AP1000 Probabilistic Risk Assessment

TABLE OF CONTENTS

Section Title Page LIST OF TABLES LIST OF FIGURES REVISION 1 CHANGE ROADMAP.....civ REVISION 2 CHANGE ROADMAP.....cviii REVISION 3 CHANGE ROADMAP.....cxi REVISION 4 CHANGE ROADMAP.....cxii **CHAPTER 1** INTRODUCTION 1.1 1.1.1 Background and Overview.....1-1 1.1.2 Objectives......1-1 1.1.3 Technical Scope1-2 1.1.4 Project Methodology Overview.....1-3 1.1.5 1.1.6 Plant Definition1-6 1.1.7 **CHAPTER 2** INTERNAL INITIATING EVENTS 2.1 2.2 2.2.1 Logic Diagram for Internal Initiating Events......2-2 2.2.2 2.2.3 2.2.4 Anticipated Transient without Scram2-8 2.2.5 AP1000 Specific Initiating Event Analysis2-10 2.2.6 Consequential Events2-19 2.2.7 Summary of Internal Initiating Event Categories2-19 2.3 2.3.1 2.3.2 Quantification of Transient Initiating Event Frequencies......2-24 2.3.3 ATWS Precursor Initiating Event Frequency......2-27 2.3.4 2.4 ATTACHMENT 2A QUANTIFICATION OF LOCA INITIATING EVENT FREQUENCIES 2A-1 2A-2 2A-3 Steam Generator Tube Rupture Initiating Event Frequency......2A-1 2A-4 Quantification of Stuck-Open Pressurizer Safety Valve, Accumulator Interface Break, and IRWST Interface Break2A-1 2A-5 Initiating Events Review Data Summary and INPO Data......2A-1

i

AP1000 Probabilistic Risk Assessment

Section		Title	Page
ATTACHMEN	VT 2B Q	UANTIFICATION OF TRANSIENT INITIATING	
2B-1	Second	ary Side Line Breaks & Stuck-open Main Steam Line Safety	
	Valve F	Frequencies	2B-1
		1	
CHAPTER 3	MODE	LING OF SPECIAL INITIATORS	
3.1	Introdu	ction	3-1
3.2	Ground	Rules for Special Initiating Event Analysis	
3.3	Loss of	Component Cooling Water System/Service Water System Initiating Ev	vent3-1
3.4	Loss of	Compressed and Instrument Air System Initiating Event	3-2
3.5	Spuriou	as Actuation of Automatic Depressurization System	3-2
	3.5.1	Evaluation of Automatic Depressurization System Spurious Actuation	on3-3
CHAPTER 4	EVEN	r tree models	
4.1	Introdu	ction	4-1
4.2	Large L	OCA Event Tree Model	4-1
	4.2.1	Event Description	4-1
	4.2.2	Event Tree Model and its Nodes	4-2
	4.2.3	Event Tree Success Criteria and Core Damage Categories	4-4
	4.2.4	Operator Actions	4-4
	4.2.5	Transfers and Consequential Events	4-4
4.3	Large S	purious ADS Event Tree Model	4-4
	4.3.1	Event Description	4-4
	4.3.2	Event Tree Model and its Nodes	4-4
	4.3.3	Event Tree Success Criteria and Core Damage Categories	4-6
	4.3.4	Operator Actions	4-6
	4.3.5	Transfers and Consequential Events	4-6
4.4	Mediun	n LOCA Event Tree Model	4-6
	4.4.1	Event Description	4-6
	4.4.2	Event Tree Model and its Nodes	4-7
	4.4.3	Event Tree Success Criteria and Core Damage Categories	4-9
	4.4.4	Operator Actions	
	4.4.5	Transfers and Consequential Events	4-10
4.5	Core M	akeup Tank Line Break Event Tree Model	
	4.5.1	Event Description	4-10
	4.5.2	Event Tree Model and its Nodes	4-10
	4.5.3	Event Tree Success Criteria and Core Damage Categories	
	4.5.4	Operator Actions	4-13
	4.5.5	Transfers and Consequential Events	
4.6	Safetv I	injection Line Break Event Tree Model	
	4.6.1	Event Description	
	4.6.2	Event Tree Model and its Nodes	
	4.6.3	Event Tree Success Criteria and Core Damage Categories	

TABLE OF CONTENTS (Cont.)

Section

<u>Title</u>

Page

	4.6.4	Operator Actions	4-16
	4.6.5	Transfers and Consequential Events	
4.7	Small L	OCA Event Tree Model	
	4.7.1	Event Description	
	4.7.2	Event Tree Model and its Nodes	
	4.7.3	Event Tree Success Criteria and Core Damage Categories	
	4.7.4	Operator Actions	
	4.7.5	Transfers and Consequential Events	
4.8	RCS Le	ak Event Tree Model	4-21
	4.8.1	Event Description	4-21
	4.8.2	Event Tree Model and its Nodes	4-21
	4.8.3	Event Tree Success Criteria	
	4.8.4	Operator Actions	4-22
	4.8.5	Transfers and Consequential Events	4-22
	4.8.6	Core Damage Categories	4-23
4.9	PRHR 1	Tube Rupture Event Tree Model	4-23
	4.9.1	Event Description	4-23
	4.9.2	Event Tree Model and its Nodes	4-23
	4.9.3	Event Tree Success Criteria	4-24
	4.9.4	Operator Actions	4-24
	4.9.5	Transfers and Consequential Events	4-24
	4.9.6	Core Damage Categories	4-24
4.10	Steam C	Generator Tube Rupture Event Tree Model	4-25
	4.10.1	Event Description	4-25
	4.10.2	Event Tree Model and its Nodes	
	4.10.3	Event Tree Success Criteria and Core Damage Categories	4-33
	4.10.4	Operator Actions	4-33
	4.10.5	Transfers and Consequential Events	4-33
4.11	Reactor	Vessel Rupture Event Tree Model	4-34
	4.11.1	Event Description	4-34
	4.11.2	Event Tree Model and its Nodes	4-34
	4.11.3	Event Tree Success Criteria	4-34
-	4.11.4	Operator Actions	4-34
	4.11.5	Transfers and Consequential Events	4-34
	4.11.6	Core Damage Categories	4-34
4.12	Interfac	ing System LOCA Event Tree Model	4-34
-	4.12.1	Event Description	4-34
	4.12.2	Event Tree Model and its Nodes	4-35
	4.12.3	Event Tree Success Criteria	4-35
	4.12.4	Operator Actions	4-35
	4.12.5	Transfers and Consequential Events	4-35
	4.12.6	Core Damage Categories	4-35

,

AP1000 Probabilistic Risk Assessment

TABLE OF CONTENTS (Cont.)

Section

<u>Title</u>

4.13	Transier	nts With MFW Event Tree Model	4-35
	4.13.1	Event Description	4-35
	4.13.2	Event Tree Model and its Nodes	4-37
	4.13.3	Event Tree Success Criteria and Core Damage Categories	4-41
	4.13.4	Operator Actions	4-41
	4.13.5	Transfers and Consequential Events	4-42
4.14	Transier	nts With Loss of RCS Flow Event Tree Model	4-42
	4.14.1	Event Description	4-42
	4.14.2	Event Tree Model and its Nodes	4-42
	4.14.3	Event Tree Success Criteria and Core Damage Categories	4-46
	4.14.4	Operator Actions	4-46
	4.14.5	Transfers and Consequential Events	4-46
4.15	Transier	nts With Loss of MFW to One Steam Generator Event Tree Model	4-46
	4.15.1	Event Description	4-46
	4.15.2	Event Tree Model and its Nodes	4-47
	4.15.3	Event Tree Success Criteria and Core Damage Categories	4-50
	4.15.4	Operator Actions	4-50
	4.15.5	Transfers and Consequential Events	4-51
4.16	Transier	nts With Core Power Excursion Event Tree Model	4-51
	4.16.1	Event Description	4-51
	4.16.2	Event Tree Model and its Nodes	4-51
	4.16.3	Event Tree Success Criteria and Core Damage Categories	4-55
	4.16.4	Operator Actions	4-55
	4.16.5	Transfers and Consequential Events	4-55
4.17	Transier	nts With Loss of CCW/SW Event Tree Model	4-56
	4.17.1	Event Description	4-56
	4.17.2	Event Tree Model and its Nodes	4-56
	4.17.3	Event Tree Success Criteria and Core Damage Categories	4-59
	4.17.4	Operator Actions	4-59
	4.17.5	Transfers and Consequential Events	
4.18	Loss of I	Main Feedwater Event Tree Model	
	4.18.1	Event Description	4-60
	4.18.2	Event Tree Model and its Nodes	4-62
	4.18.3	Event Tree Success Criteria and Core Damage Categories	4-65
	4.18.4	Operator Actions	4-65
	4.18.5	Transfers and Consequential Events	
4.19	Loss of	Condenser Event Tree Model	
	4.19.1	Event Description	4-66
	4.19.2	Event Tree Model and its Nodes	
	4.19.3	Event Tree Success Criteria and Core Damage Categories	4-70
	4.19.4	Operator Actions	4-70
	4.19.5	Transfers and Consequential Events	4-70

AP1000 Probabilistic Risk Assessment

TABLE OF CONTENTS (Cont.)

Section

<u>Title</u>

4.20	Loss of	Compressed Air Event Tree Model	4-70
	4.20.1	Event Description	4-70
	4.20.2	Event Tree Model and its Nodes	4-71
	4.20.3	Event Tree Success Criteria and Core Damage Categories	4-74
	4.20.4	Operator Actions	4-74
	4.20.5	Transfers and Consequential Events	4-75
4.21	Loss of	Offsite Power Event Tree Model	4-75
	4.21.1	Event Description	4-75
	4.21.2	Event Tree Model and its Nodes	4-75
	4.21.3	Event Tree Success Criteria and Core Damage Categories	
	4.21.4	Operator Actions	4-79
	4.21.5	Transfers and Consequential Events	4-80
4.22	Main St	team Line Break Downstream of MSIVs Event Tree Model	4-80
	4.22.1	Event Description	4-80
	4.22.2	Event Tree Model and its Nodes	4-81
	4.22.3	Event Tree Success Criteria and Core Damage Categories	4-84
	4.22.4	Operator Actions	4-84
	4.22.5	Transfers and Consequential Events	4-85
4.23	Main St	eam Line Break Upstream of MSIVs Event Tree Model	4-85
	4.23.1	Event Description	4-85
	4.23.2	Event Tree Model and its Nodes	
	4.23.3	Event Tree Success Criteria and Core Damage Categories	
	4.23.4	Operator Actions	4-89
	4.23.5	Transfers and Consequential Events	4-90
4.24	Stuck-O	pen Secondary Side Safety Valve Event Tree Model	4-90
	4.24.1	Event Description	4-90
	4.24.2	Event Tree Model and its Nodes	
	4.24.3	Event Tree Success Criteria and Core Damage Categories	4-94
	4.24.4	Operator Actions	4-94
	4.24.5	Transfers and Consequential Events	4-94
4.25	ATWS	Precursors Without MFW Event Tree Model	4-95
	4.25.1	Event Description	4-95
	4.25.2	Event Tree Model and its Nodes	4-96
	4.25.3	Event Tree Success Criteria and Core Damage Categories	4-101
	4.25.4	Operator Actions	4-101
	4.25.5	Transfers and Consequential Events	4-101
4.26	ATWS	Precursor with SI Event Tree Model	4-101
	4.26.1	Event Description	4-101
	4.26.2	Event Tree Model and its Nodes	4-102
	4.26.3	Event Tree Success Criteria and Core Damage Categories	4-106
	4.26.4	Operator Actions	4-106
	4.26.5	Transfers and Consequential Events	4-106

