (Reykjavik, Iceland, Well 11)	217
6.2-1	Input Data for High-Temperature Basalt Analog Benchmark Problem (Krafla, Iceland, Well 7)	219
6.2-2	Output of the Program WATCH1 Showing Original Input Data, Correction of Surface Sample to Deep Water, and Calculation of Aqueous Speciation and Solubility Products for 26 Minerals	222
6.2-3	Calculated Mineral Saturation Indices (SI) for Benchmark Problem 6.2 and Comparison with Empirical Stable Mineral Assemblages from Figure 6.2-1	227
6.3-1	Chemical Analysis of Groundwater from the Westwater Canyon Member of the Morrison Formation, Grants Mineral Belt, New Mexico	229
6.3-2	Fission and Nonfission Products from the Oklo Nuclear Reaction	232

Number	Legend	Page
6.3-3	Observed Mobility of Important Elements at Oklo Compared to Predicted Mobilities Based on Eh-pH Diagrams	234
6.4-1	Input Data for the Red Sea Brine	238
6.5-1	Chemical Analysis of Grande Ronde Basalt Sample RUE-1	242
6.5-2	Composition of Synthetic Groundwater	243
6.5-3	Chemical Analysis of Simulated Spent Fuel	245

ACKNOWLEDGMENTS

We gratefully acknowledge the assistance of and for . their critical review of this manuscript. The completion of the manuscript was made possible by the diligent efforts of Ms. Helen Romm and Ms. Marilyn Singer. This study was performed for the U.S. Nuclear Regulatory Commission under contract NRC-02-81-026. The NRC Project Officers were Dr. Daniel Fehringer and Mrs. Pauline Brooks.

1.0 INTRODUCTION 1.1 Background

The effective management of high-level radioactive wastes is essential to protect public health and safety. The Department of Energy (DOE), through responsibilities inherited from the Energy Research and Development Administration (ERDA) and the Atomic Energy Commission (AEC), and the authority granted in the Nuclear Waste Policy Act, is charged with the safe disposal of these wastes. The Nuclear Regulatory Commission (NRC), through authority granted by the Energy Reorganization Act of 1974, which created the NRC, and the Nuclear Waste Policy Act, is responsible for the regulation of high-level waste management.

The Environmental Protection Agency (EPA) has the authority and responsibility for setting general standards for radiation in the environment. The NRC is responsible for implementing these standards in its licensing actions and for ensuring that public health and safety are protected. The NRC has promulgated technical criteria for regulating the geologic disposal of HLW which incorporate the EPA standard. (The draft EPA standard was published in the <u>Federal Register</u> dated December 29, 1982.) NRC's technical criteria are intended to be compatible with a generally applicable environmental standard. The performance objectives and criteria address the functional elements of geologic disposal of HLW and the analyses required to provide confidence that these functional elements will perform as intended. These technical criteria are described in Chapter 10, Code of Federal Regulations, Part 60 (10 CFR 60).

In discharging its responsibility, the NRC must review DOE repository performance assessments and independently evaluate the performance of the repositories that the DOE seeks to license. Because of the complexity and multiplicity of these performance assessments, computerized simulation modeling is used. Computer simulation models provide a means to evaluate the most important processes that will be active in a repository,

thereby permitting assessment and prediction of repository behavior. Another factor necessitating the use of models is that the time frames associated with high-level waste management range from decades to tens of thousand of years.

Accordingly, the NRC is developing models and computer codes for use in supporting these regulations and in reviewing proposed nuclear waste management systems. Independently, the DOE is also developing models and computer codes for use in assessing repository sites and designs. The analytical model and code development effort must include a procedure for independent evaluation of the tool's capability to simulate real processes. Codes must be evaluated to determine their limitations and the adequacy of supporting empirical relations and laboratory tests used for the assessment of long-term repository performance.

1.2 Scope of This Report

This report is one in a series that deals with the independent evaluation of computer codes for analyzing the performance of a high-level radioactive waste repository. The codes used for repository performance assessment have been divided into the following categories: (1) repository siting, (2) radiological assessment, (3) repository design, (4) waste package performance, and (5) overall systems.

Repository siting requires consideration of events at a distance from the repository. Far-field processes include saturated flow, unsaturated flow, surface water flow (flooding routing), solute transport, heat transport, combined solute and heat transport, geochemistry, and geomechanical response.

Radiological assessment includes the development of source terms, the calculation of radionuclide concentrations in the environment, and the analysis of food pathways, dose-to-man, and expected mortality rates.

Repository design covers areas often called the "near-field." The processes in the repository design area include heat transport, flow in fractured media, and rock mechanics.

The waste package code area deals with the very near-field, primarily the interactions that take place within the waste package and the waste package's interactions with the repository host rock. Included are heat transfer, stress analysis, and chemical interactions such as corrosion.

Overall systems include subcategories of the other categories. For example, overall systems codes may consider aspects of radiological assessment, waste package performance, economic cost (e.g., cost/benefit analysis), repository performance, natural multibarrier performance, or probabilistic aspects of repository performance.

The first step in computer code benchmarking is to select the codes potentially useful for thermal and structural analysis. The next step is to summarize the nature of each selected code and then to prepare benchmark problems for code testing. As a prerequisite to designing benchmark problems, the data that will be used in the problems should be summarized. Thus, three reports will be issued for waste package codes: (1) a model summary report (already prepared), (2) a data set report, and (3) a report describing the benchmark problems to be used in code testing. This report is the benchmark problem report for waste package codes.

1.3 Processes Considered

The processes considered in waste package analysis include: heat transfer, engineering mechanics, radiation shielding, corrosion, leaching, and estimation of the waste package geochemical environment. This report provides benchmark problems for each of these areas.

Heat transfer analysis is required to estimate the temperature rise in the initial period of repository operation and during the period following

repository decommissioning. The temperature is important because it must be controlled to allow retrieval of wastes within 50 years, if required. For the longer term performance of the waste package systems, temperatures must be controlled to limit the degradation of or physical and chemical changes to the waste package, canister, and engineered barriers.

Heat transfer phenomena considered include conduction, convection, and radiation. Thermal analysis may include either steady-state or transfer conditions and may be either linear or non-linear. Non-linear analysis may be needed to model materials with temperature-dependent properties such as specific heat or thermal conductivity and heat flow with nonlinear boundary conditions. Results of thermal analyses in the form of temperature distributions may be used as the input to stress analysis codes to estimate thermal-induced stresses.

Engineering mechanics analyses will be required to estimate the stress and deformation of the waste package after emplacement. Stresses and displacements may be caused by hydrostatic and lithostatic pressure, swelling of backfill material, creep, and thermal loading. Dynamic analyses may be required to estimate loads on the waste package and its contents during shipping or in accidents. Both static and dynamic analyses must be considered for linear as well as non-linear material behavior to assess the performance of the waste package during handling, operation, emplacement, and the decommissioning and long-term storage of waste.

Radiation shielding analyses will be required to estimate the radiation field surrounding the waste package during transportation, repository handling operations, and during the post-emplacement phases. During transportation handling, the radiation field around the waste package must be known in order to estimate the potential dose-to-man. Following emplacement of the waste package, radiation shielding analyses are required to estimate the radiation dose to the host rock and any packing material surrounding the waste package. Dose to geologic and packing materials must be considered to determine whether those materials will be

estimation of the waste package geochemical environment. This report provides benchmark problems for each of these areas.

Heat transfer analysis is required to estimate the temperature rise in the initial period of repository operation and during the period following repository decommissioning. The temperature is important because it must be controlled to allow retrieval of wastes within 50 years, if required. For the longer term performance of the waste package systems, temperatures must be controlled to limit the degradation of or physical and chemical changes to the waste package, canister, and engineered barriers.

Heat transfer phenomena considered include conduction, convection, and radiation. Thermal analysis may include either steady-state or transfer conditions and may be either linear or non-linear. Non-linear analysis may be needed to model materials with temperature-dependent properties such as specific heat or thermal conductivity and heat flow with nonlinear boundary conditions. Results of thermal analyses in the form of temperature distributions may be used as the input to stress analysis codes to estimate thermal-induced stresses.

Engineering mechanics analyses will be required to estimate the stress and deformation of the waste package after emplacement. Stresses and displacements may be caused by hydrostatic and lithostatic pressure, swelling of backfill material, creep, and thermal loading. Dynamic analyses may be required to estimate loads on the waste package and its contents during shipping or in accidents. Both static and dynamic analyses must be considered for linear as well as non-linear material behavior to assess the performance of the waste package during handling, operation, emplacement, and the decommissioning and long-term storage of waste.

Radiation shielding analyses will be required to estimate the radiation field surrounding the waste package during transportation, repository handling operations, and during the post-emplacement phases. During transportation handling, the radiation field around the waste package

4

NT SHE HALLING

degraded by cumulative or instantaneous radiation dose. Radiation dose may also be important in estimating the geochemical environment, especially if the dose rate is high and causes significant radiochemical changes in the very near field surrounding the waste package.

No widely accepted analytical methods exist to estimate corrosion and leaching of waste package canister or waste form materials from first principles. Most of the existing work on waste canister corrosion and waste form leaching is based on the use of experimental data to formulate empirical relationships describing the waste canister and waste form performance over time. The problems presented in this report are designed as verification problems for the code WAPPA proposed by DOE for use in the assessment of overall waste package performance.

Geochemical analysis of the very near-field will be needed to determine the environment in which the waste canister and waste form will perform. The corrosion and leaching behavior of waste package materials is highly dependent on concentrations of chemical species in the very near field. An accurate assessment of chemical speciation will require treatment of elevated temperatures. This generally will require the use of a geochemical analysis code.

1.4 Previous Work

The most extensive testing of codes useful in waste package performance assessment has been done during the development of the individual codes. The documentation available with most codes generally contains from 2 up to as many as 100 problems that have been solved by the code and checked against analytical solutions. These verification problems almost always show excellent agreement with theoretical problems because these are the types of problems used during code development to find "bugs" in the code and to correct the code. In addition, the developers are likely to be more familiar with the code capabilities than are future users and can thus set up a problem consistent with the solution method.

Although most of the routines in a code should have been tested by the developer before the code's release, codes should also be tested by an independent user on a problem or problems developed independently. Studies with this as an objective include the following:

- Westinghouse Electric Corporation Advanced Energy System Division conducted a five-year study of spent fuel dry storage testing at the Engine Maintenance, Assembly, and Disassembly (EMAD) facility on the Nevada Test Site. This project gathered field data on spent fuel temperature profiles in a geometry similar to that which may be encountered in a waste package.
- General Electric gathered data on the radiation field surrounding PWR and BWR fuel assemblies in both air and water at its GE Morris facility. These data were used to compare actual measured data with results predicted by QAD-IV.
- An extensive comparison of geochemical codes conducted under the auspices of the American Chemical Society.

1.5 Model Verification and Validation

The testing of waste package performance assessment models can be divided conceptually into two phases, code verification and code validation. As used in this report, code verification refers to testing the performance of the code. Code validation refers to testing the code against actual physical data obtained from field tests.

Two types of problems can be used for code verification. Problems with known analytical solutions can be used to test the code's numerical solution methods. These will indicate the accuracy of the code and also point out areas where the code may be in error. The second type includes hypothetical waste package problems. These can be used to determine whether the code can simulate interactions likely to occur in a waste package design.

The validation of codes involves gathering data from field tests and comparing the results of the computer model to these field data. The advantage of field validation is that both the code and the mathematical model are tested against the actual physical performance of the waste package concept being modeled. Although this should be an ideal method of testing a code, in reality, this is not the case because several sources of error are possible in the field validation process. These include inaccuracies associated with:

- Inadequate field test data
- The measurements themselves
- Transcription or transmission of data
- Difficulty in modeling boundary conditions as they occur in the field
- Non-homogeneity of materials
- Approximations necessary for numerical modeling

The code validation process provides an estimate of the ability of an analytical method to predict the overall response of the system and assists in quantifying data inaccuracies in code predictions.

1.6 Problem Specifications

The problems described in this report fall into three categories: problems for which analytical or semi-analytical solutions are available, hypothetical problems, and problems based on laboratory or field studies. Problems for which analytical or semi-analytical solutions are available provide a direct means for verifying the correctness of formulation and the accuracy of basic segments of a code's solution algorithm.

Since analytical solutions are based on several restrictive assumptions and are limited to simple cases, several realistic problems, some of which correspond to actual field simulations, have been included in the test series to verify segments of numerical codes that may not otherwise be tested. Two modes of evaluation are available for these problems. First, answers can be compared to simulations using other codes; if major differences in results arise, further investigation is needed. Second, spatial and temporal discretizations can be refined to see if numerical results are convergent. It should be noted that convergence is a necessary but not conclusive indicator of code accuracy.

Besides providing a means of testing a code's solution algorithm, these problems (especially the hypothetical problems and problems based on field or laboratory studies) provide a means of exposing other difficulties that may arise in the practical application of a code. The sources of these other difficulties include inconsistencies between input instructions and the code's actual input requirements, cumbersome input requirements, incompatibilities between codes where output from one code is needed as input to another, and poor output format (for example, too few significant figures).

The description of each problem, in general, consists of the following:

- Problem statement
- Objectives
- Analytical solution, semi-analytical solution, or physical description
- Assumptions
- Input specifications
- Output specifications
- Comments

The problem statement describes the problem and the processes and conditions being considered. The objective section explains what feature of the code the problem will test. If an analytical or semi-analytical solution is available, the solution is described in the next segment. For the hypothetical and validation problems, the physical system being simulated is described. The assumption section specifically lists the assumptions.

The input specifications restate the physical description in terms that can be included in the model. They include values for all necessary physical properties. All required input data must be accurately and completely stated so that results can be reproduced accurately.

Output specifications include the desired solution's specified spatial locations and times. In some cases these results are best presented in graphic form. Comments include any anticipated problems or other information that might be useful to those running the codes.

Grid sizes and time steps have not been specified for problems. This will permit the use of different values for different codes, so as to optimize the use of each code.

The hypothetical problems presented here have not been actually run. Before a problem can be adopted for use as a benchmark problem, it is

important to run it on one or more codes. This is necessary to verify that the problem is well posed and reasonably tractable and to adjust values of input parameters to obtain outputs that will be most sensitive to imperfections in the codes.

2.0 THERMAL ANALYSIS CASE PROBLEMS

This section is primarily concerned with heat transfer by conduction. Heat transfer by convection and radiation are also considered to complete the thermal analysis required for a waste package and to estimate accurately the thermal loads to be used for mechanical analyses. Mathematical model representing these forms of heat transfer consist of differential equations together with appropriate boundary and initial conditions that express conservation of energy and describe the temperature over the region of interest. In the most generalized form, the equations model transient and non-uniform heat transfer with non-linear material properties. The generalized form of the heat transfer equations can be solved analytically or semi-analytically only if simplifications are made.

The literature contains well-established analytical and numerical solutions ranging from the very simple to the complex. For example, in the verification of ANSYS code alone, the developers used over 40 problems ranging in complexity from one-dimensional conduction through a wall to the three-dimensional cooling of a fin (Reference DE-82). Benchmark problems have been selected that represent the code features required for waste package analysis. These features include conduction (linear and non-linear), radiation, convection, and heat transfer in one and two dimensions.

2.1 Steady-State Radial Conduction Heat Transfer in a Hollow Cylinder — Temperature Distribution Solution (Similar to problem solved by Kreith, Reference KR-58, pp. 25-27)

<u>Problem Statement</u>. This problem is designed to determine the steady-state radial temperature distribution in a hollow cylinder of inside radius r_i and outside r_0 when a region of radius r_W ($r_W \ge r_i$) has a known volumetric heat generation rate of q''' that is spatially uniform and the outside surface ($r = r_0$) temperature has a known value of T_0 .

A sketch of the geometry is shown in Figure 2.1-1.

,

Hollow Cylinder with Steady-State Radial Conduction for Which the Radial Temperature Distribution Will Be Determined

.

.

.

.

The thermal conductivity of the material in the annulus is assumed to be constant and independent of temperature.

The differential equation is

$$\frac{d}{dr}\left(r\frac{dT}{dr}\right)=0$$
(1)

in the region $(r_1 \le r < r_0)$. The boundary conditions are:

$$at r = r_0 \qquad T = T_0 \tag{2}$$

at
$$r = r_i$$
 $Q = -k2\pi r_i l \frac{dT}{dr}$ $r = r_i$ (3)

where

T = temperature [0]*
r = radial position [L]
r_i = inside radius of hollow cylinder [L]
r_0 = outside radius of hollow cylinder [L]
k = thermal conductivity of cylinder material [e/tL0]
L = length of cylinder [L]
Q = heat cylinder flow rate to the hollow on the
inside surface [e/t]

^{*} When an equation is presented, the generalized dimensions of the quantities are given in brackets. They are: & = length or distance; t = time; f = force; m = mass; θ = temperature change or temperature; e = energy (which is equal to the product of f&).

The heat flow rate to the hollow cylinder at steady-state is related to the heat generation rate per unit volume within the solid cylindrical region of radius r_W by

$$Q = q''' \pi r_w^2 \ell$$

(4)

where

q''' = volumetric heat generation rate in the heat $source region <math>(0 \le r \le r_W)$ [e/t ℓ^3] $r_W = outside radius of cylindrical heat generating$ $region [<math>\ell$]

<u>Objectives</u>. The solution to this problem can be used to verify the accuracy of a program's thermal model. This is the heat conduction problem that the WAPPA model (Reference CO-84) solves for each engineered barrier surrounding the waste form.

<u>Analytical Solution</u>. The analytical solution for the temperature distribution in the region $r_i \leq r \leq r_0$ is:

$$T = T_{o} + \frac{Q}{2\pi k \ell} \quad \ln(\frac{r_{o}}{r})$$

(5)

(6)

This solution can also be written in terms of the heat generation rate in the region $0 \le r \le r_W$ as:

$$T = T_0 + \frac{q'''r_w^2}{2k} \ln \frac{r_0}{r}$$

where $r_W \leq r_j$.

Using the last expression, the temperature at the inside surface $(r = r_i)$ is given by

$$T_{i} = T_{0} + \frac{q'''r_{w}^{2}}{2k} \ln \frac{r_{0}}{r_{i}}$$

This equation is used successively over the engineered barriers in WAPPA proceeding inward from the outermost annular region.

(7)

Assumptions.

- The hollow cylinder material has a unique value for thermal conductivity that is independent of temperature.
- Axial heat conduction is negligible in comparison to radial heat conduction.
- The heat generation is uniform over the cylinder of radius $\mathbf{r}_{\mathbf{W}}$.

Input Specifications.

Geometry (similar to the defense high-level waste cast-iron overpack, Reference ON-83, pp. 33 and 199) waste region radius $r_{W} = 30.5 \text{ cm}$ hollow cylinder inside radius $r_{i} = 30.5 \text{ cm}$ hollow cylinder outside radius $r_0 = 67.5$ cm Material properties $k = 0.5 \text{ w/cm}^{\circ}C$ thermal conductivity Boundary conditions hollow cylinder outside temperature $T_0 = 200^{\circ}C$ waste region volumetric heat a''' = 0.001291 w/cm³ generation rate

<u>Output Specifications</u>. The temperature distribution T(r) in the hollow cylinder $r_i \leq r \leq r_0$ is to be determined.

Values at discrete points from $r_i \leq r \leq r_0$ are presented below as determined for the input quantities and Equation 6.

r	T
(cm)	(°C)
30.5	200.954
35.0	200.789
40.0	200.628
45.0	200.487
50.0	200.360
55.0	200.246
60.0	200.141
67.5	200.0

2.2 Steady-State Radial Conduction Heat Transfer in a Series of Concentric Cylindrical Annuli for a Specified Heat Flow Rate and Outside Surface Temperature (Similar to problem solved by Holman, Reference HO-81, pp. 28, 29)

<u>Problem Statement</u>. This problem concerns the steady-state radial temperature distribution and interface temperatures for a series of three concentric cylindrical annular sections. Each section has a unique value of thermal conductivity that is independent of temperature. The temperature is assumed to be a continuous function from one annular section to another (no reduced conductance region between sections). There is a known steady radial heat flow rate and a known constant temperature at the outside surface of the outermost annular section. A sketch of the geometric configuration is shown in Figure 2.2-1

The governing equation in region c $(r_3 < r < r_4)$ is

$$\frac{d}{dr} \left(r \frac{dT}{dr} \right) = 0$$

and the boundary conditions are

 $r = r_4$ $T = T_4$

(9)

(8)

ł

Three Concentric Cylindrical Annuli a, b, and c in Which the Temperature Distribution Is to Be Determined for Known Volumetric Heat Generation Rate q''' in the Region (0 r r_W) and Known Value of Surface Temperature T4

$$r = r_{3} \quad Q = -k_{c} \ 2 \ r_{3} \frac{dT}{dr} \\ r = r_{3}$$
where
$$T = temperature \quad [\theta]$$

$$r = radial position \quad [l]$$

$$r_{d} = outside radius of region c \quad [l]$$

r₃ = inside radius of region c [1]

l = length of cylinder [l]

 k_c = thermal conductivity of material of region c [e/tl0]

length of cylinder (the analysis could be done on a per unit length basis as it is one-dimensional) [l]

Q = heat flow radially out through the section [e/t]

The heat flow rate to the hollow cylinder at steady-state is related to the heat generation rate per unit volume within the waste region of radius r_W by

$$Q = q''' \pi r_w^2 \ell$$

(11)

where

q''' = volumetric heat generation rate in the
 waste region [e/t^{0,3}]
 r_w = outside radius of cylindrical waste region [1]

The same differential equation applies to regions b and a. After the equation is solved within region c, T_3 at $r = r_3$ is known, and the boundary conditions for region b are

 $r = r_3 \quad T = T_3$ (12)

$$r = r_2 \qquad Q = -k_b 2\pi r_2 \ell \frac{dT}{dr} \qquad r = r_2$$
(13)

Similarly, after the solution is obtained in region b, T_2 at $r = r_2$ is known. The boundary conditions for region a are

$$r = r_{2}$$
 $T = T_{2}$ (14)
 $r = r_{1}$ $Q = -k_{a} 2\pi r_{1} \frac{2dT}{dr} r = r_{1}$ (15)

<u>Objectives</u>. The solution can be compared to a WAPPA thermal model solution for a waste package with engineered barriers.

<u>Analytical Solution</u>. The analytical solution for the continuous temperature distribution is

$$T = T_{4} + \frac{q'''r_{w}^{2}}{2k_{c}} \ln \frac{r_{a}}{r} \qquad (r_{3} \leq r \leq r_{4})$$

$$T = T_{3} + \frac{q'''r_{w}^{2}}{2k_{b}} \ln \frac{r_{3}}{r} \qquad (r_{2} \leq r \leq r_{3})$$
(16)
(17)

$$T = T_{2} + \frac{q^{1} r_{w}^{2}}{2k_{a}} \ln \frac{r_{2}}{r} \qquad (r_{1} \leq r \leq r_{2})$$
(18)

The surface temperature values are

$$T_3 = T_4 + \frac{q'''r_w^2}{2k_c} ln(\frac{r_4}{r_3})$$

(19)

$$T_2 = T_3 + \frac{q'''r_w^2}{2k_b} ln(\frac{r_3}{r_2})$$

$$T_1 = T_2 + \frac{q'''r_W^2}{2k_a} \ln(\frac{r_2}{r_1})$$

Assumptions.

- Each region has a unique value for thermal conductivity that is independent of temperature.
- The axial heat conduction and temperature gradient are negligible in comparison to the radial.
- The temperature is continuous from one annular region to another (no reduced conductance region between regions).

<u>Input Specifications</u>. (Similar to defense high level waste cast steel overpack, see Reference ON-83, pp. 33, 159)

- Geometry (see Figure 2.2-1)
 - radii

waste region outer radius = $r_w = 30.5$ (cm) region a inner radius = $r_1 = 30.5$ (cm) region a outer radius = $r_2 = 43.0$ (cm) region b outer radius = $r_3 = 54.0$ (cm) region c outer radius = $r_4 = 65.0$ (cm)

Material properties

- thermal conductivity

region a value = $k_a = 53.4$ (w/m^oC) region b value = $k_b = 54.5$ (w/m^oC) region c value = $k_c = 55.6$ (w/m^oC)

- Boundary conditions
 - region c outside temperature = T_A = 170 (°C) - waste region volumetric heat generation rate = q'' = 0.001315 (w/cm³)

(21)

(20)
<u>Output Specifications</u>. The region a, b, and c boundary temperatures T_1 , T_2 , and T_3 are to be determined. These values can be compared with the values given below.

Radial Position r (cm)	Temperature (°C)
$r_1 = 30.5$	170.853
$r_{2}^{1} = 43.0$	170.460
$r_{2}^{2} = 54.0$	170.204
$r_4^3 = 65.0$	170.0

2.3 Transient Temperature Response of a Solid Cylinder with Constant Thermal Conductivity

<u>Problem Statement</u>. This problem is concerned with the thermal response of an infinite solid cylinder (radial conduction only) of radius a, initially at a uniform temperature T_i which is equal to the atmospheric temperature. The atmospheric temperature is suddenly changed to a constant value of T_f . Subsequent to this change at time zero, the change in the temperature distribution in the cylinder is to be calculated with time. See Figure 2.3-1.

The energy conservation equation for only transient radial conduction in the region ($0 \le r \le a$) is

$$\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial T}{\partial r}\right) = \frac{1}{\alpha}\frac{\partial T}{\partial t}$$
(22)

where the thermal conductivity is considered to be invariant and where

T	Ξ	tempera	iture	[8]	
r	=	radial	position	[2]	
t	=	time	[t]		
α	=	thermal	diffusiv	ity	$\left[\ell^2 / t \right]$

Cylinder of Radius a Initially in Temperature Equilibrium with Surrounding Atmosphere at Temperature T_i. At Time Zero the Surrounding Atmospheric Temperature Is Increased to a Value $T_{\infty} = T_{f}$ At the surface of the cylinder, heat may be convected between the cylinder and the atmospheric fluid. The characteristic temperature of the atmospheric fluid is T_{∞} . The initial condition is

(23)

(24b)

$$t < 0$$
 $T(r) = T_i$ $(0 \le r \le a)$

and the surrounding atmospheric temperature is

$$t < 0$$
 $T_{\infty} = T_{i}$ (24a)
 $t \ge 0$ $T_{\infty} = T_{f}$

The boundary conditions are

at
$$r = a$$
, $-k \frac{\partial T}{\partial r} = h(T - T_{\infty})$ (25)
at $r = 0$, $\frac{\partial T}{\partial r} = 0$ (26)

where

h = convective heat transfer coefficient betweenthe cylinder outer surface and the atmosphere [e/tl²0] <u>Objectives</u>. The purpose of this problem is to establish a reference solution for transient radial conduction in a cylinder. It will be representative of waste package transient cooling when there is an abrupt change in atmospheric conditions. The solution applies to thermal conditions where the associated thermal stresses may be important.

<u>Analytical Solution</u>. The solution to Equation 22 for the stated initial and boundary conditions (Reference CA-59) is

$$\frac{T(r,t) - T_{\infty}}{T_{j} - T_{\infty}} = \frac{2ha}{k} \sum_{n=1}^{\infty} \frac{e^{-J_{0}(\lambda_{n}r)}}{\left[\lambda_{n}^{2} a^{2} + \left(\frac{ha}{k}\right)^{2}\right]} J_{0}(\lambda_{n}a)$$
(27)

where λ_n are the characteristic values found from solving

$$\begin{array}{l} (\lambda_{n}a) \ J_{1}(\lambda_{n}a) + (\frac{ha}{k}) \ J_{0}(\lambda_{n}a) = 0 \\ \end{array}$$
and whe
$$\begin{array}{l} & & & & \\ & & & \\ J_{r} & & & \\ & & & \\ & & & \\ J_{r} & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$$

This analytical solution involves evaluation of the terms of an infinite series until the terms of the convergent series become negligible. A more rapid solution can be obtained by the use of charts developed by Heiser (Reference HE-47), Boelter et al. (Reference BO-42), and Kreith (Reference KR-58). These charts are shown in Figure 2.3-2. They treat r/r_a from 0 to 1.0 in increments of 0.2 (six charts). Each chart presents 11 combinations of values of k/h_a in the range from 0 to 10.

Figure 2.3-2

Dimensionless Temperature Distribution in a Long Circular Cylinder Subjected to a Sudden Change in Environmental Temperature

Assumptions.

- The surface convection heat transfer coefficient is a known constant.
- The atmospheric temperature is constant for t > 0and therefore independent of the thermal energy transferred to the cylinder.
- Thermal conductivity and thermal diffusivity are independent of temperature and thus constant through the transient.

Input Specifications.

- Geometry
 - cylinder radius, a = 1.0 (ft)
- Material properties
 - thermal diffusivity of cylinder material, $\alpha = 0.014 (ft^2/hr)$
 - thermal conductivity of cylinder material, k = 0.700 (Btu/hr-ft-^oF)
- Parameters
 - convective heat transfer coefficient, h = 2.8 (Btu/hr-ft²-OF)
- Boundary conditions
 - initial temperature of cylinder and pre-step
 (h = 0) stresstepic temperature T = 200(05)
 - $(t \leq 0)$ atmospheric temperature, $T_i = 300(^{OF})$
 - post step (t > 0) atmospheric temperature,
 - t_f = 400 (°F)

Values of temperature as a function of radial position and time are given in the following table in terms of the thermal and geometric parameters:

				T(r)	(°F)
	t(hrs)	0.0	14.29	28.57	42.86
r	$\alpha t/a^2$	0.0	0.2	0.4	0.6
ft)	r/a				
)	0.0	300	330.07	366.75	383.46
0.2	0.2	300	332.42	366.99	384.06
0.4	0.4	300	339.32	370.55	385.78
0.6	0.6	300	350.26	376.07	388.45
0.8	0.8	300	361.30	382.96	391.78
	10	300	380.02	390.50	395.42

For this problem, the first six roots of Equation 28, λ_{1} are:

n	λn
1	1.9081
2	4.6018
3	7.5201
4	10.5423
5	13,6125
6	16.7073

Summations using the first two roots in Equation 27 will give values of temperature accurate to $0.01^{\circ}C$.

<u>Output Specifications</u>. This problem solves for the temperature response as a function of radius and time. The solution can be compared with the values in the preceding table.

27

2.4 One-Dimensional Transient Temperature Distribution with Phase Change

<u>Problem Statement</u>. This problem simulates the transient temperature response of a fluid initially at 0°C as one wall is lowered to a temperature of -45°C causing a freezing interface to propagate into the liquid. Temperatures are to be calculated as a function of time and distance from the surface boundary. The purpose of this problem is to provide a basis for examining the modeling assumptions and algorithms used by codes for the calculation of temperatures during phase changes for materials with significant latent heats.

<u>Physical Description</u>. A one-dimensional slab is occupied by a liquid at 0° C. At the beginning of the transient (t=0), the edge is instantaneously lowered to a temperature of -45°C. The freezing temperature of the liquid is -0.01°C. As heat is removed from the liquid, the freezing front propagates away from the cold surface and into the liquid (see Figure 2.4-1).

<u>Problem Solution</u>. Conductive heat transfer with phase change is governed by the following differential equation

$$k \frac{\partial^2 T}{\partial x^2} = \rho c \frac{\partial T}{\partial t} + L$$

(29)

where

- T = temperature and the units of temperature are [0]
- x = position measured into the solid/fluid region
 from the cold edge [L]

P = mass density of the fluid and of the solid $[m/l^3]$ c = specific heat of the fluid and of the solid [e/m]k = thermal conductivity of the fluid and of the solid $[e/l^2]$ L = heat of fusion $[e/l^3]$

28

t < 0	0 <u>< x <</u> ∞	$T = 0^{\circ}F$
t <u>></u> 0	x = 0	$T = -45^{\circ}F$
$0 \leq t \leq t_{max}$	x = 200	$\frac{TG}{X} = 0$

where ${\bf t}_{\max}$ is the maximum time to be analyzed

Figure 2.4-1

Slab from Semi-Infinite Freezing Liquid with One Boundary at T = -45^{OF} Reference CA-59 provides a solution for this problem of:

$$T(x,t) = T_0(1 - erf\left[\frac{x}{2(at)^{1/2}}\right]/erf(\lambda)) \text{ for } x < 2\lambda(at)^{1/2}$$
$$T(x,t) = T_1 \qquad \text{ for } x \ge 2\lambda(at)^{1/2}$$

where

T(x,t) = temperature

x = distance from the boundary

t = time

 T_1 = initial temperature of the liquid

 T_0 = boundary temperature

a =thermal diffusivity ($a = k/\rho c$)

 λ = an equation parameter that satisfies

$$\lambda e^{\lambda^2} \operatorname{erf}_{\lambda} = \frac{C(T_1 - T_0)}{L_{\pi}^{1/2}}$$

$$c = specific heat$$

 ρ = density

k = thermal conductivity

L = heat fusion

Table 2.4-1 provides a list of values of the parameter λ as a function of specific heat, temperature difference, and latent heat. When the value of λ is relatively small ($\lambda \leq 0.2$), it can be approximated by

$$\lambda^{2} = C(T_{1} - T_{0})/2L$$

<u>Assumptions</u>. In modeling the problem, it can be assumed that at a point 200 centimeters into the fluid undergoing the phase change, the temperature remains constant at the initial fluid temperature.

The following input parameter values should be used:

 $k = 528 \text{ cal/cm sec } ^{\circ} C$ $P = 0.92 \text{ g/cm}^{3}$ $c = 0.48 \text{ cal/g } ^{\circ} C$ $a = 1196 \text{ sec.cm}^{2}$ L = 144 cal/g $T_{1} = 0^{\circ} C$ $T_{0} = -45^{\circ} C$ $\frac{C(T_{1} - T_{0})}{L\pi^{1/2}} = 0.0846$ $\lambda = 0.267$

Calculated results can be compared with the values in Table 2.4-2.

<u>Output Specifications</u>. The outputs for this problem are the temperature as a function of time and distance. The temperatures are to be calculated at positions 1, 2, 5, 10, 20, 50, and 100 centimeters from the boundary at times of 0.25, 0.5, 1, 2, 5, 10, 20, 50, and 100 seconds.

Table 2.4-1

Values of the Parameter

$\frac{C(T_0 - T_1)}{1/2}$	۲
Lπ'' ²	K
0.01	0.09386
0.02	0.13236
0.03	0.16164
0.04	0.18611
0.05	0.20749
0.06	0.22667
0.07	0.24415
0.08	0.26029
0.09	0.27534
0.10	0.28945
0.20	0.39902
0.30	0.47737
0.40	0.53937
0.50	0.59095
0.60	0.63520
0.70	0.67396
0.80	0.70845
0.90	0.73951
1.0	0.76755
2.0	0.96121
3.0	1.0773
4.0	1.1596
5.0	1.2230
6.0	1.2742
7.0	1.3172
8.0	1.3540
9.0	1.3863
10.	1.4149
20.	1.5974
30.	1.6992
40.	1.7694
50.	1.8226
60.	1.8653
70.	1.9009
80.	1.0314
90.	1.9579

•-

Table 2.4-2

Time-Dependent Temperature Distribution in a One-Dimensional Slab Undergoing Phase Change

Time (seconds)	Distance (cm)	Temperature OC
0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25	1 2 5 10 20 50 100	-40.01 -35.03 -20.23 0.00 0.00 0.00 0.00
0.50 0.50 0.50 0.50 0.50 0.50 0.50	1 2 5 10 20 50 100	-41.47 -37.95 -27.42 -10.20 0.00 0.00 0.00 0.00
1.0 1.0 1.0 1.0 1.0 1.0 1.0	1 2 5 10 20 50 100	-42.51 -40.01 -32.55 -20.03 0.00 0.00 0.00
2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	1 2 5 10 20 50 100	-43.24 -41.47 -36.19 -27.42 -10.02 0.00 0.00
5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	1 2 5 10 20 50 100	-43.88 -42.77 -39.42 -33.86 -22.81 0.00 0.00
10.0 10.0 10.0 10.0 10.0 10.0 10.0	1 2 5 10 20 50 100	-44.21 -43.42 -41.06 -37.12 -29.27 - 6.23 0.00

Table 2.4-2 (continued)

Time (seconds)	Distance (cm)	Temperature OC
20.0	1	-44.44
20.0	2	-43.88
20.0	5	-42.21
20.0	10	-39.42
20.0	20	-33.86
20.0	50	-17.35
20.0	100	0.00
50.0	1	-44.61
50.0	2	-44.21
50.0	5	-43.03
50.0	10	-41.06
50.0	20	-37.12
50.0	50	-25.36
50.0	100	- 6.23
100.0	1	-44.75
100.0	2	-44.50
100.0	5	-43.75
100.0	10	-42.51
100.0	20	-40.01
100.0	50	- 32.55
100.0	100	-20.23

2.5 Hypothetical Problem to Simulate the Steady-State Temperature Distribution in a Waste Package

<u>Problem Statement</u>. This problem is intended as an extension of Cases 2.1 and 2.2 to include the waste region and an arbitrary number of annular regions. It can be used to determine the steady-state radial temperature distribution in a series of n concentric hollow cylinder (annular sections) which:

- Surround a solid cylinder with a spatially uniform heat generation rate, representative of the waste form
- Have regionally varying values of thermal conductivity
- Have interfaces with a common temperature value (there is no high thermal resistance at the interface between regions). Similarly, the interface between the solid cylinder and the smallest hollow cylinder has a unique value of temperature (no high thermal resistance acts at an interface).

