Sandia National Laboratories

Albuquerque, New Mexico 87185

WM DOCKET CONTROL CENTER

RÇS **Record** File WM Project 10, 11, 16 7.53 Docket No. SNL PDR LPDR A Distribution Heshe 13K JOANNE <u>3411</u> (Return to WM, S23-SS)

***86 DER -1** A11 :43

November 15, 1986

Mr. John Peshel Engineering Branch Division of Waste Management U.S. Nuclear Regulatory Commission 7915 Eastern Avenue Silver Spring, MD 20910

^{we} Dear Mr. Peshel:

The enclosed monthly report summarizes the activities during the month of October for FIN A-1755.

If you have any questions, please feel free to contact me at FTS 844-8368 or L. R. Shipers at FTS 846-3051.

Sincerely,

Robert M. Cranwell

Robert M. Cranwell Supervisor Waste Management Systems Division 6431

RMC:6431

Enclosure

Copy to: Office of the Director, NMSS Attn: Program Support Branch 6400 R. C. Cochrell 6430 N. R. Ortiz 6431 R. M. Cranwell 6431 L. R. Shipers 6431 K. K. Wahi

PROGRAM:	Coupled Therm Mechanical As Site Characte Activities fo Repositories	rization	1-	FIN#:	A-1755
CONTRACTOR:	Sandia Nation Laboratories	al	BUDGET	PERIOD:	10/86 - 9/87
DRA PROGRAM	MANAGER:	J. Peshel	BUD	GET AMOUN	IT: 250K
CONTRACT PRO	GRAM MANAGER:	R. M. Cranwel	l FTS	PHONE:	844-8368
PRINCIPAL IN	VESTIGATOR:	L. R. Shipers	FTS	PHONE:	846-3051

PROJECT OBJECTIVES

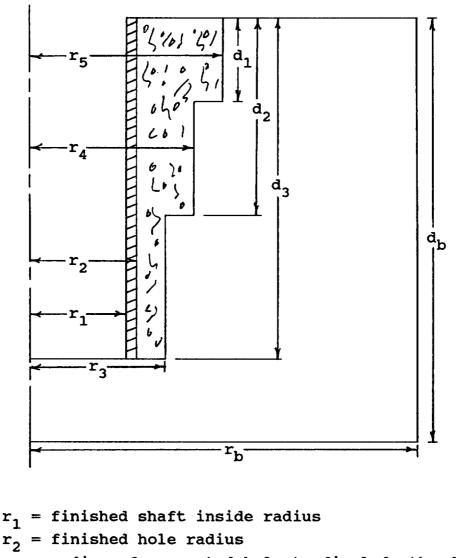
To provide technical assistance to NRC in the assessment of coupled thermal-hydrological-mechanical phenomena and site characterization activities for high-level waste repositories.

ACTIVITIES DURING OCTOBER 1986

Activities and Accomplishments

Funding in the amount of \$40K was received from NRC on October 16, 1986. Work resumed on this project on that date.

Work progressed in two areas during the month of October. In first, the analysis of the shaft/shaft liner at BWIP was the of both a two-dimensional continued. Conceptual models axisymmetric shaft simulation (Figure 1) and a two-dimensional horizontal cross-section (Figure 2) were developed. A STEALTH input data set for the two-dimensional model of a horizontal cross-section of a shaft was prepared. A listing of this data file is included as Attachment I. To avoid the necessity of individually specifying the rectangular coordinates of the interior nodes, a computer program (NTRAN) based upon an eight point averaging scheme was written to calculate the interior nodal locations for the transition from a cylindrical to a rectangular boundary. The nodal distribution generated by this program is shown in Figure 3. This nodal generation program was incorporated in STEALTH 2D using updates. A floppy disk containing the node generation program (NTRAN) and an accompanying screen graphics grid plotting program (NTPLT) is included with this report. It was difficult to locate included with this report. It was difficult to locate mechanical property data for cement grouts. However, an SNLA (SAND81-0065) does contain information from which report representative data may be inferred. The problem is ready to be analyzed with STEALTH 2D. For the cross-section selected, unequal horizontal stress components can be prescribed and/or calculated. The boundary stresses have been chosen to be consistent with the in-situ stress field at the proposed repository depth. The objective of the calculation is to predict the stress distribution in and around the liner and to identify zones of potential failure.