Section	<u>Title</u> <u>Pa</u>	age
4.27	ATWS Precursor Transients with MFW Event Tree Model4-1	106
	4.27.1 Event Description	106
	4.27.2 Event Tree Model and its Nodes	107
	4.27.3 Event Tree Success Criteria and Core Damage Categories	110
	4.27.4 Operator Actions	111
	4.27.5 Transfers and Consequential Events4-1	111
ATTACHMEN	NT 4A EVENT TREE GUIDELINES	
4A.1	Event Tree Analysis Methodology44	A-1
4A.2	Event Tree Guidelines for Core Damage44	A-3
	4A.2.1 Event Trees	A-3
	4A.2.2 Success Criteria4	A-6
	4A.2.3 Definition of End States	A-7
	4A.2.4 Plant Response Functions	<u>A-9</u>
	4A.2.5 Event Tree Node Notation	-13
	4A.2.6 Consequential Events	-13
	4A.2.7 Transient Template	-14
	4A.2.8 Small LOCA Template4A	-15
ATTACHMEN	NT 4B EVENT TREE PICTURES	B-1
CHAPTER 5	SUPPORT SYSTEMS	
5.1	Introduction	5-1
5.2	Support Systems and Their Interdependencies	5-1
5.3	Front Line Systems and Their Dependencies	5-1
CHAPTER 6	SUCCESS CRITERIA ANALYSIS	
6.1	Introduction	6-1
6.2	Acceptance Criteria and Critical Functions for Success Criteria	6-1
6.3	Event Sequences and Timing, Passive/Active System Interactions	6-3
	6.3.1 General Sequence Success Criteria	6-3
	6.3.2 Timing of Events and Key Operator Actions	6-9
	6.3.3 Passive/Active System Interactions	-15
	6.3.4 Sequence Success Criteria Summary	-18
6.4	Event Tree Top Events Success Criteria	-18
6.5	References	-19
CHAPTER 7	FAULT TREE GUIDELINES	
7.1	Purpose	7-1
7.2	Fault Tree Development	7-1
	7.2.1 Procedural Steps for Fault Tree Preparation	7-1
	7.2.2 Procedural Steps for Fault Tree Construction	7-2

AP1000 Probabilistic Risk Assessment

TABLE OF CONTENTS (Cont.)

1

Section

<u>Title</u>

Page

7.3	Primary	v Events to be Considered in Fault Trees	
	7.3.1	Random Component Failure	7-3
	7.3.2	Outage for Maintenance and Testing	7-5
	7.3.3	Common Cause Failures	7-6
	7.3.4	Human Errors	7-6
	7.3.5	Power and Control Model	7-9
7.4	Data Ba	BSC	7-10
7.5	Fault T	ree Model: Identification Codes	7-10
-	7.5.1	Identification Code for Fault Tree Names	7-10
	7.5.2	Identification Code for Support Systems	7-10
	7.5.3	Identification Code for Primary Event Names	7-11
	7.5.4	Identification Code for Common Cause Failures	7-11
	7.5.5	Identification Code for Undeveloped Events (Modules)	
	7.5.6	Identification Code for Operator Errors	
7.6	Fault T	ree Quantification	7-13
7.7	Referen	ICES	7-14
CHAPTER 8	PASSI	VE CORE COOLING SYSTEM - PASSIVE RESIDUAL	
	HEAT	REMOVAL	
81	System	Function	8-1
82	System	Description	
0.2	8 2 1	Support Systems	8-1
	822	Instrumentation and Control	8-2
	823	Test and Maintenance	8-2
83	Svetem	Operation	8_3
84	Perform	uance During Accident Conditions	R_3
0.4	8 A 1	Plant Shutdown	£_3
	847	I all office of Coolant Accidents	
	843	Passive Residual Heat Removal Heat Exchanger Tube Runture	R_3
85	Initiatin	a Fuente Review	я_Д
0.5	8 5 1	Initiating Events Impacting the PRHR System	8.4
	852	Initiating Events Caused by PRHR System Malfunction	8_4
86	System	Logic Models	8-4
	861	Assumptions and Boundary Conditions	R-5
	862	Fault Tree Models	8-6
	863	Human Interactions	۵-0- ۶_۶
	861	Common Cause Failures	£_K
87	Oziantif	ication and Results	R_A
0.7	Zumini	19441911 U.N. 199419	

AP1000 Probabilistic Risk Assessment

Section		Title	Page 1
CHAPTER 9	PASSI	/E CORE COOLING SYSTEM – CORE MAKEUP TANK	
9.1	System	Description	9-1
	9.1.1	Support Systems	9 -1
	9.1.2	Instrumentation and Control	9-1
	9.1.3	Test and Maintenance Assumptions	9-2
9.2	System	Operation	9-2
9.3	Perform	nance During Accident Conditions	9-3
	9.3.1	Inadvertent Opening of a Steam Generator Relief or Safety Valve	9-3
	9.3.2	Steam Line Break	9-3
	9.3.3	Steam Generator Tube Rupture	9-3
	9.3.4	Reactor Coolant System Heatup Transients	9-4
	9.3.5	Loss-of-Coolant Accidents	9-4
	9.3.6	Loss of Offsite Power	9-4
	9.3.7	Anticipated Transient without Trip	9-4
9.4	Initiatin	g Event Review	
	9.4.1	Initiating Events Impacting the Core Makeup Tank Subsystem	9-5
	9.4.2	Initiating Events Due to Loss of the Core Makeup Tank Subsystem	9-5
9.5	System	Logic Models	9-5
	9.5.1	Assumptions and Boundary Conditions	9-5
	9.5.2	Fault Tree Models	9-7
	9.5.3	Human Interactions	9-7
	9.5.4	Common Cause Failures	9-8
CHAPTER 10	PASSIV	/E CORE COOLING SYSTEM - ACCUMULATOR	
10.1	System	Description	
	10.1.1	Support Systems	10-1
	10.1.2	Instrumentation and Control	10-1
	10.1.3	Test and Maintenance Assumptions	10-1
10.2	System	Operation	10-1
10.3	Perform	nance During Accident Conditions	10-2
	10.3.1	Steam Line Break	
	10.3.2	Loss-of-Coolant Accidents or Non-Loss-of-Coolant Accidents	
		with Automatic Depressurization System	
10.4	Initiatin	g Event Review	
	10.4.1	Initiating Events Impacting the Accumulator Subsystem	10-3
	10.4.2	Initiating Events Due to Loss of the Accumulator Subsystem	10-3
10.5	System	Logic Models	10-3
	10.5.1	Assumptions and Boundary Conditions	10-3
	10.5.2	Fault Tree Models	10-4
	10.5.3	Human Interactions	10-4
	10.5.4	Common Cause Failures	10-4

AP1000 Probabilistic Risk Assessment

TABLE OF CONTENTS (Cont.)

Section	Title	Page
CHAPTER 11	PASSIVE COOLING SYSTEM – AUTOMATIC DEPRESSURIZATION SYSTEM	
11.1	System Function	11-1
11.2	System Description	11-1
	11.2.1 Support Systems	11-1
÷	11.2.2 Instrumentation and Control	11-2
	11.2.3 Test and Maintenance	11-2
11.3	System Operation	11-2
11.4	Performance During Accident Conditions	11-3
	11.4.1 Loss of Coolant Accidents	11-3
4. ¹	11.4.2 Transients	11-3
11.5	Initiating Events Review	11-3
	11.5.1 Initiating Events Impacting the Automatic Depressurization System	11-3
	11.5.2 Initiating Events Caused by the ADS Malfunction	11-4
11.6	System Logic Model	11-4
	11.6.1 Assumptions and Boundary Conditions	11-4
	11.6.2 Fault Tree Models	11-5
	11.6.3 Human Interactions	11-6
+ 1	11.6.4 Common Cause Failures	11-7
11.7	Quantification and Results	11-7
CHAPTER 12	PASSIVE CORE COOLING SYSTEM - IN-CONTAINMENT	
	REFUELING WATER STORAGE TANK	
12.1	System Function	
12.2	System Description	12-1
	12.2.1 Support Systems	12-1
	12.2.2 Instrumentation and Control	12-1
· · · · · ·	12.2.3 Test and Maintenance	12-2
12.3	System Operation	12-2
12.4	Performance During Accident Conditions	
	12.4.1 Transients	12-3
	12.4.2 Loss of Coolant Accidents	12-4
-	12.4.3 In-Vessel Core Damage Mitigation	12-5
	12.4.4 Containment Isolation System Failure	12-5
12.5	Initiating Event	12-5
	12.5.1 Initiating Event Impacting IRWST/Gravity Injection Subsystem	12-5
	12.5.2 Initiating Event due to Loss of IRWST/Gravity Injection Subsystem	12-5
12.6	System Logic Models	12-6
	12.6.1 Assumptions and Boundary Conditions	12-6
	12.6.2 Fault Tree Models	12-8
	12.6.3 Human Interactions	12-8
	12.6.4 Common Cause Failures	12-8
12.7	Quantification and Results	12-9

ix

AP1000 Probabilistic Risk Assessment

Section		Title	<u>Page</u>
CHAPTER 13	PASSI	/E CONTAINMENT COOLING SYSTEM	
13.1	System	Description	13-1
	13.1.1	Support Systems	13-1
	13.1.2	Instrumentation and Control	13-1
	13.1.3	Test and Maintenance Assumptions	13-2
13.2	System	Operation	13-2
13.3	Perform	nance During Accident Conditions	13-2
	13.3.1	Post-Reactor Trip with Loss of All ac Power	13-2
	13.3.2	Automatic Depressurization System Actuation	13-2
	13.3.3	Post-Loss-of-Coolant Accident	13-3
	13.3.4	Post-Main Steam Line Break	13-3
13.4	Initiatin	g Event Review	13-3
	13.4.1	Initiating Events Impacting the Passive Containment Cooling System	13-3
	13.4.2	Initiating Events due to Loss of the Passive Containment Cooling	
		System	13-3
13.5	System	Logic Model	13-3
	13.5.1	Assumptions and Boundary Conditions	13-4
	13.5.2	Fault Tree Model	13-5
	13.5.3	Human Interactions	13-6
	13.5.4	Common Cause Failures	13-6
CHAPTER 14	MAIN A	AND STARTUP FEEDWATER SYSTEM	
14.1	System	Description	14-1
	14.1.1	Support Systems	14-1
	14.1.2	Instrumentation and Control	14-2
	14.1.3	Test and Maintenance	14-2
14.2	System	Operation	14-2
14.3	Perform	ance During Accident Conditions	14-2
14.4	Initiatin	g Event Review	14-4
	14.4.1	Initiating Event Impacting Main and Startup Feedwater/	
		Condensate System	14-4
	14.4.2	Initiating Event due to Loss of Main and Startup Feedwater/	
		Condensate System	14-4
14.5	System	Logic Models	14-4
	14.5.1	Assumptions and Boundary Conditions	14-5
	14.5.2	Fault Tree Models	14-7
	14.5.3	Human Interactions	14-7
	14.5.4	Common Cause Failures	14-7
14.6	Quantifi	ication and Results	14-7

AP1000 Probabilistic Risk Assessment

Section		Title	Page
CHAPTER 15	CHEMI	CAL AND VOLUME CONTROL SYSTEM	
15.1	System I	Description	15-1
	15.1.1	Support Systems	15-1
	15.1.2	Instrumentation and Control Assumptions	
	15.1.3	Test and Maintenance Assumptions	
15.2	System (Operation	
15.3	Perform	ance During Accident Conditions	
15.4	Initiating	z Event Review	
	15.4.1	Initiating Events Impacting the Chemical and Volume Control System.	15-5
	15.4.2	Initiating Events Due to Loss of the Chemical and Volume	
		Control System	15-5
15.5	System I	Logic Models	
	15.5.1	Assumptions and Boundary Conditions	
	15.5.2	Fault Tree Models	
	15.5.3	Human Interactions	
	15.5.4	Common Cause Failures	
CHAPTER 16	CONTA	INMENT HYDROGEN CONTROL SYSTEM	
16.1	System I	Description	16-1
	16.1.1	Support Systems	
	16.1.2	Instrumentation and Control.	
	16.1.3	Test and Maintenance	
16.2	System (Operation	
16.3	Perform	ance During Accident Conditions	
16.4	Initiating	z Event Review	
16.5	System I	.ogic Model	
,	16.5.1	Assumptions and Boundary Conditions	
	16.5.2	Fault Tree Model	16-3
	16.5.3	Human Interactions	16-3
	16.5.4	Common Cause Failures	16-4
CHAPTER 17	NORMA	L RESIDUAL HEAT REMOVAL SYSTEM	
17.1	System I	Description	17-1
	17.1.1	Support Systems	17-1
	17.1.2	Instrumentation and Control.	
	17.1.3	Test and Maintenance Assumptions	17-1
17.2	System (Dperation	17-1
17.3	Performa	ance During Accident Conditions	17-2
17.4	Initiating	g Event Review	17-3
	17.4.1	Initiating Events Impacting the Normal Residual Heat Removal System.	
	17.4.2	Initiating Events Due to Loss of the Normal Residual Heat Removal	
		System	17-4