The radial heat flow rate across a cylindrical surface of a radius within the range of radii of the hollow cylinders can be determined algebraically from the outside dimension of the solid cylinder and its volumetric heat generation rate. This algebraic relationship is used along with Fourier's law for conduction to obtain a boundary condition at the inside surface of each annular section in terms of the temperature gradient at that radius. Also, a known temperature exists at the outer surface of the largest annular section. Solutions for the temperature distribution are obtained progressively from the largest annular section to the smallest. For the solid section, the boundary conditions are:

- The temperature on the outside surface is known
- The radial temperature gradient at the center is zero

A sketch of the geometric configuration is shown in Figure 2.5-1.

Figure 2.5-1

N Concentric Cylindrical Annuli with Known Outside Temperature T_0 , Surrounding a Waste Region of Radius r_W in Which a Known Volumetric Heat Generation Rate of q''' Exists. Each Region Can Have a Unique But Constant Thermal Conductivity Value For each of the n annular regions, the governing equation is

$$\frac{d}{dr} \left(r \frac{dT}{dr} \right) = 0 \tag{30}$$

in terms of the general region j where $(r_i^j \le r \le r_0^j)$. The boundary conditions are:

$$r = r_{0}^{j} \qquad T = T_{0}^{j} \qquad (31)$$

$$r = r_{i}^{j} \qquad Q = -k^{j} \ 2\pi \ r_{i}^{j} \ \frac{dT}{dr} r = r_{i}^{j}$$

(32)

where

T = temperature

r = radial position

 $r_i j$ = inside radius of j^{th} annular region

 $r_0 j$ = outside radius of j^{th} annular region

kj = thermal conductivity of material of region j

- length of cylinder (the analysis could be done on a per unit length basis as it is one-dimensional)
- Q = heat flow radially out through the section

The heat flow rate through each hollow cylinder at steady-state is related to the heat generation rate per unit volume within the waste region of radius r_w by

$$Q = q^{\prime \prime \prime} \pi r_{\mu}^{2} \ell$$

(33)

where

q''' = volumetric heat generation rate in the
 waste region (0 < r < r_W)
r_W = outside radius of cylindrical waste region
 & = length of cylindrical waste region

The same differential equation and boundary conditions apply to all annular regions. After a solution is obtained for region j, the temperature at $T_i j$ is evaluated and

$$T_0^{j+1} = T_i^j$$

(34)

(35)

is used as the boundary condition for region j+1.

For constant thermal conductivity, the differential equation expressing the energy conservation principle in the waste region $(0 < r < r_w)$ is

$$\frac{d}{dr}\left(r\frac{dT}{dr}\right) + \frac{q^{\prime\prime\prime}r}{k^{W}} = 0$$

where

 k^{W} = thermal conductivity of the waste region

and the other symbols are as previously defined. The mathematical statement of the boundary conditions is:

$$r = r_{W} \quad T = T_{i}^{n}$$
(36)
$$r = 0 \quad \frac{dT}{dr} = 0$$
(37)

where T_i^n is known from evaluating the last solution obtained for annular region n.

<u>Objectives</u>. This problem is useful in representing a multi-region waste package including the waste and the engineered barriers. It can be used to evaluate WAPPA multi-region thermal analysis capabilities. Also, it can be used to evaluate ANSYS and HEATING thermal analysis methods.

<u>Analytical Solution</u>. For the jth annular region where $1 \le j \le n$, the solution for the continuous temperature distribution in that region $(r_i^j \le r < r_0^j)$ is

$$T = T_{0}^{j} + \frac{q'''r_{w}^{2}}{2k^{j}} \ln \frac{r_{0}^{j}}{r}$$
(38)

which can be evaluated at the inside radius of the j^{th} region, $r = r_j j$, to give

$$F_i^{j} = T_0^{j} + \frac{q'''r_w^2}{2k^j} \ln \frac{r_0^{j}}{r_i^{j}}$$

(39)

where all terms on the right side are known. By using Equation 34 and incrementing j in Equations 38 and 39, the temperature distribution in the $j+l^{th}$ region and the temperature at the inside surface of the j+l region can be determined.

The solution to Equation 35 for the temperature distribution in the waste region $(0 < r < r_W)$ for the boundary conditions of Equations 36 and 37 is:

$$T = T_i^n + \frac{q^{11}}{4k^W} (r_{w.}^2 - r^2)$$

(40)

(41)

and the maximum temperature occurs at r = 0 and is

$$T_{max} = T_i^{W} = T_i^{n} + \frac{q'''r_{W}^{2}}{4k^{W}}$$

where all terms on the right side of Equation 39 are known.

Assumptions.

- Each region has a unique value of thermal conductivity that can be specified at the beginning of the problem and is constant throughout the region.
- The axial heat conduction and temperature gradient are negligible in comparison to the radial.
- The heat generation is uniform throughout the waste region.

Input Specifications.

- Geometry (see Figure 2.5-1)
 - radii (for n = 7)

$$r_{0}^{6} = r_{1}^{7} = 60. (cm)$$

$$r_{0}^{5} = r_{1}^{6} = 55. (cm)$$

$$r_{0}^{4} = r_{1}^{5} = 50. (cm)$$

$$r_{0}^{3} = r_{1}^{2} = 45. (cm)$$

$$r_{0}^{2} = r_{1}^{3} = 40. (cm)$$

$$r_{0}^{1} = r_{1}^{2} = 35. (cm)$$

$$r_{1}^{1} = r_{0}^{W} = 30.5 (cm)$$

$$r_{1}^{W} = 0$$

Material Properties

 $k^{6} = 52 (w/m^{0}C)$ $k^{5} = 53 (w/m^{0}C)$ $k^{4} = 54 (w/m^{0}C)$ $k^{3} = 55 (w/m^{0}C)$ $k^{2} = 56 (w/m^{0}C)$ $k^{3} = 57 (w/m^{0}C)$

$$K' = 5/(W/M^{\circ}L)$$

$$k^{W} = 1.0 (w/m^{O}C)$$

• Boundary conditions

- Largest annular region outside temperature = $T_0^7 = 170$ (°C)
- Waste region volumetric heat generation rate = q''' = 0.001315 (w/cm³)

<u>Output Specifications</u>. The temperatures at r = 0, r_i^1 , r_i^2 , r_i^3 , r_i^4 , r_i^5 , r_i^6 , and r_i^7 are to be determined.

Temperatures determined using the analytical solution from Equations 39 and 41 are given in Table 2.5-1.

Table 2.5-1

r (cm)	k (w/m ^o C)	T (°C)	Equation
65		170.00	
60	51.0	170.096	(10)
55	52.0	170.198	(10)
50	53.0	170.308	(10)
45	54.0	170.427	(10)
40	55.0	170.558	(10)
35	56.0	170.704	(10)
30.5	57.0	170,852	(10)
0.0	1.0	201.434	(12)

Analytical Solution for Temperature Distribution

42

2.6 Hypothetical Radial Heat Transfer Analysis of PWR Fuel Assembly in a Vertical Canister

<u>Problem Statement</u>. A series of tests has been conducted to measure the thermal response of 12-foot-long PWR fuel assemblies in a vertical cylindrical canister. The tests were conducted at the Engine Maintenance, Assembly and Disassembly (E-MAD) facility on the Nevada Test Site.

A single PWR fuel assembly was enclosed in a 0.375 inch thick canister, with a 14-inch outside diameter, made from 304 stainless steel pipe. An elevation view of the canister is shown in Figure 2.6-1. The cross section of the fuel assembly section is shown in Figure 2.6-2.

<u>Objectives</u>. It is intended that the steady-state radial temperature profile be determined. The boundary conditions and fuel canister loading are similar to those that may exist in a high-level waste repository.

<u>Analytical Solution</u>. The problem will be used to assess the ability of an analysis program to represent and simulate conditions encountered in the field. No analytical solution is available.

<u>Input Specifications</u>. The dimensions of the canister are shown in Figure 2.6-1. The canister is fabricated from 304 stainless steel. Separate cases are provided for different fuel assembly powers, canister outside temperatures, and fill gases. Tables 2.6-1 and 2.6-2 summarize the conditions under which data have been gathered. Fuel assembly thermal output as a function of time is given in Figures 2.6-3 and 2.6-4.

The thermal properties, including thermal conductivity and surface emissivity, will be taken from the waste package data summary report.

<u>Output Specifications</u>. Temperatures at thermocouple locations given in Figures 2.6-5 and 2.6-6 and Table 2.6-3 will be determined and compared with measured values given in Tables 2.6-4 through 2.6-15 and Tables 2.6-16 through 2.6-27.

43

Figure 2.6-1

.

Elevation View of PWR Fuel Assembly Loaded into Canister

Cross-Section View of PWR Fuel Assembly Loaded into Canister

`

Fuel Assembly B43 Temperature Test Summary

Test Condition	Backfill	Date Completed	Data Table	Fuel Assembly Thermal Power-kW
250°F Uniform Canister Profile	Helium	12/6/79	2.6-5	0.760
300°F Uniform Canister Profile	Helium	12/7/79	2.6-8	0.760
100°F Uniform Canister Profile	Helium	12/11/79	2.6-11	0.755
500 ⁰ F Uniform Canister Profile	Helium	12/17/79	2.6-14	0.755
500°F Uniform Canister Profile	Vacuum	12/20/79	2.6-13	0.755
250°F Uniform Canister Profile	Air	1/4/80	2.6-6	0.745
300°F Uniform Canister Profile	Air	1/14/80	2.6-9	0.740
100ºF Uniform Cansiter Profile	Air	1/17/80	2.6-12	0.740
500°F Uniform Canister Profile	Air	1/24/80	2.6-15	0.735
400°F Uniform Canister Profile	Vacuum	1/30/80	2.6-10	0.730
250 ⁰ F Uniform Canister Profile	Vacuum	2/8/80	· 2.6-4	0.730
300 ⁰ F Uniform Canister Profile	Vacuum	2/11/80	2.6-7	0.725

.

.

,

Fuel Assembly D15 Temperature Test Summary

Te	st Condition	Backfill	Date Completed	Data <u>Table</u>	Fuel Assembly Thermal Power-kW
350°F	Uniform Canister Profile	Air	10/8/80	2.6-16	1.340
400°F	Uniform Canister Profile	Air	10/10/80	2.6-18	1.340
500°F	Uniform Canister Profile	Air	10/17/80	2.6-23	1.330
500°F	Uniform Canister Profile	Vacuum	10/20/80	2.6-21	1.325
500°F	Uniform Canister Profile	Helium	10/22/80	2.6-22	1.320
400°F	Uniform Canister Profile	Helium	10/27/80	2.6-17	1.315
400 ⁰ F	Uniform Canister Profile	Vacuum*	10/31/80	*	*
450°F	Uniform Canister Profile	Vacuum*	11/3/80	*	*
450°F	Uniform Canister Profile	Helium	11/5/80	2.6-19	1.305
450°F	Uniform Canister Profile	Air	11/7/80	2.6-20	1.300
550°F	Uniform Canister Profile	Air	11/12/80	2.6-26	1.295
550°F	Uniform Canister Profile	Vacuum	11/14/80	2.6-24	1.290
550°F	Uniform Canister Profile	Helium	11/17/80	2.6-25	1,285
600°F	Uniform Canister Profile	Helium	11/20/80	2.6-27	1.280

*Test backfill was not vacuum; data therefore not included

Figure 2.6-3

Canister Thermocouple Locations

Figure 2.6-4

Comparison of Calorimetry Data with Predicted Decay Heat Curve for Fuel Assembly B43

Figure 2.6-5

Canister Lid Thermowell Tube Identification (Top View of Lid)

Fuel	Assembl	ly –	Internal	1	Temperat	ture	Measurement	Test
			Thermod	:οι	uple Loo	catio	ons	

Data Channel (T/C) No.	Distance Below Top of Canister (In.)	Radius (In.)	Orientation (Degrees)	Location	
Data The	rmocouples		. .	•	
301	135.0	0	-	Canister Lid Thermowell No.	. 1*
302	· 113.0	0	-	Canister Lid Thermowell No.	1
303	86.8	0	-	Canister Lid Thermowell No.	. 1
304	73.0	0	-	Canister Lid Thermowell No.	. 1
305	53.0	0	-	Canister Lid Thermowell No.	. 1
306	37.0	0	-	Canister Lid Thermowell No.	. 1
307	25.0	0	-	Canister Lid Thermowell No.	. 1
308	135.0	3.97	315	Canister Lid Thermowell No.	. 2
309	113.0	3.97	315	Canister Lid Thermowell No.	. 2
310	86.8	3.97	315	Canister Lid Thermowell No.	. 2
311	73.0	3.97	315	Canister Lid Thermowell No.	. 2
312	53.0	3.97	315	Canister Lid Thermowell No.	. 2
313	37.0	3.97	315	Canister Lid Thermowell No.	. 2
314	25.0	3.97	315	Canister Lid Thermowell No.	, 2
315	135.0	3.03	22	Canister Lid Thermowell No.	. 3
316	113.0	3.03	22	Canister Lid Thermowell No.	, 3
317	86.8	3.03	22	Canister Lid Thermowell No.	. 3
318	73.0	3.03	22	Canister Lid Thermowell No.	. 3
319	53.0	3.03	22	Canister Lid Thermowell No.	. 3
320	37.0	3.03	22	Canister Lid Thermowell No.	. 3
321	25.0	3.03	22	Canister Lid Thermowell No.	. 3
322	135.0	3.97	45	Canister Lid Thermowell No.	. 4
323	113.0	3.97	45	Canister Lid Thermowell No	• 4
324	86.8	3.97	45	Canister Lid Thermowell No	• 4
325	/3.0	3.97	45	Canister Lid Thermowell No	• 4
326	53.0	3.97	45	Canister Lid Thermowell No	• 4
32/	37.0	3.97	45	Canister Lid Thermowell No	• 4
328T	- 25.0	3.97	45	Canister Lid Thermowell No	. 4
329	135.0	2.38	315	Canister Lid Thermowell No	• 5
330	113.0	2.38	315	Canister Lid Thermowell No	• 5
331	86.8	2.38	315	Canister Lid Thermowell No	• 5
332	/3.0	2.38	315	Canister Lid Thermowell No	• 5
333**	53.0	2.38	315	Canister Lid Thermowell No	• 5
334	37.0	2.38	315	Canister Lid Thermowell No	• 5
232	25.0	2.38	315	Canister Lid Thermowell No	. 5

^{*} See Figure 2.6-6 for illustration of thermowell locations ** Connected to heater controller C21 † Electrical check showed low internal resistance - readings may be in error

Fuel Assembly Internal Temperature Measurement Test Thermocouple Data Fuel Assembly: B43

.

DATE:	2/8/80	•		TIME:	9:00 a.m.		
TEST	CONDITIONS:	Uniform	Canister Temperature at	t 250°F	With Vacuum		
T/C 1	ю.	Temp(*F)	T/C No.	Temp(*	<u>'F)</u>	T/C No.	Temp(*F)
36	· .	347.6	428	251.4		492	222.9
36		373.7	427	255.5		491	77.1
-35()	384.0	426	258.7		490	76.0
35		386.7	425	257.Z		489	76.9
35	3	388.4	424	255.3	•	400	88.9
33.	/ K	285 7	422	251.2		486	111.9
35	5	347.4	421	252.1		485	- · · · · ,
35	(373.6	. 420	247.1		484	89.6
35	3	382.1	419	245.Z		483	115.3
35	Z	384.1	418	244.2		452	100.4
35	1 N	303.3	416	236.6		480	128.7
34	9	303.3	415	237.5		479	114.5
34	8	347.6	409	234.3	ļ	478	160.7 -
34	7	373.9	408	233.9		477	232.8
34	6	384.5	407	215.1	•	4/0	249.5
34	5	385.4	400	292.3		474	253.4
34	4 . 7	381.5	404	326.7		473	228.9
34	2	305.9	403	348.8	3	472	221.7
34	ĩ	350.6	402	356.8		471	190.0
34	0	374.9	401	359.1	i	470	199.9
33	19	384.1	400	254 1		459	204.0
33	8	385.3	323	300 8		467	196.6
21	5	381.2	397	338.1		456	205.9
31	15	304.7	396	360.8	3	465	206.0
33	14	349.9	395	368.	5	454	208.0
33	32	383.0	394	370.		453	204.2
33		383.7	373	3/2.3		402	205.9
3.		378 6	391	293.	5	460	94.2
3	28	292.3	390	329.6	5	459	197.8
32	27	329.8	389	348.		458	199.2
3	26	349.7	388	356.4	8	457	204.0
33	25	359.1	35/	350.3		430	201.3
3	(4)2	367.5	385	350.9	9.	454	190.8
3	22	356.3	384	304.	3	453	180.3
3	21	298.2	383	345.3	7	451	188.1
3	20	339.7	382	372.4	(450	193.5
3	19	302.4	381	202.4	C R	447	191.4
3	18	374.0	379	385.	2	447	198.3
3	16	375.9	378	377.	8	446	200.6
3	15	369.4	377	299.	9	445	210.3
3	14	292.3	376	344.	0	444	221.3
3	13	327.3	3/5	3/2.	3 1	443	224.7
3	12	354.9	373	383.	6	441	217.3
3	10	357.0	372	385.	9	440	228.0
3	09	358.4	371	379.	3	437	236.B
3	08	354.1	370	304.	9	436	Z39.8 244 2
3	07	310.8	369	340. 172	5 0	435	255.9
3	06	35/./	300 267	3/3.	2	437	257.7
3	04	400.5	366	383.	Ō	432	261.8
1	03	400.6	365	383.	.6	431	261.4
. 3	02	402.2	364	377.	.1	430	252.0
3	01	396.1	363	300.	.6	429	250.2

DATE: 12/6/79 TEST CONDITONS:	Uniform Canister	Temperature	TIME: 9:00 at 250°F With He	ê.m. 15um	
T/C No.	Temp(*F)	<u>T/C No.</u>	Temp(*F)	T/C Na.	Temp(*F)
362	318.3	428	257.0	492	223.0
361	329.4	427	259.5	491	78.5
360	333.7	426	264.7	490	77.3
359	333.9	425	261.3	489	78.1
358	335.1	424	261.0	488	77.7
357	327.5	423	256.7	487	83.5
- 355	264.3	422	260.1	400	111.8
333	310.3	420	· 255 0	403	100.2
353	333.1	419	256.3	483	105 2
352	332.5	418	252.5	482	161.0
351	333.2	417 -	248.3	481	143.4
350	326.9	416	237.7	480	133.0
349	287.3	415	238.0	479	111.6
348	317.9	409	174.9	478	171.5
34/	328.3	408	233.0	4//	222.8
340	333.1	407	212.0	475	223.0
344	334.4	405	281.9	474 *	257.7
343	328.0	404	304.8	473	233.6
342	289.1	403	313.6	472	224.0
341	320.2	402	315.2	471	191.9
340	330.4	401	316.1	470	200.1
339	333.2 ·	400	316.6	469	205.8
338	332.1	399	311.3	458	207.0
33/	333.9	378	114 2	40/	13/.3
330	367.3 288 3	397	323.0	400	207.3
334	320.0	395	325.5	464	208.9
332	332.5	394	325.3	463	205.3
331	331.1	393	326.4	452	209.0
330	332.0	392	318.0	461	209.4
329	325.8	-391	282.8	460	91.3
328	280.9	390	308.2	459	199.4
32/	300.3 312 8	369	317.5	438	201.5
325	316.0	300	317.1	456	207.1
324	316.3	386	317.5	455	204.7
323	317.4	385	308.8	454	193.8
322	310.9	384	289.5	453	182.9
321	284.7	383	318.0	451	193.5
320	313.6	382	111 1	450	199.1
319	322.0	361	333 3	449	201.7
310	325.5	379	JJC./ 111 A	447	209.6
316	326.9	378	326.7	445	217.0
315	321.0	377	285.8	445	232.0
314	280.1	376	316.2	444	236.7
313	305.2	375	329.1	443	244.1
312	313.1	374	332.0	442	231.3
311	314.0	3/3	331./	441	220 E
310	314.7	372	333.6	440	237.6
308	309.9	370	289.4	436	239.5
307	291.8	369	318.1	435	243.4
306	324.0	368	329.7	434	257.6
305	339.7	367	332.7	433	259.3
304	343.5	366	331.9	432	264.3
303	342.1	365	331.8	431	263.8
302	343.6 127 7	354	325.2 286 2	430	23/.8 25/ 0
301		203	*****	747	6J7.V

Fuel Assembly Internal Temperature Measurement Test Thermocouple Data Fuel Assembly: B43

DATE: 1/4/80 TEST CONDITION	IS: Uniform Cani	ister Temperature	TIME: 1:00 at 250°F With /	p.m. Air	
T/C No.	Temp(*F)	T/C No.	Temp(*F)	T/C No.	Temp(*F)
362	363.0	428	254.1	492	234.1
361	362.6	427	258.5	491	74.4
360	369.3	426	258.7	490	73.6
359	367.8	425	257.0	489	75.0
358	363.7	424	254.9	488	74.2
357	342.1	423	254.8	487	84.3
356	317.9	422	255.9	486	113.9
355	364.8	421	256.3	485	
354	366.8	- 420	250.3	484	86.7
353	369.9	419	250.3	483	109.1
35Z	373.4	418	254.3	482	165.1
351	368.9	417	253.1	- 481	147.8
350	343.8	410	240.7	450	134.1
349	334.4	413	240.2	4/3	110.4
340	303.1	403	182.3	477	133.3 -
347	369.7	400	243./	476	261 0
340	370.0	406	217 4	175	235 B
344	365.9	405	314 6	474	273.1
343	344.7	404	337.4	473	244.1
342	337.7	403	338.3	472	234.4
341	367.6	402	342.6	471	199.1
340	365.6	401	343.5	470	210.7
339	370.3	400	339.4	469	215.0
338	370.6	399	322.9	458	213.3
337	366.4	398	327.3	467	199.8
336	343.9	397	352.7	455	209.6
335	336.9	396	351.5	465	208.6
334	367.1	395	355.8	464	210.3
332	370.0	394	360.4	463	205.3
331	371.4	393	357.4	462	208.5
330	366.5	392	330.5	451	209.3
329	343.7	391	317.0	460	90.7
328	515.3	380	342.0	423	. 198.8
321	341.4 330 £	303	341.0	920	200.0
320	200.0	200	348.4	456	202.6
323	344.1	386	345.0	455	202.0
323	340.8	385	320.9	454	194.3
322	324.0	384	335.0	453	182.9
321	326.7	383	362.2	451	191.0
320	355.2	382	363.7	450	197.4
319	352.1	381	369.2	449	197.8
318	358.5	380	372.1	448	192.0
317 -	357.5	379	367.8	447	198.0
316	353.3	378	342.4	446	196.3
315	333.4 .	377	331.6	445	202.3
314	317.5	376	360.0	444	210.3
313	341.4	3/5	303.2	443	223.1
312	339.0	3/4	307.8	442	217.4
311	343.0	3/3	300.1	441	213.3
310	241.2	372	303.3 321 K	440	223.J 220 7
307	323.2	371	335 7	175	227 7
307	347.6	260	362.7	475	242.1
306	376.9	368	365.E	234	255.2
305	383.3	367	369.9	433	257.0
304	387.3	366	372.4	432	260.0
303	387.8	365	367.3	431	259.4
302	382.5	364	342.6	430	252.9
301	359.5	363	332.5	429	253.6

Fuel Assembly Internal Temperature Measurement Test Thermocouple Data Fuel Assembly: B43

55

Fuel Assembly Internal Temperature Measurement Test Thermocouple Data Fuel Assembly: B43

T/C No.	Temp(*F)	T/C No.	Temp(*F)	T/C No.	Temp(*F)
362	392.6	428	302.4	492	284.9
361	408.5	427	307.2	491	77.Z
360	417.3	426	309.3	490	75.0
359	417.6	425	308.0	489	11.2
358	416.8	424	303.8	488	/3.6
35/	411.8	423	303.0	48/	130 6
300	314.2	422	302.3	480 495	130.0
333	331.0 Ang K	420	200 4	465	
357	A15 2	410	297.3	483	33.0
352	415.0	418	309.5	482	205 6
351	414.6	417	305.4	481	179.7
350	410.4	416	280.6	480	158.9
349	354.4	415	277.3	479	132.0
348	392.1	409	280.0	478	202.4
347	409.0	408	279.5	477	252.8
346	417.3	407	247.9	476	279.4
345	416.9	406	247.7	475	266.4
344	417.0	405	340./	474	334.8
343	413.1	404	3/4.0	4/3	317.6
342	320.0	403	307.1	472	310.7
240	234.0	402	101 7	470	2/3.1
370	403.1	400	434.1	4/0	201.3
338	415 3	300	380.5	468	273.9
337	415.6	398	353.5	467	250.9
336	412.4	397	383.8	456	263.3
335	355.4	396	397.2	465	259.9
334	393.9	395	403.4	464	259.9
332	415.6	394	402.9	463	250.6
331	414.4	393	403.3	452	254.6
330	413.4	392	397.7	461	256.2
329	410.5	391	348.9	460	135.9
328	345.0	390	376.6	459	241.8
32/	376.1	389	300.8	458	245.1
320	350.9	308	333.0	437	253.2
323	334.3 70/ P	30/	301 6	450	247.0
329	101 1	285	385.9	454	253.0
327	390.6	384	356.5	453	245.1
321	349.6	383	390.8	451	250.0
320	384.3	382	407.9	450	253.3
.319	398.0	381	415.8	449	249.8
318	405.3	- 380	415.1	448	240.8
317	405.1	379	414.9	447	254.2
316	404.4	378	410.0	445	266.5
315	401.7	377	352.7	445	289.6
-314	344.4	376	389.5	444	297.1
313	3/3.0	3/5	408.3	443	311.4
312	304.3	3/4	413.6	44 <u>2</u>	302.9
311	350.7	3/3	415.2	941	231.3
200	389.7	376	411.7	. 127	310.6
308	388.2	370	356.5	436	299.1
307	361.5	369	390.9	435	309.0
306	401.1	368	408.3	434	302.0
305	423.8	367	415.6	433	306.2
304	432.0	366	414.3	432	310.2
303	430.3	365	413.0	431	307.0
302	429.8	364	409.4	430	301.7
301	426.8	363	352.9	429	300.6

DATE: 2/11/80 TIME: 9:00 a.m.
DATE: TEST	12/7/79 CONDITIONS:	Uniform	Canister Temper	TIME: 1 rature at 300°F	B:00 a.m. With Helium	
<u>T/C N</u>	<u>o.</u>	Temp(*F)	<u>T/C_N</u>	0. <u>Temp(*</u> f	<u>T/C N</u>). <u>Temp(*F)</u>
362		350.8	428	294.8	492	258.7
361		361.3	427	297.8	491	79.0
360		367.3	426	303.4	490	77.4
359		368.0	425	301.2	489	78.5
358	5	371.2	424	301.6	- 488	77.5
357		365.3	423	297.6	487	86.0
356		301.7	422	296.7	486	129.9
355		351.0	421	298.4	485	
354	,	362.5	. 420	294 2	484	G2 R
353		366.3	419	292.6	483	106.3
352		366.3	418	297.7	482	195.6
351		369.4	417	295.5	481	175.8
350) :	364.9	416	273.2	480	160.3
349) :	324.9	415	270.8	479	132.3
348		350.7	409	209.5	478	190.5 -
347		361.4	408	270.8	477	215.8
346		365.8	407	242.4	476	234.9
345	i :	367.0	406	242.0	475	240.4
344		370.7	- 405	319.8	474	309.7
343		366.1	404	337.4	473	299.4
342		326.6	403	346.9	472	302.8
341		352.7	402	350.3	471	260.4
340		362.2	401	351.0	470	264.9
339		366.6	400	353.3	469	263.B
338		366.4	399	350.5	468	257.8
337		370.2	. 398	324.7	467	241.1
336		365.4	397	346.1	465	251.9
335	i :	325.8	396	355.4	465	250.4
334		352.3	395	359.2	464	252.9
332	2	365.8	394	359.1	463	249.1
331		365.2	393	362.7	452	257.6
330)	368.3	392	356.5	461	261.3
329		363.8	391	320.4	460	142.1
328		319.5	390	340.8	459	249.4
327		339.9	389	348.1	458	249.8
326		345.6	388	351.7	457	- 257.4
325		351.0	387	351.3	456	250.8
324		351.9	386	354.6	455	248.3
323		355.0	385	347.7	454	234.3
322		349.9	384	326.1	453	221.8
321		322.8	383	349.9	451	249.4
320)	345.6	382	362.0	450	252.1
319		355.0	381	365.8	449	246.2
318		360.0	380	366.4	448	236.6
317		360.3	379	369.4	447	246.4
316		303.7	378	364.7	445	252.8
315		359.3	377	323.0	445	271.0
314		318.9	376	348.4	444	284.9
313		330.3	375	361.1	443	304.8
312		343.0	374	365.7	442	296.4
311		348.3	373	365.6	441	283.4
310		340.J 353 7	372	369.3	440	279.3
309		372.1	371	365.5	437	292.7
308		348.8	370	326.0	436	287.9
307		325.1	369	350.0	435	295.8
306		JJ0.U 171 1	368	361.7	434	298.8
305		3/1.1	367	365.0	433	300.9
304	•	3/0.3	366	365.6	432	305.7
303		3/3.3	365	367.8	431	305.3
302		5/8.4	364	363.2	430	296.9
301		3/5.1	363	323.4	429	292.6

Fuel Assembly Internal Temperature Measurement Test Thermocouple Data Fuel Assembly: B43

Fuel Assembly Internal Temperature Measurement Test Thermocouple Data Fuel Assembly: B43

:

TIME: 10:30 a.m.

DATE: 1/14/80) 15+ Uniform for	T	IME: 10:30 a.m.	-	
	Temp/*E)		Temp(*F)	T/C No.	Temn(*5)
1/6 101	TEMPT TT	1/6 101	<u>remp1 1 1</u>	170 101	10.00
362	393.5	428	297.6	492	237.4
361	395.9	427	302.2	491	73.5
360	402.7	426	302.9	490	12.2
353	401.5	425	301.0	489	74.6
358	399.6	424	273.4	400	/3.1
33/	384.3	423	270.1 205 g	407	124 6
330	33/.2	421	233.0	400	127.0
353	334.0 704 A	420	201 7	484	86 0
353	403.2	419	290.0	483	108.5
352	405.4	418	309.8	482	195.4
351	402.0	417	303.6	481	177.9
350	384.7	416	276.6	480	156.3
349	362.4	415	272.8	479	130.4
、 348	392.6	409	277.5	478	186.1
347	396.3	408	279.3	477	241.5
345	402.4	407	242.4	475	256.1
345	402.1	405	242.7	475	222.0
344	400.0	405	350.0	. 474	257.8
343	385.2	404	371.8	4/3	25/.4
342	365.3	403	3/4.4	4/2	300.0
341	333.4	402	3/3.4 970 E	4/1	200 0
340	390.4	401 -	3/3.3	4/0	276 5
328	402.3	200	364.8	468	264.4
337	200 1	398	361.2	467	247.6
336	383.4	397	384.8	466	259.6
335	365.6	396	386.0	465	255.3
334	396.1	395	391.4	454	250.5
332	402.5	394	393.7	463	244.1
331	402.9	393	391.6	452	244.9
330	399.2	392	372.4	461	247.7
329	383.5	391	353.0	450	125.5
328	347.1	390	376.4	459	236.4
327	372.6	389	375.8	458	239.9
326	372.9	388	301.0	45/	246.3
323	3/9.9	30/	302.0 379 K	430	240.3
327	376 0	285	362.2	454	251.3
322	364.5	384	366.3	453	246.2
32]	355.8	383	393.2	451	236.3
320	383.2	382	397.2	450	241.3
319 .	384.1	381	403.5	449	239.3
318	390.9	380	404.7	448	230.5
317	- 389.6	379	401.8	447	240.6
- 316	385.5	378	384.0	445	246.0
315	372.8	377	361.8	445	263.4
314	350.4	376	391.0	444	281.8
313	3/2.2	375	395.8	443	300.9
312	312.1	3/4	402.2	442	295 9
311	377 6	3/3	401.3	440	281.5
309	374.7	372	385.5	. 437	286.6
308	363.2	370	366.7	636	287.5
307	374.3	369	393.5	435	294.7
306	405.0	368	398.2	434	294.8
305	413.7	367	403.7	433	298.1
304	419.0	366	404.9	432	300.2
303	418.0	365	400.9	431	297.7
302	415.3	364	383.8	430	296.4
· 301	400.0	363	361.3	429	296.9

DATE: TEST CO	1/30/80 DNDITIONS:	Uniform	Canister Temperature at	TIME: 6:34 : 400°F Wit	D a.m. h Vacuum	
T/C No	. 1	(*F)	T/C No.	Temp(*F)	T/C No.	Temp(*F)
362	4	55.1	428	395.2	492	382.4
361	2	ROR	427	401.3	491	79.0
360			426	403.6	490	76.4
359		180 1	425	402.6	489	79.4
359		103.3 197 6	474	400.1	ARR	76.9
350		28 4	423	307 7	487	87.4
357			123	398 0	486	161.9
355		163 7	421	402.2	485	
354			. 420	307 9	484	163.0
157		187 6	419	304 0	483	117.5
352			AIR	400.9	482	275.9
351		9 181	417	308 0	481	245.4
150		183 2	416	402 1	480	210 4
240		177.7	415	100 0	479	175.6
248		165 1	• • • • •	304 0	478	271.3
347		181.3	408	202 7	477	324.5
246			400	364 9	476	347 4
345		193 5	405	366 0	475	372.7
244		188 O	405	425 3	474	401 3
242		485.0	404	449.0	473	386.3
342		434.8	403	454.1	472	396.7
341		466.5	402	471.8	471	357.1
240		463 E	401	469.4	470	365.8
330		401.J 400 E	400	10214	469	375.5
179	4	403.J	200	455 5	468	369.2
330	•	46/.U	202	431 3	467	348.4
337		400.6 405 9	397	456 8	456	369.5
330		463.3	305	471 6	465	368.6
222		434.1	305	478 5	454	368.1
227		400.3	222	476 0	463	360.6
221		400.3	202	475 6	452	368.5
330		403.0 Aqa K	392	472.7	461	359.5
320		464.0	391	426.6	450	220.4
329		403.3 126 1	390	451.5	459	331.3
227		452 2	389	463.1	458	335.0
326		462 4	388	469.9	457	343.1
325	·	477 Q	387	467.0	456	336.4
324		470 6	386	465.7	455	348.9
323		468.R	385	462.8	454	360.7
322		467.7	384	433.9	453	360.1
321		429.7	383	452.8	451	354.0
320		458.7	382	480.4	450	359.5
319		472.3	381	488.7	449	358.7
318	•	480.8	380	486.6	448	352.3
317	•	478.9	379	485.0	447	369.1
316		477.8	378	482.9	446	366.4
315		476.7	377	431.1	445	374.3
314		425.5	376	461.8	444	375.4
313		448.5	375	480.7	443	395.0
312		461.4	374	489.1	442	391.2
311		468.0	373	486.9	441	392.3
310		465.8	372	485.8	.440	402.4
309		464.9	371	484.6	437	392.6
308		465.1	370	434.1	436	386.1
307		438.8	369	452.9	435	398.4
306		471.6	368	480.6	434	394.9
305		493.4	367	488.1	433	400.6
304	•	502.1	366	485.4	432	405.7
303		499.3	365	483.4	431	402.3
302	•	497.6	364	482.2	430	393.5
301		498.9	363	431.4	429	392.6

Fuel Assembly Internal Temperature Measurement Test Thermocouple Data Fuel Assembly: B43