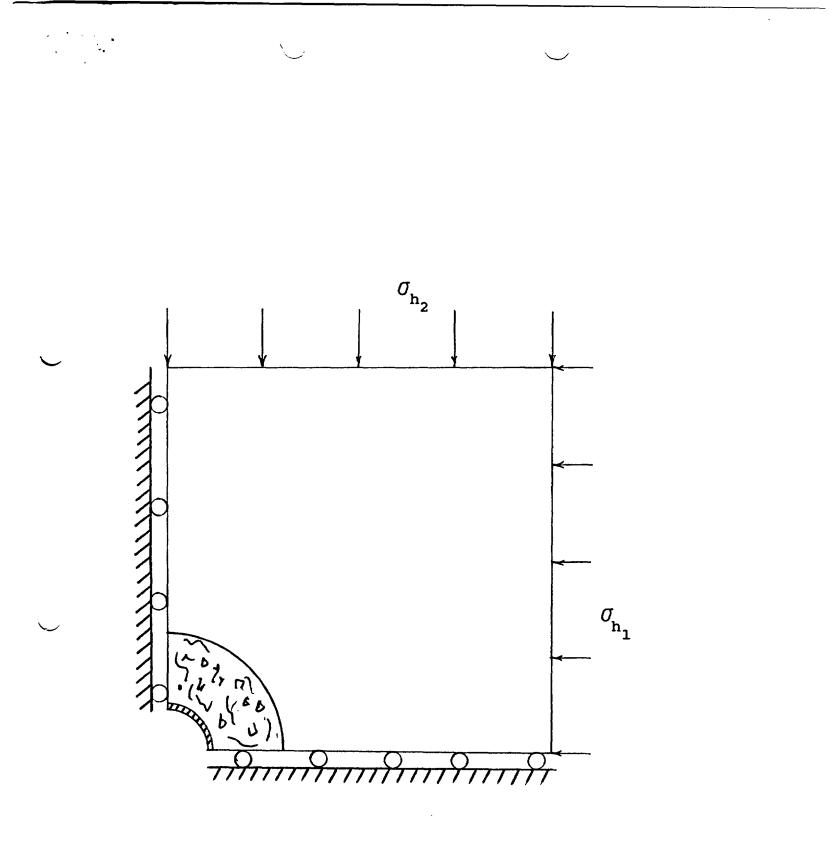

In the second area, discussions with the NRC and SNLA personnel and outside code developers continued to examine the feasibility of installing thermomechanical codes at the INEL Computer Facility. This effort has been partially successful in that verbal permission was obtained from M. Gross of SAIC to transfer the Waste Isolation (W.I.) version of STEALTH 2D to the INEL facility; this version is presently being used at SNLA. A written authorization for NRC's use of the W.I. version is expected in the near future. In addition, EPRI will issue a version of STEALTH 3D along with a "license" for its use. It should be noted as stated in the previous monthly report, that the 3D code is a general purpose version that will require certain modifications before it can be used for repository applications.