Section

<u>Title</u>

Page

17.5	System L	ogic Models17-4
	17.5.1	Assumptions and Boundary Conditions
	17.5.2	Fault Tree Models
	17.5.3	Human Interactions17-6
	17.5.4	Common Cause Failures
17.6	Reference	es17-6
CHAPTER 18	COMPON	NENT COOLING WATER SYSTEM
18.1	System D	escription
	18.1.1	Support Systems
	18.1.2	Instrumentation and Control
	18.1.3	Test and Maintenance Assumptions
18.2	System O	peration
18.3	Performat	nce During Accident Conditions18-2
18.4	Initiating	Event Review
	18.4.1	Initiating Events Impacting the Component Cooling Water System
	18.4.2	Initiating Events Due to Loss of the Component Cooling Water System18-3
18.5	System La	ogic Models
	18.5.1	Assumptions and Boundary Conditions
	18.5.2	Fault Tree Models
	18.5.3	Human Interactions
	18.5.4	Common Cause Failures
CHAPTER 19	SERVICE	E WATER SYSTEM
19.1	System D	escription
	19.1.1	Support Systems
	19.1.2	Instrumentation and Control
	19.1.3	Test and Maintenance Assumptions
19.2	System O	peration
1 9.3	Performat	nce During Accident Conditions
19.4	Initiating	Event Review
	19.4.1	Initiating Events Impacting the Service Water System
	19.4.2	Initiating Events Due to Loss of the Service Water System
19.5	System La	ogic Models
	19.5.1	Assumptions and Boundary Conditions
	19.5.2	Fault Tree Models
	19.5.3	Human Interactions
	19.5.4	Common Cause Failures