DATE: 12/11/79 TEST CONDITIONS:	Uniform Canister	Temperature at	TIME: 12:00 noon 400°F With Helium		
T/C No.	Temp(*F)	T/C No.	Temp(*F)	T/C No.	Temp(*F)
362	454.2	428	407.9	492	
361	459.7	427	412.1	491	81.9
360	458.7	426	415.4	490	79.2
359	465.4	425	413.4	489	82.1
358	459.9	424	412.6	488	78.9
357	459.7	423	409.4 ·	487	92.1
356	385.8	422	407.0	486	163.4
355	453.2	421	409.7	485	
354	460.2 .	420	406.5	484	107.3
353	466.5	419	404.0	483	126.6
352	462.3	418	415.4	48Z	283.3
351	457.6	417	413.0	481	254.9
350	459.3	416	417.1	480	222.1
349	433.7 454 D	415	417.0	4/9	183.4
348		409	347.7	4/6	200.2
347	437.8	408	408.2	4//	334.0
345	400.4	407	3/9.8	4/0	339.0
593	403.0	400	380.1	473	330.3
344	450 6	403	467.0	472	AU2 8
343 783	474 0	403	442.0 AAG E	472	414 5
241	455 3	402	440.J A56 6	47)	377 6
240	460.2	401	450.0	470	328 2
220	400.2	400	442 7	259 234	392.1
333 728	467.5	300	A48 5	468	380.4
337	458 6	398	433 0	457	357.0
226	X59 6	397	449.0	456	378.4
335	434.4	396	454.3	465	374.6
334	455.1	395	461.8	464	370.9
332	466.5	394	456.9	453	365.5
331	461.7	393	452.6	462	373.7
330	456.6	392	452.7	461	367.1
329	458.3	391	429.6	460	223.8
328	429.4	390	445.5	459	342.4
327	445.6	389	448.3	45B	345.1
326	446.7	388	455.7	457	353.5
325	456.3	387	450.7	456	280.6
324	451.7	385	445.4	455	362.2
323	44b.l	385	443.3	404	360.6
322	44/.1	384	434,4 127 E	433	303.1
321	431.3	363	450 3	451	361 4
22U 210	454 0	302	468 3	440	361.3
118	462.3	380	463.5	448	361.6
217	458.0	379	458.4	447	386.8
316	452.9	378	459.6	445	382.9
315	454.4	377	432.4	445	390.1
314	428.5	376	451.5	444	391.4
313	442.6	375	459.8	443	411.7
312	446.0	374	467.8	442	408.7
311	452.0	373	463.6	441	409.6
310	448.0	372	458.5	440	419.9
309	442.6	371	460.5	437	406.2
308	445.6	370	434.Z	436	397.0
307	437.0	369	452.4	435	410.1
306	457.8	368	453.0	434	400.Z
305 .	467.7	367	40/.0	433	405.3
304	4/5.7	366	402.J 155 7	432	403.8 406 1
303	4/0.8	365	430./ /F0 A	431	400.1
30Z	403.8	364	435.U 432 7	430	407.1
301	406.1	363	43C./	429	403.0

Fuel Assembly Internal Temperature Measurement Test Thermocouple Data Fuel Assembly: B43

60

DATE: 1/17/8 TEST CONDITIO	0 NS: Uniform Can	ister Temperature	TIME: 3:52 at 400°F With A	p.m. fr	
T/C No.	Temp(*F)	T/C No.	Temp(*F)	T/C No.	Temp(*F)
362	472.3	428	392.8	492	392.6
361	477.4	427	399.0	491	77.2
360	482.7	426	400.3	490	75.3
359	481.0	425	399.7	489	78.2
358	480.1	424	396.8	488	75.1
357	472.8	423	394.7	487	88.3
356	398.0	422	397.5	450	120.3
355	4/0.7	421	900,9	403	101 4
353	4//.3	419	396.1	483	121.7
352	479.6	418	408.1	482	275.4
351	478.2	417	404.7	451	247.7
350	471.2	416	409.2	480	212.3
349	443.2	415	408.2	479	171.4
348	472.0	409	402.3	478	279.2
347	4/7.7	400	401.3	475	367.1
340	402.0	407	371.3	475	329.0
744	480.2	405	435.1	474	406.8
343	473.8	404	455.0	473	392.9
342	444.6	403	400.4	472	407.4
341	473.2	402	454.3	471	367.1
340	477.4	401	462.3	470	376.9
339	481.8	400	458.8	469	381.2
338	478.9	399	455.6	408	3/0.0
33/	4/8.5	338	440.8	407 ASS	368 7
330	4/2.2	396	403.3	465	365.4
333	473.1	395	471.8	454	365.6
332	481.3	394	470.3	453	357.7
331	478.8	393	459.2	462	364.3
330	477.1	392	461.0	451	356.2
329	471.0	391	435.2	460	- 215.8
328	434.4	390	457.4	459	329.4
327	458.1	389	439.7	458	336.7
320	439.3 454 7	300	461.3	456	· 334.8
324	462.2	386	459.0	455	346.4
323	460.6	385	451.6	454.	360.2
322	456.1	384	444.2	453	358.9
321	438.7	383	469.8	451	341.9
320	485.0	382	4/8.9.	450	349.0 757 5
319	468.2	381	402.U	449	332.3 752 K
318	4/2.0	320	478.5	447	375.6
216	458.4	378	471.3	446	369.6
315	463.6	377	441.4	445	373.3
314	433.7	376	469.0	444	376.0
313	454.3	375	477.5	443	398.4
312 -	457.8	374	481.8	44Z	398.7
311	451.0	3/3	4/9.0	441	412 6
310	430.4	3/2	473.3	417	394.8
308 203	453.4	370	444.2	436	385.6
307	449.9	369	469.8	435	396.8
306	479.4	368	477.2	434	392.1
305	490.5	367	481.8	433	397.8
304	495.0	366	479.5	432	401.9
303	492.3	365	477.0	431	398.0
302	490.8	354	4/0.4	430	370.3 700 K
301	483.Z	303	441./	429	330.0

Fuel Assembly Internal Temperature Measurement Test Thermocouple Data Fuel Assembly: B43

• .

.

DATE: 12/2 TEST CONDIT	0/79 IIONS: Uniform Cani	ster Temperature	TIME: 2:38 p. at 500°F With Ya	#. Cuum	
T/C No.	Temp(*F)	T/C No.	Temp("F)	T/C No.	Temp(*F)
362	548.0	42B	488.0	492	573.4
361	554.8	427	494.4	491	84.9
360	561.7	426	497.0	490	80.9
359	559.1	425	496.0	489	85.8
358	558.4	424	493.8	488	81.5
357	560.1	423	491.2	487	92.6
356	459.0	422	494.4	485	195.8
355	545.9	421	498.7	485	116 9
354	554.5	420	494.8	484	112.6
333	P.5CC 7 333	419	492.3	403	120.0 755 R
352	555 0	410	503.6	481	328 4
350	558 8	416	500.6	480	272.9
349	524.0	415	497.2	479	228.8
348	547.7	409	432.1	478	351.4
347	555.0	408	493.4	477	347.6
346	561.5	407	471.G	476	373.5
345	558.0	406	476.9	475	375.4
344	558.9	405	519.4	474	465.8
343	561.3	404	535.1	473	461.Z
342	525.2	403	542.2	4/2 .	480.J
341	248.8	402	547.8	4/1	430.3
340	555.1	401	543.3	4/0	486 5
332	556 3	300	541.0	403	486.2
330	370.3	398	522.8	467	461.0
336	557.7	397	540.9	466	477.1
335	524.4	396	547.5	465	479.0
334	548.6	395	552.3	464	477.5
332	559.0	394	548.2	463	464.1
331	555.2	393	549.3	462	405.3
330	555.8	392	551.1	451	901.1
329	558.0	391	519.1	450	323.7
320	519.0	280	540 9	458	435.1
326	530.1	388	545.6	457	444.5
325	547.9	387	540.8	456	428.9
324	544.0	386	541.3	455	443.2
323	543.6	385	543.2	454	454.2
322	547.1	384	524.6	453	466.1
321	521.5	383	545.5	451	447.8
320	543.1	382	334.3	450	45/.3
319	54/.8	381	20U.9 EEC 8	443	403.0
310	554.0	370	556 A	447	482.1
316	550.7	378	558.9	446	476.8
315	553.9	377	522.6	445	483.7
314	518.2	376	544.9	444	480.3
313	534.4	375	554.8	443	500.9
312	539.3	374	560.7	442	499.6
311	542.9	373	557.1	441	502.3
310	537.2	3/2	33/.I 560 A	440	311.0
303	333.8 5 <u>88</u> e	3/1	524 4	· 43/ £3£	486.0
300	527.9	3/0	545.3	435	500.7
306	552.5	368	554.4	434	491.5
305	564.3	367	559.3	433	497.9
304 .	570.3	365	555.3	432	503.0
303	566.1	365	555.0	431	498.5
302	566.1	364	558.2	430	485.4
· 301	569.5	363	522.7	429	485.T

Fuel Assembly Internal Temperature Measurement Test Thermocouple Data Fuel Assembly: B43

Fuel Assembly Internal Temperature Measurement Test Thermocouple Data Fuel Assembly: B43

DATE: TEST	12/17/79 CONDITIONS:	Uniform	Canister	Temperature	TIME: 1:3 at 500°F With	0 p.m. h Helium			
<u>T/C N</u>	io .	Temp(*F)		T/C No.	Temp(*F)	<u>1/</u>	C No.	Temp(*F)	
362	2	535.5		428	485.6	-	192		
361	ŀ	538.9		427	491.4		(9)	83.3	
360		544.6		426	495.4		190	79.7	
359		538.8		425	493.8	4	489	85.6	
358		538.0		424	492.7		188	80.9	
357		543.6		423	488.8	4	487	90.0	
356		441.3		422	494.4	4	186	193.8	
300		233.8		421	498.8	4	485		
329		230./	•	420	495.9		184	120.9	
303		541.2 52/ P		419	493.3	4	483	122.2	
352	•	534.0 535 R		410	499.7		18Z	353.7	
350		547.5		416	405 6		481	325.6	
349		515.9		415	433.3		18U 170	2/5.0	
348		535.3		409	426 2		4/3 170	224.7	
347	,	538.9		408	487 R		177	348.4	-
346		544.1		407	464.1		176	343.U 378 A	
345	i	537.1		406	469.4		175	371 0	
344	l .	538.1		405	512.8	1	174	452.7	
343		544.2	•	404	525.1		173	454.0	
342		516.7		403	529.6		172	477.3	
341		536.0		402	534.1		471	450.3	
340		539.0		401	526.6	, i i	170	463.9	
339		542.7		400	524.3		469	484.0	
338		535.6		399	534.1		468	483.6	
33/		537.4		398	515.1		467	452.4	
330	•	516 0		397	530.0	4	166	481.6	
333		510.U 676 6		370	535./		465	480.3	
222		535.9		333	53/.4		164	474.9	
331		634 6		334	530.0 531 A		463	464.Z	
330		535.4		333	537.2		602	409.8	
329		542.0		201	511.9		101 160	433.4	
328		512.4		390	527.3		150 .	304.1	·
327		528.1		389	528.7		158 ·	425.4	
326	i	527.9		388	531.9		157	423.3	
325	L .	533.7		387	524.1		156	412 2	
324		526.4		386	524.9		155	442.3	
323		526.5		385	530.8		154	461.5	
322		533.1		384	516.5	4	153	460.2	
321		514.2		383	533.3		151	449.8	
320		532.1 537 8		382	538.8		150	459.6	
313		538 A		381	343.3		49	465.5	
217	'• •	531.8		300	530.0		48	458.7	
316		532.2		378	530.5		47	482.3	
315		539.0		377	543.0		14D	476.7	
314		510.9		376	517.0		142	485.7	
313		524.6		375	539.0		143	409 1	
312		526.5		374	543.6		142	430.1	
311		528.7		373	537.0		41	433.9 AC5 D	
310	ł	522.0		372	536.9		40	505.0	
309		523.1		371	544.1		137	477.8	
308		530.9		370	516.1		136	485.4	
307		519.0		369	533.0		135	497.9	
306		338.0		368	538.4		134	489.6	
305		790.I		367	541.9		133	496.6	
304		330.4 643 A		366	535.0		132	502.0	
303	•	542.4		365	535.0		131	497.7	
302	•	550.6		J04 367	542.U		130	484.4	
201				303	212.0		129	482.0	

,

Fuel Assembly Internal Temperature Measurement Test Thermocouple Data Fuel Assembly: B43

DATE: TEST	1/24/80 CONDITIONS:	Uniform	Canister	Temperati	TIME: 8:30 a.m. ure at 500°F With Air -		
T/C N	io .	Temp(*F)		T/C No.	Temp(*F)	T/C No.	Temp(*F)
362	•	552.9		428	488.3	492	571.7
361		559.4		427	496.3	491	75.4
360		566.0		426	499.2	490	73.7
359	1	563.8		425	498.8	489	77.6
358	l.	565.2		424	495.9	488	75.1
357	1	561.0		423	492.7	487	82.4
. 356		444.7		422	493.5	485	190.3
355		549.8		421	499.7	485	
354		558.5		420	496.2	484	116.8
353		562.5		419	492.2	483	112.5
352		560.Z		418	503.2	48Z	352.0
35		562.4		41/	499.3	481	324.0
350		228.9		416	498.8	480	2/8.2
343		321.3		415	493.9	4/9	223.0-
340	3	JJ2,J 850 8		409	492.7	475	320.4
34/		333.3 666 7		400	491.9	475	361 5
240		562 R		405	40/.0	475	358.3
34		565 3 -		405	4/2.3	475	455.1
34	• 2	562.2		404	222.J 520 9	473	449.2
342	5	527.9		403	546 0	472	474.9
34	i	552.8		402	551 4	471	446.8
341		550 3		401	548.1	470	459.5
33	9	564 1		400	547.4	469	483.1
33	B	560.9		399	547.4	468	487.8
33	7	563.6		398	525.7	467	465.2
330	5	561.1		397	544.7	466	480.3
33	5	527.0		396	551.1	465	483.1
334	4	552.5		395	555.6	464	482.9
33	2	563.1		394	552.5	453	472.0
33	1	560.1		393	555.4	462	477.2
33	0	562.0		392	551.1	451	469.3
32	9	559.4		391	521.0	460	332.0
32	8	521.Z		390	54U.Z	459	437.8
32		541.4		389	043.J EAG A	458	439.3
32		544.9		308	540.4 544 8	90/ AEC	449.3
32	3	551.4		30/	546.8	400	437.5 AAR R
32	7	546.I EAG A		385	543.1	454	463.8 .
32	2	549 0		384	528.2	453	459.5
32	1	523 8		383	550.2	451	455.9
32	ō	546.3		382	558.7	450	464.5
31	9	551.7		381	564.4	449	466.6
31	8 -	557.1		380	561.5	448	455.6
31	7	554.1		379	563.1	447	479.3
31	6	555.5		378	559.7	445	472.5
31	5	554.3		377	526.3	445	483.4
31	4	519.Q		376	549.8	444	475.7
31	3	536.5		375	559.4	443	433.0
31	2	542.1		374	564.9	442	490.4
31	1	540.U		3/3	561.9	441	500.2
31	0	543.1 EAE E		3/2	304.1 55) 5	440	JUJ.J 473 7
30	2	544 6		3/1	501.3 527 K	· • •3/ /22	425 1
30		532.1		3/0	519 K	430	ACK K
30		557.6		369	558.5	435	495.6
30	5	569.8		367	563.4	433	502.9
30	4	575.1		366	560.2	432	507.5
30	3	571.7		365	561.5	431	503.5
30	2	573.2		364	558.6	430	485.7
30	nī.	571.0		363	526.4	429	485.0

DATE: TEST C	10/8/80 CONDITIONS:	Uniform	Canister	Temperat	TIME ure at 350	: 8:0 • F Wit	0 a.m. h Air			
T/C No	<u>.</u>	Temp(*F)		<u>T/C No.</u>	Ten	•(•F)		T/C No.		Temp(°F)
362	1	501.5		428	352.	1		492		318.2
361	-	503.2		427	359.	8		491		88.2
360	1	510.3		426	362	8		490		86.8
359	:	511.6		425	362	,4		489		88.4
358	:	511.2		424	356	5		488		87.0
357		487.0		423	353	.8		487		100.0
356		429.4		422	355	.6		486		150.0
355		495.3		421	359	.5		485		139.2
354		499.0		420	352	.7		484		106.6
353		504.8		419	349	.8		483		132.2
352		508.6		418	353	.)		482		231.2
351		507.1		417	343	.4		481		206.4
350		487.1		416	304	.0		480		178.6
349		456.3		415	297	.6		479		146.9
348		499. 9		409	311	.8		478		169.4 -
347		501.5		408	312	.>		4//		299.2
340		509.3		407	2/2	.5		476		310.1
343		511.2		405	2/1	.¥		4/5		293.2
344		310.2		405	434		•	4/4		331.2
242		400.3		404	470	. 1		4/3		240 6
342		430. 3 600 7		403	4/2	.2		4/2		243.3
340		499.7		401	476			4/1		207 0
2 20		507.2		400	475	2		460		301 2
118		508.8		300	459	ĩ		403		299.4
337		507.9		308	447	2		457		281.3
336		489.4		307	485	1		466		296.0
335		454.2		396	484	R		465		295.2
334		499.4		395	488	.7		454		296.7
332		505.9		394	490	.7		463		288.0
331		507.7		393	491	.2		462		294.4
330		506.1		392	468	.7		461		294.5
329		488.0		391	432	.7		460		193.0
328		432.9		390	469	.7		459	۵.	279.0
327		470.7		389	468	.1		458		280.9
326		468.9		388	473	.5		457		289.1
325		477.4		387	476	.3		456		283.1
324		478.8		386	475	.8		455		285.4
323		477.5		385	455	.1		454		268.3
322		460.8		384	45/	.4		453		250.8
321		444.0		383	498	.2	•	451		264.0
320		485.0		382	301 505	.3		450		274.8
319		482.9		381	505			449		270.3
318	•	472.3		360	507	·¦		448		226 2
- 31/		473.8		3/3	203	•		44/		206.1
310		432.0		3/6	404	.9		440		316 1
313		474.2		377	433	. 4		443		314.5
212		467 4		375	503	.;		444		322.6
112		463 0		373	507	· 1		442		304.2
211		471 1		373	507	.3		441		290.4
310		473.6		372	507	.9		440		295.0
309		473.9		371	487	.4	-	437		340.0
308		459.7		370	456	.1	•	436		339.1
307		471.3		369	497	.0		435		345.9
306		515.7		368	501	.3		434		359.0
305		524.0		367	505	.6		433		362.6
304	•	529.3		366	507	.5		432		367.3
303		529.9		365	505	.1		431		365.9
302		527.5		364	486	.5		430		350.0
301		507.9		363	454	.5		429		350.5

Fuel Assembly Internal Temperature Measurement Test Thermocouple Data Fuel Assembly: D15

Fuel Assembly Internal Temperature Measurement Test Thermocouple Data Fuel Assembly: D15

DATE: 10/27/80 TIME: 8:00 a.m. TEST CONDITIONS: Uniform Canister Temperature at 400°F With Helium

<u>T/C No.</u>	Temp(*F)	T/C No.	Temp(*F)	T/C No.	Temp(*F) .
362	495.1	428	390.3	492	418.4
361	497.9	427	395.6	491	91.4
360	499.7	426	402.3	490	88.7
30¥ 926	498.1	425	J98.6	489	90.9
357	200.9	424 127	322.1	488	88.3
356	43/./ . Alg 2	422	401 0	40/	100.4
355	494.1	421	402.0	485	103.2
354	499.9	420	195.4	484	113.1
353	498,7	419	395.0	483	138.1
352	497.6	418	403.7	482	268.6
351	499.9	417	401.0	481	239.0
320	498.2	416	366.2	480	201.9
343 348	400.8	413	362.2	479	166.3
347	493.3 ·	408	300.4	4/5	429.8 770 5
346	499.7	407	303.5 370 L	476	367 9
345	497.8	406	339.9	475	335.0
344	501.5	405	445.5	474	405.5
343	498.6	404	473.9	473	401.3
342	458.8	403	475.5	472	420.6
341	497.0	402	473.6	471	359.3
340.	477.7	401	4/2.7	470	348.6
338	497.9	300	474.6	409	J24.3 354 2
337	501.8	398	453.8	460	328.7
336	500.3	397	486.0	456	344.1
335	456.8	396	487.8	465	340.6
334	497.5	395	487.2	454	339.5
332	499.1	394	485.4	463	327.7
331	496.5	393	488.8	452	333.7
330	499.3	372	480.1 AAS 0	461	<u>J33</u> .8
328	447 2	300	442.3	400	217 2
327	478.4	389	477.2	458	319.2
326	474.6	388	476.7	457	328.B
325	475.2	387	474.9	456	323.2
324	475.5	386	477.0	455	327.1
323	478.Z	385	474.2	454	314.1
322	4//.4	384	456.7	453	296.3
320	ARR 7	303	432.0	150	318.4
319	488.2	381	497.5	440	320.9
318	489.8	380	495.7	448	321.8
317	488.7	379	498.1	447	344.5
316	491.7	378	496.7	445	368.6
315	489.4	377	452.3	445	401.0
314	440.0 176 1	3/0	491.3	444	396.1
212	475 R	373	49/./	443	399.7
311	474.1	373	47/.1	442	360.1
310	473.1	372	498.1	640	367 3
309	476.5	371	497.5	437	400.2
308	476.6	370	456.1	436	390.0
307	462.4	369	492.9	435	401.8
306	503.6	368	498.8	434	395.8
305.	513.4 514 0	367	498.0	433	400.4
304	514.V 510 R	300 365	430.U 407 9	432	407.1
302	512.8	364	497 1	431 430	404.0 107 7
301	512.4	363	453.5	429	386.5

DATE: 10/10/80 TIME: 4:00 p.m. TEST CONDITIONS: Uniform Canister Temperature at 400°F.With Air-TIME: 4:00 p.m. T/C No. Temp(*F) T/C No. Temp(*F) T/C No. Temp(*F) 362 361 529.6 428 427 393.3 492 491 418.2 531.5 536.2 400.8 91.7 89.4 360 426 425 402.0 490 359 534.5 400.0 489 92.4 90.5 358 535.2 396.4 424 488 357 522.5 423 395.1 356 355 354 353 487 98.9 402.8 404.6 443.0 422 421 486 165.0 531.3 485 148.7 420 536. 396.6 484 117.5 537.6 395.7 483 132.4 352 351 539.3 418 417 407.6 482 481 539.1 399.1 238.9 350 525.0 416 369.6 480 204.7 349 485.9 364.2 371.5 415 479 348 347 165.5 529.3 409 478 237.7 532.2 408 374.3 477 346 345 344 329.8 536.6 407 406 340.4 476 475 352.4 536,4 342.5 329.2 537.3 405 468.4 474 473 343 342 341 340 404.4 525.1 404 500.9 399.8 489.0 403 503.5 472 416.5 532.2 402 505.5 471 362.5 533.3 401 504.9 470 339 338 337 336 335 536.6 400 504.4 469 364.7 536.6 399 398 497.3 468 364.1 537.7 467 482.3 336.0 526.1 397 518.1 466 348.2 489.4 395 518.8 465 343.7 334 332 533.8 395 520.8 464 340.5 537.5 394 522.1 463 329.9 331 537.5 393 523.6 462 335.8 330 537.2 392 507.1 461 329 328 327 326 337.4 525.3 391 471.7 460 322.3 465.5 390 507.3 459 458 457 316.2 502.1 389 506.5 320.0 501.8 388 508.2 330.3 325 507.1 387 509.4 456 323.4 324 506.3 386 509.6 455 327.7 323 506.6 495.1 385 454 322 498.2 384 489.3 322 321 320 319 318 317 453 303.1 477.1 383 529.0 323.2 451 516.9 382 533.6 334.6 450 517.0 381 380 535.7 332.3 449 522.1 536.5 448 322.8 379 378 522.3 536.7 447 340.3 316 522.3 522.4 446 351.8 315 511.5 483.5 377 445 375.3 314 469.4 376 375.0 313 503,1 375 532.7 443 386.3 312 503.4 374 535.1 442 376.3 311 310 505.4 373 533.4 441 368.2 506.2 535.5 524.1 490.0 530.2 536.2 372 440 370.9 506.3 309 308 307 306 305 305 304 303 371 437 398.8 497.7 370 436 390.6

Fuel Assembly Internal Temperature Measurement Test Thermocouple Data Fuel Assembly: D15

67

537.5

537.9

536.9

524.2

483.4

435

433

432

431

430

429

401.0

398.9

403.8

408.3

404.5

391.6

392.1

369 368

367

366

365

364

363

500.5

545,5

554.7

557.4

556.3

555,9

544.0

302

301

Fuel Assembly Internal Temperature Measurement Test Thermocouple Data Fuel Assembly: D15

11/5/80

TIME: 8:00 a.m.

DATE: TEST CO	11/5/80 NDITIDNS: Uniform Canis	ter Temperature	TIME: 8:00 a. at 450°F With He	m. 11um	
T/C No.	Temp(*F)	T/C No.	Temp(*F)	T/C No.	Temp(*F)
362	525.9	428	437.6	492	519.1
361	528.5	427	444.2	491	90.9
360	530.2	426	451.6	490	87.8
359	531.2	425	448.4	489	90.4
358	534.3	424	447.5 ·	488	87.2
357	533.1	423	442.1	487	99.3
356	446.0	422	445.1	485	178.3
355	525.0	421	445.8	485	169.6
354	530.3	420	442.4	484	118.1
353	528.9	419	440.9	483	137.7
35Z	529.9	418	453.0	482	309.9
351	533.0	417	450.7	481	276.4
350	533.6	416	443.0	480	232.7
343	432.9	413	440.3	4/9	186.0
345	520.1	409	440.3	4/8	205.1
34/	520.7	400	440.0	4//	303.3
240	530.1 ·	407	431.3	9/0	304.0
242	530.4 534 6	405	430.3	478	3/3.1 856 B
242	· 533 g	202	505.9 505 9	472	455 0
342	494 5	403	500.0	472	471 2
341	527.9	402	507 6	471	402.9
340	529.7	401	509.0	470	391 4
339	529.6	400	510.5	469	409.0
338	530.3	399	514.8	458	416.0
337	534.6	398	490.3	457	384.8
336	535.1	397	517.5	465	398.5
335	493.0	396	519.7	465	398.6
334	527.9	395	519.0	454	401.5
332	528. 9	394	519.5	463	385.4
331	528.7	393	523.3	452	389.8
330	532.2	392	523.0	451	388.7
329	533.1	391	484.0	460	279.1
328	484.7	390	510.9	459	°376.9
327	511.1	389	510.4	458	378.8
326	507.9	388	509.5	457	. 389.6
325	509.4	387	509.8	456	382.5
324	511.2	386	512.7	455	393.6
323	514.2	385	512.3	454	376.9
322	515.4	384	492.9	453	348.0
321	489.6	383	J23.J 530 6	451	307.5
320	510 6	302	526.0	450	3//./ 376 B
212	513.8	301	526.3	449	370.3
310	- JCI.U 522 A	300	520.7	440	431 0
317	525 6	3/3	532 3	44/	414 5
210	525 B	370	489 3	440	427 4
218	483.2	376	522.3	444	426 R
212	508 B	375	528.5	441	445 3
312	508.7	374	528.0	447	436.8
311	506.5	373	528.1	441	434.3
310	508.2	372	531.7	440	445.4
309	512.1	371	533.0	437	451.9
308	514.3	370	492.7	436	438.3
307	498.2	369	523.7	435	451.3
306	533.1	368	529.3	434	443.7
305	542.0	367	528.2	433	449.4
304	542.5	366	528.5	432	456.3
303	541.6	365	530.4	431	452.5
302	- 544.2	364	532.6	430	439.3
301	545.9	363	490.2	429	433.1

Fuel Assembly Internal Temperature Measurement Test Thermocouple Data Fuel Assembly: D15

DATE: TEST CO	11/7/80 NDITIONS: Uniform Cani	ister Temperature	TIME: 8:00 at 450°F With	a.m. Air-	
T/C No.	<u>Temp(*F)</u>	T/C No.	Temp(*F)	T/C No.	Temp(*F)
362	562.2	428	436.8	492	517.4
361	564.8	427	445.6	491	90.6
360	566.1	426	449.9	490	87.6
359	568.1	425	449.4	489	90.1
358	571.2	424	444.8	488	87.0
357	559.5	423	441.8	487	99.0
356	473.6	422	447.8	486	179.7
355	558.9	421	450.1	485	171.0
354	564.8	420	444.2	484	116.8
353	565.8	419	443.0	403	137.2
352	568.3	418	453./	. 402	312.1
350	707.1 650 0	416	431.4	401	220 6
320	535.0	410	447.1	470	123 2
345	562 5	409	245 5	478	266.6-
347	565 6	408	445 5	477	360.0
346	567.6	407	431.6	476	380.1
345	569.0	406	436.9	475	369.6
344	571.9	405	503.5	474	462.8
343	561.2	404	535.2	473	452.7
342	521.9	403	538.4	472	469.2
341	563.9	402	537.4	471	410.5
340	566.1	401	539.6	470	405.4
339	567.8	400	540.9	469	417.4
338	568.1 .	399	535.3	468	414.6
337	570.6	398	512.8	467	383.5
336	561.8	397	547.5	466	399.9
335	519.9	396	549.3	465	401.0
334	503.0	395	550.Z	464	404.1
332	567.5	394	551.9	403	387.1
331	207.3 Éco 7	333 -	300.1 547 5	402 "	391.0
220	500.7	332	502 8	460	284 2
323	506 3	300	536 R	450	393 2
327	540.1	380	537.5	458	386.3
326	538.6	388	538.2	457	397.3
325	540.6	387	540.2	456	389.2
324	542.4	386	541.7	455	401.3
323	544.6	385	531.9	454	374.6 - 1
322	536.9	384	519.4	453	335.3
321	512.9	383	557.9	451	361.0
320	551.9	382	563.1	450	380.7
319	552.1	381	564.3	449	388.1
318	555.0	380	567.6	448	384.9
317	- 333.¥	3/9	30/.0	44/	403.3
316	22/.3 549 7	3/8	33/.3 515 A	440	402.3
313	502 7	3//	557 6	440	411.0
217	535 2	376	564 4	447	473 6
313	537.1	374	564.5	. 442	433.6
311	537.7	373	564.9	441	438.6
310	538.9	372	568.B	440	451.1
309	541.0	371	559.6	437	451.7
308	535.0	370	519.1	436	437.2
307	529.9	369	558.0	435	449.7
306	573.7	368	564.4	434	444.0
305	583.4	367	565.4	433	449.9
304	585.1	365	566.4	432	456.4
303	585.2	365	566.7	431	452.5
302	586.1	364	558.5	430	435.3
301	577.2	363	516.9	429	433.6

.

.

.

Fuel Assembly Internal Temperature Measurement Test Thermocouple Data Fuel Assembly: D15

DATE: 10/20 TEST CONDIT	/80 IONS: Uniform Can'	ister Temperatur	TIME: 8:00 a e at 500°F With V	. n. Acuum	
T/C No.	Temp(*F)	T/C No.	Temp(*F)	T/C No.	Temp(*F)
362	546.2	428	495.5	492	614.1
361	609.2	427	503.2 '	491	94.6
360	617.3	426	505.1	490	90.8
359	615.3	425	503.9	489	94.0
358	610.2	424	500.8	488	90.1
357	606.0	423	499.2	487	101.9
356	496.9	422	496.3	486	202.5
355	594.5	421	499.8	483	188.9
324	610.0	. 420	493.9	404	127.9
333	617.7	418	491.2	463	352 0
351	609 1	417	JUI./	481	316 8
350	606.4	416	495.S	480	270.4
349	553.1	415	490.9	- 479	223.0
348	596.9	409	493.5	478	301.2
347	609.9	408	493.8	477	369.7
346	618.0	407	495.3	476	394.1
345	615.2	406	505.2	475	389.1
344	611.4	405	541.1	474	486.9
343	607.9	404	573.Z	473	480.8
342	334.8	403	585.Z	4/2	506.3
341	250.4	402	591.0	4/1	4/1.3
340	510.5 515 8	400	387.2 507 5	4/0	401.3
338 .	614 3	399	302.3 582 5	469	454.2
337	610.6	398	548.4	467	416.9
336	608.9	397	584.1	466	441.6
335	553.5	396	595.7	465	451.6
334	598.4	395	601.7	454	459.9
332	616.1	394	599.2	463	442.4
331	613.2	393	596.1	462	436.9
330	608.8	392	592.1	461	434.2
329	600.8 643 7	331	241.1	450	319.3
320	· 241.7	350	570.2	473	473 2
327	584 R	388	590.7	457	432.0
325	593.8	387	588.3	456	421.0
324	591.4	386	583.9	455	444.6
323	585.6	385	580.5	454	449.5
322	584.5	384	552.8	453	436.4
321	547.8	383	593.0	451	438.2
320	587.7	382	608.3	450	438.9
319	597.3	381	014.5	449	433.7
318 -	503.5	300	D12.2	448	435.0
31/	503.5 508 6	373	605 1	44/	455 1
310	596.3	377	546 R	440	473.6
314	540.6	376	592.2	444	471.0
313	574.2	375	608.B	443	492.3
312	583.7	374	615.4	442	488.8
311	589.4	373	612.3	441	490.3
310	587.7	372	608.6	440	501.6
309	582.9	371	606.8	437	500.7
308	583.0	370	552.9	436	488.D
307	560.5	369	573.7	435	207.2
306	500.5 525 2	308 367	635 A	4 3 4 A 3 3	473.U 100 k
305	620.3	307 36K	612.1	433	501.5
307	629.6	365	607.0	221	498.5
302	624.6	364	606.D	430	493.7
301	623.7	363	549.5	429	492.2

DATE: TEST C	10/22/80 ONDITIONS:	Uniform	Canister T	emperatu	TI re at 5	ME: 8:0 00°F Wit	0 a.m. h Helfum			
T/C NO	<u>. 1</u>	emp(*F)	I	<u>/C No.</u>	Te	πp(°F)		T/C No.		Temp(*F.)
362	5	70.3		428	48	2.4		492	1	615.9
361	5	72.9		427	48	9.5		491		95.2
360	ŝ	75.1		426	49	5.1		490		91.5
359	5	74.2		425	49	2.3		489		94.9
358	5	74.6		424	49	0.9		488		90.8
357	5	73.5		423	48	6.2		487		102.6
356	4	81.4		422	49	0.3		486		196.7
355	5	68.9		421	49	2.7		485		188.9
354	5	574.1		420	48	8.3		484		131.2
353		573.0		419	48	6.5		483		141.9
352	5	572.4		418	50	0.1		482		348.0
351		573.2		417	49	7.7		481		314.5
350		573.9		416	49	5.5		480		261.1
349		37.8		415	45	1.2		4/9		214./
348		5/0.6		409	45	2.7		4/8		298.9
34/		5/3.0		408	45	2.8		4//		3/3.3
340		3/4.¥ 572 E		407	43	ώ.U		4/6		379.0
345		5/3.3		400	51	14.8 10 8		4/3		393./
344		7/24.1 574 E		403	56	0.0		473		437.C 195 N
243		5/4.3 [30]		407	50	3 1 3 1		472		502 K
242		337.3 177 9		402	50	7 A		471		A67 6
240		572.E 573 8		401	51	2 A		470		471.4
270	i	574 2		400	5.	1.5		469		474.9
338	i	573.0 •		399	5	5.7		458		453.2
337	i	575.0		398	5	4.9		467		418.2
336		575.5		397	50	51.6		455		439.8
335		538.0		395	5	3.5		465		444.9
334		572.1		395	5	53.5		464		450.3
332		573.3		394	5	52.3		463		434.6
331		571.6		393	5	53.8		462		437.2
330	4	572.6		392	5	53 .3		461		431.5
329	!	573.7		391	5	28.6		460	.	316.3
328		529.4		390	5	55.3		459		415.9
327	1	555.9		389	5	54.6		458		418.1
326		552.6		388	5	54.3		457		427.9
325	-	554.9		387	5	52.9		456		419.5
324	1	554.4		386	5	53.3		455		437.9
323		554.8		385	5	52.9		454		431.0
322		556.0		384	3.	3/.8		453		408.1
321	:	534.4		383	2	D/./ 77 E		451		415.9
320		504.4		382	5 E	72.0		450		423.1
319		203.Y 565 6		381	3	73.0		449		428.1
210		303.0 845 1		300	3	/1.0		448		455 4
-31/		303.1 666 n		3/3	5	72.6		441		467 4
210		500.0		370		/J.U 28 2		440		472 3
212		528 N		375	ž	57.5 66 7		444		470 1
212		553.2		175	š	72 R		443		491.7
313	•	552.9		374	5	73.0		442		ARR.2
211	,	551.3		373	5	71.3		441		489.B
310	1	551.1		372	5	72.5		440		501.3
309		552.4		371	5	73.8		437		498.2
308		554.7		370	Š	37.5		436		484.2
307		543.2	•	369	Š	68.0		435		499.7
306	1	577.6		368	Š	73.3		434		485.7
305	•	586.2		367	5	72.8		433		492.1
304	•	587.1		366	5	71.4		432		498.5
303	l .	584.7		365	5	71.0		431		493.8
302	2	585.0		364	5	73.2		430		482.9
301		586.7		363	5	35.2		429		477.8

Fuel Assembly Internal Temperature Measurement Test Thermocouple Data Fuel Assembly: D15

71

Fuel Assembly Internal Temperature Measurement Test Thermocouple Data Fuel Assembly: D15

DATE: 10/1	7/80		TIME: 8:00 a.	. fi.	
IESI CONDII	IUNS: UNITOTA CENT	ster lemperature	AT DOU'F WITH AT	r	
T/C No.	Temp(*F)	T/C No.	Temp(*F)	T/C No.	Temp(*F)
362	600.9	428	492.5	492	610.4
361	606.8	427	500.3	491	93.9
360	612.7	426	501.7	490	90.5
359	609.0	425	500.6	489	93.7
358	607.8	424	496.6	488	89.8
357	601.5	423	495.0	487	101.8
356	505.0	422	498.1	486	202.1
355	599.2	421	501.6	485	191.9
354	603.1	. 420	495.2	484	126.6
333	611.4 500 B	413	492.6	403	139.8
352	600.3	417	505.5	402	300.1
350	601 4	416	500.5	480	322.4
349	550 0	415	47/11	470	228 5
348	601.1	409	431.3	47R	- 302 1
347	607.2	408	A06 0	477	366.6
346	612.7	407	496 9	476	390.1
345	609.D	406	506.1	475	385.9
344	. 608.9	405	546.4	474	483.6
343	603.0	404	576.7	473	478.2
342	561.6	403	583.2	472	503.7
341	602.5	402	587.5	471	472.2
340	607.6	401	583.9	470	483.5
339	611.6	400	5B0.1	469	482.3
338	608.0	399	579.7	468	455.6
337	607.8	398	555.2	457	425.6
336	0U3.3	397	588.5	455	451.8
335	500.0	330	593.7	485	451.2
334	611 7	375	598.2	404	407.8
331	611./ 607 C	324	333.1 503 P	403	441.6
330	£07.9	333	273.0 507 9	452	444./
320	601 8	301	507.C 545 7	450	120.0
328	546 2	390	570 7	450	213 5
327	580.2	389	582.9	458	415.8
326	581.9	388	587.5	457	. 424.8
325	588.4	387	584.2	456	411.B
324	584.5	386	581.6	455	432.3
323	583.0	385	576.3	454	442.6
322	580.1	384	560.5	453	437.9
321	553.3	383	597.8	451	437.9
320	591.0	. 382	606.4	450	439.7
319	594.0	381	610.9	449	435.1
- 318 .	599.0	380	607.8	448	436.2
31/	330.4 565 A	3/3	600 4	44/ 845	40/.3
310	555.0 500 g	3/0	555 3	440	400.0
315	545 5	375	507 0	443	403.3
313	577.1	375	607.0	443	491.4
312	581.3	374	611.3	447	489.7
311	585.0	373	606.9	441	491.2
310	581.9	372	606.4	440	502.4
309	580.0	371	602.4	437	498.1
308	578.5	370	560.4	436	489.3
307	569.1	369	598.3	435	503.6
306	612.2	368	508.0	434	495.0
305	624.6	367	611.6	433	502.1
.304	629.0	366	608.0	432	508.3
303	624.6	365	605.0	431	50Z.5
302	622.7	364	601.Z	430	489.7
301	618.5	363	557.1	429	489.5

• -

.