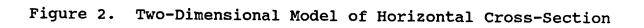
Travel

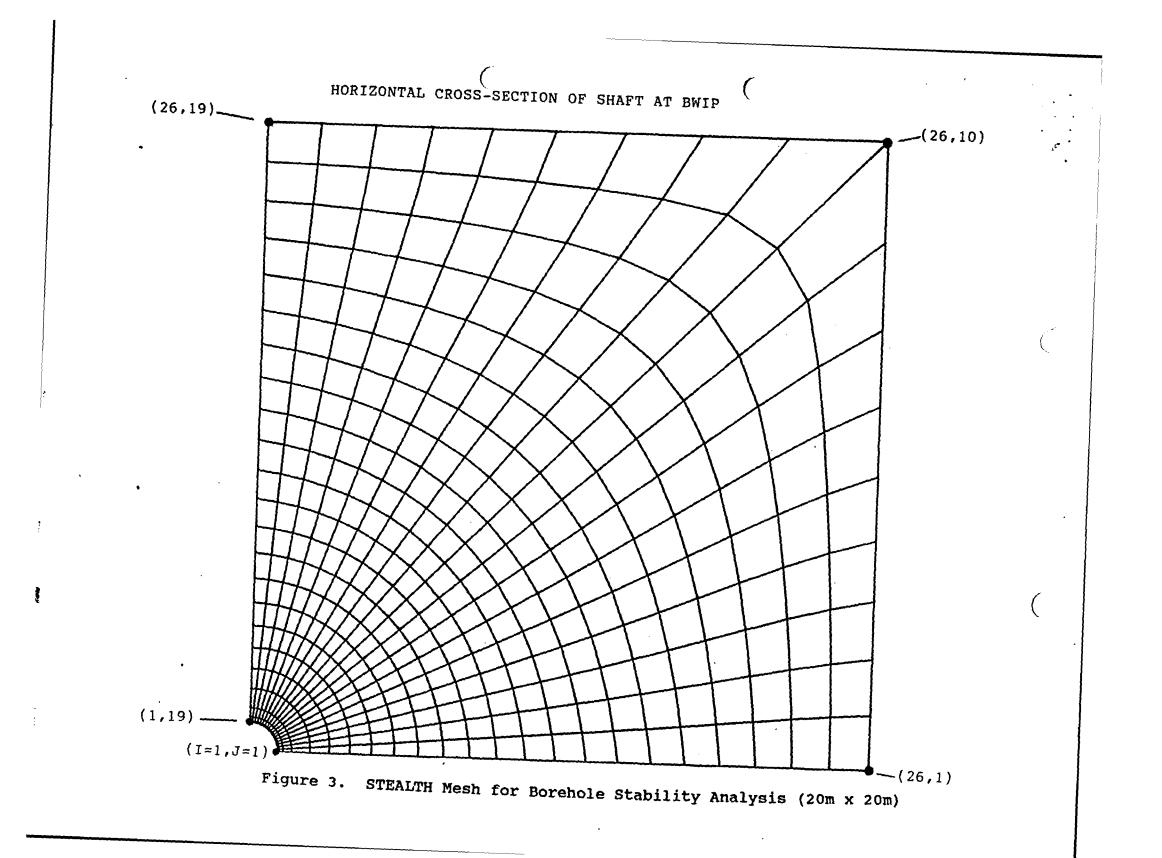
None.

Problems Encountered

The monthly cost estimate does not reflect the \$40K received on October 16, 1986. Also, the negative balance costed is not a carryover of funds for the project. It reflects contractor costs for FY 86 which have not yet been costed.


- r_3 = radius of excavated hole to final depth, d_3
- r_4 = radius of excavated hole to depth d_2
- $r_5 = radius$ of excavated hole to depth d_1
- r_{b} = radius of outer boundary of model


 $d_b = depth$ to bottom boundary of model


Note: 1. $(r_2 - r_1)$ is the liner thickness which could be a function of depth

2. $(r_3 - r_2)$, $(r_4 - r_2)$, and $(r_5 - r_2)$ represent cement grout thicknesses behind the liner upto depths d_3 , d_2 , and d_1 , respectively.