AP1000 Probabilistic Risk Assessment

Section	Title	<u>Page</u>
CHAPTER 20	CENTRAL CHILLED WATER SYSTEM	
20.1	System Description	
	20.1.1 Support Systems	
	20.1.2 Instrumentation and Control	
	20.1.3 Test and Maintenance Assumptions	
20.2	System Operation	
20.3	Performance During Accident Conditions	
20.4	Initiating Event Review	
	20.4.1 Initiating Events Impacting the Central Chilled Water System	
	20.4.2 Initiating Events Due to Loss of the Central Chilled Water System	
20.5	System Logic Model	
	20.5.1 Assumptions and Boundary Conditions	20-3
	20.5.2 Fault Tree Model	
x	20.5.3 Human Interactions	
	20.5.4 Common Cause Failures	
·		
CHAPTER 21	AC POWER SYSTEM	1
21.1	System Description	
	21.1.1 Support Systems	21-1
	21.1.2 Instrumentation and Control	21-2
	21.1.3 Test and Maintenance Assumptions	21-2
21.2	System Operation	21-2
21.3	Performance During Accident Conditions	21-3
	21.3.1 Automatic Load Shedding	21-3
	21.3.2 Manual Transfer	21-3
	21.3.3 Electric Circuit Protection	21-3
21.4	Initiating Event Review	21-3
	21.4.1 Loss of the Main Generator	21-4
	21.4.2 Loss of Offsite Power	21-4
· .	21.4.3 Loss of 6900-vac and 480-vac Busses	21-4
21.5	System Logic Models	21-4
	21.5.1 Assumptions and Boundary Conditions	21-5
	21.5.2 Fault Tree Models	
· · · ·	21.5.3 Human Interactions	21-8
	21.5.4 Common Cause Failures	21-8
CHAPTER 22	CLASS IE DC AND UNINTERRUPTIBLE POWER SUPPLY SYSTEM	
22.1	System Description	
	22.1.1 Support Systems	
	22.1.2 Instrumentation and Control	
~~~	22.1.3 Test and Maintenance Assumptions	
22.2	System Operation	
22.3	Performance During Accident Conditions	22-2

<ul> <li>22.4 Initiating Event Review</li></ul>	22-2 22-3 22-3 22-3 22-4 22-4 22-4 22-5 23-1 23-1 23-1 23-1 23-1 23-2 23-2
22.4.1       Initiating Events Impacting the Class 1E dc and UPS System         22.4.2       Initiating Events Due to Loss of the Class 1E dc and UPS System         22.5       System Logic Models         22.5.1       Assumptions and Boundary Conditions         22.5.2       Fault Tree Models         22.5.3       Human Interactions         22.5.4       Common Cause Failures         22.6       References         22.6       References         23.1       System Description         23.1       Support Systems	22-3 22-3 22-3 22-4 22-4 22-4 22-5 23-1 23-1 23-1 23-1 23-1 23-2 23-2
<ul> <li>22.4.2 Initiating Events Due to Loss of the Class 1E dc and UPS System</li></ul>	22-3 22-3 22-4 22-4 22-4 22-4 22-5 23-1 23-1 23-1 23-1 23-2 23-2
<ul> <li>22.5 System Logic Models</li></ul>	22-3 22-3 22-4 22-4 22-4 22-5 23-1 23-1 23-1 23-1 23-2 23-2
22.5.1 Assumptions and Boundary Conditions	22-3 22-4 22-4 22-5 23-1 23-1 23-1 23-1 23-1 23-2 23-2
22.5.2       Fault Tree Models         22.5.3       Human Interactions         22.5.4       Common Cause Failures         22.6       References         22.6       References         CHAPTER 23       NON-CLASS 1E DC AND UPS SYSTEM         23.1       System Description         23.1       Support Systems	.22-4 .22-4 .22-5 .23-1 .23-1 .23-1 .23-1 .23-2 .23-2
22.5.3 Human Interactions	.22-4 .22-4 22-5 23-1 23-1 23-1 23-1 23-2 23-2
22.5.4 Common Cause Failures 22.6 References CHAPTER 23 NON-CLASS 1E DC AND UPS SYSTEM 23.1 System Description	22-4 22-5 23-1 23-1 23-1 23-1 23-2 23-2
22.6 References CHAPTER 23 NON-CLASS 1E DC AND UPS SYSTEM 23.1 System Description	22-5 23-1 23-1 23-1 23-1 23-2
CHAPTER 23 NON-CLASS 1E DC AND UPS SYSTEM 23.1 System Description	23-1 23-1 23-1 23-1 23-2
23.1 System Description	23-1 23-1 23-1 23-1 23-2
23.1.1 Support Systems	23-1 23-1 23-1 23-2
201111 WWWVILD JUWIII	23-1 23-1 23-2
23.1.2 Instrumentation and Control	23-1
23.1.3 Test and Maintenance Assumptions	23-2
23.2 System Operation	12.0
23.3 Performance During Accident Conditions	23-2
23.4 Initiating Event Review	23-2
23.4.1 Initiating Events Impacting the Non-Class 1E dc and UPS System	.23-2
23.4.2 Initiating Events Due to Loss of the Non-Class 1E dc and UPS	
Power System	23-3
23.5 System Logic Models	23-3
23.5.1 Assumptions and Boundary Conditions	.23-3
23.5.2 Fault Tree Models	.23-4
23.5.3 Human Interactions	.23-5
23.5.4 Common Cause Failures	.23-5
23.6 References	23-5
CHAPTER 24 CONTAINMENT ISOLATION	
24.1 System Description	24-1
24.1.1 Support Systems	24-1
24.1.2 Instrumentation and Control	24-1
24.1.3 Test and Maintenance Assumptions	24-2
24.2 System Operation	24-2
24.3 Performance During Accident Conditions	24-2
24.4 Initiating Event Review	
24.4.1 Initiating Events Impacting Containment Isolation	.24-2
24.4.2 Initiating Events Due to Loss of the Containment Isolation System	
24.5 System Logic Models	
24.5.1 Assumptions and Boundary Conditions	.24-4
24.5.2 Fault Tree Models	.24-5
24.5.3 Human Interactions	.24-6
2454 Common Cause Failures	24-6
24.6 References	24-6

**AP1000 Probabilistic Risk Assessment** 

#### TABLE OF CONTENTS (Cont.)

ξŤ.,

#### Section **Title** Page CHAPTER 25 COMPRESSED AND INSTRUMENT AIR SYSTEM 25.1 25.1.1 25.1.2 25.1.3 25.2 25.3 Performance During Accident Conditions......25-3 25.4 25.4.1 25.4.2 25.5 25.5.1 25.5.2 25.5.3 25.5.4 CHAPTER 26 PROTECTION AND SAFETY MONITORING SYSTEM 26.1 26.1.1 26.1.2 26.1.3 26.2 26.3 26.3.1 26.3.2 26.4 26.4.1 26.4.2 26.4.3 26.4.4 26.5 26.5.1 26.5.2 26.5.3 26.5.4 26.5.5 26.6 CHAPTER 27 DIVERSE ACTUATION SYSTEM 27.1 27.1.1 27.1.2 27.1.3

Section	Title	<u>Page</u>
27.2	Analysis of System Operation	27-2
27.3	Performance During Accident Conditions	27-6
27.4	Initiating Event Review	27-6
	27.4.1 Initiating Events Impacting the Diverse Actuation System	27-6
	27.4.2 Initiating Events Due to Loss of the Diverse Actuation System	27-6
27.5	System Logic Model	27-6
	27.5.1 Assumptions and Boundary Conditions	27-7
	27.5.2 Fault Tree Model	27-7
	27.5.3 Human Interactions	27-7
	27.5.4 Common Cause Failures	27-8
CHAPTER 28	PLANT CONTROL SYSTEM	
28.1	System Analysis Description	28-1
	28.1.1 Analysis of Support Systems	28-3
	28.1.2 Analysis of Instrumentation	28-4
	28.1.3 Test and Maintenance Assumptions	28-4
28.2	Performance During Accident Conditions	28-6
28.3	Initiating Event Review	28-6
	28.3.1 Initiating Events Impacting the Plant Control System	28-6
	28.3.2 Initiating Event due to Loss of the Plant Control System	28-6
28.4	System Logic Model Development	28-7
	28.4.1 Assumptions and Boundary Conditions	28-7
	28.4.2 Fault Tree Models	28-9
	28.4.3 Description of I&C Subtree Development	28-10
	28.4.4 Human Interactions	28-16
28.5	Discussion of Methodology	28-17
	28.5.1 Fault Tree Analysis	28-17
	28.5.2 Unavailability	28-17
	28.5.3 Common Cause Failures	28-17
	28.5.4 Data Manipulation	28-18
CHAPTER 29	COMMON-CAUSE ANALYSIS	
29.1	Introduction	29-1
29.2	Dependent Failures	29-1
29.3	Common-Cause Analysis	29-4
	29.3.1 Assumptions	29-4
	29.3.2 Analysis of Potential Common-Cause Failures within the Systems	29-6
	29.3.3 Analysis of Potential Common-Cause Failures among Several Systems	29-6
29.4	Calculations For Component Groups	29-6
	29.4.1 DC Batteries	29-7
	29.4.2 Reactor Trip Breakers	29-8
	29.4.3 Automatic Depressurization System Explosive Valves	29-9

AP1000 Probabilistic Risk Assessment

## TABLE OF CONTENTS (Cont.)

Section		Title	Page
	29.4.4	Air-Operated Valves in Core Makeup Tanks	29-10
	29.4.5	Automatic Depressurization System Motor-Operated Valves	29-11
	29.4.6	Common-Cause Failure for IRWST Valves	
29.5	Results.		
29.6	Referen	ces	29-17
ATTACHME	NT 29A C	COMMON-CAUSE ANALYSIS GUIDELINES	29A-1
29A.1	Introduc	tion	29A-1
29A.2	Types of	f Dependencies	29A-1
29A.3	Commo	n Cause Failures Definition	29A-2
29A.4	Method	ology	
29A.5	Commo	n Cause Failures Calculation Procedure	
	29A.5.1	Procedure for Treatment of Common Cause Failures Within a Syst	em29A-5
	29A.5.2	Procedure for Treatment of Common Cause Failures Among	
	•	More Systems	29A-7
29A.6	Commo	n Cause Failure Numerical Evaluation	29A-8
	29A.6.1	Evaluation through Beta Factor Method	29A-8
	29A.6.2	Evaluation through Multiple-Greek Letter (MGL) Method	29A-8
29A.7	Referen	ces	29A-10
CHAPTER 3		N RELIABILITY ANALYSIS	
30.1	Introduc	tion	
30.2	Summar	ry of Results	
30.3	Method	logv	
30.4	Maior A	Assumptions	
30.5	Types of	f Human Interactions	
	30.5.1	Ouantification Model	
30.6	Ouantifi	ication	
	30.6.1	ZON-MAN01 (Start the Onsite Standby Diesel Generator)	
	30.6.2	LPM-MAN01 (Recognize the Need for Reactor Coolant System	
		Depressurization)	
	30.6.3	LPM-MAN02 (Recognize the Need for Reactor Coolant System	
		Depressurization)	
	30.6.4	LPM-MAN05 (Recognize the Need for Reactor Coolant System	
		Depressurization)	
	30.6.5	LPM-REC01 (Recognize the Need for Reactor Coolant System	
		Depressurization)	
	30.6.6	ADN-MAN01 (Actuate the Automatic Depressurization System)	
	30.6.7	ADN-REC01 (Actuate the Automatic Depressurization System)	
	30.6.8	CCB-MAN01 (Start the Standby Component Cooling Water Pump	)30-19
	30.6.9	CCN-MAN02 (Inadvertent Misalignment of Heat Exchanger)	
	30.6.10	CIB-MAN00 (Diagnose Steam Generator Tube Rupture)	
	30.6.11	DUMP-MAN01 (Operate Steam Dump Valves)	

## Section

## <u>Title</u>

30.6.12	CIC-MAN01 (Isolate Containment)
30.6.13	ADS-MANTEST (Recognize the Need and Reclose ADS Stage MOV)
30.6.14	CAN-MANOS (Locally Close Manual Valve CAS-V204 to Isolate
	Containment)
30.6.15	CIT-MAN0S (Isolate Containment)
30.6.16	CMN-MAN01 (Actuate Core Makeup Tank)
30.6.17	CMN-REC01 (Actuate the Core Makeup Tanks)
30.6.18	CVN-MAN00 (Align Chemical and Volume Control System)
30.6.19	CVN-MAN02 (Align Chemical and Volume Control System)
30.6.20	CVN-MAN03 (Start Chemical and Volume Control System Pump B)30-30
30.6.21	ADF-MAN01 (Depressurize the RCS to Refill the Pressurizer)
30.6.22	SGHL-MAN01 (Isolate Feedwater to Failed Steam Generator)
30.6.23	CAN-MAN01 (Start Standby Compressor)
30.6.24	REN-MAN02 (Initiate Recirculation)
30.6.25	REN-MAN03 (Initiate Recirculation)
30.6.26	IWN-MAN00 (Operate In-Containment Refueling Water Storage
	Tank Motor-Operated Valves)
30.6.27	RHN-MAN01 (Align Normal Residual Heat Removal System)
30.6.28	RHN-MANDIV (Align Normal Residual Heat Removal System)
30.6.29	RHN-MAN02/RHN-MAN03 (Align Normal Residual Heat
	Removal System)
30.6.30	PCN-MAN01 (Actuate Passive Containment Cooling System)
30.6.31	HPM-MAN01 (Diagnose Need for High Pressure Heat Removal)
30.6.32	PRN-MAN01 (Align Passive Residual Heat Removal System)
30.6.33	PRN-MAN02 (Align Passive Residual Heat Removal System)
30.6.34	PRN-MAN03 (Align Passive Residual Heat Removal System)