Fuel Assembly Internal Temperature Measurement Test Thermocouple Data Fuel Assembly: D15

DATE: 11/1	4/80		TIME: 12:00	n00n	
TEST CONDIT	IONS: Uniform Cani	ster Temperature	at 550°F With Va	CUUTA -	
T/C No.	Temp(*F)	T/C No.	Temp(*F)	T/C No.	Temp(*F)
· 362	637 B	428	537.9	492	590.4
361	643.7	427	548.0	491	87.2
360	649.3	426	551.0	490	82.0
359	647.9	425	550.3	489	87.9
358	643.9	424	546.7	488	84.2
357	646.5	423	544.0	487	80.9
356	509.7	422	543.0	400	204.1
355	635.7	421	247.0	403	126 4
354	044.2	420	543.5	483	117.2
323	040.J 6/5 1	419	541.1	482	386.7
352	642 5	417	372.3 640 0	481	354.9
350	646 3	416	510 K	480	292.3
349	598.7	415	531.8	479	234.3
348	638.2	409	537.8	478	349.2
347	644.3	408	538.0	477	342.2
346	649.7	407	536.7	476	363.0
345	647.3 .	406	546.4	475	365.7
344	645.0	405	589.0	. 474	467.3
343	647.6	404	617.3	4/3	404.U
342	600.1	403	622.3	4/2	430.0
341	639.3	402	626.5	4/1	470.0 407 N
340	044.5	401	624.1	4/0	517.4
333	648.3 ·	900	627 1	468	516.7
330	643.9	333	627.1 60/ 8	467	502.7
33/	649.3	397	626 6	466	527.3
335	598.6	396	631.0	465	529.3
334	639.3	395	634.9	464	519.6
332	647.4	394	632.5	463	491.9
331	644.9	393	630.4	452	488.3
330	642.3	392	634.3	461	481.6
329	646.7	391	588.3	450	368.4
328	589.2	390	619.8	459	- 4/0.3
327	621.5	389	621.2	458	4/1.0
326	621.7	388	024.0	43/	473 6
325	028.1	30/	622.J	455	491.9
329	523.0 521 6	385	624.2	454	502.1
323	627.5	384	598.5	453	488.6
321	594.1	383	634.5	451	479.1
320	630.0	382	642.5	450	485.1
319 -	632.5	381	646.8	449	488.7
318	637.7	380	644.5	448	490.9
317	636.3	379	641.1	447	531.2
316	633.4	378	545.4	440	542 4
315	637.4	3//	595.0	440	593.9 527 E
314	26/.4	3/6	634.U 643 8	444	546.2
313	617.7 620 A	373	647.7	442	538.0
312	622.R	373	645.0	441	539.5
310	621.7	372	642.0	440	548.4
309	618.6	371	646.8	. 437	506.5
308	625.3	370	598.3	436	533.2
307	604.9	369	634.7	435	547.7
306	646.8	368	643.6	434	538.5
305	659.1	367	646.7	433	547.1
304	663.6	366	644.D	432	554.4
303	660.2	365	640.3	431	549.6
302	656.9	364	646.1	430	536.1
301	660.9	363	372.8	429	534.V

Fuel Assembly Internal Temperature Measurement Test Thermocouple Data Fuel Assembly: D15

DATE: TEST (11/17/80 CONDITIONS:	Uniform	Canister Tempera	TIME: ture at 550°F W	B:OC a.m. 1th Helium	
T/C N	<u>. 1</u>	Temp(*F)	T/C No.	Temp(*F)	T/C No	. <u>Temp(*F)</u>
362	(514.7	428	544.3	492	606.0
361		518.5	427	551.6	491	\$4.5
360	1	626.4	426	555.7	490	90.3
359	1	623.7	425	553.4	489	\$3.7
358	(617.6	424	551.9 ·	488	88.0
357		625.5	423	548.3	487	97.2
356		515.5	422	544.7	486	213.6
355	ł	613.3	421	548. <u>8</u>	485	211.4
354		619.8	. 420	544.6	484	131.1
353		624.3	419	542.2	483	133.0
352			418	554.0	48Z	392.9
321		C1C.4	417	551.3	. 481	368.Z
330		0/J.J Coc 9	410	546.9	480	296.4
343		505.2 615 A	413	539.5	4/9	245.6
340		618 0	403	344.1	4/8	332.1
346		626 5	407	344.3 Kaa k	4// A76	337.3 305 E
345		622.2	406	544.0	4/0	303.3
344		618.3	405	577 3	473	200.3 470 1
343		625.9	404	597.R	473	471 5
342	1	586.5	403	602.2	472	501.5
341		616.4	402	608.4	471	472.6
340		619.5	401	604.6	470	491.2
339	•	625.4	400	595.7	459	518.4
338		621.5	399	610.1	468	529.6
337	l	678.2	398	582.4	467	508.9
336	1	626.8	397	606.5	456	523.5
335	:	585.2	396	610.4	465	531.7
334	1	616.3	395	616.2	454	532.6
332		624.4	394	612.2	463	500.7
331	1	620. 2	393	607.5	462	487.2
330		615.9	392	616.5	451	475.6
329		625.0	391	576.9	460	. 361.1
328		577.9	390	601.0	459	469.7
327		601.8	389	60Z.Z	458	470.5
326		600.6	368	608.0	457	478.6
323	1	609.4 605.6	387	503.D	456	· 472.2
324		600.0	300	57/./ 607 6	455	- 497.8
323		277.3 610 9	303	585 0	454	512.0
322		582 1	204	612 1	400	430.0
320		609.3	382	618.6	450	4/3./
319		610.4	381	624.8	410	403.2
318	•	618.0	380	620.7	449 448	494.5
317	•	614.6	379	615.2	447	523.6
316		609.7	378	624.6	446	518.1
315		618.4	377	582.1	445	526.7
314		576.3	376	611.4	444	523.2
313		598.7	375	618.7	443	548.6
312		600.5	374	624.9	442	545.3
311		605.1	373	621.0	44)	545.7
310		602.2	372	615.5	440	556.6
309		595.8	371	625.5	437	507.3
308		608.7	370	584.9	436	534.2
307		590.0	369	612.2	435	547.1
305		621.0	368	618.9	434	541.2
305	•	630.6	367	624.Z	433	549.3
304		030.8	366	620.0	432	556.6
303		032.1	365	614.1	431	551.1
302		020.8 626.6	364	624.8	430	543.5
301		050.4	363	582.9	429	539.3

Fuel Assembly Internal Temperature Measurement Test Thermocouple Data Fuel Assembly: D15

DATE: 11/12/80 TEST CONDITIONS. TIME: 8:00 a.m. erature at 550°F With Air

EST	CONDITIONS:	Uniform (Canister'	Temperature at	550°F With
-----	-------------	-----------	-----------	----------------	------------

<u>T/C No.</u>	<u>Temp(*F)</u>	T/C No.	Temp(*F)	T/C No.	<u>Temp(*F)</u>
362	645.9	428	540.7	492	607.3
361	644.6	427	549.6	491	92.1
360	646.8	426	551.4	490	87.6
359	644.3	425	550.6	489	91.5
358	641.7	424	546.9	488	87.6
357	640.9	423	544.9	487	95.0
356	535.4	422	549.2	486	213.6
355	642.5	421	551.7	485	197.9
354	544.9	420	547.5	484	134.7
333	044.D 6/0 7	419	546.4	483	129.4
352	640 A	418	557.9	482	394.6
350	630 0	417	553.3	481	365.3
349	608.1	415	342.2 535 D	480	293.7
348	645.8	406	533.0	4/3	238.2
347	645.1	408	547 A	475	350.0
346	647.3	407	538.3	476	326 0
345	644.0	406	547.8	475	383 4
344	642.6	405	598.3	474	482:6
343	642.1	404	625.5	473	477.5
342	609.0	403	623.4	472	505.6
341	646.4	402	624.0	471	483.3
340	645.2	401	621.5	470	504.3
339	646.4 .	400	615.7	469	525.6
338	642.8	399	621.7	458	527.9
337	641.6	398	604.1	467	508.3
336	642.4	397	634.0	456	527.9
335	607.0	396	631.6	465	528.6
334	646.0	395	632.7	464	521.4
332	045.5	394	630.2	463	493.3
331	642.2	393	627.9	452	489.9
330	640.0	372	028.0	461	481.9
323	640.0 607 3	331	390.U 696 E	450	307.8
327	628 G	390	620.3	433	470.2
326	622.8	322	622 8	426	4/1.1
325	625.8	387	620.5	456	472 5
324	622.4	386	616.8	455	492.0
323	619.1	385	618.1	454	505.1
322	.622.2	384	608.4	453	493.0
321	602.5	383	642.3	451	473.8
320	637.1	382	643.2	450	482.0
319 -	633.5	381	644.5	449	490.1
318.	635.9	380	641.9	448	499.5
317	632.9	379	638.8	447	541.1
310	630.2	378	639.4	445	542.5
315	631.7 604 2	3/7	605.0	445	554.0
219	334.2	3/0	042.2	444	532.9
212	624.U	3/3	044.3 646.4	443	544.5
111	621 3	379	643.4 681 6	442	535.8 530.6
310	619 2	272	620 8	441	338.9
309	616.2	371	641.2	440	343.U 612 3
308	619.4	370	607.5	· 43/ 426	515.5
307	615.0	369	641.9	435	550.0
306 ·	654.4	368	644.4	434	538.4
305	660.1	367	644.7	433	540.6
304	661.3	366	641.7	432	554.0
303	657.4	365	638.2	431	549.6
302	654.6	364	639.9	430	537.7
301	655.3	363	605.7	429	536.9

DATE: 11/20/80 TIME: 8:00 a.m. TEST CONDITIONS: Uniform Canister Temperature at 600°F With Helium						
T/C No.	Temp(*F)	T/C No.	Temp(*F)	T/C No.	Temp(*F)	
362	666.2	428	592.9	492	607 9	
361	667.1	427	601.3	491	94.2	
360	670.9	426	605.Z	490	89.8	
309	667.6	425	603.1	489	93.4	
350	000.0 676 0	424	601.6 ·	488	86.9	
356	557 0	423	598.3	487	95.6	
355	664.1	421	605 1	486	235.9	
354	667.9	420	601 6	405	23/.0	
353	668.1	419	599.7	483	199.0	
352	664.9	418	604.1	482	440.7	
331	664.3	417	601.2	481	422.3	
320	676.7 676 D	416	582.9	480	332.7	
348	656 5	413	574.1	479	282.8	
347	667.3	409	281.8	478	360.1 -	
345	670.7	407	582 E	476	357.5	
345	666.3	406	592.5	475	303.3	
344	666.2	405	629.7	474	481.1	
343	677.0	404	650.9	473	475.9	
242	63/.U 567 5	403	652.5	472	510.6	
340	667 7	402	654.3	471	500.7	
339	669.5	400	650.0 645 F	470	537.8	
338	665.5	399	643.3	409	580.7	
337	665.1	398	633.8	467	500.2 526 £	
336	678.1	397	658.2	456	597.7	
335	635.4	396	659.2	465	596.6	
334	667.3	395	660.8	464	583.2	
332	664 2	394	656.6	463	558.1	
330	663.8	333	650.4	452	551.1	
329	676.3	391	628 S	901	542.4	
328	629.8	390	653.4	450	469.1 578 6	
327	654.B	389	651.9	458	532.6	
325	650.9	388	653.1	457	541.3	
323	655.Z	387	648.5	456	532.3	
329	619 5	386	647.4	455	554.7	
322	662.8	202	601.3	454	563.1	
321	633.1	383	653.4	453	243,1 542 2	
320	661.2	382	666.9	450	553.3	
319	659.5	381	669.0	449	558.2	
318	662.8	380	664.7	44B	557.7	
317	539.1 658 2	379	663.4	447	589.2	
315	670.0	3/8	D/6.Z	446	584.9	
314	627.4	376	662 G	445	594.7	
313	651.1	375	667.3	444	502.3	
312	650.4	374	669.4	442	589.3	
311	650.6	373	665.0	441	582.9	
310	04/.Z 646 A	372	663.7	440	590.7	
308	661.4	371	677.0	437	529.8	
307	640.0	3/0	863 9	436	592.5	
306	671.5	368	657 1	435	DUD.1 585 7	
305	678.2	367	668.2	434	605 N	
304	680.2	365	664.0	432	611.2	
303	675.3	365	662.2	431	604.4	
30Z	673.9	364	676.8	430	592.5	
301	080./	363	633.7	429	587.B	

Fuel Assembly Internal Temperature Measurement Test Thermocouple Data Fuel Assembly: D15

2.7 Hypothetical Calculation of Canister Temperature Distribution Subsequent to Being Filled with a Hot Glass Waste Form

<u>Problem Description</u>. Under some heat transfer conditions, large temperature gradients can exist. These temperature gradients can impose large internal loads on the structure due to the structure's inherent constraint of the accompanying thermal expansion. The design and performance assessment of canisters into which molten glass waste is poured must be analyzed to determine the temperature distribution. The temperature distribution will subsequently be used to evaluate the stress distribution. Since the heat transfer process is a transient one, its response will need to be monitored at various discrete values of time so that it is likely that approximately the worst stress conditions will be monitored. A sketch of the waste canister into which the molten glass is assumed to be poured is shown in Figure 2.7-1.

<u>Objectives</u>. The objectives of this problem solution are to obtain the temperature distribution in a canister for various times subsequent to the thermal shock of being filled with a molten glass waste form. The temperature distribution conditions will be used to analyze corresponding thermal stress distributions.

<u>Analytical Solution</u>. This is a hypothetical problem for which computer program modeling will be conducted and the simulated response obtained. It is expected that ANSYS will be used. An analytical solution other than that from the computer program model will not be determined.

Assumptions.

- The molten waste form is poured instantaneously into the canister at time zero.
- The thickness of the canister walls is 0.5 cm.
- The atmosphere is at a fixed temperature.

77

Canister into Which Molten Glass Waste Form Is Poured

 The nuclear decay heat generation can be neglected because the glass is very hot and only the early part of the transient is of interest.

<u>Input Specifications</u>. The canister material is 304 stainless steel. The dimensions are:

l = length = 300.0 (cm)r_i = inside radius = 30.0 (cm) r_o = outside radius = 30.5 (cm)

The molten glass assumed to be poured into the canister instantaneously at the beginning of the transient (at time equals zero) has a temperature of 1000° C. The canister is initially at 800° C. The outside surface of the canister loses heat to the atmosphere which is at a fixed temperature of 300° C according to

 $q = h(T_0 - T_a)$

where

- q = heat transfer rate per unit area (w/m²)
- h = heat transfer coefficient between canister and atmosphere (w/m²OC)
- T_0 = outside temperature of canister (°C)
- T_a = fixed temperature of atmosphere which serves as a heat sink = 300.0 (°C)

The free convection heat transfer coefficient between the outside surface of the canister and the atmosphere is given by

 $h = 0.25(T_0 - T_a)^{0.25}$

The following glass properties will be used:

.

.

T (°C)	k (watts/m ^o C)	(kg/m ³)	с _р (watt-hr/kgºC)	a (m ² /hr)
20	0.872	2750	0.228	0.00139
100	0.972	2743	0.276	0.00128
200	1.097	2735	0.315	0.00127
300	1.222	2726	0.344	0.00130
400	1.347	2718	0.365	0.00136
500	1.472	2713	0.381	0.00142
600	1.598	2672	0.393	0.00152

The following 304 stainless steel conduction properties will be used:

T (°C)	k (w/m ^o C)	(kg/m ³)	cp (w-hr/kg ^o C)	(m ² /hr)
21.1	14.49	8030	0.130	0.0139
37.8	14.53	8030	0.130	0.0139
65.6	15.00	8012	0.132	0.0142
93.3	15.39	8001	0.134	0.0144
121.1	15.77	7990	0.135	0.0146
148.9	16.17	7978	0.136	0.0148
176.7	16.53	7966	0.139	0.0149
204.4	16.95	7955	0.141	0.0151
232.2	17.30	7943	0.143	0.0152
260.0	17.64	7931	0.144	0.0154
287.8	18.16	7919	0.146	0.0157
315.6	18.51	7907	0.147	0.0159
343.3	18.85	7894	0.149	0.0160
371.1	19.20	7882	0.150	0.0162
398.9	19.72	7869	0.153	0.0164
426.7	20.06	7856	0.155	0.0165
454.4	20.41	7844	0.156	0.0167
482.2	20.75	7831	0.158	0.0168
510.0	21.10	7818	0.159	0.0170
537.8	21.45	7805	0.160	0.0172

<u>Output Specifications</u>. The analyst must monitor the temperature distributions at various times and choose those that are most severe as the thermal load cases for the subsequent stress analyses.

.

3.0 MECHANICAL ANALYSIS PROBLEMS

Problems included in this section have been selected to test the mechanical or stress aspects of waste package codes against analytical solutions or hypothetical problems. Specific processes that must be tested in waste package performance assessment codes include:

- Linear-elastic displacements
- Elastic-plastic displacements
- Creep
- Thermal-induced stresses
- Dynamic displacements due to handling accidents or normal transportation loads
- Geometric instability (buckling)
- Creep buckling

Not all of the above processes can necessarily be analyzed using one code. The testing of the code may therefore involve analyzing two or three of the problems developed for relatively simple codes or up to six or seven for the more complex codes.

3.1 Radial and Tangential Stress Components at the Inner and Outer Surfaces of a Thick-Walled Cylinder with a Radial Temperature Profile

<u>Problem Statement</u>. This problem concerns the radial and tangential stress components at the inner and outer surfaces of a hollow cylinder $(r_i \le r \le r_0)$, which supports a radial temperature distribution

$$T(r) = T_0 + \frac{q'''r_W^2}{2k}$$
 in (r_0/r)

(42)

as given in thermal problem 2.1. In this equation

 $r = radial position r_i \le r \le r_0$ [l] $r_i = inside radius of hollow cylinder$ [l] $r_0 = outside radius of hollow cylinder$ [l] $r_w = outside radius of solid cylindrical region$

- r_w = outside radius of solid cylindrical region in which volumetric heat generation q''' applies $r_i \leq r_w$ [2]
- k = thermal conductivity of hollow cylinder material (assumed constant) [e/tl0]
- q''' = uniform volumetric heat generation rate in solid $cylindrical region of outer region <math>r_w$ [e/tL^3]
 - T_0 = temperature of outer surface of hollow cylinder at r = r_0 [θ]

<u>Objectives</u>. The solution to this problem can be used to verify the accuracy of the WAPPA and ANSYS structural analysis models. The verification is directed to the treatment of the radial temperature distribution and the structural response, in terms of the radial and circumferential stress components that it causes.

<u>Analytical Solution</u>. The general solution given by Timoshenko (TI-56) for the radial stress component at any position $r_i \leq r \leq r_0$ where the radial stress is zero on the inside and outside surfaces is

$$\sigma_{r} = \frac{E}{1-\nu} \left[-\frac{1}{r^{2}} \int_{r_{i}}^{r} \alpha T(r) r dr + \frac{r^{2} - r_{i}^{2}}{r^{2}(r_{0}^{2} - r_{i}^{2})} \int_{r_{i}}^{r_{0}} \alpha T(r) r dr \right]$$
(43)

and the circumferential stress component is given by

$$\sigma_{t} = \frac{E}{1-\nu} \left[\frac{1}{r^{2}} \int_{r_{i}}^{r} \alpha T(r) r dr + \frac{r^{2} + r_{i}^{2}}{r^{2}(r_{0}^{2} - r_{i}^{2})} \int_{r_{i}}^{r_{0}} \alpha T(r) r dr - \alpha T(r) \right]$$
(44)

where

 $[f/\ell^2]$ E = material's elastic modulus v = material's Poisson's ratio ٢٦ α = material's coefficient of thermal expansion [1/0] r = general radial position in the range $r_i < r < r_0$ [2] r_i = inside radius of hollow cylinder [2] [2] r_0 = outside radius of hollow cylinder $[f/\ell^2]$ σ_r = radial stress component $[f/\ell^2]$ σ_t = circumferential stress component T(r) = temperature at position $r(r_i < r < r_0)$ in the hollow cylinder [θ]

Figure 3.1-1 shows the solid cylinder configuration in which the heat is generated and the larger concentric hollow cylinder for which the radial and tangential thermal stress components will be analyzed.

Using Equation 42 for the temperature distribution

$$T(r) = T_0 + \frac{q'''r_w^2}{2k} \quad ln(r_0/r)$$

(42)

Hollow Cylinder r_i<r<r₀ with Steady-State Radial Temperature Distribution for Which Radial and Tangential Stress Components Will Be Analyzed and for k = constant, the integrals are

$$\int_{r_{i}}^{r} T(r) r dr = \frac{T_{0}}{2} (r^{2} - r_{i}^{2}) + \frac{q^{\prime \prime \prime \prime} r_{w}^{2}}{2k} \left[\frac{r^{2}}{2} (ln \frac{r_{0}}{r} + \frac{1}{2}) - \frac{r_{i}^{2}}{2} (ln \frac{r_{0}}{r_{i}} + \frac{1}{2}) \right]$$
(45)

and

$$\int_{r_{i}}^{r_{0}} T(r)rdr = \frac{T_{0}}{2} (r_{0}^{2} - r_{i}^{2}) + \frac{q'''r_{w}^{2}}{2k} \left[\frac{r_{0}^{2} - r_{i}^{2}}{4} - \frac{r_{i}^{2}}{2} \ln \frac{r_{0}}{r_{i}} \right]$$
(46)

Thus, Equations 43 and 44 can be evaluated to give the radial and tangential stress components for any radial position r for the temperature distribution given by Equation 42.

Equations 43 and 44 can be written as

$$\sigma_{r} = \frac{E}{1-\nu} \left[\frac{\left(1 - r_{i}^{2}/r^{2}\right)_{B}}{\left(r_{o}^{2} - r_{i}^{2}\right)} - \frac{A(r)}{r^{2}} \right]$$

(47)

 $\sigma_{t} = \frac{E}{1-\nu} \left[\frac{1 + (r_{i}/r)^{2}B}{(r_{0}^{2} - r_{i}^{2})} + \frac{A(r)}{r^{2}} - \alpha T(r) \right]$

(48)

where

4

$$B = \frac{\alpha T_{o}}{2} (r_{o}^{2} - r_{i}^{2}) + \frac{q''' r_{w}^{2} \alpha}{2k} \left[\left(\frac{r_{o}^{2} - r_{i}^{2}}{4} \right) - \frac{r_{i}^{2}}{2} \ln \frac{r_{o}}{r_{i}} \right]$$
(49)

and

$$A(r) = \frac{\alpha T_{o}}{2} (r^{2} - r_{i}^{2}) + \frac{q^{\prime \prime \prime \prime} r_{w}^{2} \alpha}{4k} \left\{ r^{2} \left[ln \left(\frac{r_{o}}{r_{i}} \right)^{2} + 1/2 \right] - r_{i}^{2} \left[ln \left(r_{o}/r_{i} \right) + 1/2 \right] \right\}$$

(50)

and

Equations 47, 48, 49, and 50 can be evaluated to predict analytically the radial distribution of the radially and tangentially directed stress components.

Assumptions.

- The thermal conductivity of the hollow cylinder material is constant.
- The coefficient of thermal expansion of the hollow cylinder is constant.
- The material is isotropic

Input Specifications.

- Geometry
 - waste region radius, $r_w = 30.5$ (cm)
 - hollow cylinder inside radius, $r_i = 30.5$ (cm)
 - hollow cylinder outside radius, $r_0 = 67.5$ (cm)
- Material properties
 - thermal conductivity; k = 0.5 (w/cm^oC)
 - coefficient of thermal expansion , $\alpha = 11 \times 10^{-6} (1/^{\circ}C)$
 - Poisson's ratio; v = 0.25 ()
 - elastic modulus; $E = 16.2 \times 10^4$ (MPa)

Thermal conditions

- hollow cylinder outside temperature; $T_0 = 200(^{\circ}C)$ volumetric heat generation rate; q''' = 0.001291 (w/cm³)

Equations 47, 48, 49 and 50 have been evaluated at eight radial positions as shown in Table 3.1-1 to determine the radial and tangential stress components at eight values of radius in the range $(r_1 \le r \le r_0)$.

Output Specifications. The solution to this problem will determine the stress components at the radial positions indicated in Table 3.1-1 using WAPPA and ANSYS.

Table 3.1-1

Calculated Values of Radial and Tangential Stress Components

r (cm)	T (0°)	A (cm ²)	σr (MPa)	σ _t (MPa)
30.5	200.954	0.0	0.00	-1.422
35.0	200.789	0.3256	-0.146	-0.883
40.0	200.628	0.7396	-0.209	-0.433
45.0	200.487	1.2083	-0.215	-0.0969
50.0	200.360	1.7320	-0.189	0.179
55.0	200.246	2.310	-0.145	0.406
60.0	200.141	2.943	-0.0908	0.601
67.5	200.000	3.996	0.000	0.845

3.2 Horizontal Simply Supported Beam Subjected to Vertical Motion at Both Supports as Defined by a Particular Acceleration Response Spectrum

<u>Problem Statement</u>. This problem is intended to determine the maximum displacement relative to the supports and the maximum bending stress for the beam shown in Figure 3.2-1. The response spectrum is given in Figure 3.2-2 (Reference BI-64).

<u>Objectives</u>. This sample problem will be used to verify the response spectrum analysis capabilities of structural codes.

<u>Analytical Solution</u>. The fundamental natural frequency of a beam with a uniform mass distribution is given by

$$f = \frac{\pi}{2g^2} \sqrt{\frac{EI}{m}}$$

where

f = vibrational frequency [1/t]

l = beam length [l]

E = beam material's elastic modulus [f/l²]

I = beam moment of inertia for in plane bending
 (Figure 3.2-1) [l⁴]

m = beam mass per unit length [m/l]

Only the first mode given by

 $\phi_1(x) = \sin \frac{\pi x}{2}$

(52)

(51)

f = 240 in t = 14 in $m = 0.2 \ lb_f \ e^2/in$ $Ei = 10^{10} \ lb_f - in^2$

Simply Supported Beam with Support Motion $y_{S}(t)$

.,

_

.

.

Maximum Relative Displacement and Maximum Vertical Acceleration Plotted as Response Spectra for Beam Supports Motion will be considered where

The participation factor of that mode in the total motion is given by

$$\Gamma_{1} = \frac{\int_{0}^{\ell} m\phi_{1}(x) dx}{\int_{0}^{\ell} m[\phi_{1}(x)]^{2} dx}$$

where

F = modal participation factor for the fundamental mode []
 m = beam mass [m]

The modal displacement is given by

$$A_{l}(t) = \Gamma_{l}U_{l}(t)$$
(54)

where
The modal displacement of the distributed mass is

$$U(t) = \Gamma_{1}U_{1}(t) \phi_{1}(x)$$
 (55)

or using Equations 52 and 54

$$U_{l}(t) = A_{l}(t) \sin \frac{\pi x}{\ell}$$
(56)

The maximum bending moment in the beam is given by

$$M = -EI \frac{\partial^2 u}{\partial x^2}$$
(57)

and the maximum bending stress is given by

$$\sigma = \frac{Mc}{I}$$
(58)

where

σ = bending stress [f/l²]
M = internal moment by beam cross section at the midspan [f-l]
c = beam half thickness in vertical direction [l]
I = cross section's moment of inertia [l⁴]

These equations allow for the determination of the dynamic response when used in conjunction with the spectra of Figure 3.2-2.

<u>Assumptions</u>. It is assumed that the fundamental mode predominates and the contribution of higher harmonics is negligible.

<u>Input Specifications</u>. As shown in Figure 3.2-1, the beam dimensions and properties are:

l = length = 240 (in)
t = height of cross section = 14 (in)
m = mass of unit length of beam = 0.2 (lbf -sec²/in²)
EI = product of beam elastic modulus and moment of inertia =
l0¹⁰ (lbf-in²)

For this particular case, Equation 51 gives

$$f = \frac{\pi}{2\ell^2} \sqrt{\frac{EI}{m}} = \frac{\pi^2}{2(240)^2} \sqrt{\frac{10^{10}}{0.2}}$$

$$f = 6.1 (cps)$$

(59)

At a circular frequency of

$$\omega = 2\pi f = 2(6.1)\pi = 12.2\pi$$

(60)

the maximum relative displacement U_{max} from Figure 3.2-2 is

$$U_1 = 0.44$$
 (in)

(61)

Substituting Equation 52 in Equation 53 and integrating, the participation factor for the fundamental mode becomes

$$\Gamma_1 = 4/\pi$$

and from Equation 54

$$A_{max} = \frac{4}{\pi} (0.44) = 0.56 (in)$$

(63)

The displacement is then given by Equation 55

 $u(t) = 0.56 \sin \frac{\pi x}{\ell}$

(64)

The maximum bonding moment occurs at the midspan and is given by

$$M_{max} = \frac{EI\pi^2}{\ell^2} A_{max}$$

$$M_{max} = \frac{10^{10}\pi^2(0.56)}{(240)^2}$$

$$M_{max} = 9.6 \times 10^5 \text{ (in-lb)}$$

(65)

The maximum bending stress in the outer fiber at x = 2/2 is given by Equation 58

$$\sigma = \frac{Mc}{I} = \frac{EI\pi^2 c}{\ell^2 I} A_{max}$$

$$\sigma = \frac{(30 \times 10^6)\pi^2(7) (0.56)}{(240)^2}$$

$$\sigma = 20,100 (1b/in^2)$$

(66)

<u>Output Specification</u>. The output should determine the natural frequencies and the maximum displacement at the center of the span in terms of the internal moment and the bonding stress using a finite element structural analysis program which offers modal summation analysis capabilities.

3.3 A Mass Supported by a Thin Rod and Subjected to a Step Load Causing Tension in the Rod and Plastic Deformation

<u>Problem Statement</u>. A mass supported by a thin rod is subjected to a step load which imposes a tensile load in the rod and causes it to experience elastic strain followed by plastic tensile strain. Figure 3.3-1 shows a mechanical model of the structure and the loading history.

<u>Objectives</u>. The objective of this analysis is to determine the displacement transient of the mass and the time when the displacement is at its maximum.

<u>Analytical Solution</u>. The ramp portion of the response when the rod is strained elastically as represented by the spring elongation is regarded

96

(b)

Figure 3.3-1

(a) Mechanical Model and (b) Force Versus Deflection (y) Response Characteristic of the Rod and c) the Load History (f) Versus Time (t). In (a) the Friction Joint p Slips When the Load Reaches R_m Representing Plastic Yielding of the Rod

97

as the first stage. In this stage, there is no slipping at the joint p. The differential equation of motion and the boundary conditions are:

$$m\ddot{y} + ky = F_{1}$$
(67)
$$t = 0, \ y = 0$$
(68)
$$t = 0, \ \dot{y} = 0$$
(69)

where the differential Equation 67 is based on Newton's second law and the initial conditions state that the initial deflection is equal to the steady downward force of F₁ divided by the spring stiffness and that the initial velocity of the mass is zero. The solution to the differential equation is

 $y = y_{st} + C_1$ Sin $\omega t + C_2$ Cos ωt

(70)

where $y_{st} = F_{l}/k$. Upon applying the boundary conditions, it is determined that

0 = ן0

C₂ =·-y_{st}

(72)

(71)

So the solution can be written as

$$y = y_{st} (1-\cos \omega t)$$

In Equations 70 and 73, ω is the circular frequency defined as

$$\omega = \sqrt{\frac{k}{m}}$$
(74)

The second stage begins at time $t = t_e$ when the first stage is completed. Time range for the second stage which begins at zero when $t = t_e$ is established by defining a time variable t_i for the second stage according to

 $t_i = t - t_e$

The differential equation for the second stage is

 $m\ddot{y} + R_m = F_1 \tag{76}$

and the boundary conditions are

 $t_1 = 0, \quad y = y_e$

 $t_1 = 0$, $y = y_{st} \omega \sin \omega t_e$

The general solution to Equation 76 is

(78)

(77)

(75)

(73)

$$y = \left(\frac{F_{1} - R_{m}}{2m}\right) t_{1}^{2} + C_{1}t_{1} + C_{2}$$

(79)

Equation 73, which is the dynamic response of the mass during the first stage, can be used to solve for the time t_e at which the transition between the two stages occurs:

$$t_{e} = \frac{1}{\omega} \cos^{-1} \left(1 - \frac{y_{e}}{y_{st}} \right)$$
(80)

Applying the boundary conditions of Equations 77 and 78 to the general solution of Equation 79 gives

$$y = \frac{1}{2m} (F_{1} - R_{m}) t_{1}^{2} + (y_{st} \omega Sin \omega t_{e}) t_{1} + y_{e}$$
(81)

where $y_{st} = F_1/k$ is given in Equation 68.

By setting the first derivative of Equation 81 with respect to t_1 to zero, the time at which the displacement of the mass reaches a maximum is found to be

$$t_{1} | y_{max} = \frac{my_{st} \omega Sin \omega t_{e}}{(R_{m} - F_{1})}$$

(82)

and the time from the beginning of the transient from Equations 75 and 80 is

$$t \Big|_{y_{\text{max}}} = \frac{1}{\omega} \cos^{-1} \left(1 - \frac{y_e}{y_{st}} \right) + \frac{my_{st} \omega \sin \omega t_e}{(R_m - F_l)}$$
(83)

which is more convenient.