Figure 1. Two-Dimensional Axisymmetric Shaft Model

ATTACHMENT I

6

TTL		BWIP	HORIZONTAL	CROSS-SECTIO	N OF SHAFT	AREA	IN COHASSET
PRB						1.	
PRO		2.0					
DTS		2.0	1.				
GRD		1.0	1.0	26.0	19.0		
END				2010	23.0		
MAT						1.	
	COHAS	1.0	1.0			± •	
112	001110	1.0	2.0	2.0	2.0		
121		1.0	2830.0		210		
122		1.0	1.	, 0.	4.96 H	0.15	
132		1.0		50 E8	4.50 1	110	
134		1.0		E10			
136		1.0		9 E7			
	GROUT	2.0	1.0				
112	01(001	2.0	2.0	2.0	2.0		
121		2.0	1900.0		2.0		
122		2.0	1,	, 0.	1.169 H	0.15	
132		2.0		50 E7	1.109 1	210	
132		2.0		33 E9			
134		2.0)0 E7			
	LINER		1.0	JU E/			
112	LINER	3.0		2 0	2.0		
			2.0	2.0	2.0		
121		3.0	7850.0		1 200 1		
122		3.0	1.	0.	1.390 H	511	
132		3.0		07 E8			
134		3.0) E10			
136		3.0	-3.4	15 E8			
END							
GPT				• •	2.0	1.0	
211		1.0	1.0	1.0	0.914	0.	
212		1.0	0.5	0.	2.0		
· 212		2.0	25.0	0.	3.0		
212		3.0	0.	25.	2.0		
212		4.0	0.	0.5	3.0		
221		1.	1.	26.	1.	19.	
283		1.					
END							
ZON					_	1.0	
	LINER		1.0	3.0	1.0	19.0	
321		1.0					
322		1.0					
341		1.		9 E7 -1.539			
	GROUT			6.0	1.0	19.0	
321		2.0	2.0				
322		2.0	0.9986				
341		2.0		9 E7 -1.539			
	BASAL		6.0	26.0	1.0	19.0	
321		3.0					
322		3.0					
341		3.0	-3.	3 E7 -6.15	E7 -2.420	E7	
END							
BDY						1.0	
411	BSEG1	1.0	1.0	1.0	26.0	1.0	

				·····			
		\searrow					
412 BSEG2 412 BSEG3 412 412	3.0 4.0 5.0 1.0 2.0	26.0 26.0 1.0 1.0 1.0 1.0 1.0 1.0	1.0 10.0 19.0 19.0 6.0 2.0 2.0 6.0 3.0	26.0 26.0 1.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	10.0 19.0 19.0 1.0 2.0 1.0 3.0 4.0		
414 422 BSEG2 431	3.0	1.0 1.0	,0.0	1.0 1.0 E19	9		
422 BSEG3 431 432 481 481	3.0 2.0 2.0 1.0 4.0	3.3 E7 2.0 1.0 6.15 E7 1.0 3.0	0.0 7 2.0 4.0	1.0 E19	9		
482 END TIM 511	1.0 4.0 0.1	1.0 1.0	5.0 5.0	5.0 5.0		0.25 0.25	
513	0.1 1.0 0.5 1000.0	0.1 1.0 150.					
613 616	2.0 2.0 2.0				1.		
623 623	1.0 1.0 11.0 83. 12.	0. 26.0 14.0 74. 15.	100.0 1.0 71.0 64.	50.0 19.0 72.0 91.	73.0 93.	81.0 94.	82.0 95.
674 674 674	1. 1. 2. 3. 4. 5.	0. 1. 1. 1. 1.	150. 71. 71. 71. 71. 5.	2. 1. 1. 1. 1. 1.	2002. 4010. 26019. 16010.		
675 674	6. 7. 8. 9. 10.	3. 6. 1. 1. 1.	64. 72. 91.	1. 1. 1.	150. 150. 21009. 16010. 10010.		

A-1755 1628.010 October 1986

و د السعانية (1

THIS IS AN ESTIMATE ONLY AND MAY NOT MATCH THE INVOICES SENT TO NRC BY SANDIA'S ACCOUNTING DEPARTMENT.

		Current Month	Year -to- Date
I.	Direct Manpower (man-months of charged effort)	0.3	0.3
II.	Direct Loaded Labor Costs Materials and Services ADP Support (computer) Subcontracts Travel Other (computer roundoff)	3.0 0.0 -13.0 0.0 0.0	3.0 0.0 -13.0 0.0 0.0
	TOTAL COSTS	-10.0	-10.0

III. Funding Status

Prior FY	FY 87 Projected	FY 87 Funds	FY 87 Funding
Carryover	Funding Level	Received to Date	Balance Needed
None	250K	40K	210K