30.6.35	PRI-MAN01 (Isolate Failed Passive Residual Heat Removal
	Heat Exchanger)
30.6.36	REN-MAN04 (Initiate Recirculation)
30.6.37	RCN-MAN01 (Trip Reactor Coolant Pumps)
30.6.38	ATW-MAN01 (Manually Insert Control Rods)
30.6.39	ATW-MAN03 (Manually Trip the Reactor through Protection
	and Safety Monitoring System in One Minute)
30.6.40	ATW-MAN04 (Manually Trip the Reactor through Diverse
	Actuation System in One Minute)
30.6.41	ATW-MAN05 (Manually Trip the Reactor through Protection
	and Safety Monitoring System in Seven Minutes)
30.6.42	ATW-MAN06 (Manually Trip the Reactor through Diverse
	Actuation System In Seven Minutes)
30.6.43	RTN-MAN01 (Perform Controlled Reactor Shutdown)
30.6.44	FWN-MAN02 (Start the Startup Feedwater Pumps)
30.6.45	FWN-MAN03 (Start the Startup Feedwater Pumps)
30.6.46	REG-MAN00 (Regulate Startup Feedwater)

AP1000 Probabilistic Risk Assessment

## TABLE OF CONTENTS (Cont.)

f

Ξž

#### **Section**

## <u>Title</u>

-----

		30.6.47	CIA-MAN01 (Isolate Failed Steam Generator)	30-55
Υ.		30.6.48	CIB-MAN01 (Close Main Steam Isolation Valve)	30-56
		30.6.49	SGA-MAN01 (Inadvertent Opening of Steam Generator	
			Power-Operated Relief Valve)	30-57
		30.6.50	SWN-MAN01N (Open Air-Operated Valve on Motor Strainer Line)	30-58
		30.6.51	SWB-MAN02 (Start Standby Service Water Pump)	30-58
		30.6.52	SWB-MAN02N (Start Standby Service Water Pump)	30-59
		30.6.53	TCB-MAN01 (Start Standby Turbine Closed Cooling Water Pump)	30-60
		30.6.54	TCB-MAN02 (Locally Align Standby Turbine Closed Cooling	
		-	Water Heat Exchanger)	30-61
	-	30.6.55	VLN-MAN01 (Actuate Hydrogen Control System)	30-62
		30.6.56	VWN-MAN01 (Align Standby Chiller)	30-63
		30.6.57	ATW-MAN11 (Recognize the Need for Manual Boration)	30-64
		30.6.58	REC-MANDAS (Diagnosis of an Event Through DAS Signals	
			or Perform an Activity by Operating DAS Controls)	30-65
		30.6.59	RHN-MAN04 (Isolate the RNS During Shutdown Conditions)	30-65
		30.6.60	RHN-MAN05 (Initiate Gravity Injection from IRWST via	
			RNS Suction Line)	30-66
		30.6.61	RHN-MAN06 (Recognize the Need and Throttle RNS Valve V011)	
		30.6.62	RCS-MANODS1 (Close AOVs CVS-V045 or -V047, Given	
			Failure of HL Level Instruments)	30-68
		30.6.63	RCS-MANODS2 (Close AOVs CVS-V045 or -V047, Given	
			Failure of Valves to Close Automatically)	30-70
		30.6.64	SWN-MAN03 (Recognize the Need and Locally Refill Service	
-			Water Basin)	30-70
	30.7	Conditio	nal Probability Evaluation	
	2017	30.7.1	Application	
		30.7.2	Process Used to Determine Dependencies	
		30.7.3	Calculation of Dependent Human Error Probabilities	
	30.8	Reference	ves	30-74
ATT	ACHME	NT 30A H	UMAN RELIABILITY ANALYSIS GUIDELINES	30A-1
	30A.1	Introduc	tion	30A-1
	30A.2	Schedule	e for Human Reliability Analysis	30A-1
	30A.3	Methodo	ology	30A-1
	30A.4	Respons	ibility	
	30A.5	Procedu	re for Human Interaction Evaluation	30A-2
		30A.5.1	Type A	30A-3
		30A.5.2	Type B	30A-3
		30A.5.3	Type C	30A-4
		30A.5.4	Commission Errors That Have Detrimental Effects	30A-6
		- VI 2101-1		

Section		Title	Page
30A.6	Procedui	re for Human Error Probabilities Quantification	30A-8
	30A.6.1	Basic Assumptions for Human Interaction Analysis	30A-8
30A.7	Reference	ces	30A-9
CHAPTER 31	OTHER	EVENT TREE NODE PROBABILITIES	
31.1	Introduct	tion	
31.2	Identific	ation of Cases Requiring Calculations	
	31.2.1	BL - Main Steam Line Break Occurs Inside Containment	
	31.2.2	CNB - Containment Isolation Fails Due to Reactor Coolant System	
		Vessel Rupture	31-1
	31.2.3	MGSET – Control Rods Motor-Generator Set Trip	
	31.2.4	NSGTR - Consequential Steam Generator Tube Rupture	
	31.2.5	PO - Pre-existing Containment Opening Allowing Bypass	31-2
	31.2.6	PRES – Reactor Coolant System Pressure Relief via Pressurizer	
		Safety Valves	
	31.2.7	PRSOV – Pressurizer Safety Valves Reclose	
	31.2.8	R05 - Offsite Power Recovered within One-Half Hour	
	31.2.9	SLSOV – Main Steam Line Relief Valves Reclose	31-2
31.3	Case-Spo	ecific Calculations	31-3
	31.3.1	BL - Main Steam Line Break Occurs Inside Containment	31-3
	31.3.2	CNB - Containment Isolation Fails Due to RCS Vessel Rupture	31-3
	31.3.3	MGSET – Control Rods Motor-Generator Set Trip	
	31.3.4	PO – Pre-existing Containment Opening Allowing Bypass	
	31.3.5	PRES – Reactor Coolant System Pressure Relief via Pressurizer	
		Safety Valves	
	31.3.6	PRSOV – Pressurizer Safety Valves Reclose	
	31.3.7	R05 - Offsite Power Recovered within One-Half Hour	
	31.3.8	SGTR1 – Single Consequential Steam Generator Tube Rupture	
	31.3.9	SGTR – Multiple Consequential Steam Generator Tube Rupture	
	31.3.10	SLSOV – Main Steam Line Relief and Safety Valves Reclose	
	31.3.11	SLSOV1 – Main Steam Line Relief and Safety Valves Reclose	
	31.3.12	SLSOV2 – Main Steam Line Safety Valves Reclose	
	31.3.13	SLSOV3 - Main Steamline Relief and Safety Valves Reclose, SGT	R31-10
31.4	Reference	res	31-11
CHAPTER 32	ПАТА А	NALVSIS AND MASTER DATA BANK	
32.1	Data An	alveis	32-1
54.1	32.1.1	Random Component Failure Data	37-1
	32.1.1	Test and Maintenance Unavailability	
	32.1.2	Common Cause Failure Data	37_7
	32.1.3	Human Reliability Data	
	J4.1.4 27 1 5	Initiating Event Frequency Data	
	32.1.3	initiating Event Frequency Data	3 <i>L</i> -L

AP1000 Probabilistic Risk Assessment

## TABLE OF CONTENTS (Cont.)

ŧ

## **Section**

## <u>Title</u>

32.2	Master Data	a Bank	32-2
	32.2.1 In	nitiating Event Frequencies	32-3
	32.2.2 R	Random Component Failures	32-3
	32.2.3 C	Common Cause Failure Probabilities	32-3
	32.2.4 H	Iuman Error Probabilities	32-3
-	32.2.5 S	system-Specific Calculations	32-3
	32.2.6 C	Other Event Tree Node Probabilities	32-3
	32.2.7 N	faster Data Bank	32-4
32.3	References	****	32-4
-		en e	
CHAPTER 33	FAULT TR	REE AND CORE DAMAGE QUANTIFICATION	
33.1	Introduction	n	33-1
33.2	Fault Tree I	Model Quantification	33-1
33.3	Event Tree	Model Calculation	33-1
	33.3.1 C	Core Damage Quantification Method	33-2
	33.3.2 C	Core Damage Quantification Input Files and Data	33-4
and the second second	33.3.3 E	Definition of Consequential Event Categories	33-4
	33.3.4 I	ncorporate Operator Action Dependencies Into Plant Core Damage	
	. <b>F</b>	requency Quantification	33-6
	33.3.5 C	Core Damage Frequency Results	33-6
:			
CHAPTER 34	SEVERE A	CCIDENT PHENOMENA TREATMENT	
34.1	Introduction	n	34-1
34.2	Treatment of	of Physical Processes	34-1
"·····	34.2.1 I	n-Vessel Retention of Molten Core Debris	34-1
	34.2.2 F	Juel-Coolant Interaction (Steam Explosions)	34-2
	34.2.3 H	Iydrogen Combustion and Detonation	34-4
	34.2.4 H	Ligh-Pressure Melt Ejection	34-5
	34.2.5 C	Core Debris Coolability	34-5
	34.2.6 C	Containment Pressurization from Decay Heat	34-6
·	34.2.7 E	levated Temperature (Equipment Survivability)	34-7
1.1.1.1	34.2.8 S	ummary	34-7
34.3	Analysis M	ethod	34-7
34.4	Severe Acc	ident Analyses	34-8
	34.4.1 A	Accident Class 3BE – Intact Containment	34-8
·	34.4.2 A	Accident Class 3BE – Failed Containment	34-10
	34.4.3 A	Accident Class 3BL – Intact Containment	34-11
	34.4.4 A	Accident Class 3BR – Intact Containment	34-12
	34.4.5 A	Accident Class 3C – Intact Containment	34-13
	34.4.6 A	Accident Class 3C – Failed Containment.	34-14
	34.4.7 A	Accident Class 3D – Intact Containment	34-14
	34.4.8 A	Accident Class 3D – Failed Containment	
	54.4.0 E		

## Section

## <u>Title</u>

#### <u>Page</u>

	34.4.9	Accident Class 6E – Bypass Containment	
	34.4.10	Accident Class 6L – Bypass Containment	34-17
	34.4.11	Accident Class 1AP	34-17
	34.4.12	Accident Class 1A	
	34.4.13	Intermediate and Late Containment Failure Cases	
34.5	Insights a	and Conclusions	
34.6	Referenc	es	
CHAPTER 35	CONTA	INMENT EVENT TREE ANALYSIS	
35.1	Introduct	ion	35-1
35.2	Containn	nent Event Tree – General Discussion	
35.3	Event Tr	ee Construction	
35.4	Level 1/I	Level 2 Interface	35-3
35.5	Containn	nent Event Tree Top Events	35-3
	35.5.1	Severe Accident Phenomena Considerations	35-3
	35.5.2	Operator Action and Systems Top-Event Considerations	35-5
35.6	Release (	Category Definitions	35-7
	35.6.1	Release Category BP - Containment Bypass	35-8
	35.6.2	Release Category CI - Containment Isolation Failure	35-9
	35.6.3	Release Category CFE - Early Containment Failure	35-9
	35.6.4	Release Category CFI - Intermediate Containment Failure	35-9
	35.6.5	Release Category CFL - Late Containment Failure	35-9
	35.6.6	Release Category CFV - Containment Venting	35-10
	35.6.7	Release Category IC - Intact Containment	35-10
35.7	Top-Ever	nt Nodal Questions and Success Criteria	35-10
	35.7.1	Top Event DP - RCS Depressurization After Core Uncovery	35-11
	35.7.2	Top Event IS – Containment Isolation	35-12
	35.7.3	Top Event IR – Reactor Cavity Flooding	35-13
	35.7.4	Top Event RFL – Reflooding of a Degraded Core	35-14
	35.7.5	Top Event VF - Debris Relocation to the Reactor Cavity	35-14
	35.7.6	Top Event PC - Passive Containment Cooling	35-15
	35.7.7	Top Event VNT – Containment Venting	
	35.7.8	Top Event IF - Intermediate Containment Failure	35-16
	35.7.9	Top Event IG – Hydrogen Control System	
	35.7.10	Top Event DF – Diffusion Flame	35-17
	35.7.11	Top Event DTE – Early Hydrogen Detonation	35-18
	35.7.12	Top Event DFG – Hydrogen Deflagration	35-19
	35.7.13	Top Event DTI – Intermediate Hydrogen Detonation	
35.8	Summary	¥	35-20
35.9	Referenc	es	35-20

\$

. .

#### **TABLE OF CONTENTS (Cont.)**

#### Section **Title** Page CHAPTER 36 REACTOR COOLANT SYSTEM DEPRESSURIZATION 36.1 36.2 36.3 36.4 36.4.1 36.4.2 36.4.3 36.4.4 36.4.5 36.6 **CHAPTER 37 CONTAINMENT ISOLATION** 37.1 37.2 37.3 37.3.1 37.3.2 37.3.3 37.3.4 37.3.5 37.3.6 37.3.7 37.3.8 37.4 CHAPTER 38 REACTOR VESSEL REFLOODING 38.1 38.2 38.3 38.3.1 38.3.2 38.3.3 38.3.4 38.3.5 38.3.6 38.3.7 38.3.8

38.4

AP1000 Probabilistic Risk Assessment

#### TABLE OF CONTENTS (Cont.)

## Section

## <u>Title</u>

#### Page 1

CHAPTER 39	IN-VESSEL RETENTION OF MOLTEN CORE DEBRIS	
39.1	Introduction	
39.2	Background on the Application of IVR to the Passive Plant	
39.3	Application of IVR to the AP1000 Passive Plant	
39.4	Reactor Vessel Failure Criteria.	
39.5	In-Vessel Melt Progression and Relocation	
39.6	Application of Heat Transfer Correlations to the AP1000	
	39.6.1 Debris Pool to Vessel Wall Heat Transfer	
	39.6.2 Vessel Wall to External Cooling Water Heat Transfer	
39.7	Quantification of Margin to Failure of the Reactor Vessel Wall	
	39.7.1 Zirconium Oxidation Fraction Input Probability Distribution	