<u>Assumptions</u>. In the analysis, it is assumed that the rod material displays linear elastic response followed by perfectly plastic force versus displacement response.

Input Specifications. The problem is completely specified in terms of four parameters R_m , y_e , m, and F₁ which allow quantification of k and the other parameters such as ω .

- R_m = force necessary to cause yielding in the rod (f) = 500,000 (lb_f)
- y_e = axial elongation of the rod when plastic deformation begins (ℓ) = 0.1666 (in)
 - k = spring stiffness effort of the rod when deformation is in the elastic range (f/ℓ) = R_m/y_e = 3.0 x 10⁶ (lb/in)
- m = mass attached to the rod = 30,000 (lbf-sec²/in)
- F1 = magnitude of uniform tensile force applied
 to the mass = 3,000,000 (lbf)

For these values, Equation 74 gives

 $\omega = 10 (1/sec)$

and Equation 80 gives

 $t_e = 0.230$ (sec)

and Equation 82 gives

 $t_1 = 0.1118$ (sec)

so that Equation 75 gives

 $t|_{max} = t_e + t_1$ $t|_{max} = 0.3418 (sec)$

<u>Output Specifications</u>. The output should be the time of maximum deflection of the mass determined by using a structural analysis computer program that will stimulate elastic and plastic material behavior for this structure and its loading.

3.4 Displacement and Velocity of Mass When a Package Is Dropped on a Rigid Floor and the Subsequent Maximum Displacement of the Mass and Maximum Spring Force

<u>Problem Statement</u>. A mass m represents the contents of a package; the contents are attached to the package with a linear spring of stiffness k. The spring connecting the mass to the package acts in the vertical direction, and all motion of the mass and the package occurs in the vertical direction as shown in Figure 3.4-1.

<u>Objectives</u>. The quantities to be determined are the displacement and velocity of the mass when the container reaches the floor and the subsequent maximum force transmitted to the mass and the required "rattle space" as indicated by the maximum deflection.

102

Package System Used to Drop Dynamics Analytical Simulation

<u>Analytical Solution</u>. The dynamics of the package contents are described in Reference TH-65 as

$$m(\ddot{x}_1 + \ddot{x}_2) + kx_1 = 0$$

(84)

where

.

.....

.

m = mass of contents [m]
x1 = position of the mass relative to the container
measured vertically [
$$\&$$
]
x2 = position of container measured vertically [$\&$]
k = linear spring force to displacement ratio [f/ $\&$]
 $\ddot{x} = \frac{d^2x}{dt^2} [\&/t^2]$

t = time measured through the dynamic transient [0]

The initial conditions applicable to the first phase of the transient (pre-container impact) are:

 $t = 0, x_1 = 0$ (85) $t = 0, \dot{x}_1 = 0$ (86) $t = 0, x_2 = 0$ (87) $t = 0, \dot{x}_2 = 0$

(88)

which state that the initial displacement of the mass and the container are zero as are their initial velocities in the vertical (downward) direction. All rotation and translation, orthogonal to the vertical, are constrained to zero.

The Laplace transform of the differential Equation 84 for the given initial conditions 2, 3, 4, and 5 is

$$\bar{x}_{1}(s) = [x_{1}(0) + x_{2}(0)] \frac{s}{s^{2} + \omega_{n}^{2}} + [\dot{x}_{1}(0) + \dot{x}_{2}(0)] \frac{1}{s^{2} + \omega_{n}^{2}} - \frac{s^{2}\bar{x}_{2}(s)}{s^{2} + \omega_{n}^{2}}$$

(89)

where

 $\omega_{n} = \sqrt[4]{\frac{k}{m}} = natural frequency of the contents mass, m,$ and its attachment spring k to the box [1/0]s = transformed variable replacing time [1/0] $<math>\bar{x}_{1}(s) = Laplace transform of x_{1}(t)$ $\bar{x}_{2}(s) = Laplace transform of x_{2}(t)$

The inverse of Equation 89 can be written as

$$x_{1}(t) = [x_{1}(0) + x_{2}(0)] \cos \omega_{n} t + \frac{1}{\omega_{n}} [\dot{x}_{1}(0) + \dot{x}_{2}(0)] \sin \omega_{n} t$$
$$-\underline{\mu}^{-1} \frac{s^{2} \bar{x}_{2}(s)}{s^{2} + \omega_{n}^{2}}$$

(90)

The motion of the container is

$$x_2(t) = \frac{1}{2} gt^2$$

and its transform is

$$\bar{x}_{2}(s) = g/s^{3}$$

which when substituted into Equation 89 gives

$$\bar{x}_{1}(s) = -\frac{g}{s(s^{2} + \omega_{n}^{2})}$$

for the initial conditions of Equations 85, 86, 87, and 88 and the inverse is

$$x(t) = -\frac{g}{\omega_n^2} (1 - \cos \omega_n t)$$

Using Equation 91, the time to fall from the initial height h supporting the container to the floor is

$$t_o = \sqrt{2h/g}$$

(95)

(94)

(92)

The displacement and velocity of the mass m relative to the container when the container impacts the floor are

$$x_{1}(t_{0}) = -\frac{g}{\omega^{2}} (1 - \cos \omega_{n} t_{0})$$
 (96)

 $\dot{x}_{1}(t_{0}) = -\frac{g}{\omega_{n}} \sin \omega_{n} t_{0}$ (97)

These expressions can be evaluated to give the initial conditions for the second phase of the problem subsequent to the container's impact with the floor.

Redefining a new time variable t₁, which is zero at the instant the container impacts the floor

$$t_1 = t - t_0$$

.....

(98)

This time variable, t₁, will be used during the second, post-container impact phase of the problem. The initial conditions for the second phase are

$$t_1 = 0, x_1 = -g/\omega_n^2 (1 - \cos \omega_n t_0)$$
 (99)

 $t_1 = 0, x_2 = L$ (100)

$$t_{1} = 0, x_{1} = g/\omega_{n} \sin \omega_{n} t_{0}$$
 (101)
 $t_{1} = 0, x_{2} = gt_{0}$ (102)

From Equation 90, the displacement after impact for the initial conditions of Equations 99, 100, 101, and 102 becomes

$$x_{1}(t) = \left[n - \frac{q}{\omega_{n}^{2}} (1 - \cos \omega_{n} t_{o})\right] \cos \omega_{n} t$$
$$+ \frac{1}{\omega_{n}} \left[gt_{o} - \frac{q}{\omega_{n}} \sin \omega_{n} t_{o}\right] \sin \omega_{n} t$$
$$- h \cos \omega_{n} t$$

(103)

The first and last terms cancel, and this equation can be rewritten using a trigonometric identity as

$$x_{1}(t) = \frac{g}{\omega_{n}^{2}} \sqrt{(1 - \cos \omega_{n} t_{o})^{2} + [\omega_{n} t_{o} - \sin \omega_{n} t_{o}]^{2}}$$

Sin $(\omega_{n} t_{1} - \phi)$ (104)

where

where

$$\phi = \operatorname{Tan}^{-1} \left[\frac{(1 - \cos \omega_n t_o)}{(\omega_n t_o - \sin \omega_n t_o)} \right]$$

(105)

The maximum amplitude of the mass ${\tt m}$ is

$$A = x_1 \Big|_{max} = \frac{g}{\omega_n^2} \sqrt{(1 - \cos \omega_n t_0)^2 + (\omega_n t_0 - \sin \omega_n t_0)^2}$$
(106)

and the maximum occurs at a time consistent with

$$\omega_n t_1 - \phi = \frac{\pi}{2}$$

(107)

or

$$t_1 = \frac{1}{\omega_n} \left(\frac{\pi}{2} - \phi\right)$$

(108)

Using Equation 98, the time from the beginning of the first phase of the transient until the maximum displacement of the mass is reached is

$$t = t_{0} + \frac{1}{\omega_{n}} (\frac{\pi}{2} - \phi)$$
 (109)

The maximum spring force is given by

 $F_{max} = kA$

where

k = spring stiffness [f/l]

A = maximum amplitude of the mass m [L] (see Equation 106)

Assumptions.

- The mass m is supported within the box by a linear spring of stiffness k.
- The mass of the container is large compared to that of the contents, m, so that the free fall of the container is not influenced by the force associated with the relative motion of the mass, m.
- Upon striking the floor, the container remains in contact with the floor.

<u>Input Specifications</u>. For an initial height of the box above the plane of

h = 10(in)

the time at which it reaches the plane is given by Equation 95 as

 $t_{0} = 0.2275$ (sec)

If the spring stiffness is

k = 39.48 (lb/in)

and the mass of the contents is

 $m = 0.12 \text{ slugs} = 3.864 \text{ lb}_m$

then the circular natural frequency is

$$\omega_n = \sqrt{\frac{k}{m}} = 20\pi \frac{1}{\sec}$$

and the vibrational natural frequency is

 $f_n = \omega_n / 2\pi = 10 (1/sec)$

Equation 106 can be evaluated for

$$\omega_n t_0 = 20 (0.2275) = 14.29$$

to give

A = 1.306(in)

This is the required rattle space in terms of amplitude.

<u>Output Specifications</u>. The output should simulate the dynamics of this problem with a time history transient analysis program and determine the maximum displacement of the mass after the container strikes the plane and the time at which the maximum amplitude is reached.

3.5 Determine the Natural Frequencies and Normal Modes of an Elastic Discrete Mass System

<u>Problem Statement</u>. This problem concerns the normal modes and natural frequencies of the system shown in Figure 3.5-1, where the two masses each have one translational degree of freedom (in the x direction) and are of equal magnitude as are the three linear spring stiffness values.

<u>Objectives</u>. This analytical solution will provide for numerical testing of all of the frequency extraction and normal mode vector calculation procedures in modal summation type dynamic analysis programs.

<u>Analytical Solution</u>. For the system shown in Figure 3.5-1, the differential equations describing the motion are

Figure 3.5-1

Two Degree of Freedom System for Which the Natural Frequencies and Mode Shapes Will Be Determined

$$m\ddot{x}_{1} + 2kx_{1} - kx_{2} = 0$$

(110)

$$m\ddot{x}_{2} + 2kx_{2} - kx_{1} = 0$$

(111)

(112)

(113)

Assume that the motion of each mass is periodic and composed of harmonic motions of various amplitudes and frequencies. Let one of these components be

$$x_1 = A Sin (\omega t + \phi)$$

 $x_2 = B \sin(\omega t + \phi)$

Substituting Equations 112 and 113 into 110 and 111 gives

$$(2k-m\omega^2)A-kB=0$$

(114)

 $-kA + (2k - m\omega^2)B = 0$

(115)

which are homogeneous linear algebraic equations for the undetermined .magnitudes A and B. The trivial solution A = B = 0 is real and represents the static equilibrium position of the masses. The natural frequencies and mode shapes result from

$$\begin{bmatrix} (2k - m\omega^2) & -k \\ -k & (2k - m\omega^2) \end{bmatrix} \begin{bmatrix} A \\ B \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
(116)

solving for the values of ω which allows the coefficient matrix of Equation 116 to have a determinant equal to zero. The fourth order equation in the circular vibrational frequency of the system is

 $\omega^4 - \frac{4k}{m} \omega^2 + \frac{3k^2}{m^2} = 0$

(117)

The roots of this equation are

The natural frequencies must be real and positive and are given by Equations 118a and 118b.

By substituting Equation 118a into Equations 114 and 115, the mass displacement amplitude ratio for mode 1 is determined

$$\frac{A_{1}}{B_{1}} = \frac{k}{2k - m\omega_{1}^{2}} = \frac{2k - m\omega_{1}^{2}}{k}$$
$$\frac{A_{1}}{B_{1}} = 1$$

(119)

Similarly, by substituting Equation 118b into Equations 114 and 115

$$\frac{A_2}{B_2} = \frac{k}{2k - m\omega_2^2} = \frac{2k - m\omega_2^2}{k}$$

$$\frac{A_2}{B_2} = -1$$

(120)

In this way, the amplitude ratios are determined. The mode shapes can't be solved for explicitly but are determined on a relative basis from the amplitude ratios by assuming the displacement amplitude of one of the masses to be unity. Thus, the mode shapes are

 $\begin{bmatrix} A \\ 1 \\ B \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$

(121)

which correspond to the first natural frequency

$$A_2 = 1$$

 $B_2 = -1$

(122)

which occurs along with the second natural frequency. The mode shapes are drawn in Figure 3.5-2.

<u>Assumptions</u>. It is assumed that the motion of each mass is periodic and composed of harmonic motion of various amplitudes and frequencies. The mode shapes are determined by assuming unit displacement in the positive direction for the mass on the left in Figure 3.5-1.

<u>Input Specifications</u>. The natural frequencies are given by Equations 118a and 118b. For

$$k = 1.0 \text{ lb/in}$$

$$m = 1.0 \text{ lb}_{m}$$

$$\omega_{1} = \sqrt{\frac{\kappa}{m}} = \sqrt{\frac{32.2 (12)}{1}}$$

$$\omega_{1} = 19.657 (1/\text{sec})$$

$$\omega_{2} = \sqrt{\frac{3\kappa}{m}} = \sqrt{\frac{3(32.2) (12)}{1}}$$

$$\omega_{2} = 34.047 (1/\text{sec})$$

--.:

Equilibrium Position, Fundamental Frequency and First Mode Shape and Second Natural Frequency and Mode Shape for Two Degree of Freedom Violating System For A₁ = 1.0, B₁ = 1.0 from Equation 119; similarly, from Equation 120 for A₂ = 1.0, it is determined that B_2 = -1.0.

<u>Output Specifications</u>. In solving this problem, the dynamics of the mass and elasticity are simulated by a finite element computer model such as ANSYS. The output determines how accurately the model predicts the natural frequencies and mode shapes.

3.6 Determine the Stress in a Pretensioned Body Which Experiences Stress Relaxation Due to Creep

<u>Problem Statement</u>. The ends of a bolt are held a fixed distance apart for a long period of time. Initially, the bolt is tightened producing an initial stress of σ_0 . The bolt material is 0.30% carbon steel, which is assumed to have a creep rate given by

 $\dot{\epsilon}^{c} = k^{n}$

(123)

where

 $\dot{\varepsilon}^{C}$ = creep rate (1/hr) k = creep constant (1/hr) σ = axial stress component in bolt (1b/in²) n = creep exponent of stress ()

The creep causes the elastic strain to decrease while the creep strain increases such that the sum of the two is always equal to a constant. The constant is the amount of elastic strain initially induced in the bolt by the initial stress σ_0 (see Figure 3.6-1 for a schematic of the bolt).

<u>Objectives</u>. The objective is to calculate the bolt stress as a function of time.

118

Figure 3.6-1

Bolt of Length 1 in Unloaded State Which Is Inititally Stressed to $\sigma o = 10,000$ psi and Allowed to Stress Relax Due to Creep

-

<u>Analytical Solution</u>. It is assumed that the initial stress causes only elastic strain on an instantaneous basis and that the total strain in the bolt remains constant.

$$\varepsilon_0^e = \varepsilon^e + \varepsilon^c$$

(124)

where

ε₀e = initial elastic strain () ε^e = elastic strain at any time () ε^c = creep strain at any time (initially zero) ()

The elastic strain is related to the stress by Hook's law

$$\varepsilon_{0}^{e} = \frac{\sigma_{0}}{E}$$
(125a)
$$\varepsilon^{e} = \frac{\sigma}{E}$$

(125b)

where

E = elastic modulus of bolt material (psi) σ_0 = initial axial stress component in bolt (psi) σ = axial stress component in bolt at any time (psi)

Substitution of Equation 125 into Equation 124 gives

$$\frac{\sigma_0}{E} = \frac{\sigma}{E} + \epsilon^C$$

(126)

and the differentiating Equation 126 with respect to time gives

$$\frac{d\varepsilon^{C}}{dt} = -\frac{1}{E}\frac{d\sigma}{dt}$$

(127)

where the terms on the left side are the material creep rate. Combining Equations 123 and 127 eliminates the creep rate and gives the first order non-linear differential equation

$$-\frac{1}{kE}\sigma^{-n}d\sigma = dt$$

(128)

The initial condition is

(129)

and the solution is of the form

$$\sigma = \sigma_0 \left[kE(n-1)\sigma_0^{n-1} t + 1 \right]^{-1/n}$$

(130)

<u>Assumptions</u>. It is assumed that initially upon loading, the bolt strain is in the elastic range.

Input Specifications. For the following values of the parameters

k = 4.78 x
$$10^{-37}$$
 (1/hr)
n = 6.9 ()
E = 30 x 10^{6} (psi)
 σ_0 = 10,000 (psi)

Equation 130 becomes

$$\sigma = 10,000 \left[3.368 \times 10^{-5} t + 1 \right]^{-0.1695}$$

(131)

which can be evaluated to give:

time		σ	
(years)	(hours)	(psi)	
0	0	10,000	
1	8,760	9,571	
2	17,520	9,244	
3	26,280	8,981	
4	35,040	8,762	
10	87,600	7,922	
50	438,000	6,267	
100	876,000	5,603	
200	1,752,000	4,996	
500	4,380,000	4,284	
1000	8,760,000	3,812	

<u>Output Specifications</u>. The output indicates the stress in the bolt as a function of time using the creep strain features of a finite element analysis program.

3.7 Elastic Stability of a Thin Tube of Infinite Length with External Pressure Loading

<u>Problem Statement</u>. The solution of this problem determines the magnitude of the external pressure loading that will cause a long, thin-walled, cylindrical tube to reach elastic instability. The cylinder configuration and pressure loading are shown in Figure 3.7-1.

<u>Objectives</u>. This problem will test the elastic stability prediction capability of structural analysis programs.

<u>Analytical Solution</u>. The solution given by Roary (Reference RO-65) for the external pressure load limit based on elastic stability is

$$p = \frac{1}{4} \frac{E}{1-v^2} (\frac{t}{r})^3$$

(132)

where

 $p = limit external pressure load [f/l^2]$ $E = elastic modules of tube material [f/l^2]$ v = Poisson's ratio of tube material [] t = tube wall thickness [l] r = tube radius [l]

The buckling solution should apply providing that the structure does not fail due to yielding (see Figure 3.7-2). According to the Tresca criterion, yielding will not occur providing that

$$\sigma_i < \sigma_t = \frac{pr}{t} < \sigma_{cy}$$

(133)

Figure 3.7-1

Long, Thin-Walled Circular Cylinder Loaded with External Pressure

Compressive Yield and Buckling Failure Required for a Long Cylinder. External Pressure Is Plotted Against Cylinder Geometric Feature (r/t) where*

 σ_i = Tresca stress intensity [f/l²] σ_t = compressive hoop stress component [f/l²] σ_{cv} = material yield stress in compression [f/l²]

Equation 132 can be rewritten in terms of the hoop stress σ_t at which the cylinder becomes elastically unstable σ_{EU} as

$$\sigma_{EU} = \frac{1}{4} \frac{E}{1-v^2} \left(\frac{t}{r}\right)^2$$

(134)

The tube should then have a stress σ_t such that $\sigma_t < \sigma_{EU}$ and $\sigma_t < \sigma_{cy}$. The limiting pressure becomes

$$p = \min \left\{ \begin{array}{l} \sigma_{cy} (t/r) = p_{cy} \\ \frac{1}{4} \frac{E}{1-v^2} (t/r)^3 = p_{EU} \end{array} \right\}$$

(135)

based on Equations 133 and 132 with $\sigma_t = \sigma_{cy}$. To obtain buckling failure

(136)

*In this problem, it is convenient to consider compressive stresses and the compressive yield stress σ_{Cy} as positive quantities. This sign convention will apply to this problem. from Equation 135. Substituting Equation 135 into Equation 136 gives

$$\frac{r}{t} > \sqrt{\frac{E}{4(1-v^2)\sigma_{cy}}} = (\frac{r}{t})_{ref}$$

(137)

to assure buckling failure. Thus, when $r/t > (r/t)_{ref}$, buckling failure is expected, and when $r/t < (r/t)_{ref}$, compressive yield failure is expected.

If E = 3 x 10⁶ (psi) and v = 0.3 as is typical for some steels, the $(r/t)_{ref}$ for various values of σ_{CY} is given in Table 3.7-1.

<u>Assumptions</u>. It is assumed that the cylinder is round and of uniform thickness and that the deformed shape is oval. The material properties are assumed to be isotropic.

Input Specifications. The following material properties must be defined:

- Elastic modulus = $E = 30 \times 10^6$ (psi)
- Poisson's ratio = v = 0.30 ()
- Compressive yield strength = σ_{CV} = 30,000 (psi)
- Cylindrical tube mean radius = r = 20 (in)
- Cylindrical tube wall thickness = t = 1 (in)

The external pressure loading that will cause buckling is determined by

r/t = 20

Table 3.7-1

ŕ

Values of $(r/t)_{ref}$ at Which Failure Mode Changes Versus Compressive Yield Strength, σ_{CY} , for Steel Type Materials Where E=30x10⁶ and v= 0.3

^σ cy (psi)	(r/t) _{ref} ()
20,000	20.3
24,000	18.5
27,000	17.5
30,000	16.6
32,000	16.0
36,000	15.1
40,000	14.4
and for σ_{cy} = 30,000 psi; (r/t)_{ref} = 16.6. Since r/t > (r/t)_{ref}, buckling failure should occur.

For this case, Equations 132 and 134 give

p = 1030 (psi)

 $\sigma_{\rm EU} = 20,600 \, (\rm psi)$

and the latter is clearly less than the σ_{cy} . Equation 133 allows a 1500 psi pressure because buckling is more limiting when $r/t > (r/t)_{ref}$.

Output Specifications. The output should include:

- Dimensions
- Material properties
- Allowable external pressure based on elastic instability (check against Equation 132 value)
- Elastic instability hoop stress ^oEU (check against Equation 134 value)

3.8 Creep Deformation of a Finite Length, Hollow Elastic Cylinder Due to External Pressure

<u>Problem Statement</u>. A hollow cylinder of finite length is subjected to external pressure loading (see Figure 3.8-1). The pressure acts both radially and axially.

<u>Objectives</u>. The objective of this problem is to compare the COVE program's creep deformation predictions with analytical and experimental observations. Typically, poor agreement is achieved between analytical predictions of collapse and experiments. A specific objective is to determine whether COVE results are conservative relative to experimental determinations of when collapse occurs.

P = 2700 (psl) (for 100 hrs)

 $r_m = 0.1285$ (in)

t = 0.012 (in)

 $T = 680 (^{\circ}F)$

Figure 3.8-1

Finite Length Hollow cylinder Subjected to External Pressure Loading <u>Analytical Solution</u>. Griffin (GR-67) has proposed a simplified theory of creep collapse which is analogous to instantaneous elastic-inelastic creep collapse. It uses isochronous stress strain curves instead of instantaneous stress strain curves. The isochronous stress-strain curves give the stress as a function of strain after having the load applied for a fixed time.

The collapse is predicted using

 $\sigma_{\theta} = -pr/t$ (138) $\sigma_{\chi} = -\frac{pr}{2t}$ (139) $\tau_{\chi\theta} = 0$ (140)

The von Mises stress intensity for these stress components is

 $\sigma_i = \frac{\sqrt{3}}{2} \frac{pr}{t}$

(141)

The critical or buckling stress is calculated from

$$\left. \frac{nE_{s}t^{2}}{4(1-v^{2})r^{2}} \right.$$

• •

(142)

$$\eta = 1 - \frac{(1 - E_t/E_s)}{1 + (1 - 4v^2) Et/3E_s}$$

(143)

where

- n = correction factor which takes into account nonlinear nature of the isochronous stress-strain curve []
- E_t = tangent of the isochronous stress-strain curve at the point describing the state of stress σ_i [psi]
- E_s = ratio of stress to strain at the point describing the state of stress σ_i [psi]
- v = Poisson's ratio of the material []
- t = cylinder radial wall thickness [in]
- r = mean radius of the cylinder wall [in]
- $\sigma_{\theta} \Big|_{b}$ = value of hoop stress at which buckling is predicted to occur [psi]

In Equations 142 and 143, the moduli E_t and E_s correspond to a state of stress as represented by the von Mises stress intensity given by Equation 141.

Figure 3.8-2 gives the generalized stress versus strain curve for various values of the Larson-Miller parameter (LMP) given by

LMP = $(T + 460) (20 + \log_{10} \tau)$

(144)

where

Figure 3.8-2

Iso-LMP Stress-Strain Curves for 15% Cold Worked Zircaloy in the 550 to 750°F Temperature Range

- T = temperature of material [OF]
 - = duration of loading [hrs]

These curves shown in Figure 3.8-2 are used as isochronous stress-strain curves.

<u>Assumptions</u>. In the analysis, the cylinder is assumed to have an initial ovality which is typical of the tolerance on roundness as described by diametral dimensions:

$$U = U_0 \cos 2\theta$$

<u>Input Specifications</u>. For 15% cold-worked Zircaloy tubing material, the following conditions define the geometry of the cylinder, its loading and the atmospheric conditions:

- p = external pressure = 2700 (psi)
- T = material temperature = 680 (°F)
- t = cylinder wall thickness = 0.013 (in)

 U_0 = initial ovality = .0005

r = cylinder mean radius = 0.1285 (in)

LMP = Larson-Miller parameter (from Equation 144) = 23,940 ()

L = tube length = 144 (in)

v = Poisson's ratio = 0.25 ()

Et = tangent modulus (see Figure 3.8-2 for values) [psi]

E_s = secant modulus (see Figure 3.8-2 for values) [psi]]

Griffin (Reference GR-67) has analyzed this case using Equations 142 and 143 along with Figure 3.8-2. Collapse in less than 10 hours was predicted.

He also reports limited test data in which collapse occurred before the first observation, which was made after 72 hours of loading.

<u>Output Specifications</u>. The output indicates whether substantial magnification of ovality approaching the equivalent of collapse is predicted with the COVE program to have occurred within 10 hours. If it is predicted, this would be an indication that COVE is likely to be conservative.

Collapse often depends on individual properties of specimens and loading conditions beyond those described by average properties. Analytical prediction methods are generally not very precise.

3.9 Hypothetical Prediction of Deformation Including Progressive Creep for a Waste Package

<u>Problem Statement</u>. The waste package must function for a very long time. External loads due to groundwater pressure or rock forces could act during most or all of the waste package service life. The cumulative effects of these loads of long duration are much greater than the effects of shorter duration. Therefore, creep strain must be considered because its contribution to total strain may be much greater than the instantaneous strain. Creep strain causes additional ductility to be consumed which must be accounted for in the structural integrity assessment.

This problem considers a long cylindrical overpack reinforcement as shown in Figure 3.9-1. The waste package is proportioned so that the reinforcement is relied on to resist the entire external load.

Objectives. The objectives of this analysis are

- To demonstrate a method for estimating creep strain in a waste package structure
- To estimate the creep strains for a particular waste package

Hollow Cylindrical Overpack Reinforcement Structure for a Waste Package for Carrying External Pressure Loading

Ą

<u>Analytical Solution</u>. This is a hypothetical problem. An analytical solution will not be presented for comparison with the computer program solution.

<u>Assumptions</u>. In posing the problem, it is assumed that the overpack reinforcement carries all of the externally applied structural load. This is consistent with the assumptions made during the conceptual design process for waste packages to be emplaced in tuff.

It will be assumed that the carbon steel maintains a secondary creep rate during the entire loading duration.

<u>Input Specifications</u>. The configuration for the waste package (Reference ON-83, p. 15) is:

$$D_0 = 55 (cm)$$

t = 2.5 (cm)
 $\ell = 4.1 (m)$

The loading is a uniform external pressure on the cylinder

The creep rate is taken to be of the form

$$e^{C} \frac{de^{C}}{dt} = k\sigma^{T}$$

.where

 $k = 48 \times 10^{-38}$ [1/hr] n = 6.9 [] (145)

giving a creep strain rate of

$$\epsilon^{c} = 9.93 \times 10^{-7} \left[\frac{1}{hr} \right]$$

for the stress of

$$\sigma = \frac{pr}{t} = 2250 (55/2) (1/2.5)$$

$$\sigma = 24,750 [psi]$$

The overpack and overpack reinforcement are fabricated from carbon steel. The material properties are

E = elastic modulus = 27.4×10^6 (psi) v = Poisson's ratio = 0.30 ()

<u>Output Specifications</u>. The solution compares the creep strain and the ratio of total strain to instantaneous strain and the ratio of creep strain to instantaneous strain after several loading intervals such as 10, 100, 300, and 1,000 years.

3.10 Hypothetical Calculation of Stress Resulting from a Steady-State Temperature Distribution in a Waste Package

<u>Problem Statement</u>. This problem is designed to determine the hoop stress component distribution in a series of n concentric hollow cylinders (annular sections). The stress distribution is the result of a radial temperature distribution in the hollow cylinders. The n concentric hollow cylinders (annular sections) surround a solid cylinder acted on by a spatially uniform heat generation representative of the waste acts. The concentric hollow cylinders each have a predetermined temperature distribution. This results from the solution of Problem 2.5. The purpose of this problem is to impose those temperatures along with sufficient mechanical properties so the state of stress can be determined at the inside and outside radius of each of the annuli. The concentric cylinders are shown in Figure 3.10-1.

<u>Objectives</u>. This problem is useful in representing a waste package region such as a thick self-shielding canister. The annular regions are arbitrarily defined in that they are subregions of a larger continuous wall of the canister. Because different physical properties are present in the different regions, it is not convenient to obtain an analytical solution. Solution comparisons between WAPPA and ANSYS are intended.

<u>Analytical Solution</u>. This problem does not have an analytical solution that can be readily obtained (without the linear equations solution capabilities of structural programs). Modeling will be done on as nearly an equivalent basis as possible with the WAPPA and ANSYS programs, and the resulting solution in terms of stress values will be compared.

<u>Assumptions</u>. It is assumed that the mechanical properties are uniform and constant in each region.

<u>Input Specifications</u> (see Reference ON-83). The radial temperature distribution will be as determined in the solution to Problem 2.5.

• Geometry (See Figure 3.10-1) - radii $r_0^7 = 65$ (cm) $r_0^6 = r_1^7 = 60$ (cm) $r_0^5 = r_1^6 = 55$ (cm)

139

Figure 3.10-1

n Concentric Cylindrical Annuli with Known Outside Temperature T_O, Surrounding a Waste Region of Radius r_W in Which a Known Volumetric Heat Generation Rate q''' Exists. Each Region Can Have Its Unique Set of Mechanical Properties

$$r_0^4 = r_1^5 = 50 \text{ (cm)}$$

 $r_0^3 = r_1^4 = 45 \text{ (cm)}$
 $r_0^2 = r_1^3 = 40 \text{ (cm)}$
 $r_0^1 = r_1^2 = 35 \text{ (cm)}$
 $r_1^1 = r_0^w = 30.5 \text{ (cm)}$
 $r_1^w = 0$

Material Properties.

Elastic modulus $E^7 = 27.4 \times 10^6 \text{ (psi)}$ $E^6 = 27.0 \times 10^6 \text{ (psi)}$ $E^5 = 26.6 \times 10^6 \text{ (psi)}$ $E^4 = 26.2 \times 10^6 \text{ (psi)}$ $E^3 = 25.8 \times 10^6$ (psi) $E^2 = 25.4 \times 10^6 \text{ (psi)}$ $E^1 = 25.0 \times 10^6 \text{ (psi)}$ $E^{W} = 10.0 \times 10^{6} \text{ (psi)}$ Poisson's ratio $v^7 = 0.30$ $v^6 = 0.30$ $v^5 = 0.30$ $v^4 = 0.30$ $v^3 = 0.30$ $v^2 = 0.30$ $v_{v}^{1} = 0.30$ $v^W = 0.20$

Temperature coefficient of thermal expansion

 $\alpha^{7} = 6.52 \times 10^{-6} (1/^{0}F)$ $\alpha^{6} = 6.55 \times 10^{-6} (1/^{0}F)$ $\alpha^{5} = 6.58 \times 10^{-6} (1/^{0}F)$ $\alpha^{4} = 6.61 \times 10^{-6} (1/^{0}F)$ $\alpha^{3} = 6.64 \times 10^{-6} (1/^{0}F)$ $\alpha^{2} = 6.67 \times 10^{-6} (1/^{0}F)$ $\alpha^{1} = 6.70 \times 10^{-6} (1/^{0}F)$ $\alpha^{W} = 6.78 \times 10^{-6} (1/^{0}F)$

<u>Output Specifications</u>. The output will be the stresses at the inside and outside radii of each of the annular sections which make up the waste package.

3.11 Hypothetical Analyses of Canister Stresses Subsequent to Being Filled with a Hot Glass Waste Form

<u>Problem Statement</u>. Some thermal conditions produce large internal forces and moments and hence stress values because different portions of the structure are at different temperatures. Since these different portions of the structure are connected, they constrain each other from the independent, free expansion necessary to receive internal forces, moments, and thermal stresses. The performance assessment of canisters into which molten glass waste forms are poured should be analyzed to determine the stress values resulting from the temperature distribution which exists at various times subsequent to filling. The temperature distributions are determined in Problem 2.7. Figure 3.11-1 shows the canister before filling.

<u>Objectives</u>. The objective of this problem is to solve for the structural response caused by severe temperature gradients in a canister. The

142

Canister into Which Molten Glass Waste Is Poured

quantities of interest will be the stress values throughout the structure. The known temperature distributions at various times in the transient will be the loading conditions.

<u>Analytical Solution</u>. This is a hypothetical problem. A computer program model will be developed and structural response simulated. It is anticipated that the ANSYS computer program will be used. An independent analytical solution will not be determined.

<u>Assumptions</u>. It is assumed that the molten waste form is poured instantaneously into the canister at time zero.

<u>Input Specifications</u>. The structural analysis will be for the configuration and heat transfer conditions given in Table 3.11-1. The mechanical properties (in English units) as a function of temperature for 304 stainless steel are

T (°F)	E (MPa)	(-)	(10 ⁶ psi)	(10 ^{6°} psi)	K (10 ⁶ psi)	(10 ⁶ /°F)
70	28.3	. 29	10.97	15.15	22.46	9.11
100	-					9.16
150	-					9.25
200	27.7					9.34
250	-					9.41
300	27.1					9.47
350	-					9.53
400	26.6					9.59
450	-					9.65
500	26.1					9.70
550	-					9.76
600	25.4					9.82
650	-					9.87
700	24.8					9.93
750	-					9.99
800	24.1		•			10.05

Legend

- E Elastic Modulus
- v Poisson's Ratio
- G Shear Modulus (Lame's Constant μ)
- λ Lame's Constant
- K Bulk Modulus
- α Mean Coefficient of Thermal Expansion from 70°F to the Indicated Temperature

Table 3.11-1

•

.

•

In Development

Similarly, the glass mechanical properties (in metric units) are:

T	E	v	G	λ	K	(10-6/oc)
(°C)	(MPa)	(-)	(MPa)	(MPa)	(MPa)	
25	6.9x10 ⁴	0.20	2.9x10 ⁴	1.9x10 ⁴	3.8x10 ⁴	10.0

Legend

E - Elastic Modulus ν - Poisson's Ratio G - Shear Modulus (Lame's Constant μ) λ - Lame's Constant K - Bulk Modulus α - Coefficient of Thermal Expansion

<u>Output Specifications</u>. Generalized stress intensity values will be monitored at various node locations throughout the canister wall thickness and examined for reasonableness.

3.12 Hypothetical Calculation of Stress Due to Uniform External Pressures on a Waste Package

<u>Problem Statement</u>. A waste package structure is loaded by uniform external pressure. Only instantaneous structural response to the loading is to be considered. Material deformation is in the elastic range. The loading is substantial but not large enough to cause instantaneous plastic deformation.

A sketch of the structure is shown in Figure 3.12-1. The inside and outside radius of the structure's cylindrical annulus cross section are denoted by r_i and r_0 . Intermediate positions are denoted by r_a , r_b , and r_c as shown in Figure 3.12-1.

<u>Objectives</u>. The objectives of this problem are to compare structural responses predicted by WAPPA to those obtained from a finite element program. The ANSYS finite element program will be used to generate

146

Waste Package Structure with Uniform External Pressure Loading

comparative responses. Stress components in the tangential direction at various radial positions will be the principal quantity of interest.

<u>Analytical Solution</u>. This is a hypothetical problem in which WAPPA and ANSYS are to be compared. The thick-walled cylinder solution for the stress component in the circumferential direction as a function of radial position, inside and outside radius, and external pressure can readily be used to obtain an additional check. The tangential stress component is given by

$$\sigma_{t} = -\frac{p_{o}r_{o}^{2}}{r_{o}^{2} - r_{i}^{2}} (1 + \frac{r_{i}^{2}}{r^{2}})$$

where

 p_0 = uniform external pressure acting at radius r_0 [f/l²]

r_o = outside radius [1]

r_i = inside radius [l]

r = particular position of interest in the range $r_i < r < r_0 [l]$

 σ_t = tangential stress quantity at radius r [f/ ℓ^2]

<u>Assumptions</u>. It is assumed that pressure is not applied to the ends of the cylinder.

<u>Input Specifications</u>. A static pressure loading of 5 MPa will be applied to the following carbon steel overpack structure:

Outside radius = r_0 = 32.25 (cm) Inside radius = r_i = 29.75 (cm) The intermediate radial positions are at:

 $r_a = 30.375$ (cm) $r_b = 31.000$ (cm) $r_c = 31.625$ (cm)

<u>Output Specifications</u>. The tangential stress component at radii r_i , r_a , r_b , r_c , and r_0 are to be evaluated. Using Equation 146 for the given pressure loading and annular dimensions, the tangential stress component is predicted to be:

	r	σt
	<u>(cm)</u>	<u>(MPa)</u>
r = rj	29.75	-67.1
r = r _a	30.375	-65.7
r = r _b	31.0	-64.4
r = r _C	31.625	-63.2
$r = r_0$	32.25	-62.1

4.0 RADIATION SHIELDING PROBLEMS

This section deals with the shielding of neutrons and gamma rays within the waste form and the surrounding waste canister. It contains five problems:

- A simple problem to allow comparison of the "buildup factor" method with more sophisticated transport theory shielding codes
- Measured radiation fields around a PWR fuel assembly in air and water
- Measured radiation levels around a BWR fuel assembly in air and water
- A hypothetical shielding problem for a thick-walled waste package
- A hypothetical shielding problem for a thin-walled waste package

These problems can be used to aid in verifying and validating radiation shielding codes.

4.1 Hypothetical Radiation Shielding Problem

<u>Problem Statement</u>. The problem requires the estimation of the gamma flux and dose at the outer surface of a concrete drum containing a 1 MeV gamma source. Three subproblems are presented: no external shield, a 5 cm steel shield, and a 25 cm steel shield. This is a relatively simple problem that can be solved analytically by the buildup factor method.

<u>Objectives</u>. The purpose of this problem is to compare the predictive capabilities of a simple analytical shielding calculation and a transport theory computer code calculation.

<u>Physical Description</u>. A long concrete cylinder contains a uniformly dispersed 1 MeV gamma emitter with a source strength of 10⁷ disintegrations

150

per cubic centimeter per second. The cylinder is 0.60 m in diameter and, for purposes of the analysis, is assumed to be infinitely long. The gamma flux and dose rate are to be calculated for a bare cylinder and for cylinders with 5 cm and 25 cm annular steel shields.

<u>Analytical Solution</u>. This problem can be solved analytically using methods described in Reference RO-56. This method assumes that the shield is a slab. This is a good approximation for the 5 cm thick shield but may be a poor assumption for the 25 cm shield.

For an infinite length cylindrical source, the gamma flux, ϕ , at an exterior point is given by:

$$\phi = \frac{BS_v R_o^2}{2(a+z)} F(\frac{\pi}{2},b_2)$$

(147)

where:

 $\phi = \text{gamma flux, photons/cm}^2 \cdot \text{sec}$ B = buildup factor, dimensionless $S_V = \text{volumetric photon source, photons/cm}^3 \cdot \text{sec}$ $R_0 = \text{radius of cylinder, cm}$ a = distance from cylinder surface to measurement point, cm z = effective source self-attenuation distance, cm $(F \frac{\pi}{2}, b_2) = \int_0^{\pi/2} e^{-b_2} \sec \theta_{d\theta}, \text{Sieverts integral or secant integral, dimensionless}$

The buildup factor, B, is defined as the rate of the actual gamma flux compared to that calculated using exponential attenuation with the linear

attenuation coefficient. Table 4.1-1 gives dose buildup factors and attenuation coefficients for 1 MeV gamma photons in selected materials.

The effective source self-attenuation distance can be calculated using figures in Reference RO-56. The calculated values of z as a function of shield thickness are given below:

Shield <u>Thickness, cm</u>	Self-Attenuation Factor (cm)		
0	25.8		
5	26.4		
25	23.5		

Buildup factors in concrete and iron calculated using values from Table 4.1-1 are given in Table 4.1-2. The total number of relaxation lengths (b₂) can be calculated from the equation:

 $b_2 = u_c z + \mu_l t$

where:

 μ_c = the gamma absorption coefficient for concrete μ_l = the gamma absorption coefficient for iron t = the thickness of the iron shield

Calculated values of b2 are given below:

<u>_t</u>	b2
0	3.85
5	6.28
25	15.20

The calculated values of b_2 are used to determine $F(\pi/2,b_2)$ from figures in Reference RO-56.

T	ab	le	4.	1-	-1

	Constant					
Material	۲A	αι	α2	Ψt	^μ e	ρ
Air				.0000822	.0000362	.001293
Water	13.5	100	.01	.0706	.0311	1.00
Iron	8.0	0895	.04	.4677	.2051	7.85
Concrete	10.0	088	.029	.1492	.0653	2.35

Dose Buildup Factors and Attenuation Coefficients for 1 MeV Gamma Rays

 $B(\mu_{t}x) = A_{1} \exp(-\alpha_{1}x) + (1-A_{1}) \exp(-\alpha_{2}x)$ Dose = E\phi(E)\mu_{e}/\rho MeV/cm³ · sec = 5.767 x 10⁻⁵ E\phi(E)\mu_{e}/\rho Rad/hr *

* 5.767 x
$$10^{-5} = \frac{1.602 \times 10^{-6} \text{ erg}}{\text{MeV}} \cdot \frac{1 \text{ Rad}}{100 \text{ erg/g}} \cdot \frac{1}{0 \text{ g/cm}^3} \cdot \frac{3600 \text{ g}}{\text{hr}}$$

Table 4.1-2

Calculated Buildup Factors

No Shield

Concrete

$$B_c = 10 \exp(.088 \cdot .1492 \cdot 25.8) - 9 \exp(-.029 \cdot .1492 \cdot 25.8)$$

= 6.1

Iron

$$B_{I} = 8 \exp (.0895 \cdot .4677 \cdot 0) - 7 \exp (-.04 \cdot .4677 \cdot 0) = 1$$

$$B_{\text{system}} = B_{\text{c}} \cdot B_{\text{I}}$$

= 6.1

5 cm Shield

Concrete

$$B_c \approx 10 \exp (.088 \cdot .1492 \cdot 26.4) - 9 \exp (-.029 \cdot .1492 \cdot 26.4)$$

= 6.1

Iron

25 cm Shield

Concrete

$$B_c \approx 10 \exp (.088 \cdot .1492 \cdot 23.5) - 9 \exp (-.029 \cdot .1492 \cdot 23.5)$$

= 5.6

.

Iron

.

$$B_{I} = 8 \exp (.0895 \cdot .4677 \cdot 25) - 7 \exp (-.04 \cdot .4677 \cdot 25)$$

= 18.0

B_{system} = B_c·B_I = 5.6.18 = 101.4

Table 4.1-2

Calculated Buildup Factors

No Shield

Concrete

$$B_{c} = 10 \exp(.088 \cdot .1492 \cdot 25.8) - 9 \exp(-.029 \cdot .1492 \cdot 25.8)$$

= 6.1

 \sim

Iron

$$B_{I} = 8 \exp (.0895 \cdot .4677 \cdot 0) - 7(-.04 \cdot .4677 \cdot 0)$$

= 1

$$B_{system} = B_{c} \cdot B_{I}$$

= 6.1

5 cm Shield

Concrete

$$B_{c} = 10 \exp(.088 \cdot .1492 \cdot 26.4) - 9 \exp(-.029 \cdot .1492 \cdot 26.4)$$

= 6.1

Iron

25 cm Shield

Concrete

$$B_{c} = 10 \exp(.088 \cdot .1492 \cdot 23.5) - 9 \exp(-.029 \cdot .1492 \cdot 23.5)$$

= 5.6

Iron

<u>Shield Thickness, t</u>	Sieverts Integral $F(\pi/2, b_2)$
0	1.2×10^{-2}
5	7.5 x 10-4
25	7.5 x 10 ⁻⁸

Substituting these values into the equation for the flux and dose at the center surface, the following are obtained:

Shield Thickness, t	Gamma Flux,¢ gammas∕cm3∙sec	Outer Surface Dose Rate Rad/hr
0	1.28E7	2.29E1
5	2.30E6	4.13E0
25	7.06E2	1.27E-3

<u>Assumptions</u>. The concrete isotopic content in Table 4.1-3 should be used to estimate the gamma flux using a transport theory code.

<u>Output Specifications</u>. The outputs for this problem are the gamma photon flux and the dose rate at the outer shield surface.

<u>Comments</u>. The results given here should be compared with the results from a one-dimensional transport theory calculation and the shielding factor method employed in the codes BARIER and WAPPA. For the 0 cm and 5 cm shields, good agreement ($\sim 20\%$) between the results given here and code predictions can be expected. For the 25 cm shield, the results predicted in this report may vary from predictions derived from a transport theory code because of the difficulty in calculating attenuation in thick shields using the shielding factor method.

4.2 Pressurized Water Reactor Fuel Assembly Radiation Levels

<u>Problem Statement</u>. This problem presents the results of in-plant test measurements of the radiation field in air and water around a Pressurized Water Reactor (PWR) fuel assembly from Point Beach Unit 2. The problem is based on measurements taken at General Electric's Morris Operation.

155

Table 4.1-3

Elemental Content of Type 04 Cement*

<u>Content</u> (g/cm ³)		
0.014		
0.111		
1.062		
0.006		
0.107		
0.737		
0.045		
0.194		
C.029		
0.040		
2.35		

Source: AN-63, p. 660. Na content corrected from 0.400 to 0.040. Water content increased slightly (H from 0.013 to 0.014, 0 from 0.103 to 0.111) to agree with density of 2.35 g/cm³.

<u>Objectives</u>. This problem will provide a basis for comparing the radiation field calculated using a source term code and a shielding code with measured experimental data.

<u>Physical Description</u>. Point Beach Unit 2 uses Westinghouse 14x14 fuel assemblies. The fuel was irradiated from August 1972 to March 1977. After discharge from the reactor and cooling, the fuel was shipped to General Electric's Morris Operation for interim storage. As part of an engineering and test support contract funded by the Department of Energy, selected fuel assemblies were characterized. Gamma exposure rates near spent fuel assemblies were measured four years after discharge of the fuel from the reactor.

Fuel assembly design characteristics are given in Table 4.2-1. The initial non-actinide composition of uranium oxide fuel pellets is given in Table 4.2-2. The weight of fuel assembly structural materials is presented in Table 4.2-3, and the elemental composition of structural material is given in Table 4.2-4. Fuel assembly operating conditions are summarized in Table 4.2-5.

The concentrations of fuel assembly structural material located in the end fitting zone should be multiplied by 0.011 to account for the lower activation levels near the ends of the fuel assembly due to flux levels lower than those in the active fuel zone. In addition, the concentrations of manganese, cobalt, and zirconium in the end fitting zone should be multiplied by factors of 0.80, 0.67, and 0.40, respectively. These corrections account for the difference between the neutron energy spectrum in that zone and the spectrum in the active fuel zone. Both kinds of corrections are based on axial spectrum calculations for a Westinghouse PWR fuel assembly as reported in Reference CR-78. With these corrections, the ORIGEN-S calculations should more accurately predict the nuclide activities from the structural materials.

Reference JU-81 gives the results of experimental measurement of gamma dose rate and calculations using the shielding factor code QAD. These

157

Table 4.2-1

Fuel Design Data for Point Beach 2

Percent theoretical density ^a			91.8
Initial uranium composition (wt. %)		234 _U	0.027
		235	3.400
		238 _U	96.573
Initial uranium loading (kg/assembly)			
Fuel rods per assembly	179 with	Zircaloy-4	clad
Rod pitch (cm)			1.41224
Pellet O.D. (cm)			0.92685
Clad I.D. (cm)			0.94844
Clad O.D. (cm)			1.07188
Nominal Envelope (cm)			19.718 19.718
Plenum Length (cm)			16.982
Active Fuel Length (cm)			365.76
Fuel Temperature (^o K)		1	200
Clad Temperature (^O K)		(605
Moderator Temperature (^O K)			583
Moderator Density (g cm ⁻³)			0.706575
VF for Moderator ^b			0.707850
Average boron concentration (wt. ppm)		:	550

 \overline{a} Theoretical UO₂ density is 10.96 g cm⁻³.

^b VF is a SAS2 parameter related to volume fraction and/or percent theoretical density (see Reference OR-82).

Table 4.2-2

Element	Atomic Number	Concentration (ppm) ^a	Element	Atomic Number	Concentration (ppm) ^a
Li	3	1.0	Mn	25	1.7
В	5	1.0	Fe	26	18.0
С	6	89.4	Со	27	1.0
N	7	25.0	Ni	28	24.0
0	8	134,454.0	Cu	29	1.0
F	9	10.7	Zn	30	40.3
Na	11	15.0	Мо	42	10.0
Ma	12	2.0	Aq	47	0.1
ĂĬ	13	16.7	ЪЭ	48	25.0
Si	14	12.1	In	49	2.0
Ρ	15	35.0	Sn	50	4.0
C1	17	5.3	Gd	64	2.5
Ca	20	2.0	Ŵ	74	2.0
Ti	22	1.0	РЬ	82	1.0
V	23	3.0	Bi	83	0.4
Cr	24	4.0			

Typical Non-actinide (Impurity) Composition of LWR Oxide Fuels

Source: MI-83

.

^a Parts of element per million parts of heavy metal.

T	ab	le	4.	2-3
---	----	----	----	-----

Typical PWR Fuel Assembly Structural Material Mass Distribution

	·····	M	ass
	Material	kg/MTHM	kg/Assembly
Fuel Zone			
Cladding	Zircaloy-4	223.0	102.9
Grid spacers Grid-spacer springs	Inconel-718	12.8	5.9
Grid-brazing material	Nicrobraze 50	2.6	1.2
Miscellaneous	SS 304ª	<u>9.9</u>	4.6
Fuel-Gas Plenum Zone			
Cladding	Zircaloy-4	12.0	5.5
Plenum spring	SS 302	4.2	1.9
End Fitting Zone			
Top end fitting	SS 304	14.8	6.8
Bottom end fitting	SS 304	12.4	5.7
TOTAL		291.7	134.5

Source: MI-83

1

^a Distribution throughout the PWR core in sleeves and so forth.

.

.

Typical Elemental Compositions of LWR Fuel Assembly Structural Materials

•		Structural Material Composition (Grams per Metric Ton of Metal)					
Element	Atomic Number	Zircaloy-4	Inconel-718	Stainless Steel 302	Stainless Steel 304	Nicrobraze 50	
Н	1	13	0	0	0	0	
В	5	0.33	0	0	0	50	
С	6	120	400	1,500	800	100	
N	7	80	1,300	1,300	1,300	66	
0	8	950	0	0	0	. 43	
A1	13	24	5,992	0	0	100	
Si	14	0	1,997	10,000	10,000	511	
P	15	0	0	450	450	103,244	
S .	16	35	70	300	300	100	
Ti	22	20	7,990	0	0	100	
V	23	20	0	0	0	0	
Cr	24	1,250	189,753	180,000	190,000	149,709	
Mna	25	20	1,997	20,000	20,000	100	
Fe	26	2,250	179,766	697,740	688,440	471	
Coa	27	10	4,694	800	800	381	
Ni	28	20	519,625	89,200	89,200	744,438	
Cu	29	20	999	0	0	0	
Zr ^a	40	979,110	0	0	0	100	
Nb	41	0	55,458	0	0	0	
Мо	42	0	29,961	0	0	0	
Cd	48	0.25	0	0	0	0	
Sn	50	16,000	0	0	0	0	
Hf	72	78	0	0	0	0	
W	74	20	20	0	0	100	
U	92	0.2	0	0	0	0	
Density, grams/cm ³		6.56	8.19	8.02	8.02	-	

. .

.

.

Source: MI-83 ^a Value used in source term calculations should be less than this (actual) value if the materials are not in the active fuel zone.

Table 4.2-5

Operating Period	Days	Average Power MW/MT
]*	210	6
2		
3		0
4		
5		0
6		
7		0

Fuel Assembly Operating Conditions

In Development

* After initial startup, the plant operated at 20% power for seven months due to operating license restrictions.

Source:

results are given for measurements taken at several axial locations for the X-Y detector location given in Table 4.2-6. Table 4.2-7 gives the calculated intensities for the gamma radiation source in spent fuel from Reference JU-81.

Table 4.2-8 gives the measured gamma exposure rates at the fuel assembly mid-point along the "Bl" profile for three fuel assemblies that were believed to have similar irradiation histories. In addition to measured exposures at each corner, Table 4.2-8 provides an indication of the anisotropy of gamma exposure. For individual fuel assemblies, the measured gamma exposure varied by as much as $\pm 8\%$. (In calculating the gamma intensity around a fuel assembly, it is commonly assumed that the fuel burnup and therefore the gamma source is evenly distributed.)

Results of additional measurements made along the Bl profile at 1 ft intervals are given in Table 4.2-9. These measurements provide an estimate of the standard error of the exposure rate measurement of about $\pm 4\%$ (one sigma).

Table 4.2-10 gives results of calculated and measured exposure rates in air and water for three detector profiles.

Reference JU-81 includes a discussion of the accuracy and precision of measured results. Based on an analysis of all identified sources of random errors, the overall variability of measurement is estimated to be 3.8%. This reference also states that based on measurements performed by GE, a variance of $\pm 3\%$ (one sigma) between utility-calculated fuel exposures and true exposures may exist. This agrees with generally held beliefs about the accuracy of these calculations and is consistent with IAEA guidelines established for safeguards purposes.

Assumptions. Analyses may be performed using the following assumptions:

The entire fuel assembly (except end fittings) is a homogeneous mass.

The two outer rows of fuel rods are modeled discretely; the remaining rods are a homogeneous mass.
Gamma Detector Locations

Detector	<u>X-Y L</u>	ocation*
	<u></u>	<u> </u>
A-1	1.6	+ 1.6
B-1	7.0	+ 7.0
E-1	- 3.9	+10
T-]**	- 3.9	- 3.9

* The origin is the corner of the fuel assembly envelope at the top of the active length of the fuel.

** This detector is located above the fuel assembly.

Calculated Gamma Intensities for Gamma Radiation Sources in Spent Fuel

Upper Energy Range	Gamma MeV/cm ³ ·sec
0.55	1.75E9
0.85	4.28E10
1.25	3.89E9
1.75	8.87E8
2.25	1.62E7
2.65	1.57E8
3.00	3.48E6
4.00	6.70E5
5.00	2.27E2
6.00	5.52E1

Source: JU-81

.

,

-

.

Exposure Rates from Fuel Assemblies

Fuel Assembly	Exposure Rate (KR/hr) at Fuel Assembly Midpoint along Bl Profile in Water Edge Measured				Figure of Anisotropy	
Identification	N	Ē	S	W	Average	100 (Max-Min)/Max
C56	30.0	32.0	32.1	31.7	31.5	6.5
C64	32.0	29.8	28.0	29.0	29.7	12.5
C67	28.0	30.5	31.0	31.5	30.3	11.1

ù

Source: JU-81

.

.

.

.

.

.

Exposure Rate from Repeated Fuel Assembly Measurements

Fuel Assembly I.D.	Profile	Z* Location Feet-Inches	Number of Independent Measurements	Exposure Rate KR/hr (Mean Standard Deviation)	Measurement Error (%)
C56	B1	0-3	4	6.95 (0.36)	5.2
		0+9	4	21.26 (0.62)	2.9
		1+9	- 4	26.00 (0.94)	3.6
		2+9	4	27.60 (1.08)	3.9
		3+9	4	28.74 (0.96)	3.3
		4+9	4	29.50 (1.00)	3.4
		5+9	4	30.54 (1.32)	4.3
C64	B1	0-3	2	6.73	-
•••	-	0+9	2	20.8	-
		1+9	. 2	25.7	-
		2+9	2	26.6	-
		3+9	2	28.	-
		4+9	2	28.8	-
		5+9	2	28.8	-
C67	81	0-3	1	6.7	-
007	21	0+9	1	21.0	-
		1+9	i	26.0	-
		2+9	1	28.0	-
		3+9	i	29.0	-
		4+9	i	30.0	-
		5+9	i	30.5	-

* Distance from the top of the active fuel height.

Source: JU-81

.

.

.

Shielding		Vertical	Exposure Rate (R/hr)		
<u>Media</u>	Profile	Position*	Calculated	Measured	
water	Bl	0	6,850	7,000	
water	B1	3	29,100	28,500	
water	Bl	6	40,700	31,300	
air	B1	0	5,150	10,000	
air	B1	3	20,100	33,500	
air	B1	6	27,800	34,800	
water	Al	0	1,590	1,700	
water	Al	3	4,640	5,300	
water	FA	6	4,680	5,600	
air	AI	0	4,310	6,500	
air	L A	3	10,800	18,000	
air	Al	6	11,100	18,100	
water	El	0	2,010	2,100	
water	El	3	6,370	6,200	
water	E1	6	6,430	6,800	
air	El	0	4,260	5,800	
air	E1	3	11,300	18,000	
air	E1	6	11,500	18,000	
water	T1	-1.75	7	85	
air	TI	-1.75	25	475	

Calculated and Measured Exposure Rates

*Feet below top of fuel assembly active height.

Source: JU-81

.

.

.

.

.

.

,

Additional simplifying assumptions are:

- Spacer grids are homogenized over the entire assembly.
- Fuel assembly burnup in any X-Y cross-sectional plane is constant.
- The fuel exposure of the uppermost 2 ft and lowermost 2 ft of the fuel assembly is 80% of the fuel assembly average exposure.
- The fuel exposure of the middle 8 ft of the fuel assembly is 110% of the fuel assembly average exposure.

<u>Output Specification</u>. The output for this problem is the gamma radiation dose at the measurement points described earlier. The calculated gamma energy spectrum should be compared with that given in Table 4.2-7 for consistency. The gamma dose should be reported in units of R/hour or KR/hour for comparison with measured values.

<u>Comments</u>. This problem has not been simulated using a Monte Carlo Transport Theory code. Additional problem assumptions may be necessary to perform effective analyses. Reference JU-81 states that the measured results are reproducible to $\pm 4\%$. Fuel burnups are thought to be accurate to $\pm 3\%$. Dose rate instrumentation was biased 18% higher than a calibrated detection system. The reported standard error was $\pm 12R/hour$.

From Reference JU-81, we were not able to determine whether the units of the reported gamma dose are Roentgen/hour or Rad/hour (1 Roentgen = 0.88 Rad).

4.3 Boiling Water Reactor Fuel Assembly Radiation Level

<u>Problem Statement</u>. This problem presents the results of in-plant test measurements of the radiation field in air and water around a Boiling Water Reactor (BWR) fuel assembly. The problem is based on measurements taken at General Electric's Morris Operation.

<u>Objective</u>. This problem provides a basis for comparing the radiation field calculated using a source term code and a shielding code with measured experimental data.

<u>Physical Description</u>. Dresden Unit 2 uses General Electric 7x7 fuel assemblies. The fuel was irradiated from April 1970 (first significant power) to January 1971. After discharge from the reactor and cooling, the fuel was shipped to General Electric's Morris Operation for interim storage. As part of an engineering and test support contract funded by the Department of Energy, selected fuel assemblies were characterized. Gamma exposure rates near spent fuel assemblies were measured eight years after discharge of the fuel from the reactor.

Estimated fuel assembly operating conditions are given in Table 4.3-1. Fuel assembly design characteristics are presented in Table 4.3-2. The initial non-actinide composition of uranium fuel oxide pellets is given in Table 4.3-3. The weight of fuel assembly structural materials is presented in Table 4.3-4, and fuel assembly operating conditions are summarized in Table 4.3-5.

The concentrations of fuel assembly structural material located in the end fitting zone should be multiplied by 0.13 to account for the lower activation levels near the ends of the fuel assembly due to flux levels lower than those in the active fuel zone. In addition, the concentrations of manganese, cobalt, and zirconium in the end fitting zone should be multiplied by factors of 0.80, 0.67, and 0.32, respectively. These corrections account for the difference between the neutron energy spectrum in that zone and the spectrum in the active fuel zone. Both kinds of corrections are based on axial spectrum calculations for a General Electric BWR fuel assembly as reported in Reference CR-78. With these corrections, the ORIGEN-S calculations should more accurately predict the nuclide activities from the structural materials.

Reference JU-81 gives the results of experimental measurements of gamma dose rate and calculations using the shielding factor code QAD. These

Table 4.3-1 -- In Development

Fuel Design Data for Dresden 2

Percent Theoretical Densitya for UO295.0Initial Uranium Composition (wt. %)b2.12

Initial Uranium Loading (kg/assembly)	
Fuel Rods per Assembly	49
Rod Pitch (cm)	1.87452
Pellet O.D. (cm)	1.23952
Clad I.D. (cm)	1.26746
Clad O.D. (cm)	1.43002
Nominal Envelope (cm)	13.81252
Plenum Length (cm)	28.575
Active Fuel Length (cm)	365.76
Fuel Temperature (^O K)	. 700.
Moderator Temperature (^O K)	283.
Moderator Density (g cm ⁻³)	.46C

 \overline{a} Theoretical UO₂ density is 10.96 g cm⁻³.

- ^b Fuel assembly average 30 rods at 2.44%, 16 rods at 1.69%, and 3 rods at 1.20%.
- ^C Assuming a 35% void fraction.

.

.

Typical Non-actinide (Impurity) Composition of LWR Oxide Fuels

Element	Atomic Number	Concentration (ppm) ^a	Element	Atomic Number	Concentration (ppm) ^a
Li	3	1.0	Mn	25	1.7
В	5	1.0	Fe	26	18.0
С	6	89.4	Co	27	1.0
N	7	25.0	Ni	28	24.0
0	3	134,454.0	Cu	29	1.0
F	9	10.7	Zn	30	40.3
Na	11	15.0	No	42	10.0
Mg	12	2.0	Ag	47	0.1
A1	13	16.7	Cd	48	25.0
Si	14	12.1	In	49	2.0
Ρ	15	35.0	Sn	50	4.0
C1	17	5.3	Gd	64	2.5 ^c
Ca	20	2.0	W	74	2.0
Ti	22	1.0	Pb	82	1.0
v	23	3.0	Bi	83	0.4
Cr	24	4.0			~

^a Parts of element per million parts of heavy metal.

^b Stoichiometric quantity for MO₂ fuel, i.e., two atoms of 0 per atom of U or Pu.

^C Average of 1,573 ppm of gadolinium in BWR fuel rods as a burnable poison.

Source: CR-78

Assumed Fuel Assembly Structural Material Mass Distribution in a BWR

	Material	kg/MTHM
Fuel Zone		
Cladding Fuel channel Grid spacers Grid-spacer springs	Zircaloy-2 Zircaloy-4 Zircaloy-4 Inconel X-750	279.5 227.5 10.6 1.8
Fuel-Gas Plenum Zone		
Cladding Fuel channel Plenum spring	Zircaloy-2 Zircaloy-4 SS 302	25.4 20.7 6.0
End Fitting Zone		
Top end fitting Bottom end fitting Expansion springs	SS 304 SS 304 Inconel X-750	10.9 26.1
Total		610.6

Source: MI-83

Fuel Assembly Operating Conditions

Operating Period	Days	Average Power MW/MT
1	70	10
2	40	0
3	200	20

results are given for measurements taken at several axial locations for the X-Y detector locations given in Table 4.3-6.

Table 4.3-7 gives the calculated intensities from Reference JU-81 for the gamma radiation source in spent fuel.

Table 4.3-8 gives the measured gamma exposure rates at the fuel assembly mid-point along the "Bl" profile for three fuel assemblies that were believed to have similar irradiation histories. In addition to measured exposures at each corner, Table 4.3.8 provides an indication of the anisotropy of gamma exposure. For irradiated fuel assemblies, the measured gamma exposure varied by as much as $\pm 10\%$. (In calculating the gamma intensity around a fuel assembly, it is commonly assumed that fuel burnup and therefore the gamma source is evenly distributed.)

Results of additional measurements made along the Bl profile at 1 ft intervals are given in Table 4.3-9. These measurements provide an estimate of the standard error of the expsoure rate measurement of about 9% (one sigma).

Table 4.3-10 gives results of calculated and measured exposure rates in air and water for three detector profiles.

Reference JU-81 includes a discussion of the accuracy and precision of measured results. Based on an analysis of all identified sources of random errors, the overall variability of measurements is estimated to be 9.1%. This reference also states that based on its measurements, a variance of $\pm 3\%$ (one sigma) between utility-calculated fuel exposures and true exposures may exist. This agrees with generally held beliefs about the accuracy of these calculations and is consistent with IAEA guidelines established for safeguards purposes.

Assumptions. Analyses may be performed using the following assumptions:

 The entire fuel assembly (except end fittings) is a homogeneous mass.

Gamma Detector Locations

Detector	X-Y Lo	cation*
	<u>x</u>	<u>Y</u>
A-1	1.6	+ 1.6
B-1	7.0	+ 7.0
E-1	-3.9	+10
T-]**	-3.9	- 3.9

* The origin is the corner of the fuel assembly envelope at the top of the active length of the fuel.

****** This detector is located above the fuel assembly.

Source: JU-81

Calculated Gamma Intensities for Gamma Radiation Sources in Spent Fuel

Upper Energy Range	Gamma MeV/cm ³ ·sec		
0.55	2.22E7		
0.85	2.05E9		
1.25	3.09E7		
1.75	4.38E6		
2.25	5.91E4		
2.65	5.63E5		
3.00	1.24E4		
4.00	2.25E3		
5.00	1.90E-1		
6.00	4.62E-2		

Exposure Rates from Fuel Assemblies

1

Exposure Rate (R/hr) at Fuel Assembly Midpoint Along Bl Profile in Water Edge Measured Figure of Anisotropy 100 (Max-Min)/Max Fuel Assembly Identification N E S W Average 201 975 910 860 860 900 11.8 686 945 920 880 885 910 6.9 599 1200 1100 1000 1050 1090 16.7

Exposure Rate from Repeated Fuel Assembly Measurements

Fuel Assembly I.D.	Profile	Z* Location Feet-Inches	Number of Independent Measurements	Exposure Rate KR/hr (Mean Standard Deviation)	Measurement Error (%)
201	B1	+5	11	108 (10.4)	9.6
686		1+5	11	454 (20.5)	4.5
599		2+5	11	759 (23.3)	3.1
		3+5	11	912 (48.5)	5.3
		4+5	11	961 (126)	13.1
	-	5+5	11	977 (150)	15.4
		6+5	11	959 (122)	12.8
				Average	9.1

*Distance from the top of the active fuel height.

Calculate	d and	Measured	Exposure	Rates
-----------	-------	----------	----------	-------

Shielding Media	Profile	Vertical Position*	Exposure Ra Calculated	<u>te (R/hr)</u> Measured
water	Bl	0	87	105
water	B1	3	470	940
water	B1	6	510	885
air	B1	0	91	185
air	B1	3	437	1200
air	El	6	482	1400
water	Al	0	20	30
water	A1	3	97	190
water	A1	6	706	190
air	A1	0	72	160
air	Al	3	262	650
air	A1	6	296	730
water	E1	0	20	40
water	El	3	103	220
water	E1	6	113	245
air	El	0	59	. 130
air	E1	3	232	540
air	E1	6	264	600
water	Tl	-1.75	.05	2
air	Tl	-1.75	.2	15

* Feet below top of fuel assembly active height.

• The two center rows of fuel rods are modeled discretely, the remaining rods are homogenized.

Additional simplifying assumptions are:

- Spacer grids are homogenized over the entire assembly.
- Fuel assembly burnup in the X-Y plane is assumed to be equal.
- The fuel exposure of the uppermost 2 ft of the fuel assembly will be 50% of the fuel assembly average exposure.
- The fuel exposure of the lower 10 ft of the fuel assembly will be 110% of the fuel assembly average exposure.

<u>Output Specification</u>. The output for this problem is the gamma radiation dose at the measurement points described earlier. The calculated gamma energy spectrum should be compared with that given in Table 4.3-7 for consistency. The gamma dose should be reported in units of R/hour or KR/hour for comparison with measured values.

<u>Comments</u>. This problem has not been simulated using a Monte Carlo Transport Theory code. Additional problem assumptions may be necessary to perform effective analyses. Reference JU-81 states that measured results are reproducible to $\pm 4\%$. Fuel assembly burnups are thought to be accurate to $\pm 3\%$. However, the axial burnup distribution of low exposure BWR fuel is not easy to estimate without performing coupled depletion/thermal-hydraulic analysis. Dose rate instrumentation was biased 18% higher than a calibrated detector system. The reported standard error was $\pm 12R$ /hour.

From Reference JU-81, we were not able to determine whether the units of the reported gamma dose rates are Roentgens/hour or Rad/hour (1 Roentgen = .88 Rad).

4.4 Hypothetical Thin-Walled Waste Package Shielding Problem

<u>Problem Statement</u>. This problem requires the estimation of the gamma flux and neutron flux and dose around a hypothetical thin-walled, highlevel radioactive waste package. The hypothetical waste package is conceptually similar to packages that the Department of Energy has proposed for use in a salt repository. The flux and dose will be estimated at points within the shield and at points exterior to the shield.

<u>Objective</u>. The purpose of this problem is to provide a baseline for prediction of the gamma and neutron flux and dose in an environment similar to that which may exist around a waste package in a repository for high-level radioactive waste.

<u>Physical Description</u>. The waste package consists of a 2-3/4 in cylindrical carbon steel structural member covered by a 0.25 cm Ticode-12 overpack. Waste package design characteristics are summarized in Table 4.4-1. The gamma flux and dose rate are to be calculated at points in the structural component, in the Ticode-12 overpack, and at points in a salt host rock surrounding the waste package. Figure 4.4-1 shows a typical waste package emplacement environment.

<u>Problem Solution</u>. This problem will be solved using a transport theory computer program. It should be assumed that the spent BWR fuel rods had an initial enrichment of 2.7% and were irradiated at constant power over a three-year period to a discharge exposure of 27,000 megawatt days per metric ton of uranium. Subsequent calculations should be performed for time periods of 30, 100, 300, and 1,000 years following waste package emplacement.

<u>Assumptions</u>. In modeling the spent fuel rods contained in the waste package, it is adequate to analyze discretely the outermost two rows of fuel rods. The innermost fuel rods can be analyzed using the properties for a homogenized material composition. The problem may be analyzed in either one or two dimensions. Isotopic compositions of materials for this problem are given in Table 4.2-2.

Table 4.4-1

Design Parameters	Reference BWR
Waste Form	
Diameter (cm) Length (m) Weight of Waste (kgU) Total Waste Form Weight (kg)	49 4.11 3402 6260
Waste Package	
Overpack Material Overpack Thickness (cm) Outside Diameter (cm) Length (m) Empty Weight (tonnes) Loaded Weight (tonnes)	TiCode-12 0.25 64.5 4.45 4.8 11.1
Repository	
Package Pitch (m) Tunnel Height (m) Tunnel Width (m) Borehole Diameter (cm) Borehole Depth (m)	10.0 7.2 4.0 68 5.6
Performance Parameters	
Surface of Overpack (mrem/hr) Surface of Tunnel (mrem/hr)	106 1.3
Structural Component Thickness	
Cylinder Wall (cm) Actual Top Head (cm) Actual Bottom Head (cm)	7 20 12

Summary of Waste Package Design Characteristics

Figure 4.4-1

Reference Spent Fuel Waste Package for Borehole Emplacement

<u>Output Specifications</u>. The outputs for this problem are the gamma photon flux and the neutron flux at the waste package centerline, at the outer carbon steel overpack surface, at the outer Ticode-12 surface, and at points 5, 10, 20, 50, 100, and 500 cm from the waste canister surface in the host rock.

<u>Comments</u>. This problem has not yet been analyzed. However, assessments performed by Westinghouse using a one-dimensional transport theory code estimated that the dose for 10-year cooled BWR fuel at the surface of the overpack would be approximately 10^6 millirems per hour.

4.5 Hypothetical Thick-Walled Waste Package Shielding Problem

<u>Problem Statement</u>. This problem requires the estimation of the gamma flux and neutron flux around a hypothetical thick-walled, high-level radioactive waste package. The hypothetical waste package is conceptually similiar to packages that the Department of Energy has proposed for use in the BWIP facility. The flux will be estimated at points within the shield and at points exterior to the shield.

<u>Objective</u>. This problem is designed to provide a baseline for prediction of the gamma and neutron flux in an environment similar to that which may be seen around a waste package in a repository for high-level radioactive waste.

<u>Physical Description</u>. The waste package consists of a 38 cm thick triangular cast iron container. Waste package design characteristics are summarized in Tables 4.5-1 and 4.5-2. The gamma flux is to be calculated at points in the waste package and at points in a bentonite backfill surrounding the waste package. Figures 4.5-1 and 4.5-2 show a typical waste package emplacement environment.