	39.7.2 Steel Mass Input Probability Distribution	
	39.7.3 Final Bounding State Timing Input Probability Distribution	39-10
	39.7.4 Critical Heat Flux	
	39.7.5 Results and Conclusions of Heat Flux Quantification	
39.8	Reactor Coolant System Depressurization	
39.9	Reactor Cavity Flooding (Node IR)	
	39.9.1 Node IR Success Criteria	
	39.9.2 Cavity Flooding Scenario Dependencies	
39.10	Reactor Vessel Insulation Design Concept	
	39.10.1 Description of Reactor Vessel Insulation and Venting	
	39.10.2 Design Analysis of the Insulation and Support Frame	
39.11	Reactor Vessel External Surface Treatment	
39.12	Reactor Vessel Failure (Node VF)	
	39.12.1 Node VF Success Criteria	
39.13	Summary	
39.14	References	
ATTACHMEN	T 39A AP1000 IN-VESSEL CORE MELTING RELOCATION	
39A.1	Introduction	
39A.2	Phenomenological Issues	
••••	39A.2.1 Focusing Effect	<b>39A-</b> 1
	39A.2.2 Material Interaction	
39A.3	AP1000 Reactor Vessel Lower Internals Geometry	
39A.4	Modeling of Core and Reactor Vessel Lower Internals Heatun	
•••••	39A.4.1 MAAP4 Model	
	39A.4.2 Finite Difference Modeling	
	39A.4.3 Relocation of In-Core Debris to Lower Plenum	39A-3
39A-5	Base Core Damage Sequence for In-Vessel Retention	
	39A.5.1 Core Heatup and Formation of In-Core Molten Debris Lavers	
	39A.5.2 Melting of Core Shroud and Core Barrel	
	39A.5.3 Initial Relocation of Molten Core Debris to Lower Plenum	
	39A.5.4 Lower Plenum Debris Pool Formation	
		····

^a AP1000 Probabilistic Risk Assessment

## TABLE OF CONTENTS (Cont.)

**3**5

Section	<u>Title</u>	Page
39A.6	Potential for Debris Interaction	
39A.7	Conclusions from Analysis of AP1000 In-Vessel Core Melting and	
	Relocation	
39A.8	References	39A-13
CHAPTER 40	PASSIVE CONTAINMENT COOLING, LONG TERM CONTAINMEN	T
	INTEGRITY AND CONTAINMENT VENTING	-
40.1	Passive Containment Cooling System	40-1
40.2	Passive Containment Cooling System Indee PC	40-2
10.2	40.2.1 Node PC Success Criteria	40-2
	40.2.2 Operator Action	40-2
	40.2.2 Node PC Failure Probability	40_3
40 3	Containment Venting - Node VT	40-3
40.5	40.3.1 Venting Success Criteria	40-3
	40.3.2 Venting Foilure Prohability	40_4
40.4	40.5.2 Vending Failure Flobability	ν Ωλ
40.4	A0 A 1 Success Criterion	υ+- 
	40.4.1 Success Chieffon	
40.5	40.4.2 Intermediate Containment Failure Probability	40-J
40.5	Kelerences	40-5
CUADTED 41	UVDBOCEN MUTIC AND COMPLICATION ANAL VOIC	
41 1	HIDROGEN MIXING AND COMBOSTION ANALISIS	<i>A</i> 1 1
41.1	Controlling Phonemana	
41.2	Controlling Phenomena	
41.5	Major Assumptions and Phenomenological Uncertainties	
	41.3.1 Hydrogen Generation	
	41.3.2 Containment Pressure	
	41.3.3 Flammability Limits	
	41.3.4 Detonation Limits and Loads	
· · · ·	41.3.5 Igniter System	
	41.3.6 Other Ignition Sources	41-5
	41.3.7 Severe Accident Management Actions	41-5
41.4	Hydrogen Generation and Mixing	41-5
	41.4.1 Accident Class 3BE – Failure of Gravity Injection	41-6
· · · ·	41.4.2 Accident Class 3BL – Failure of Gravity Recirculation	41-9
	41.4.3 Accident Class 3BR – Large LOCA with Accumulator Failure.	41-10
·	41.4.4 Accident Class 3C	41-11
•	41.4.5 Accident Classes 3D and 1D	41-12
	41.4.6 Accident Class 1AP	41-12
e e e e e e e e	41.4.7 Accident Class 1A	41-13
	41.4.8 Accident Class 3A	41-13
· · · · · · · · · · · · · · · · · · ·	41.4.9 Accident Class 6	41-13
	41.4.10 Overall Mixing Insights	41-14
		-

## Section

## <u>Title</u>

#### Page

41.5	Hydroge	n Burning at Igniters	
41.6	Early Hydrogen Combustion41		
	41.6.1	Hydrogen Generation Rates	
	41.6.2	Hydrogen Release Locations	41-17
	41.6.3	Early Hydrogen Combustion Ignition Sources	41-18
41.7	Diffusion	n Flame Analysis – CET Node DF	41-18
	41.7.1	AP1000 Diffusion Flame Mitigation Strategy	
	41.7.2	Node DF Containment Failure Probability Assignment	
41.8	Early Hy	drogen Detonation - Containment Event Tree Node DTE	
	41.8.1	Containment Success Criteria at Node DTE	41-21
	41.8.2	Early Hydrogen Detonation Decomposition Event Tree	41-22
41.9	Deflagra	tion in Time Frame 3	
	41.9.1	Containment Success Criterion at Node DFL	41-23
	41.9.2	AICC Peak Pressure	41-24
	41.9.3	Conditional Containment Failure Probability from Deflagration	
41.10	Detonatio	on in Intermediate Time Frame	
	41.10.1	Containment Success Criterion at Node DTI	
	41.10.2	Mixing and Stratification	41-29
	41.10.3	Quantification of DTI Failure Probabilities	
41.11	Safety M	argin Basis Containment Performance Requirement	41-30
41.12	Summary	y	41-31
41.13	Reference	es	41-31
ATTACHMEN	T41A A	P1000 SPECIFIC MAAP4.04 ANALYSES	41A-1
			(1) 1
ATTACHMEN	141 <b>B</b> A	NALISIS OF HIDROGEN BURNING AT IGNITERS	41 <b>B</b> -1
CHAPTER 42	CONDI	TONAL CONTAINMENT FAILURE PROBABILITY DISTRIBU	ITION
42.1	Introduct	ion	
42.2	Probabili	istic Model	
42.3	Containn	nent Failure Characteristics	
	42.3.1	Median Values for Containment Failure	
	42.3.2	Uncertainties in Containment Failure	
42.4	Containn	nent Failure Predictions	
	42.4.1	Containment Cylindrical Shell	
	42.4.2	Ellipsoidal Upper Head	
	42.4.3	Equipment Hatches	
	42.4.4	Personnel Airlock	
42.5	Overall F	Failure Distribution	
42.6	Summary	y and Conclusions	
42.7	References		

AP1000 Probabilistic Risk Assessment

## TABLE OF CONTENTS (Cont.)

£.

i

1

#### Section

## <u>Title</u>

<b>CHAPTER 43</b>	RELEASE FREQUENCY QUANTIFICATION	
43.1	Introduction	43-1
43.2	Plant Damage State Frequency Calculations	43-2
43.3	Containment Event Tree Node Frequencies	43-2
•	43.3.1 CET Nodes	43-2
	43.3.2 CET Node Probabilities From Boolean Expressions	43-3
	43.3.3 Probabilities for Hydrogen-Related CET Nodes	43-6
	43.3.4 Other CET Node Probabilities	43-6
43.4	Containment Event Tree Quantification	43-7
	43.4.1 Containment Event Tree	43-7
,	43.4.2 Dominant CET Sequences	43-7
. :	43.4.3 LRF Cutsets for Dominant Sequences	43-7
43.5	Summary of Results	43-7
43.6	Importance and Sensitivity Analyses	43-8
• • • •	43.6.1 CET Event Node Importance Analysis	43-8
	43.6.2 No Credit Taken for DP Node for PDS-6	43-8
· · · · · · ·	43.6.3 Lesser Reliability for Containment Isolation	43-8
· · · · · · · · · · · · · · · · · · ·	43.6.4 Lesser Reliability for Hydrogen Igniters	43-8
	43.6.5 Lesser Reliability for PCS	43-9
	43.6.6 No Credit for Depressurization for High Pressure PDS	
1	43.6.7 Set PDS-3C Vessel Failure Probability to 1.0	43-9
	43.6.8 Set 3D and 1AP Diffusion Flame and Detonation Failure	
	Probability to 1.0	43-9
43.7	Other Importance and Sensitivity Analyses	43-9
	43.7.1 Initiating Event Importances	43-9
	43.7.2 Sensitivity to Standby Systems	
· ·	43.7.3 Sensitivity to Standby Systems With Credit for Manual DAS	43-10
43.8	Conclusions and Insights	43-10
ATTACHMEN	T 43A PDS CALCULATIONS	43A-1
ATTACHMEN	T 43B DP NODE PROBABILITY FOR PDS	43B-1
ATTACHMEN	T 43C EVALUATION OF OPERATOR ACTIONS	43C-1
ATTACHMEN	T 43D EFFECT OF "PRE-EXISTING CONTAINMENT OPENING" ON I	_RF43D-1
ATTACHMEN	T 43E EFFECT OF CONTAINMENT AIR-COOLING FAILURE	42E 1
:	UN FLANT KIJK	

ľ

AP1000 Probabilistic Risk Assessment

Section	Title	Page
CHAPTER 44	MAAP4 CODE DESCRIPTION AND AP1000 MODELING	
44.0	MAAP Background	
44.1	MAAP4	
44.2	The AP1000 MAAP4 Modeling	
44.3	Benchmarking	
44.4	Summary and Conclusions	
44.5	References	44-7
CHAPTER 45	FISSION-PRODUCT SOURCE TERMS	
45.1	Summary of AP1000 Release Categories	
45.2	Release Category Source Terms	45-2
	45.2.1 Release Category IC	45-2
	45.2.2 Release Category BP	
	45.2.3 Release Category CI	
	45.2.4 Release Category CFE	45-2
	45.2.5 Release Category CFI	
	45.2.6 Release Category CFL	
	45.2.7 Release Category CFV	
45.3	Direct-Release Sensitivity Case	45-4
45.4	Summary	45-4
45.5	References	45-4
CHAPTERS 46	THROUGH 48 NOT USED	
CHAPTER 49	OFFSITE DOSE RISK QUANTIFICATION	10.1
49.1	Introduction	
49.2	Conformance with Regulatory Requirements	
49.3	Assumptions	
49.4	Methodology.	
49.5	Dose Evaluation Results and Discussion	
49.6	Quantification of Site Risk	
49.7	Risk Quantification Results	
49.8	References	
CHAPTER 50	IMPORTANCE AND SENSITIVITY ANALYSES	
50.1	Introduction	
50.2	Importance Analyses for Core Damage	
	50.2.1 Initiating Event Importances	
	50.2.2 Accident Sequence Importances	
	50.2.3 End State Importances	
	50.2.4 Common Cause Failure Importances	
	50.2.5 Human Error Importances	
	50.2.6 Component Importances	

Section	Title	Page
50.3	System Importances for Core Damage	
50.4	Human Error Sensitivity Analyses	50-8
	50.4.1 Set HEPs to 1.0 (Failure) in Core Damage Output File	50-9
	50.4.2 Set HEPs to 0.0 (Success) in Core Damage Output File	50-10
	50.4.3 Set HEPs to 0.1 in Core Damage Output File	50-10
50.5	Other Sensitivity Analyses for Core Damage	50-10
·	50.5.1 Impact of Passive System Check Valves on Core Damage Frequency	50-10
	50.5.2 Sensitivity to Squib Valve Failure Probability	50-11
	50.5.3 Sensitivity to Circuit Breaker Failure Probability	50-11
	50.5.4 Sensitivity to Standby Systems	50-12
	50.5.5 Sensitivity to Standby Systems; Manual DAS Credited	50-14
50.6	Results	50-15
CHAPTER SI	UNCERTAINTY ANALYSIS	<b>F1</b> 1
51.1		I-IC
51.2	Input Data/Error Factors	
51.3	Input Files	
51.4	Output Files	
51.5	Sensitivity Analyses	
	51.5.1 Sensitivity to Simulation Parameters	
1	51.5.2 Sensitivity to Key Basic Events	
	51.5.3 Sensitivity to Operator Actions	51-4
51.6	Summary of Results	51-6
51.7	References	51-8
ATTACHMEN	T 51A ASSIGNMENT OF ERROR FACTORS TO BASIC	
	EVENT PROBABILITIES	51A-1
ATTACHMEN	VT 51B @RISK UNCERTAINTY ANALYSIS RESULTS	51B-1
CHAPTERS 5	2 AND 53 NOT USED	
CHAPTER 54	LOW-POWER AND SHUTDOWN RISK ASSESSMENT	
54.1	Introduction	54-1
54.2	Data Analysis	
54.3	Initiating Event Analysis	54-3
54.4	Event Tree/Mitigation System Evaluation	54-3
54.5	Common Cause Analysis Update for AP1000.	
54.6	Human Reliability Assessment for AP1000	
54.7	Core Damage Quantification	
2	54.7.1 Discussion of Results	
54.8	Estimation of Shutdown Large Release Frequency	

Section		Title	Page
54.9	Sensitiv	ity Analyses	
	54.9.1	Case 1 – Minimum Equipment per Tech Specs During	
		Drained Conditions	
	54.9.2	Case 2 – No Credit for Standby Nonsafety Systems	54-11
	54.9.3	Case 3 – HEP's Set Equal to 0.5	54-12
	54.9.4	Case 4 – No Credit for Standby Nonsafety Systems –	
		Credit for Manual DAS	54-12
	54.9.5	Case 5 – Assessment of Containment Closure Failure Probability	54-13
54.10	Conclus	sions	54-17
54.11	Referen	ces	
CHAPTER 55	AP1000	SEISMIC MARGINS EVALUATION	
55.1	Seismic	Margin HCLPF Methodology	
55.2	Calculat	tion of HCLPF Values	55-1