<u>Problem Solution</u>. This problem will be solved using a transport theory computer program. It should be assumed that the waste form is commercial

Table 4.5-1

Summary of Alternate II (SSP) Waste Package Design Features

Conceptual Design Feature	CHLW	
Waste Form Features		
Number of Waste Forms	3	
Waste Form Diameter, cm	32.5	
Waste Form Length, cm	305	
Waste Form Weight, kg	2,535	
. Waste Content per Package, kg	1,785	
Package Heat Load, W	6,630	

Package Features

.

.

Cross Section Geometry	Modified Triangle
Inside Dimension(s), cm	70
Outside Dimension(s), cm	146
Overpack Length, cm	400
Overpack Empty Weight, tonne	39.0
Overpack Loaded Weight, tonne	41.5
Package Surface Radiation (mrem/hr)	100

Table 4.5-2

CHLW Characteristics

Canister Dimensions	0.324 m dia. x 3.05 m long
Glass(a) Thermal Conductivity	0.8-1.3 W/m ^o C 0 to 500 ^o C
Glass Specific Heat	700-800 J/kg ^o C
Glass Density	3.1 g/cm ³
Canister Average Heat Output at	2.2 kW
Emplacement	
Limiting Glass Temperature During	500°C
Package Design Life(b)	
Limiting Glass Temperature After	100°C
Containment Life(c)	
Glass Total Weight	595 kg
Canister Radioactivity Content	6.58 x 10^5 @ 10 years out of reactor
Canister Active Glass Volume	0.19 m ³
Leach Rate	2.0 x 10 ⁻⁶ g/cm ² day(d)

- (a) Glass refers to HLW in glass matrix.
- (b) These limits represent the glass softening point beyond which glass devitrification is possible.
- (c) This temperature limit may not be applicable to the NWRB where the backfill is used to control post-containment radionuclide release rates.
- (d) 24-day value. Leach rate is expected to go to 2×10^{-9} g/cm² day after 400 days

Source: WE-82

Figure 4.5-1

Reference Commercial High Level Waste Form

	-7-		
	CHLW		
	Gray Iren	Steel	
Overpack Dimensions, em			
A	70	70	
B			
С	146	161	
D			
Overpack Leagth, m	4.0	4.1	
Wall Thickness, cm	* *8*	46.5	
Overpack Weight, teanes	39	6 0.1	
Wasto por Package, kg	1785	1785	
Total Package WL., tennes	41.5	62.6	

*High carbon content of cast iron provides better neutron attenuation: thus thinner wall is required.

Figure 4.5-2

Typical Thick-Walled Waste Package

high-level waste from PWR fuel with an initial enrichment of 3.5% irradiated at constant power over a three-year period to a discharge exposure of 35,000 MWD/MTU. Calculations should be performed for waste cooling times of 10, 30, and 100 years following spent fuel discharge.

<u>Assumptions</u>. The problem may be analyzed in either one or two dimensions. Isotopic compositions of materials in this problem are given in Table 4.5-3.

<u>Output Specifications</u>. The outputs for this problem are the gamma photon flux, gamma photon dose, the neutron flux, and the neutron dose at the points given in Table 4.5-3.

<u>Comments</u>. This problem has not yet been analyzed. However, assessments performed by Westinghouse using a one-dimensional transport theory code estimated that the dose for 10-year cooled commercial high-level waste at the surface of the overpack would be approximately 100 millirems per hour.

Table 4.5-3 -- In Development

5.0 EMPIRICAL CORROSION AND LEACHING PROBLEMS

This section contains two verification problems for corrosion and leaching that can be used in the verification of the computer code WAPPA. Although the problems in this section are useful in showing that certain parts of the numerical algorithms of the code WAPPA function as designed, the code WAPPA relies heavily on empirical data, and its predictions will never be better than the empirical constants used in the code.

The first problem is based on test problems developed under the SCEPTER project. This problem is designed to allow sensitivity analyses on selected input parameters related to corrosion and leaching. The second problem is an analytical solution for solute transport by diffusion across an infinitely long cylindrical segment. This problem can be used to assess the acceptability of WAPPA's backfill leaching calculation.

5.1 Simple and Complex Waste Package Concepts Used in the Verification of the WAPPA Code

<u>Problem Statement</u>. The 7 barrier and 17 barrier test problems used in the verification of the WAPPA code under the SCEPTER project will be used to benchmark WAPPA. The simple and complex test problem configurations are summarized in Tables 5.1-1 and 5.1-2 respectively. Once the test problem results have been found to agree with those obtained under the SCEPTER project, the code will be run a number of times with selected changes made to the inputs related to corrosion and leaching. These changes will be within the range of uncertainty commonly associated with these data values.

<u>Objectives</u>. The first objective of this problem is to ensure that the version of the code on hand can reproduce the results from the earlier verification study. A more important objective, however, is to evaluate the sensitivity of code results to changes in corrosion and leaching parameters and uncover possible errors in the program logic which could be revealed by these changes.

Table 5.1-1

Verification Test for a Simple Waste Package Concept

Barrier <u>Counter</u>	Material	Material Code ISMAT (1)	Barrier Radii <u>SRADII (I)</u>
1	WF glass	012	0.1555
2	SST - 304L canister	101	0.1619
3	oxide	500	0.1619
4	air	203	0.1683
[.] 5	Ticode-12 overpack	108	0.1746
6	oxide	508	0.1746
7	sand bentonite backfill	402	0.5080

Table 5.1-2

Verification	Test for	Complex	Waste	Package	Concept
--------------	----------	---------	-------	---------	---------

Barrier Counter (I)	Material	Material Code ISMAT (I)	Barrier Radii
			0
1	WF glass	012	0.1500
2	air gap	203	0.1510
3	SST - 304L canister	101	0.1750
4	oxide	501	0.1750
5	argon gap	204	0.1780
6	SST - 316L overpack	102	0.1980
7	oxide	502	0.1980
8	helium gap	205	0.2000
9	C-steel overpack	106	0.2240
10	oxide	506	0.2240
11	air gap	203	0.2260
12	Ticode-12 overpack	108	0.2360
13	oxide	508	0.2360
14	air gap	203	0.2370
15	lead sleeve	115	0.2470
16	oxide	515	0.2470
17	sand/bentonite backfill	402	0.5000

<u>Analytical Solution</u>. The solution to this problem can not be expressed analytically.

<u>Assumptions</u>. The assumptions are identical to those of the WAPPA code (see Reference MI-83 for a description).

<u>Input Specifications</u>. The input data for the simple and complex configurations are listed in Appendix A.

<u>Output Specifications</u>. In addition to an echo print of input data and data base values, the output will include:

- Barrier radii
- Temperature as a function of radius
- Ratio of the heat energy generated or deposited in a barrier or in the waste package to the total heat energy generated in the waste package
- Barrier status (intact, breached, or failed)
- Areal degradation factor
- Nuclide concentrations

5.2 Solute Transport by Diffusion Across an Infinitely Long Cylindrical Segment

<u>Problem Statement</u>. A constant flux of F and a constant concentration of zero are specified for the inner and outer surface, respectively, of an infinitely long cylindrical segment (see Figure 5.2-1) with inner radius a and outer radius b. The solute diffusion coefficient, D, is assumed to be constant throughout the segment. No solute is assumed to be present in the segment initially. The values to be calculated as a function of time are (1) the concentration profile across the segment, (2) the average concentration within the segment, and (3) the concentration gradient at the radius b.

$$C(r,o) = 0$$
 r

Figure 5.2-1

Diagram for Benchmark Problem 5.2

<u>Objectives</u>. This problem is designed to test the backfill leaching calculation used in WAPPA and the assumption that the backfill can be treated as a single, uniformly mixed cell.

<u>Analytical Solution</u>. The concentration of solute as a function of time can be described by the diffusion equation in cylindrical coordinates:

$$\frac{\partial^2 C}{\partial r^2} + \frac{1}{r} \frac{\partial C}{\partial r} = \frac{1}{D} \frac{\partial C}{\partial t}$$

(148)

with the following boundary conditions:

$$-D\left(\frac{\partial C}{\partial r}\right)_{r=a} = F(a \text{ constant})$$

$$C(b,t) = 0$$

 $C(r,o) = 0 \text{ for } r > a$

The analytical solution to this equation is given as follows:

$$C(r,t) = \frac{aF}{D} \ln \left(\frac{b}{r}\right) + \frac{\pi F}{D} \sum_{m=1}^{\infty} \exp(-D\alpha_n^2 t) x$$

$$\frac{J_0^2(b\alpha_n) \left[J_0(r\alpha_n)Y_1(a\alpha_n) - Y_0(r\alpha_n)J_1(a\alpha_n)\right]}{\alpha_n \left[J_1^2(a\alpha_n) - J_0^2(b\alpha_n)\right]}$$

(149)

where α_n are the positive roots of

$$J_{1}(a\alpha)Y_{0}(b\alpha) - Y_{1}(a\alpha)J_{0}(b\alpha) = 0$$

<u>Assumptions</u>. There is no variation of solute concentration with the angle or along the axis of the cylindrical segment. Also, solute advection, adsorption, and decay within the segment are neglected.

<u>Input Specification</u>. Calculations are to be performed for a wide range of values of inner radius a, outer radius b, diffusion coefficient D, and flux F at radius a.

<u>Output Specifications</u>. The solute concentration as a function of time is calculated for a range of distances between a and b. Also, the average concentration within the cylindrical segment is calculated as a function of time. Finally, the concentration gradient at r = b is calculated as a function of time. Concentration profiles for different values of b/a were calculated by use of Equation 149 and are displayed in Figures 5.2-2 through 5.2-4. The associated average concentrations and concentration derivatives at r = b are given in Table 5.2-1. In reporting these results, all concentrations, distances, and times have been normalized as indicated in Figures 5.2-2 through 5.2-4.

Figure 5.2-2

Normalized Concentration Curve for B/A = 4

Figure 5.2-3

Figure 5.2-4

Normalized Concentration Curve for B/A = 8

Table 5.2-1

Average Normalized Concentrations and Boundary Derivatives for Different Values of b/a*

	Average Concent C _{ND} = j	e Non-dimension tration <u>CD</u> F _a ln (b/a)	Negative Derivative of Non-dimensionalized Concentration** $-\left(\frac{\partial C_{ND}}{\partial (r/a)}\right)(r/a) = b/a$				
Non-dimensionalized Time t _{ND} = Dt/a ²	b/a			b/a			
	2.0	4.0	8.0	2.0	4.0	8.0	
0.01	0.99x10-2	0.93x10-3	0.24x10-3		.		
0.1	0.0950	0.96x10-2	0.16x10-2	0.05	-	-	
1.0	0.372	0.936x10-1	0.154x10-1	0.69	0.021	-	
10	0.388	0.290	0.131	0.73	0.18	0.025	
100	0.388	0.294	0.225	0.73	0.18	0.061	

* Results based on the evaluation of 40 terms in the Equation 149 summation.

** Slope based on the last two points plotted in each of the Figures 5.2-2 through 5.2-4.

6.0 WASTE PACKAGE GEOCHEMICAL CODE BENCHMARK PROBLEMS

Numerical models may be used to simulate geochemical processes in the high-temperature regions around waste packages in a nuclear repository. Benchmarking the geochemical codes that may be considered for such use requires appropriate test problem data sets. Ideally, a test problem will evaluate the utility of each code and verify the code algorithms for the geochemical processes being modeled.

Geochemical models should provide input to analyses of the effects of near-field geochemistry on waste form solubility and leaching, canister corrosion, and backfill properties. The usefulness of geochemical models to the analysis of these effects will depend not only on the development of the necessary algorithms and thermodynamic data, but also on the data to verify and validate the codes.

Since there is no direct experience with the complex interactions of high-level waste packages with backfill material, host rock, and groundwaters, data must be obtained from other sources. For example, laboratory studies have been conducted on representative samples of waste form, canister backfill, and host rocks related to repository media (References AP-82, CH-83a and b, GO-81, GR-83, KE-84, KU-81, MO-83, MY-83, RE-82, SE-84, and WO-82). Laboratory studies may provide useful information as controlled experiments, although certain drawbacks exist. For example, problems in laboratory methods raise significant questions about the usefulness and viability of some early experiments (References KE-84 and CR-84).

Shortcomings in laboratory experiments often arise from difficulty in formulating synthetic groundwater representative of that found in the candidate host rock; obtaining unaltered, representative samples of repository rock; and reproducing the temperature, redox, and degree of openness of the system. In addition, laboratory-scale tests are restricted in time, raising the possibility that kinetically controlled reactions will prevent the attainment of equilibrium conditions, an all-important

assumption with state-of-the-art geochemical models. For these reasons, laboratory experiments have not been utilized as potential test problems in benchmarking equilibrium-based geochemical models.

If the methodological problems can be surmounted, laboratory experiments may prove to be valuable test problems for the benchmarking of kinetically based geochemical models now in the developmental stage. A kinetic benchmark problem is offered in Problem 6.5 in anticipation that a kinetic model may be developed. Even here, an understanding of the long-term behavior of repository systems over hundreds of years may be satisfied only partially by such short-term experiments (Reference EL-83).

One approach to dealing with uncertainties in extrapolating from the laboratory scale to the repository scale (both in time and space) is to investigate comparable geologic systems found in nature. These "natural analogs" may contribute to understanding the processes that will occur in a repository over many hundreds of years (Reference EL-83):

- The Oklo, Gabon, uranium ore body achieved criticality naturally about two billion years ago. Researchers have measured the extent of migration of radionuclides similar to those derived from high-level waste.
- Metamorphic haloes surrounding igneous intrusives can be studied to observe the effects of heat on clay backfill and host rock.
- Metamict effects on minerals show crystal structure damage from radiation.
- Geothermal systems allow the study of mineral alteration products due to elevated temperatures.

Natural analogs that are similar to geochemical processes in high-level radioactive waste repositories should provide fairly complete data on the chemistry of water, mineralogy, and effects of changing temperature. Temperature and pressure of the natural analog should be in the range of $50^{\circ}-300^{\circ}$ C and up to about one hundred bars of hydrostatic pressure. Ideally, stable mineral assemblages under known water chemistry and

temperature conditions should be well documented. The natural analog selected for a given candidate repository also should exhibit petrology, mineralogy, and groundwater chemistry similar to those of the candidate repository.

Based on these criteria, proposed natural analogs may be selected for use in the development of geochemical code benchmark problems. A search of the literature has revealed that sufficiently detailed studies of the geochemistry of geothermal systems are available to provide potentially valuable natural analogs. With temperature typically ranging from ambient to over 300°C and pressures under hydrostatic conditions ranging up to about one hundred bars, geothermal systems provide natural analogs of water-rock interactions within a pressure and temperature range similar to that anticipated for high-level waste repositories. In addition, the variety of geologic terrains in which geothermal systems occur provides petrologic, mineralogic, and hydrogeochemical conditions similar to those in the candidate repository media under consideration. Table 6-1 lists several geothermal systems, the host rock to which they are similar, and a qualitative rating of the degree to which they have been studied.

The candidate media for a deep geologic repository for high-level waste in the United States include at least four rock types*:

- 1. Basalt (Hanford Reservation, Washington)
- 2. Tuff (Nevada Test Site)
- 3. Salt (Gulf Coast salt domes and bedded salt in Palo Duro Basin, Texas, and Paradox Basin, Utah)
- 4. Granite (not selected yet)

^{*} In addition, the United States is involved in research on the feasibility of seabed disposal. This research is conducted jointly with seven other countries under the auspices of the Nuclear Energy Agency of the Organization for Economic Cooperation and Development.

Table 6-1

Geothermal System	Analogous Host Media	Level of Study*
Iceland	Basaltic	High
Newberry Volcano, OR	Basaltic	Moderate
La Grande, OR	Basaltic	Low
Yellowstone, WY	Rhyolitic	High
New Zealand	Rhyolitic	High
Valles Caldera, NM	Rhyolitic	Low
Roosevelt, UT	Granitic	Moderate
Marysville, MT	Granitic	Low
Salton Trough, CA	Brine Salt	High
Red Sea	Brine Salt	Low
Raft River, ID	Shale	Moderate

Candidate Geothermal Systems as Natural Analogs for High-Level Radioactive Waste Repositories

*Level of study refers to a subjective evaluation of the amount of research and the degree of understanding of the system.

Although the DOE has devoted most of its efforts to studying the basalt site at the Hanford Reservation (BWIP), the tuff site at the Nevada test site (NTS), and bedded and dome salt sites, the Department has initiated the screening process to select candidate sites in granite for further study. Furthermore, the DOE is well along in the evaluation of bedded salt at the Waste Isolation Pilot Program (WIPP) in New Mexico.

These potential media present different problems in understanding the physical and chemical processes that will control the repository environment. Rock types being considered include mafic (basalt) and silicic (rhyolite and granite) igneous rocks, sedimentary evaporites (bedded salt), and diapiric salt domes (Gulf Coast salt domes).

In the near-field environment of a repository, consisting of a waste package and backfill emplaced within a mined opening, geochemical interactions must be simulated in an environment where temperature may rise as high as 2000-300°C for several years, then gradually decline over several hundred years as shown in Figure 6-1 for the spent fuel case in a basalt repository (Reference RO-82).

During the life of a basalt repository, the near-field environment will initially be under oxygenated, dry conditions. As the temperature drops, resaturation is predicted to occur after 360 to 390 years (Reference RO-82), and anoxic conditions will return.

Thus, during the early, unsaturated high-temperature period, dehydration will be the most important process, while after resaturation of the backfill and host rock, water-rock interactions will be important, especially at elevated temperatures.

To simulate geochemical processes in a changing thermal regime requires not only that the aqueous speciation, redox potential, and degree of mineral saturation be calculated but also that temperature effects be

Figure 6-1

Temperature-Versus-Time Curves for Different Components of a Vertically Emplaced Spent-Fuel Waste Package in a Repository Located in Basalt (RO-82) incorporated. Therefore, the benchmark problems have been designed to test the effects of temperature within the full range expected for the near-field, as well as to test the algorithms for deriving speciation, redox, and saturation indices. In addition, some geochemical codes (reaction path models) may be used to simulate water-rock interactions in systems that have changed from one equilibrium condition to another, either through heating or cooling or through the migration of water to a different mineral regime.

The benchmark problems designed for near-field geochemical codes are:

Problem 6.1:	Two-phase, water-rock system at low temperature (less than 150°C) with no boiling

- Problem 6.2: Three-phase, vapor-water-rock system at high temperature (greater than 150°C)
- Problem 6.3: Hypothetical radionuclide equilibrium speciation and mineral solubility
- Problem 6.4: Reaction path incorporating effects of changing temperatures on mineral-water equilibria
- Problem 6.5: Reaction kinetics based on experimental results

6.1 Low-Temperature (<150°C) Basalt Analog without Boiling

<u>Problem Statement</u>. This problem requires the calculation of aqueous speciation, mineral saturation indices (SI), and redox potential (Eh) for a low-temperature (<150°C) geothermal groundwater. The temperaturepressure conditions are such that only two phases, liquid and solid, are considered. Coexisting mineral assemblages for the groundwater are presented as confirmation of the calculated SIs.

<u>Objective</u>. This problem provides a benchmark test of the routines for solving the equilibrium aqueous speciation and mineral solubility products or saturation indices for a two-phase, liquid water-rock system at a temperature of 100°-150°C.

<u>Physical Description</u>. This problem uses the data presented by Arnorsson and his coworkers (References AR-78, AR-82, and AR-83) on the hydrogeochemistry of the geothermal fields in southwest Iceland. Both the fluid chemistry and hydrothermal mineral alteration of this region have been studied intensely.

Table 6.1-1 presents a comparison of the range and average major-element composition of the middle Sentinel Bluffs and Umtanum flows and Icelandic basalt. This comparison indicates that, although there are variations in the percent distribution of the oxides of major elements, especially magnesium, the basaltic rocks of the Grande Ronde and Iceland are essentially similar, especially considering that the ranges overlap for most oxides. In comparing altered versus unaltered Icelandic basalts, Kristmannsdottir (Reference KR-75) found that the major changes in the altered rock are hydration and oxidation, with enrichment of SiO₂ in some samples.

The comparison of groundwater chemistry between the Grande Ronde and Icelandic basalts is presented in Table 6.1-2. The groundwater chemistry is very similar, although minor variations are again present. The Icelandic waters tend to be slightly more dilute with a mean total dissolved solids (TDS) content of almost 400 milligrams per liter (mg/l) while the Grande Ronde averages 900 mg/l. The maximum TDS in both the Icelandic and Grande Ronde samples is about 1,000 mg/l.

A major difference between the two waters is the fluoride content. The Icelandic groundwaters have only about 2 mg/l of fluoride, on average, while the Grande Ronde groundwaters have 8 to 16 times as much. This probably is due to a greater abundance of apatite minerals, although there is some question about apatite as the source of fluoride in Grande

Table 6.1-1

Comparison of Major-Element Composition of Basaltic Rock of the Umtanum and Middle Sentinel Bluffs Flow at the Hanford Site with Basaltic Rock of Southwest Iceland (in weight percent)

Umtanum ^a		Middle S Bluff	entinel ^a s	Icelandic ^b Basalts	
Range	Mean	Range	Mean	Range	Mean
54.45-55.45	54.90	52.43-54.21	53.41	43.71-51.73	48.64
14.08-14.59	14.43	14.26-15.66	15.00	10.59-14.29	12.95
12.70-13.39	13.10	11.10-12.50	11.73	8.03-14.83	12.76
3.38- 3.71	3.48	4.46- 5.34	4.99	5.52-8.35	7.13
7.14- 7.64	7.30	8.16- 9.31	8.86	8.36-12.90	11.08
1.86- 2.95	2.66	1.44- 2.92	2.48	1.94- 4.31	2.58
0.94- 1.71	1.48	0.51- 1.40	1.03	0.11- 1.13	0.32
2.12- 2.23	2.17	1.67- 2.11	1.79	0.50- 3.27	2.04
	Umt Range 54.45-55.45 14.08-14.59 12.70-13.39 3.38- 3.71 7.14- 7.64 1.86- 2.95 0.94- 1.71 2.12- 2.23	UmtanumaRangeMean54.45-55.4554.9014.08-14.5914.4312.70-13.3913.103.38-3.713.487.14-7.647.301.86-2.952.660.94-1.711.482.12-2.232.17	UmtanumaMiddle S BluffRangeMeanRange54.45-55.4554.9052.43-54.2114.08-14.5914.4314.26-15.6612.70-13.3913.1011.10-12.503.38-3.713.484.46-7.14-7.647.308.16-9.94-1.711.480.51-0.94-1.711.480.51-2.12-2.232.171.67-	UmtanumaMiddle Sentinela BluffsRangeMeanRangeMean54.45-55.4554.9052.43-54.2153.4114.08-14.5914.4314.26-15.6615.0012.70-13.3913.1011.10-12.5011.733.38-3.713.484.46-5.347.14-7.647.308.16-9.311.86-2.952.661.44-2.922.480.94-1.711.480.51-1.401.032.12-2.232.171.67-2.111.79	UmtanumaMiddle Sentinela BluffsIcelandi BasaltsRangeMeanRangeMeanRange54.45-55.4554.9052.43-54.2153.4143.71-51.7314.08-14.5914.4314.26-15.6615.0010.59-14.2912.70-13.3913.1011.10-12.5011.738.03-14.833.38-3.713.484.46-5.344.995.52-8.357.14-7.647.308.16-9.318.868.36-12.901.86-2.952.661.44-2.922.481.94-4.310.94-1.711.480.51-1.401.030.11-1.132.12-2.232.171.67-2.111.790.50-3.27

^a From Reference RO-82, Table 6.1.

^b Calculated from data in Reference KR-75, Tables 1 and 2.

Constituent	· Umtanum F1	_{OW} (a)	Middle Sentin	el Bluffs(a)	Icelandic Basalts(b)		
Constituent	Range (mg/1)	Mean (mg/l)	Range (mg/1)	Mean (mg/l)	Range (mg/l)	Mean (mg/1)	
HCO3	45 - 102	60	64 - 118	89			
$C03^{-2}$	4 - 55	19	, 8 - 24	18	6 - 326 (C)	32(0)	
c1 ⁻	98 - 289	194	117 - 297	199	5 - 390	51	
s04 ⁻²	4.2 - 191	121	4 - 197	133	6 - 302	48	
N03	0.5	0.5	0.5	0.5	NR	NR	
F -	13 - 42	32	11 - 22	17	0.14 - 12	1.6	
SiO ₂ (d)	77 - 220	158	114 - 194	158	30 - 252	105	
Na ⁺	161 - 360	274	163 - 350	247	24 - 185	74	
к ⁺	3.3 - 8.1	5.9	12 - 16	14	0.1 - 5.1	2.9	
Ca ⁺²	0.8 - 4.5	2.4	1.6 - 10	5.5	1 - 68	7.3	
^{4g+2}	0.01 - 0.15	0.04	0.08 - 0.17	0.14	0.01 - 5.6	0.17	
oH (e)	8.8 - 10.1	9.5	9.3 - 9.6	9.5	6.63 - 10.48	9.78	
rds	626 - 1,071	886	600 - 1,201	857	90 - 965	363	
Temperature	(°C)	58		51	18 - 157	76.5	
(a) From Ret	ference RO-82.	(d) The v	alues for the Umta	num and Middle Se	entinel Bluffs flow	vs were obtain	
(b) From Ref	ference AR-83.	5, 60		u		in entry ee myr	
(c) Reported	d as total carbonate.	(e) The v as de is no in th	alues for the Umta termined in the fi t given. The Icel e range of 11-250	num and Middle Se eld. The tempera andic values are C.	entinel Bluffs flow ature at which pH w reported for a giv	vs were report vas measured ven temperatur	

Major Ion Chemistry of Groundwaters in the Umtanum and Middle Sentinel Bluffs Flow at Hanford Site Compared to the Geothermal Waters in the Icelandic Basalts .

.

.

۰.

.

1.

Ronde groundwater (Reference RO-82). Finally, the pH and temperature range of the Icelandic groundwater represented in Table 6.1-2 bracket the ranges for the Grande Ronde analyses.

Alteration zones, or stable mineral assemblages versus temperature, have been described for the Icelandic geothermal systems (References KR-75 and AR-83). In general, for the low-temperature systems (<150°C), four zones of mineral alteration have been established based on temperature. Figure 6.1-1 presents the alteration zones described by Kristmannsdottir (Reference KR-75).

Although the temperature ranges of the zones in Figure 6.1-1 are very approximate, they do provide an estimate of the stable mineral assemblages that would be anticipated in the Icelandic basalts under low-temperature conditions. Even though this figure shows zones for only two locations in Iceland, comparison to other areas in Iceland has shown similar alteration zones (Reference KR-75).

Chabazite (a zeolite) and opal with minor calcite, levyne (a zeolite), smectite, and mixed-layer clays characterize Zone I in the temperature range up to about 70°-80°C. Between 70°-80°C and about 90°C, mesolite and scolecite (zeolites) are the alteration minerals characteristic of Zone II. Calcite and smectite also are found in Zone II along with minor amounts of several other zeolites and mixed-layer clays. Zone III occurs between about 90°C and 110°-120°C and is characterized by the dominance of the zeolite stilbite. Above about 120°C, Zone IV is characterized by laumontite, the stable zeolite, along with quartz, calcite, smectite, and minor mixed-layer clays.

Assumptions.

- The water sample represents a water from a single horizon.
- The water sample did not boil.

Figure 6.1-1

Alteration Mineral Zones found in the Reykjavik and Reykir Low-Temperature Area. The Rock Temperatures of the Zone Borders are Very Approximate (KR-1975)

- The mineral assemblage represents prograde alteration only.
- The water and minerals are at equilibrium.
- The redox system is at equilibrium and well poised.
- The Debye-Huckel theory adequately describes non-ideal behavior of dissolved ions.
- Mineral dissolution is congruent.
- Minerals are stoichiometric.
- The water has not interacted with casing or minerals nor solutes precipitated out of solution on the way to the surface.
- No degassing of the water sample occurred.

<u>Input Specifications</u>. The input data consist of measurements made on the surface. The input data for the low-temperature benchmark problem are presented in Table 6.1-3.

<u>Output Specifications</u>. The output for this problem will include the activity coefficients of the solutes, molal activities of aqueous species, ionic strength, ionic balance, Eh based on the H₂S-SO₄ redox couple, temperature based on the quartz and sodium-potassium geo-thermometers, and solubility products or saturation indices of important minerals.

6.2 Three-Phase, High-Temperature (>150°C) Equilibrium Speciation

<u>Problem Statement</u>. This problem requires the calculation of aqueous speciation, mineral saturation indices (SI), and redox potential (Eh) for a high-temperature (>150°C) geothermal groundwater. The temperaturepressure conditions are such that the water boils as it is withdrawn from the well prior to sampling. The model must calculate the geochemistry (i.e., temperature, aqueous speciation, SI, and Eh) of the water as it occurs in the aquifer. Alteration mineral assemblages for the host rock are presented as a confirmation of calculated SIs.

Table 6.1-3

Input Data for Low-Temperature Basalt Analog Benchmark Problem (Reykjavik, Iceland, Well 11)

Constituent (in pp	Concentration m unless otherwise noted)
Si02	147.8
В	0.05
Na	57.1
К	2.60
Ca	2.56
Mg	0.024
Fe	0.018
Al	0.18
CO ₂ (total)	17.5
S04	19.4
H ₂ S (total)	0.41
	35.4
F	0.82
TUS	345.0
pH, standard units at 20 ⁰ C	9.44
Temperature, ^o C	129
Pumped Flow Rate at Sampling,l/s	25
Total Depth of Well, m	928

Source: Reference AR-82

<u>Objectives</u>. This problem is a test of the routines for calculating the activity coefficients, aqueous speciation, ionic strength, ionic balance, Eh based on the H₂S-SO₄, CH₄-CO₃, H₂-H₂O, and NH₃-NO₃ redox pairs; and the solubility products or saturation indices for important minerals in a three-phase, steam-water-mineral system. The problem also requires the code to back-calculate the original, in-situ chemical composition of the water by incorporating the chemical data on the steam sample collected with the water sample.

<u>Physical Description</u>. This problem uses the data presented by Arnorsson, et al., (Reference AR-82) on the analyses of the Krafla geothermal field (Well 7) in northern Iceland. Well 7 is 2,165 m deep, with producing zones at 825, 1,163, 1,700, and 2,000 m, having temperatures of 160, 206, 287, and 340°C, respectively. The chemical analysis for Well 7 is presented in Table 6.2-1.

The stable mineral assemblage for high-temperature geothermal systems determined from core samples in Iceland is presented in Figure 6.2-1. Minerals that may occur at temperatures over 250°C include quartz, calcite, fluorite (which may not be present), anhydrite, low albite, microcline (potassium feldspar), mixed-layer clays, chlorite, wairakite or prehnite, pyrite, iron hydroxides, and epidote.

Asssumptions.

- The water sample represents water from a single horizon.
- Flashing to steam due to pumping does not extend into the aquifer.
- The mineral assemblage represents prograde alteration only.
- The water and minerals are at equilibrium.
- The redox system is at equilibrium and well poised.
- The water has not interacted with or precipitated any substances on its path to the surface.
- The amount of degassing of the water sample can be closely estimated.

Tabl	е	6.	2-1	
------	---	----	-----	--

Input Data for High-Temperature Basalt Analog Benchmark Problem (Krafla, Iceland, Well 7)

Constituent (i	Concentration n ppm unless otherwise noted)
Water Sample	
SiO2 B Na K Ca Mg Fe Al CO2 (total) SO4 H2S (total)	766.8 1.50 193.0 36.0 1.90 0.067 8.78 0.21 186.6 143.0 22.2
Cl F TDS pH Condensate Sample	52.0 1.03 1,389.0
CO2 H2S Gas with Condensate (Vol. %)	14,680.0 381.0
CO ₂ H ₂ S H ₂ CH ₄ N ₂	 2.5 0.1 0.7
Liters gas/kg condensate/ºC Sampling pressure, bars abs Discharge enthalpy, kcal/kg Flow, kg/sec	8.50/20 5.5 383.0 12.0
Quartz Geothermometer, ^O C	269.5

Source: Reference AR-83

Stable Minorals ¹	Temperature, ^G C					
	0 100	200	300			
Chalcedony -	<u> </u>	1				
Quartz						
Calcite -						
Fluorite -	┟╍╾╸╸┽┈╸	+	4			
Anhydrite Low Albite ² -						
K-Feldapar - Smectite ³ -						
Mixed Layer Clays			-			
Chlorite						
Prehnite			-			
Pyrite						
Vermiculite		-+				
Marcasite -	·	-]				
Pyrrhotite –			,			
Iron Hydroxides -						
Epidote						
Zeolites -		·+				
Wairskite ⁴						
Amphibole			4			

1 Modified from AR-83 and KR-75.

²Upon cooling when under 100°C, analcime may become stable, especially in olivine basalts.

³Smectite gradually alters to chlorite between 200-240°C via mixed layer clay minerals. Mixed layer clays begin to appear at about 100°C.

⁴May also have prehnite.

Figure 6.2-1

Empirically Determined Stable Mineral Assemblages for Geothermal Waters in Icelandic Basalts in the Temperature Range of O-300°C and Pressure Less Than 14 MPa <u>Input Specifications</u>. The input chemical data for this problem are presented in Table 6.2-1.

<u>Output Specifications</u>. A solution to this problem has been calculated previously (Reference AR-82) and is presented in Table 6.2-2, which lists the input data (i.e., the chemical analysis and deep-water temperature and pressure); the calculated deep-water chemistry after the vapor phase is recombined with the liquid; and the activity coefficients for the various species, the activities, ionic strength, ion balance, geothermometric temperatures, Eh, and the solubility products for 26 minerals. Table 6.2-3 lists the saturation indices (SI) computed from data in Table 6.2-2 and compares the SI values with the mineral assemblage determined empirically.

6.3 Hypothetical Radionuclide Equilibrium Speciation and Mineral Solubility

<u>Problem Statement</u>. This test problem presents data on a hypothetical case involving the determination of solubility contols under high temperatures on radionuclides in groundwater in clastic sedimentary strata. This problem requires the calculation of aqueous speciation and mineral saturation indices for major constituents and radionuclides at temperatures ranging from ambient (50° to 100° C) to a maximum of about 400° C. Pressures vary from about 30 to 300 MPa.

<u>Objectives</u>. This test problem serves as a benchmark of a geochemical code for the calculation of the aqueous speciation and mineral saturation indices for radionuclides in a high-temperature environment similar to the near-field.

<u>Problem Description</u>. The Oklo uranium ore district in Gabon, Africa, reached criticality through natural processes about two billion years ago and maintained a nuclear reaction for an estimated 500,000 years. The ore formed initially at about the same time as the formation of the host

Table 6.2-2

Output of the Program WATCH1 Showing Original Input Data, Correction of Surface Sample to Deep Water, and Calculation of Aqueous Speciation and Solubility Products for 26 Minerals

3049		KRAFLA WELL	7		•			
PROGRAM WATCH	I.							
WATER SAMPLE	(PPM)	STEAM SAMPLE						
pH/DEG.C SiO2	8.52/20.0 766.80	GAS (VOL.%) CO2	94.00	REFERENC	E TEMP.	DEGREES C.	. 0.0	(QTZ)
NA K CA MG	193.00 36.00 1.90	H2S H2 02 CH4	2.70 2.50 0.00	Sampling Discharg Discharg	Pressure e Enthalpy e	BARS ABS. MJOUL/KG KG/SEC.	5.5 1.601 12.0	(Measured)
CO2 SO4 H2S CL	186.60 143.00 22.20 52.00	N2	0.70	Measured Resistiv EH/Temp.	l Temperature ity/Temp.	Degrees C OHMM/DEG.(MV/DEG.C	0.0 11.1/ 0.000/	20.0 0.0
F Diss. Solids AL B	1.03 1389.00 0.2100 1.5000	Liters Gas P Condensate/D	Per Kg Deg.C 8.50,	/20.0 M	leasured Down Degrees C/	hole Temp. Meters	Fluid Inf Depth (Mete	low rs)
Б FE NH3 NO3 PO4 O	8.7800 0.0950 0.001 0.002	Condensate (pH/Deg.C CO2 H2S NA	(PPM) 0.00, 0.00 0.00 0.00	/0.0	112.0 147.0 176.0 197.0 1 213.0 1 231.0 1	200.0 6C0.0 900.0 100.0 300.0 500.0	825.0 1163.0 1700.0 2000.0 0.0	
		Condensate w CO2 H2S	vith NAOH 14680.00 380.80	(PPM)	242.0 1 287.0 1 335.0 1 342.0 1 342.0 2	600.0 700.0 800.0 900.0	C.0 0.0 0.0 0.0 0.0	

(continued)

Table 6.2-2 (continued)

Ionic Str	ength = 0.01143	Ionic	Balance:	Cations (Me Anions (Me Difference	ol. Eq.)0.009 ol. Eq.)0.009 (%)	62867 81502 -1.92			
Deep Wate	r (PPM)			Deep S	team (PPM)		Gas Pr	essures (Bars A	BS.)
SiO ₂ NA	569.32 143.28	CO2 H2S	2102.43	CO2 H2S	19816.86 346.18		CO2 H2S	0.443E+00 0.999F-02	
K	26.72	H ₂	0.71	H ₂	28.34		H ₂	0.138E-01	
CA	1.41	02	0.00	02	0.00		02	0.183E-34	
MG	0.050	CH4	0.15	CH4	9.21		CH4	0.565E-03	
S04	106.16	N ₂	2.33	N ₂	111.19		N ₂	0.390E-02	
CL	38.60	NH3	0.06	NH3	0.03		NH3	0.180E-05	
F	0.76	-		·			H2Ŏ	0.546E+02	
Diss. S AL	1031.19 0.1559						Total	0.551E+02	
B	1.1135			H2O (%)	26.14			
FE	6.5186			Bõilin	g Portion	0.26			

Gas Solubility Multiplying Factor: 0.10

(continued)

•:

ACTIVITY COEFFICIENTS IN DEEP WATER

H+	0.849	KSO4	0.834	FE ⁺⁺	0.491	FECL+	0.828
0H-	0.826	F-	0.826	FE+++	0.229	AL+++	0.229
H3SiO4	0.828	CL-	0.823	FEOH+	0.833	ALOH++	0.485
H ₂ SiO4	0.485	NA ⁺	0.828	FE(OH)3	0.833	$AL(OH)2^+$	0.834
H2B03	0.821	К+	0.823	FE(OH)4	0.481	AL(0H)4	0.830
HCO3	0.828	CA++	0.491	FEOH++	0.481	ALSO4+	0.830
C03	0.476	MG ⁺⁺	0.510	FE(OH)2 ⁺	0.834	AL(S04)2 ⁻	0.830
HS	0.826	CAHCO3+	C.837	FE(OH)4 ⁻	0.834	ALF++	0.485
s	0.481	MGHC03+	0.828	FESO4 ⁺	C.833	ALF2+	C.834
HSO4	0.830	CAOH+	0.837	FECL++	0.481	ALF4-	0.830
S04	0.470	MGOH+	0.839	FECL2 ⁺	0.833	ALF5	0.476
NASO4	0.834	NH4 ⁺	0.821	FECL4-	0.828	ALF6	0.188
CHEMICAL C	COMPONENTS	IN DEEP WATER	(PPM AND LOG M	10LE)			
					·		

-4.878 $H^+(ACT.)$ $FE(OH)_3$ 1.42 0.00 -6.692 MG⁺⁺ 0.01 -6.425 12.82 0H-0.97 -4,244 NACL 0.74 -4.899 FE(0H)4--3.985 -6.136 FECL⁺ 0.00 -12.622 H4SiO4 907.17 -2.025 KCL 0.05 -3.981 FECL₂ 0.00 -16.690 H₃SiO₄-3.21 -4.472 NASO4-12.44 FECL++ -4.050 0.00 -23.451 0.00 -9.149 12.04 H₂SiO₄--KSO4-FECL2+ 1.33 -5.011 0.00 -25.819 0.33 -5.554 CAS04 NAH3SiO4

(continued)

Table 6.2-2 (continued)

H3B03	6.34	-3.989	MGS04	0.16	-5.864	FECL3	0.00	-28.935
H2B03	0.03	-6.357	CAC03	0.05	-6.265	FECL4-	0.00	-32.395
H ₂ CO ₃	2748.07	-1.354	MGC03	0.00	-8.741	FES04	0.00	-11.926
HCO3-	210.42	-2.462	CAHCO3+	2.05	-4.692	FESO4 ⁺	0.00	-21.412
C03	0.01	-6.945	MGHC03 ⁺	0.01	-7.019	AL+++	0.00	-25.071
H ₂ S	111.60	-2.485	CAOH+	0.00	-7.220	ALOH++	0.00	-16.562
HS-	14.78	-3.350	MGOH+	0.01	-6.691	AL(0H)2 ⁺	C.00	-8.958
S	0.00	-11.265	NH40H	0.12	-5.463	AL(OH)3	0.45	-5.239
H2S04	0.00	-11.778	NH4 ⁺	0.00	-7.314	AL(OH)4-	0.00	-8.239
HSO4-	3.70	-4.419	FE ⁺⁺	0.00	-11.555	ALSO4+	0.00	-23.571
S04	82.84	-3.064	FE+++	0.00	-26.768	AL(SO4)2-	0.00	-23.946
HF	0.05	-5.579	FEOH+	0.00	-10.110	ALF++	0.00	-19.822
F-	0.71	-4.425	FE(OH)2	0.00	-9.600	ALF2+	C.00	-16.395
CL-	38.13	-2.968	FE(0H)3 ⁻	0.00	-9.675	ALF3	0.00	-15.364
NA+	140.53	-2.214	FE(OH)4	0.00	-15.008	ALF4-	0.00	-16.540
K+	23.21	-3.226	FE(0H)++	0.00	-17.479	ALF5	0.00	-19.181
CA++	0.18	-5.346	FE(0H)2 ⁺	0.00	-9.450	ALF6	0.00	-23.506

1

(continued)

;

.

.

.

IONIC STRENG	TH = 0.007	70	IONIC BALANCE	:	CATIONS ANIONS DIFFER	S (MOL.E) (MOL.E) ENCE (1	Q)0.00673669 Q)0.00692810 %) -2.80		
CHEMICAL GEO	THERMOMETE	RS DEGREES	C		1000/T	DEGREES	KELVIN = 1.84		
QUARTZ CHALCEDONY NAK	269.5 999.9 258.9								
OXIDATION PO	TENTIAL (V	OLTS) :	$EH H_2S = -0.60$	1	EH CH4	= -0.64	3 EH H ₂ = -	0.731 EH	$NH_3 = -0.608$
LOG SOLUBILI	TY PRODUCT	S OF MINER	ALS IN DEEP WAT	ER					
	THEOR.ª	CALC. ^b		THEO	DR.	CALC.		THEOR.	CALC.
ADULARIA ANHYDRITE MG-CHLORITE LAUMONDITE CA-MONTMOR. NA-MONTMOR. PYRRHOTITE WAIRAKITE EPIDOTE	-14.371 -8.469 -86.501 -24.733 -72.582 -34.140 -9.942 -24.946 -38.541	-14.705 -9.047 -84.913 -24.393 -72.752 -35.844 -25.522 -24.393 -36.414	ALBITE LOW CALCITE FLUORITE MICROCLINE K-MONTMOR. MUSCOVITE PYRITE WOLLASTONITE MARCASITE	-13.9 -13.2 -11.0 -14.9 -33.8 -17.8 -27.5 7.1 -11.	939 – 281 – 965 – 992 – 355 – 338 – 340 – 165 –	13.690 12.922 14.670 14.705 36.860 16.690 29.908 5.704 29.908	ANALCIME CHALCEDONY GOETHITE MAGNETITE MG-MONTMOR. PREHNITE QUARTZ ZOISITE	-11.571 -1.919 3.371 -15.026 -74.088 -38.016 -2.025 -38.875	-11.665 -2.025 0.263 -19.992 -73.815 -36.676 -2.025 -37.669

^aTHEOR = Logarithm of the theoretical solubility product at equilibrium, which is equivalent to the logarithm of the equilibrium constant (log K).

bCALC = Logarithm of the calculated solubility product (log Q).

Source: Reference AR-82

Mineral	SIa	Empirical Assemblages ^b
Adularia	-0.334	
Albite, Low	+0.249	4.
Analcime	-0.094	
Anhydrite	-0.578	+
Calcite	+0.359	+
Chalcedony	-0.106	
Mg-Chlorite	+1.588	+
Epidote	+2.127	+
Fluorite	-3.605	. +
Goethite	+3.108	+
Laumondite	+0.340	
Microcline	+0.287	· +
Magnetite	-4.966	
Marcasite	-18.722	
Ca-Montmorillonite	-0.170	
K-Montmorillonite	-3.005	
Mg-Montmorillonite	+0.273	
Na-Montmorillonite	-1.704	
Muscovite	+1.148	
Prehnite	+1.340	· +
Pyrrhotite	-15.580	
Pyrite	-2.568	+
Quartz	0.000	+
Wairakite	+0.553	+
Wollastonite	-1.461	
Zoisite	+1.206	+

Table 6.2-3

Calculated Mineral Saturation Indices (SI) for Benchmark Problem 6.2 and Comparison with Empirical Stable Mineral Assemblages from Figure 6.2-1

a SI = log Q - log K

^b "+" means mineral is generally present, and a blank means it is absent at the temperature range under consideration.

rock, an argillaceous sandstone-shale-carbonate-conglomerate sequence named the Francevillian Series. The primary host rocks were argillaceous sandstones and sandy shales. Tilting and fracturing of the host rock soon after its formation created open fractures that were later filled in with clay. At about the same time, the uranium ore in the argillaceous sandstone was remobilized. As the remobilized uranium migrated through the clay-filled fractures, reducing conditions caused the uranium to precipitate, resulting in an enriched pitchblende of 50 to 70 percent uranium content. Major gangue minerals associated with the enriched ore include chlorite, illite, carbonates, barite, chalcopyrite, pyrite, and hematite (Reference BR-84a).

During the nuclear reactions that occurred, temperatures in the ore body are thought to have reached over 400° C while, in the host rock, the temperatures probably remained under 250°C and rapidly decreased away from the ore body. It has been estimated that temperatures beyond 1 m of the ore body were below 200°C (Reference BR-84a). The ambient temperature of this region is thought to range from 50° to 150°C due to a regional geothermal gradient of 40°-50°C per kilometer of depth (Reference BR-84a).

Although no data on groundwater chemistry are known to have been published, or collected (Reference BR-84b), some idea of the ambient groundwater quality has been formulated. The Oklo hydrothermal system was low in chloride, ammonia, and cyanide and relatively low in sulfur (Reference BR-84b).

Since there are similarities between the primary Oklo ore genesis and the uranium ore genesis in the Grants Mineral Belt of New Mexico, it is possible to construct a hypothetical groundwater analysis for the Oklo site prior to the nuclear reaction. Table 6.3-1 presents a typical chemical analysis for groundwater from the Westwater Canyon Member of the Morrison Formation in the Grants Mineral Belt. The depth of samples comparable to that in Table 6.3-1 is about 250 m. This analysis compares favorably with the qualitative estimates of Brookins (Reference BR-84a) as stated above.

Constituent	Concentration mg/l	
Ca	35.0	
Mg	15.0	
Na	100.0	
κ	6.0	
HCO3	250.0	
S04	200.0	
C1	10.0	
F	1.0	
Si	16.0	
Fe	0.2	
В	0.2	
NH4	0	
рH	8.0	
Eh	-0.3	
Temperature	21°C	
Depth	250 m	

Table 6.3-1

Chemical Analysis of Groundwater from the Westwater Canyon Member of the Morrison Formation, Grants Mineral Belt, New Mexico

Source: Modified from Reference ST-83

Brookins (Reference BR-84a) has developed Eh-pH diagrams for several constituents. Figure 6.3-1 presents an Eh-pH diagram for the system uranium-silicon-sulfur-carbon-hydrogen-oxygen at 25° C and 1 bar (10^{5} Pa) pressure. The stability region for uraninite ($U0_{2}$), the ore in both the Oklo and Grants districts, is in the pH range of about 7 to 9 and the Eh range below about -0.1 volts.

Assumptions.

- The hypothetical chemical analysis presented in Table 6.3-1 represents an analysis of major chemical components in groundwater of the Francevillian sedimentary rocks at Oklo.
- The pH-Eh can be approximated from the stability diagram of Figure 6.3-1.
- Equilibrium between minerals and solution is maintained at all temperatures in the hypothetical system.
- The production and release of fission products at Oklo can be approximated as an instantaneous event (this is a reasonable assumption considering the 2 billion year total time scale).
- The temperature of the pitchblende immediately increased to 400°C. A zone out to about 1 m attained an average temperature of 250°C, and beyond about 1 m from the ore, the temperature was ambient.

<u>Input</u>. The initial input data for the test problem are presented in Table 6.3-1. The beginning mineral assemblage is quartz, chlorite, illite, carbonate, barite, chalcopyrite, pyrite, hematite, and pitchblende.

Fission products include those listed in Table 6.3-2.

<u>Output</u>. The output consists of activities of aqueous species for the major constituents listed in Table 6.3-1 and the products listed in Table 6.3-2. Mineral saturation indices for solid phases incorporating those constituents are calculated.

Eh-pH Diagram for Part of the System U-Si-S-COH-0 at 25° C and 10^5 Pa Pressure (BR-84)

Table 6.3-2

Fission and Nonfission Products from the Oklo Nuclear Reaction

Selenium Bromine Rubidium Strontium Yttrium Zirconium Niobium Molybdenum Technetium Ruthenium Rhodium Palladium Silver Cadmium Indium Tin Antimony Tellurium Iodine Xenon Cesium Barium REE^{a,b} Lead Bismuth Thorium Uranium Transuranicsb

^a Rare earth elements

^b Transuranic elements and REE are each combined since the elements in each group behave similarly.

For comparison, studies of the Oklo site have indicated the relative mobility of the reaction products. Based on field observations and predictions from Eh-pH diagrams, Brookins prepared the analyses presented in Table 6.3-3 (Reference BR-84a).

6.4 Reaction-Path Problem with Cooling

<u>Problem Statement</u>. This problem requires the calculation of aqueous speciation, mineral saturation indices, and the mass transfer of minerals and gases as the result of cooling along the flow path for a hightemperature brine. Comparisons between predicted and observed water chemistry and between predicted mineral-water reactions and known mineralogy serve to validate the geochemical mass transfer code.

<u>Objectives</u>. The features of the code being tested are the calculations of aqueous speciation, activities of species, mineral saturation, mass balance, and mass transfer. The mass transfer calculations predict the reactions of minerals and gases within the water-rock system and the associated transfer of mass into or out of the aqueous solution. Predictions of mineral dissolution, precipitation, or alteration are considered a function of temperature.

<u>Problem Description</u>. A geochemical model of the evolution of deep-sea brines in the Red Sea geothermal systems by Shanks and Bischoff (Reference SH-77) is used as a near-field test problem for the benchmarking of reaction-path geochemical models. The problem involves the analysis of the geochemistry of a natural geothermal brine and the subsequent alteration of that brine as it cools, but does not mix with Red Sea waters, upon exiting the subsurface at the bottom of the Atlantis II Deep in the central Red Sea. The changes in the brine chemistry are to be used in the predictions of mass transfer, i.e., mineral precipitation or dissolution, that occurs during cooling.

Although accurate determinations of the subsurface brine are not available, data for deep Red Sea brine just above the sediment-water interface have allowed the extrapolation back to the original brine chemistry

Table 6.3-3

	Observed Polative	Predictions of Relative		
Element	Mobility	25°C	200°C	
Krypton	Most migrated	Not applicable	Not applicable	
Rubidium	Probable local redistribution	Not applicable	Not applicable	
Strontium	Probable local redistribution	Not applicable	Not applicable	
Yttrium	Most retained	Retention	Retention	
Zirconium	Most retained; some local redistribution	Retention	Some migration	
Niobium	Most retained	Retention	Retention	
Molybdenum	Most migrated	Migration	Migration	
Technetium	Local redistribution	Retention	Migration (?)	
Ruthenium	Local redistribution	Retention	Minor migration	
Rhodium	Most retained	Retention	Retention	
Palladium	. Most retained	Retention	Retention	
Silver	Most retained	Retention	Retention	
Cadmium	Most migrated	Migration	Migration	
Indium	Most retained	Retention	Retention	
Tin	Not yet studied	Retention	Retention	
Antimony	Not yet studied	Possible migration	Some migration	
Tellurium	Not yet studied	Retention	Retention	
Iodine	Most migrated	Not applicable	Not applicable	
Xenon	Most migrated	Not applicable	Not applicable	
Cesium	Most migrated (?; perhaps locally)	Not applicable	Not applicable	
Barium	Local redistribution	Not applicable	Not applicable	
REE	Most retained	Retention	Retention	

,

Observed Mobility of Important Elements at Oklo Compared to Predicted Mobilities Based on Eh-pH Diagrams

(continued)

.

Table 6.3-3 (continued)

	Observed Relative	Predictions of Relative Mobility Based on Diagrams			
Element	Mobility	2500	200°C		
Lead	Variable migration	Retention or local redistribution	Some migration		
Bismuth	Most retained	Retention or local redistribution	Some migration		
Polonium	Most retained	Retention	Retention		
Thorium	Most retained	Retention	Retention		
Uranium	Some local redistribution	Retention or local redistribution	Retention		
Neptunium	Most retained	Retention	Retention		
Plutonium	Most retained	Retention	Retention		
Americium	Not measureable	Retention	Retention		

•

1

Source: Reference BR-84a

.
and temperature. The brine chemistry in the lower layer of the Red Sea in Atlantis Deep II has a chlorinity of 156 parts per thousand and essentially represents original brine unmixed with sea water (Reference SH-77).

The initial brine temperature has been estimated by several methods to range from $150-261^{\circ}$ C. A temperature of 250° C for the original geothermal brine has been assumed (Reference SH-77). The temperature of the brine after entering the Red Sea has been measured at 60° C.

A second major assumption concerns the presence of hydrogen. Although hydrogen sulfide has not been detected in the brine, some sulfide minerals are forming. Since the sulfate concentration (840 ppm) in the brine is high, the hydrogen sulfide concentration should be very low (Reference SH-77).

The sulfate-sulfide equilibrium distribution and the concentration of sulfide species can be obtained from the oxygen fugacity determined by the magnetite-hematite equilibrium:

 $3Fe_2O_3 = 2Fe_3O_4 + 1/2 O_2$ Hematite Magnetite

(150)

The temperature-dependent equilibrium constant for this reaction can be determined from the data supplied by Helgeson (Reference HE-69).

Finally, the pH of the brine as a function of temperature has been estimated using an experimentally determined pH of 5.5 for cooled brine samples at 25°C, plus a mass balance relation for hydrogen-bearing species at higher temperatures.

The reaction path model requires the calculation of saturation indices to indicate the controlling mineral-water reactions. Mass balances for those controlling reactions are calculated to determine the mass transfer

236

such that the change in the number of moles of an aqueous species along a flow path is equal, but of opposite sign, to the change in moles of the solid mineral phases that incorporate that species. In this case, the flow path is from the subsurface region with a temperature of 250° C to the Red Sea brine at the sediment-seawater interface where the temperature of the brine has cooled to 60° C.

<u>Assumptions</u>. All the assumptions of the reaction path model incorporate those of the equilibrium speciation model:

- Homogeneous equilibrium is maintained throughout the reaction paths.
- The Debye-Huckel theory adequately describes the non-ideal behavior of dissolved ions.
- Mass and charge are conserved.
- Mineral dissolution is congruent.
- Mineral formulas are stoichiometric.

In addition, it is assumed for this test problem:

- That the maximum temperature of the original brine is accurately estimated to be 250°C
- That the activity of hydrogen sulfide can be accurately estimated from the oxygen fugacity that is fixed by the magnetite-hematite equilibrium
- That the oxygen fugacity determined as a function of temperature is valid
- That the pH as a function of temperature can be accurately estimated on the basis of the empirical method described above
- That the overall chemical composition of the brine has not changed

Input. The input data are presented in Table 6.4-1.

Table 6.4-1

Input Data for the Red Sea Brine

Constituent	Vented Brine Concentration (mg/kg)	Red Sea Brine Concentration (mg/kg) 92,600 1.870	
Na	92,600 1,870		
Ma	764	764	
Ca	5,150	5,150	
C1	156,030	156,030	
S04	840	840	
Total CO2 (as HCO3)	140	140	
Ba	0.9	0.9	
Cu	0.26	0.26	
F	less than 0.02	less than 0.02	
Fe	81.0	81.0	
Li	4.4	4.4	
Mn	82.0	82.0	
Pb	0.63	0.63	
Si	27.6	27.0	
Zn	2.4	5.4 6000	
lemperature	2.50°L		
109 102	-33	-CU 5 A	
hu	4.0	J.4	

Source: Reference SH-77

<u>Output</u>. Output for this test problem includes aqueous speciation and activities, mineral saturation indices (ion activity product divided by the equilibrium constant), and mass transfer calculations. The mass transfer calculations will consist of changes in the mass of each dissolved constituent per unit mass of water (i.e., moles per kilogram of water).

As a partial validation, saturation indices for important minerals have been calculated as a function of temperature (Reference SH-77) and are presented in Figure 6.4-1.

6.5 Reaction Kinetics Problem

<u>Problem Statement</u>. This problem requires the solution of the rate of change over time in the concentration of an aqueous species or the rate of change over time in the mass per unit volume of a solid. The rate of change in concentration or mass is to be solved at an elevated temperature. Experimental results are provided for comparison.

<u>Objectives</u>. The features of a kinetics code being tested are the data base of rate constants utilized for the reactions, the temperature functions of the rate constants, and the aqueous speciation and activities under nonequilibrium conditions.

<u>Problem Description</u>. Experimental work has been completed on the waterrock-spent fuel interactions under controlled temperatures ranging from 100°C to 300°C and 30 MPa (Reference MY-83). The experimental method involved an essentially closed system using gold bags heated in an autoclave. During the run of an experiment, samples of fluid were periodically withdrawn for chemical analysis. The ratio of groundwater to basalt to simulated spent fuel was 20:1:1.

Alteration minerals observed in the experimental mixture of groundwater, basalt, and simulated spent fuel included saponite (smectite), illite, microcline, and poorly crystalline silica. The spent fuel was largely unaltered except for a surface alteration product that was tentatively

239

Figure 6.4-1

Degree of Saturation of the Red Sea Geothermal Brine with Respect to Various Hydrothermal Minerals, Expressed as a Ratio of Ion Activity Product to Solubility Product Constant (IAP/Ksp) For Each Mineral (SH-77) identified as weeksite $(K_2(UO_2)_2(Si_2O_5)_3\cdot 4H_2O)$ or boltwoodite $(K_2(UO_2)_2(SiO_3)_2(OH)_2\cdot 5H_2O)$. A minor amount of scheelite (CaWO₄) also was detected as an alteration product.

Results of the chemical analyses indicated concentrations arrived at approximate equilibrium values in the closed system during the run of the experiments (Reference MY-83).

Assumptions.

- The experimental method represents a closed system. Fluid samples withdrawn periodically are small enough so that the overall chemical composition of the fluid is not affected.
- The closed system of the experimental setup approximates the real physico-chemical conditions of the near-field environment, i.e., fluid residence times are very long and local equilibrium between solution and minerals is approached.
- Experimental apparatus is inert with respect to all components in the simulated spent fuelgroundwater-basalt mixture.
- Simulated components such as spent fuel and groundwater are representative of the actual components.

<u>Input</u>. The mass ratio of the spent fuel to groundwater to basalt is 1:20:1. Three constant temperature conditions, 100° , 200° , and 300° C, and a single pressure condition, 30 MPa, are applied to the experimental mixture.

The basalt is from the entablature of the Umatanum flow of the Grande Ronde Basalt with the chemical and mineralogic composition shown in Table 6.5-1.

The synthetic groundwater, representative of that occurring in the Grande Ronde Basalt, has the chemical composition presented in Table 6.5-2.

241

Component	Weight %	Estimated (wt. %) Uncertainty	
SiO2	55.59	0.88	
TiO ₂	2.21	0.04	
A1203	13.71	0.27	
Fe ₂ 03	3.68	0.07	
Fe0	. 10.24	0.25	
MnO	0.24	0.02	
MgO	3.79	0.26	
CaO	7.31	0.11	
Na ₂ 0	2.95	0.29	
K20	1.63	0.06	
P205	0.35	0.02	
Total	101.70		
	Modal Mineralogy	.	
		Weight %	
Plagioclase (AN40)	28.7	
Pyroxene		17.1	
Mesostasis		47.7	
Titaniferous	magnetite	5.12	
Chlorophaeite		1.65	
•		100.27	

Table 6.5-1

Chemical Analysis of Grande Ronde Basalt Sample RUE-1

Source: Reference MY-83

.

T	ab	le	6.	5	-2
---	----	----	----	---	----

Dissolved Constituent	Concentration in mg/L GR-3		
Na ⁺	358		
K+	3.4		
Ca ²⁺	2.8		
Mg ²⁺	0.032		
C1-	312		
C03 ²⁻	12.9		
HCO3-	42.9		
F-	33.4		
504 ²⁻	173		
SiO2	76.2		
рН	9.9		

Composition of Synthetic Groundwater

Source: Reference MY-83

The simulated spent fuel chemical composition is presented in Table 6.5-3.

<u>Output</u>. The output consists of the change in concentration over time of aqueous species, the dissolution/precipitation rates of initial solid-phase components, and the precipitation rates of new solid-phase components.

Figure 6.5-1 presents results of experiments on the pH as measured in a sample cooled to 25° C, and Figure 6.5-2 presents the pH values as corrected to the original temperature of 100°, 200°, or 300°C (Reference MY-83).

Figure 6.5-3 presents plots of concentration in solution versus time for sodium and silicon at the three temperatures. Figures 6.5-4 through 6.5-7 present similar plots for chloride and sulfate, iodine, strontium and uranium, and cesium and molybdenum, respectively.

Table 6.5-3

Component	Weight %	Component	Weight %
U02	96.09	Te	0.05
Th02	0.95	Sr	0.07
Y 203	0.05	Ba	0.15
Ce02	0.26	Pr	0.10
Мо	0.30	. Sm	0.56
Pd	0.30	Zr	0.32
Cs	0.26	Re	0.13
I	0.02		

Chemical Analysis of Simulated Spent Fuel*

* Minor components have been tabulated as the element for use in inventory calculations.

Source: Reference MY-83

Effect of Temperature on Calculated pH Values for Simulated Spent Fuel Plus Basalt (AP-83)

TIME (hours)

Effect of Temperature on Sodium and Silicon Concentrations for Simulated Spent Fuel Plus Basalt (AP-83)

Figure 6.5-4

Effect of Temperature on Chloride and Sulfate Concentrations for Spent Fuel Plus Basalt (AP-83)

Figure 6.5-5

TIME (house)

Effect of Temperatures on Strontium and Uranium Concentrations for Simulated Spent Fuel Plus Basalt (AP-83)

TIME (hours)

Figure 6.5-7

Effect of Temperature on Cesium and Molybdenum Concentrations for Simulated Spent Fuel Plus Basalt (AP-83)

REFERENCES

- AN-63 Argonne National Laboratory, "Reactor Physics Constants," ANL-5800, July 1963.
- AP-82 Apted, M.J. and J. Myers, "Comparison of the Hydrothermal Stability of Simulated Spent Fuel and Borosilicate Glass in a Basaltic Environment," Rockwell Hanford Operations, RHO-BW-ST-38P, July 1982.
- AR-78 Arnorsson, S., K. Gronwold, and S. Sigurdsson, "Aquifer Chemistry of Four High-Temperature Geothermal Systems in Iceland," <u>Geochim. Cosmochim. Acta</u>, Vol. 42, pp. 523-536, 1978.
- AR-82 Arnorsson, S., S. Sigurdsson, and H. Svarvarsson, "The Chemistry of Geothermal Waters in Iceland. I. Calculation of Aqueous Speciation from 0° to 370°C," <u>Geochim. Cosmochim.</u> Acta, Vol. 46, pp. 1513-1532, 1982.
- AR-83 Arnorsson, S., E. Gunnlaugsson, and H. Svarvarsson, "The Chemistry of Geothermal Waters in Iceland. II. Mineral Equilibria and Independent Variables Controlling Water Compositions," <u>Geochim. Cosmochim. Acta</u>, Vol. 47, pp. 547-566, 1983.
- BI-64 Biggs, J.M., <u>Introduction of Structural Dynamics</u>, McGraw-Hill Book Co., New York, 1964.
- BO-42 Boelter, L.M.K., V.H. Cherry, and H.A. Johnson, <u>Heat Transfer</u>, 3rd Edition, University of California Press, Berkeley, 1942.
- BR-84a Brookins, D.G., <u>Geothermal Aspects of Radioactive Waste</u> Disposal, Springer-Verlag, New York, 1984.
- BR-84b Brookins, D.G., personal communication with Lyle R. Silka, July 9, 1984.
- CA-59 Carslaw, H.S. and J.C. Jaeger, <u>Conduction of Heat in Solids</u>, Clarendon Press, Oxford, England, 1959.
- CH-83a Charles, R.W. and G.K. Bayhurst, "Sentinel Gap Basalt Reacted in a Temperature Gradient," LA-9481-MS, Los Alamos National Laboratory, January 1983.
- CH-83b Charles, R.W. and G.E. Bayhurst, "Rock-Fluid Interactions in a Temperature Gradient: Biolite Granodiorite + H2O," Jour. Volcanol. Geotherm. Res., Vol. 15, 137-166, 1983.
- CO-84 Coffman, W., D. Vogt, and M. Mills, "A Summary of Computer Codes for Waste Package Performance Assessments," NUREG/CR-3699, March 1984.

- CR-78 Croff, A.G., M.J. Bjerke, G.W. Morrison, and L.M. Petrie, "Revised Uranium-Plutonium Cycle PWR and BWR Models for the ORIGEN Computer Code," ORNL/TM-6051, Oak Ridge National Laboratory, September 1978.
- CR-84 Croff, A.G., A.D. Kelmers, and S.K. Whatley, "Laboratory Evaluation of DOE Radionuclide Solubility Data and Selected Retardation Parameters, Experimental Strategies, Laboratory Techniques and Procedures," Program review and seminar, ORNL, April 12, 1984.
- DE-82 De Salvo, G.J., "ANSYS Engineering Analysis System Verification Manual," Swanson Analysis Systems, Inc., 1982.
- EL-83 Elders, W.A. and L.H. Cohen, "The Salton Sea Geothermal Field, California, as a Near-Field Natural Analog of a Radioactive Waste Repository in Salt," Office of Nuclear Waste Isolation, BMI/ONWI-513, 146 pp., November 1983.
- GO-81 Goff, F.E., C.O. Grigsby, P.E. Trujillo, Jr., D. Counce, and A. Kron, "Geology, Water Geochemistry and Geothermal Potential of the Jemez Springs Area, Canon De San Diego, New Mexico," Jour. Volcanol. Geotherm. Res., Vol. 10, pp. 227-244, 1981.
- GR-67 Griffin, D.S. "Deformation and Collapse of Fuel Rod Cladding Due to External Pressure," WAPD-TM-591, Bettis Atomic Power Laboratory, January 1967.
- GR-83 Grigsby, C.O., J.W. Tester, P.E. Trujillo, Jr., D. Counce, J. Abbott, C.E. Holley, and L.A. Blatz, "Rock-Water Interactions in Hot Dry Rock Geothermal Systems: Field Investigations of In-situ Geochemical Behavior," Jour. Volcanol. Geotherm. Res., Vol. 15, pp. 101-136, 1983.
- HE-47 Heisler, M.P., "Temperature Charts for Induction and Constant Temperature Heating," <u>Trans. ASME</u>, Vol. 69, pp. 227-236, 1947.
- HE-69 Helgeson, H.C., "Thermodynamics of Hydrothermal Systems at Elevated Temperatures and Pressures," <u>Am. Jour. Sci.</u>, Vol. 267, pp. 729-804, 1969.
- HO-81 Holman, J.P., <u>Heat Transfer</u>, 5th Edition, McGraw-Hill Book Co., New York, 1981.
- JU-81 Judson, B.F., H.R. Strickler, and K.J. Eger, "In-Plant Test Measurements for Spent Fuel at Morris Operation," NEDG-24922-2, September 1981.

- KE-84 Kelmers, A.D., R.J. Clark, N.H. Cutshall, G.K. Jacobs, J.S. Johnson, J.H. Kessler, and R.E. Meyers, "Evaluation of Radionuclide Geochemical Information Developed by DOE High-Level Nuclear Waste Repository Site Projects," NUREG/CR-3730, 1984.
- KR-58 Kreith, F., <u>Principles of Heat Transfer</u>, International Textbook Company, Scranton, Pennsylvania, 1958.
- KR-75 Kristmannsdottir, H., "Hydrothermal Alteration of Basaltic Rocks in Icelandic Geothermal Areas," <u>Proc. 2nd U.N. Symp.</u> on Development and Use of Geothermal Resources, Vol. 1, pp. 441-445, U.S. Government Printing Office, 1975.
- KU-81 Kusabe, H., H. Minato, M. Utado, and T. Yamenaka, "Phase Relations of Clinoptilolite, Mordenite, Analcine and Albite with Increasing pH, Sodium Ion Concentration and Temperature," Scientific papers of the College of General Education, Univ. of Tokyo, Vol. 31, pp. 39-59, 1981.
- MI-83 Mills, M., D. Vogt, and B. Mann, "Parameters and Variables Appearing in Radiological Assessment Codes," NUREG/CR-3160, June 1983.
- MO-83 Moore, D.E., C.A. Morrow, and J.D. Byerlees, "Chemical Reactions Accompanying Fluid Flow through Granite Held in a Temperature Gradient," <u>Geochim. Cosmochim. Acta</u>, Vol. 47, pp. 445-453, 1983.
- MY-83 Myers, J., M.J. Apted, and J.J. Mazer, "Hydrothermal Reaction of Simulated Waste Forms with Barrier Materials under Conditions Expected in a Nuclear Waste Repository in Basalt," SD-BWI-TI-141, Rockwell Hanford Operations, September 1983.
- ON-83 Office of Nuclear Waste Isolation, "Conceptual Waste Package Design for Disposal of Nuclear Waste in Tuff," ONWI-439, April 1983.
- OR-82 Oak Ridge National Laboratory, "SCALE, A Modular Code System for Performing Standardized Computer Analysis for Licensing Evaluation," Vols. 1-3, NUREG/CR-0200, January 1982.
- RE-82 Reardon, E.J. and J.D. Reimer, "A Laboratory Investigation of Crystalline Rock-Water Interactions," TR-137, Atomic Energy of Canada, Ltd., March 1982.
- RO-56 Rockwell, T., ed., "Reactor Shielding Manual," TIO-7004, March 1956.
- RO-65 Roark, R.J., <u>Formulas for Stress and Strain</u>, 4th Edition, McGraw-Hill Book Co., New York, 1965.

- RO-82 Rockwell Hanford Operations, "Site Characterization Report for the Basalt Waste Isolation Project," DOE/RL 82-3, November 1982.
- SE-84 Seitz, M., G. Vandegrift, T. Gerding, D. Bowers, S. Fried, and C. Wilbur, "Laboratory Analog Program" in Steindler, M.J., ed., "Fuel Cycle Programs Quarterly Progress Report, January-March 1983," pp. 34-36, Argonne National Laboratory, ANL-83-68, January 1984.
- SH-77 Shanks, W.C. and J.L. Bischoff, "Ore Transport and Deposition in the Red Sea Geothermal System: A Geothermal Model," Geochim. Cosmochim. Acta, Vol. 41, pp. 1507-1519, 1977.
- ST-83 Stone, W.J., F.P. Lyford, P.F. Frenzel, N.H. Mizell, and E.T. Padget, "Hydrogeology and Water Resources of San Juan Basin, New Mexico," Hydrologic Report 6, New Mexico Bureau of Mines and Mineral Resources, Socorro, New Mexico, 1983.
- TH-65 Thomson, W.T., <u>Vibration Theory and Applications</u>, Prentice Hall, Inc., Englewood Cliffs, New Jersey, 2nd Printing, 1965.
- TI-56 Timoshenko, S., <u>Strength of Materials</u>, <u>Part 1</u>, <u>Elementary</u> <u>Theory and Problems</u>, <u>3rd Edition</u>, D. Van Nostrand Co., <u>New York</u>, 1956.
- UN-82 Unterzuber, R., et al., "Spent Fuel Dry Storage Testing at E-MAD," PNL-4533, AESD-TME-3162, Westinghouse Electric Corporation, Advanced Energy Systems Division, Pittsburgh, Pennsylvania, 1982.
- WE-82 Westinghouse Electric Corporation, "Waste Package Conceptual Designs for a Nuclear Repository in Basalt," RHO-BW-CR-136P, Rockwell Hanford Operations, October 1982.
- WO-82 Wood, M.I. and G.D. Aden, "Evaluation of Sodium Bentonite and Crushed Basalt as Waste Package Backfill Materials," RHO-BW-ST-21P, Rockwell Hanford Operations, October 1982.

APPENDIX A

Will be Obtained from NRC

~/