	55.2.1	Seismic Margin HCLPF Methodology	55-1
	55.2.2	Calculation of HCLPF Values	55-2
55.3	Seismic	Margin Model	
	55.3.1	Major SMA Model Assumptions	
	55.3.2	Seismic Initiating Events	55-12
	55.3.3	Initiating Event Category HCLPFs	55-13
55.4	Calculat	tion of Plant HCLPF	55-16
	55.4.1	HCLPFs for Basic Events	55-16
	55.4.2	Calculation of Initiating Event HCLPFs	55-17
55.5	Results	and Insights	
	55.5.1	AP1000 SMA Results	55-17
	55.5.2	AP1000 SMA Insights	55-18
55.6	Referen	ces	55-20
CHAPTER 56	TER 56 INTERNAL FLOODING ANALYSIS		
56.1	Introduc	ction	56-1
	56.1.1	Definitions	56-1
56.2	Method	ology	
	56.2.1	Summary of Methodology	56-1
	56.2.2	Information Collection	
	56.2.3	Initial Screening Assessment	56-2
	56.2.4	Detailed Screening Assessment	56-4
	56.2.5	Identification of Flood-Induced Initiating Events	
	56.2.6	Initiating Event Frequencies	
56.3	Assump	tions	56-6
	56.3.1	General Flooding Analysis Assumptions and Engineering Judgmen	its56-6
	56.3.2	AP1000-Specific Assumptions	56-8

AP1000 Probabilistic Risk Assessment

## **TABLE OF CONTENTS (Cont.)**

×^{ja}

#### Section

## <u>Title</u>

1 A A	56.4	Informat	tion Collection	
		56.4.1	PRA-Modeled Equipment and Locations	
	· · · .	56.4.2	Identification of Areas for Flooding Evaluation	
	56.5	At-Powe	er Operations	
		56.5.1	Initial Screening Assessment	
		56.5.2	Detailed Screening Assessment	
		56.5.3	Identification of Flood-Induced Initiating Events	
		56.5.4	Calculation of Flood-Induced Initiating Event Frequencies	
		56.5.5	Quantification of At-Power Flood-Induced Events	
	56.6	Internal	Flooding During Low-Power and Shutdown Conditions	56-38
		56.6.1	Detailed Screening Assessment	56-38
·		56.6.2	Identification of Flood-Induced Initiating Events	56-39
		56.6.3	Calculation of Flood-Induced Initiating Event Frequencies	
-		56.6.4	Quantification of Shutdown Internal Flooding Scenario CDFs	
	· -	56.6.5	Total Shutdown Flooding Core Damage Frequency	56-47
		56.6.6	Seismically Induced Flooding	56-47
		56.6.7	Flooding Hazards During Refueling Outages	56-47
		56.6.8	Summary of Results	56-47
· .	56.7	Large Ro	elease Frequency Estimates for Internal Flooding	56-48
	56.8	Results of	of AP1000 Internal Flooding Analysis	56-49
CHA	PTER 57	FIRE RI	SK ASSESSMENT	
	57.1	Introduc	tion	
	57.2	Qualitati	ive Analysis	57-1
		57.2.1	AP600 Qualitative Analysis	57-1
	-	57.2.2	AP1000 Qualitative Analysis	57-5
		57.2.3	AP1000 Fire Areas	
	57.3	Initiating	g Event Frequencies	57-6
		57.3.1	Introduction	
		57.3.2	Methodology	57-7
		57.3.3	Results for Plant Except Containment and the Main Control Room	57-7
		57.3.4	Results for the Containment	57-7
		57.3.5	Results for the Main Control Room	57-7
	57.4	Develop	ment of Fire Scenarios	57-10
		57.4.1	Spurious Actuation Model	57-11
		57.4.2	Propagation Model	57-14
		57.4.3	Fire Suppression Model	57-15
		57.4.4	Operation Actions	57-15
		57.4.5	Development of Fire Scenarios	57-16
	57.5	Calculati	ion of Conditional Core Damage Probabilities (CCDP)	57-22
	57.6	Calculati	ion of CDF from Fire Events	57-23
		57.6.1	Calculation of Plant Fire CDF	57-23
		57.6.2	Comments on Plant Areas	57-23

Section

Page

#### TABLE OF CONTENTS (Cont.)

<u>Title</u>

	57.6.3	Importances of Fire Areas	
	57.6.4	Conclusion	
57.7	Sensitiv	vity Studies	
	57.7.1	Manual Fire Suppression Systems	57-27
	57.7.2	Sensitivity Analysis of the Probability of a Spurious Actuation	
		of ADS Valves	57-27
	57.7.3	Sensitivity of Human Action on Fire	57-28
	57.7.4	Sensitivity Analysis on Ignition Frequencies	57-28
	57.7.5	Sensitivity Analysis on ADS Actuation by DAS	57-29
	57.7.6	Sensitivity Analysis on 1E to Non-1E Separation in the	
		Containment	57-29
	57.7.7	Sensitivity Analysis to Area to Area Propagation	57-30
	57.7.8	Importance of Hot Shorts	
57.8	Shutdov	wn Fire Analysis	57-30
	57.8.1	Introduction	57-30
	57.8.2	Evaluation of AP1000 Shutdown Risk (Non-Drained Conditions)	
	57.8.3	Evaluation for Drained Shutdown Operations	
	57.8.4	Evaluation of Main Control Room	
57.9	Conclus	sion and Insights	
	57.9.1	At-Power Analysis	
	57.9.2	Shutdown Fire Analysis	
	57.9.3	Conclusions	
57.10	Referen	ices	57-42
ATTACHMEN	NT 57A	CALCULATION OF SCENARIO CCDPs	
57A.1	Calcula	tion of Scenario CCDPs.	
57A.2	Calcula	tion of Scenario CCDPs for Overly Conservative Cases	57A-3
ATTACHMEN	NT 57B	MODELING OF OPERATOR ACTIONS IN FIRE SCENARIOS	57B-1
57B 1	Calcula	tion of Failure Probability of OPA-01	57B-1
57B.2	Calcula	tion of Failure Probability of OPA-02	57B-3
57B 3	Operato	or Actions at Remote Shutdown Panel	57B-6
57B A	More P	Aliable DEC MANDAS	57B-6
575.4	MOIC R		J/ <b>J</b> -0
ATTACHMEN	NT 57C	FIRE AREA EVENT TREES DEFINING SCENARIOS	<b>57C-</b> 1
ATTACHMEN	NT 57D	AP1000 POTENTIAL FOR FIRE-INDUCED SPURIOUS	
		ACTUATION OF FUNCTIONS THAT RESULT IN A	
		BREACH OF HIGH/LOW PRESSURE BOUNDARY	<b>57D</b> -1

#### _____

**AP1000 Probabilistic Risk Assessment** 

#### **TABLE OF CONTENTS (Cont.)**

ş÷.

4

#### Section Title Page CHAPTER 58 WINDS, FLOODS, AND OTHER EXTERNAL EVENTS 58.1 58.2 58.2.1 58.2.2 58.2.3 58.3 58.4 CHAPTER 59 PRA RESULTS AND INSIGHTS 59.1 59.2 59.3 59.3.1 59.3.2 59.3.3 59.3.4 59.3.5 59.3.6 59.3.7 59.3.8 59.3.9 59.4 59.4.1 59.4.2 59.5 59.5.1 59.5.2 59.5.3 Results from Internal Flooding, Internal Fire, and Seismic Margin Analyses ......59-23 59.6 59.6.1 59.6.2 59.6.3 59.7 59.8 59.9 59.9.1 59.9.2 59.9.3 59.9.4 59.9.5

XXXIII

#### Section Title Page 59.10 59.10.1 59.10.3 PRA Input to MMI/Human Factors/Emergency Response Guidelines .......59-36 59.10.4 59.11 APPENDIX C ADDITIONAL ASSESSMENT OF AP1000 DESIGN FEATURES......C-1 APPENDIX D EQUIPMENT SURVIVABILITY ASSESSMENT......D-1 APPENDIX E AP1000 PRA FAULT TREE PICTURES FOR LEVEL 1 ANALYSIS FOR EVENTS AT POWER OPERATION......E-1

xxxiv

List of Tables

AP1000 Probabilistic Risk Assessment

## LIST OF TABLES

Table No.	Title	Page
2-1	Internal Initiating Event Grouping Plant Systems and Equipment	
	Available for Transient/Accident Conditions (Sheets 1 – 10)	2-28
2-2	NUREG/CR 3862 Initiator Categories (Sheets 1 – 4)	
2-3	NUREG/CR 3862 Initiator Categories not Considered in the	
	AP1000 PRA Analysis	
2-4	AP1000 Internal Initiating Event Frequencies (Sheets 1 – 3)	
2-5	Initiating Event Frequencies Used in Event Trees Quantification	
2A-1	Summary of Primary System Piping Data	2A-2
2A-2	Summary of Primary System Pipe Break Frequency Quantification	2A-3
2A-3	Summary of Steam Generator Tube Rupture Events	2A-4
2A-4	Spurious Stuck-Open Pressurizer Safety Valve	2A-5
2A-5	Interface Break on Accumulator Lines	2A-6
2A-6	Interface Break on IRWST Injection Lines	2A-7
2A-7	Initiating Events Review Data Summary (Sheets 1 – 8)	2A-8
	,,,,,,, _	
2B-1	Summary of Main Steam Line and Feedwater Line Piping Data for	
· - · · ·	Secondary Side Break Frequency Quantification	2B-2
2B-2	Secondary Side Line Break Frequency Quantification	2B-3
2B-3	Stuck-Open Main Steam Line Safety Valve Frequency Quantification	
	(Sheets 1 – 2)	2B-4
3-1	Loss of CCS/SWS Initiating Event Fault Tree CSWF Success	
	Criteria Summary	
3-2	Spurious Actuation of Automatic Depressurization Failure	
	Criteria Summary	3-9
3-3	Evaluation of Spurious Automatic Depressurization System Frequencies	
	(Sheets 1 – 6)	3-10
4-1	AP1000 Large LOCA Event End State Summary	4-112
4-2	AP1000 Spurious ADS Actuation Event End State Summary	4-112
4-3	AP1000 Medium LOCA Event End State Summary	4-113
4-4	AP1000 CMT Line Break LOCA Event End State Summary	4-114
4-5	AP1000 SI Line Break Event End State Summary	4-115
4-6	AP1000 Small LOCA Event End State Summary	4-116
4-7	AP1000 RCS Leak Event End State Summary	4-117
4-8	AP1000 PRHR Tube Rupture Event End State Summary	4-117
4-9	AP1000 SGTR Event End State Summary	4-118
4-10	AP1000 Vessel Rupture Event End State Summary	4-119
4-11	AP1000 Interfacing Systems LOCA Event End State Summary	4-119
4-12	AP1000 Transients with MFW Event End State Summary	4-120
4-13	AP1000 Transients with Loss of RCS Flow Event End State Summary	4-121
-		

#### LIST OF TABLES (Cont.)

<u>Table No.</u>	Title	Page
4-14	AP1000 Transients with Loss of MFW to One SG Event End State Summary	4-122
4-15	AP1000 Transients with Core Power Excursion Event End State Summary	4-123
4-16	AP1000 Transients with Loss of CCW/SW Event End State Summary	4-124
4-17	AP1000 Transients without Main Feedwater Event End State Summary	4-125
4-18	AP1000 Transients with Loss of Condenser Event End State Summary	4-126
4-19	AP1000 Transients with Loss of Compressed Air Event End State Summary	4-127
4-20	AP1000 Loss of Offsite Power Event End State Summary	4-128
4-21	AP1000 SLB Downstream of MSIVs Event End State Summary	4-129
4-22	AP1000 SLB Downstream of MSIVs Event End State Summary	4-130
4-23	AP1000 Stuck Open Secondary Side Safety Valve Event End State Summary	4-131
4-24	AP1000 ATWS Precursor without MFW Event End State Summary	4-132
4-25	AP1000 ATWS Precursor with SI Event End State Summary	4-133
4-26	AP1000 ATWS Precursor Transients with MFW Event End State Summary	4-134
4A-1	End States (Plant Damage States)	4A-17
4A-2	Summary of Systems Associated with Mitigating Functions for AP1000	4A-18
5-1	AP1000 Safety-Related Plant Support Systems with Letter Designators	5-3
5-2	AP1000 Non Safety-Related Plant Support Systems with Letter Designators	5-3
5-3	AP1000 Support Systems Interdependency Matrix (Sheets 1 - 14)	5-4
5-4	AP1000 Safety-Related Front Line Plant Systems Letter Designators	5-18
5-5	AP1000 Non Safety-Related Front Line Plant Systems Letter Designators	5-18
5-6	AP1000 Front Line System Dependencies Matrix (Sheets 1 – 18)	5-19
6-1	Summary of Event Tree Top Events Success Criteria	
	(Internal Initiating Events at Power Cases) (Sheets 1 – 34)	6-20
6-2	Summary of Success Criteria for the Mitigating Systems (Sheets $1-9$ )	6-54
6-3	Summary of Success Criteria for Operator Actions and Mission Times	
	(Sheets 1 – 4)	6-68
7-1	Example for Fault Tree XXX Success Criteria Summary	7-15
7-2	Example for System Dependency Matrix	7-15
7-3	Example for Component Test Assumptions	7-16
7-4	Example for Component Maintenance Assumptions	7-16
7-5	Example for Operator Actions and Misposition Analysis Summary	7-16
7-6	Fault Tree Identification Codes (Sheets 1 – 3)	7-17
7-7	System Identification Codes for Basic Events (Sheets 1 – 3)	7-20
7-8	Component Identification Codes (Sheets 1 – 7)	7-23
7-9	Failure Mode Identification Codes (Sheets 1 – 3)	7-30
8-1	List of Passive Residual Heat Removal System Fault Trees	8-7
8-2a	Fault Tree "PRT" Success Criteria	8-8
8-2b	Fault Tree "PRTA" Success Criteria	8-9
AP1000 Probabilistic Risk Assessment

# LIST OF TABLES (Cont.)

灘

- n - f

# Table No.

# <u>Title</u>

8-2c	Fault Tree "PRL" Success Criteria	
8-2d	Fault Tree "PRP" Success Criteria	
8-2e	Fault Tree "PRS" Success Criteria	8-12
8-2f	Fault Tree "PRW" Success Criteria	8-13
8-2g	Fault Tree "PRI" Success Criteria	8-14
8-3	System Dependency Matrix	8-15
8-4	Component Test Assumptions	8-16
8-5	Component Maintenance Assumptions	8-17
8-6	Operator Actions and Misposition Analysis Summary	8-18
8-7	Common Cause Failures Summary	8-19
8-8	Basic Events Database for the PRHR System Fault Trees (Sheets $1 - 3$ )	8-20
 9-1	List of System Fault Trees	9-9
9-2a	Fault Tree CM2AB Success Criteria Summary	9-10
9-2b	Fault Tree CM2SL Success Criteria Summary	9-11
9-2c	Fault Tree CM2L Success Criteria Summary	
9-2d	Fault Tree CM2P Success Criteria Summary	9-13
9-2e	Fault Tree CM1A Success Criteria Summary	
9-2f	Fault Tree CM2LLT Success Criteria Summary	9-15
9-2g	Fault Tree CMBOTH Success Criteria Summary	9-16
9-2h	Fault Tree CM2LA Success Criteria Summary	9-17
9-3	Notes Related to System Fault Tree Assumptions	<b>9</b> -18
9-4	System Dependency Matrix	<b>9</b> -18
9-5	Component Test Assumptions	9-19
9-6	Component Maintenance Assumptions	9-19
9-7	Operator Actions and Misposition Analysis Summary	9-20
9-8	Common Cause Failure Analysis Summary	9-20
<b>9-9</b> .	Fault Tree Basic Events for Core Makeup Tank Subsystem (Sheets 1 - 3)	9-21
10-1	List of System Fault Trees	
10-2a	Fault Tree AC2AB Success Criteria Summary	
10-2b	Fault Tree AC1A Success Criteria Summary	
10-2c	Fault Tree ACBOTH Success Criteria Summary	10-8
10-3	Notes Related to System Fault Tree Assumptions	10-9
10-4	System Dependency Matrix	10-9
10-5	Component Test Assumptions	10-9
10-6	Component Maintenance Assumptions	10-10
10-7	Operator Actions and Misposition Analysis Summary	10-10
10-8	Common Cause Failure Analysis Summary	10-10
10-9	Fault Tree Basic Events for Accumulator Subsystem	10-11

## LIST OF TABLES (Cont.)

## Table No.

# <u>Title</u>

# Page 1

11-1a	List of ADS System Fault Trees (Sheets 1 – 2)
11-1b	List of ADS System Fault Trees (for Plant Damage States Analysis)11-10
11-2a	ADS Success Criteria Versus Accident Conditions (Full Depressurization)
11-2b	ADS Success Criteria Versus Accident Conditions (Partial Depressurization)
11-2c	Automatic Depressurization System Fault Tree Summary (For Plant
	Damage States)
11-2d	Fault Tree "ADA" Success Criteria
11-2e	Fault Tree "ADAB" Success Criteria
11-2f	Fault Tree "ADAL" Success Criteria
11-2g	Fault Tree "ADB" Success Criteria
11-2h	Fault Tree "ADL" Success Criteria
11-2i	Fault Tree "ADM" Success Criteria
11-2j	Fault Tree "ADMA" Success Criteria
11-2 <b>k</b>	Fault Tree "ADQ" Success Criteria
11-2l	Fault Tree "ADS" Success Criteria
11-2m	Fault Tree "ADT" Success Criteria
11-2n	Fault Tree "ADW" Success Criteria
11-2o	Fault Tree "AD1" Success Criteria
11-2p	Fault Tree "AD1A" Success Criteria
11-2q	Fault Tree "ADF" Success Criteria
11-2 <b>r</b>	Fault Tree "ADR" Success Criteria
11-2s	Fault Tree "ADRA" Success Criteria
11-2t	Fault Tree "ADU" Success Criteria
11-2u	Fault Tree "ADUM" Success Criteria
11-2v	Fault Tree "ADV" Success Criteria
11-2w	Fault Tree "ADZ" Success Criteria
11-2x	Fault Tree "ADQLT" Data Summary
11-2y	Fault Tree "ADTLT" Success Criteria
11-3	Notes Related to ADS System Fault Tree Assumptions
11-4	System Dependencies Matrix
11-5	Component Test Assumptions
11-6	Component Maintenance Assumptions
11-7	Failure Probabilities Calculated11-27
11-8	Operator Action Analysis Summary
11-9	Common Cause Failures Summary
11-10	Basic Events Data Base for the ADA System Fault Tree (Sheets 1 – 20)11-29
12-1	List of System Fault Trees (FT)12-10
12-2a	Fault Tree "IW2AB" Success Criteria Summary
12-2b	Fault Tree "IW2ABM" Success Criteria Summary
12-2c	Fault Tree "IW2ABA" Success Criteria Summary
12-2d	Fault Tree "IW2ABP" Success Criteria Summary
12-2e	Fault Tree "IW2ABPM" Success Criteria Summary

AP1000 Probabilistic Risk Assessment

# LIST OF TABLES (Cont.)

ţ.

.

# Table No.

# <u>Title</u>

12-2f	Fault Tree "IW2ABB" Success Criteria Summary	2-16
12-2σ	Fault Tree "TW2ABBM" Success Criteria Summary	2-17
12-26 12-2h	Fault Tree "IW1A" Success Criteria Summary	2-18
12-2i	Fault Tree "TW1AM" Success Criteria Summary	2-19
12-2i	Fault Tree "IWF" Success Criteria Summary	2-20
12-2j 12-2k	Fault Tree "RECIRC" Success Criteria Summary	2-21
12-21	Fault Tree "RECIRCP" Success Criteria Summary	2.22
12-2m	Fault Tree "RECIRCE" Success Criteria Summary	2-23
12-2m	Fault Tree "RECIRCI" Success Criteria Summary	2-25
12-20	Fault Tree "RECIRCIP" Success Criteria Summary	2.25
12-20	Fault Tree "RECIRCIB" Success Criteria Summary	2-25
12-2p 12-3	Sustem Dependency Matrix	2-20
12-5	Component Test Assumptions	2-27
12-4	Component Maintenance Assumptions	2-20
12-5	Failure Prohabilities Calculated	17_70
12-0	Operator Actions and Misnosition Analysis Summary	12-27
12-7	Common Cause Failure Analysis Summary	2.30
12-0	Foult Tree Resic Events (Sheets 1	2.21
12-9	Fault free Basic Events (Sheets I = 11)	2-31
13-1	List of System Fault Trees	.13-7
13-2	Fault Tree PCT Success Criteria Summary	.13-7
13-3	Notes Related to System Fault Trees Assumptions	13-7
13-4	System Dependency Matrix	.13-8
13-5	Component Test Assumptions	13-8
13-6	Component Maintenance Assumptions	13-9
13-7	Operator Actions and Misposition Analysis Summary	.13-9
13-8	Common Cause Failure Analysis Summary	13-9
13-9	Fault Tree Basic Events for Passive Containment Cooling System	3-10
14-1	List of System Fault Trees (At-Power)	.14-8
14-2.a	Success Criteria Summary Fault Tree "FWT"	14-9
14-2.b	Success Criteria Summary Fault Tree "FWF"1	4-10
14-2.c	Success Criteria Summary Fault Tree "SFWT"1	4-11
14-2.d	Success Criteria Summary Fault Tree "SFW"1	4-12
14-2.e	Success Criteria Summary Fault Tree "SFW1"1	4-13
14-2.f	Success Criteria Summary Fault Tree "SFWP"1	4-14
14-2.g	Success Criteria Summary Fault Tree "SFWM"1	4-15
14-2.h	Success Criteria Summary Fault Tree "SFWA"1	4-16
14-2.i	Success Criteria Summary Fault Tree "COND"1	4-17
14-2.j	Success Criteria Summary Fault Tree "COND1"1	4-18
14-2.k	Success Criteria Summary Fault Tree "CDS"1	4-19
14-2.1	Success Criteria Summary Fault Tree "TCCW"1	4-20
14-3	Notes to System Fault Tree Assumptions	4-21

# LIST OF TABLES (Cont.)

<u>Table No.</u>	Title	Page
14-4	System Dependency Matrix (Sheets 1 – 2)	
14-5	Component Test Assumptions	14-24
14-6	Component Maintenance Assumptions	14-25
14-7	Failure Probabilities Calculated in this Section	
14-8	Operator Action Analysis Summary	14-26
14-9	Common Cause Failure (CCF) Summary	14-27
14-10	Fault Tree Basic Event for Main and Startup Feedwater System (Sheets 1	- 9)14-28
15-1	List of System Fault Trees	15-9
15-2a	Fault Tree CSBOR1 Success Criteria Summary	15-10
15-2b	Fault Tree CVS1 Success Criteria Summary	15-11
15-2c	Fault Tree CSAX Success Criteria Summary	15-12
15-2d	Fault Tree SGHL Success Criteria Summary	
15-2e	Fault Tree CSP Success Criteria Summary.	
15-3	Notes Related to System Fault Tree Assumptions	15-15
15-4	System Dependency Matrix	
15-5	Component Test Assumptions	
15-6	Component Maintenance Assumptions	
15-7	Operator Actions and Misposition Analysis Summary	
15-8	Common Cause Failure Analysis Summary	
15-9	Fault Tree Basic Events for Chemical and Volume	
	Control System (Sheets 1 – 4)	15-21
1 <b>6</b> -1	List of System Fault Trees	
16-2	Fault Tree VLH Success Criteria Summary	16-5
16-3	Notes Related to System Fault Tree Assumptions	16-5
16-4	System Dependency Matrix	
16-5	Component Test Assumptions	
16-6	Component Maintenance Assumptions	16-6
16-7	Operator Actions and Misposition Analysis Summary	
16-8	Common Cause Failure Analysis Summary	
16-9	Fault Tree Basic Events for Containment Hydrogen Control System	16-8
17-1	List of System Fault Trees	17-7
17-2	Fault Tree Success Criteria Summary (Sheets 1 – 2)	17-8
17-3	Notes Related to System Fault Tree Assumptions	
17-4	System Dependencies Matrix	1 <b>7</b> -11
17-5	Component Test Assumptions	17-12
17-6	Component Maintenance Assumptions	17-12
17-7	Operator Actions and System Misposition Analysis Summary	
17-8	Common Cause Failure Summary	
17-9	Fault Tree Basic Events for Normal Residual Heat Removal System	
	(Sneets 1 - 3)	17-14

AP1000 Probabilistic Risk Assessment

# LIST OF TABLES (Cont.)

994

# Table No.

# <u>Title</u>

18-1	List of System Fault Trees	18-6
18-2a	Fault Tree CCN Success Criteria Summary	18-6
18-2b	Fault Tree CCT Success Criteria Summary	18-7
18-2c	Fault Tree CCP Success Criteria Summary	18-7
18-3	Notes Related to System Fault Tree Assumptions	
18-4	System Dependency Matrix	
18-5	Component Test Assumptions	18-9
18-6	Component Maintenance Assumptions	
18-7	Operator Actions and Misposition Analysis Summary	18-10
18-8	Common Cause Failure Analysis Summary	
18-9	Fault Tree Basic Events for Component Cooling Water System (Sheets 1 - 2).	
19-1	List of System Fault Trees	19-6
19-2a	Fault Tree SWN Success Criteria Summary	19-6
19-2b	Fault Tree SWT Success Criteria Summary	19-7
19-2c	Fault Tree SWP Success Criteria Summary	19-7
19-3	Notes Related to System Fault Tree Assumptions	19-8
19-4	System Dependency Matrix	19-9
19-5	Component Test Assumptions	19-10
1 <b>9-6</b>	Component Maintenance Assumptions	19-10
19-7	Operator Actions and Misposition Analysis Summary	19-11
19-8	Common Cause Failure Analysis Summary	19-11
19-9	Fault Tree Basic Events for Service Water System (Sheets 1 - 4)	19-12
20-1	List of System Fault Trees	20-5
20-2	Fault Tree VWH Success Criteria Summary	20-5
20-3	Notes Related to System Fault Tree Assumptions	20-5
20-4	System Dependency Matrix	20-6
20-5	Component Test Assumptions	20-7
20-6	Component Maintenance Assumptions	20-7
20-7	Operator Actions and Misposition Analysis Summary	20-8
20-8		
20.0	Common Cause Failure Analysis Summary	
20-9	Common Cause Failure Analysis Summary Fault Tree Basic Events for Central Chilled Water System (Sheets 1 – 2)	20-8
20-9	Common Cause Failure Analysis Summary Fault Tree Basic Events for Central Chilled Water System (Sheets 1 – 2)	20-8
21-1	Common Cause Failure Analysis Summary Fault Tree Basic Events for Central Chilled Water System (Sheets 1 – 2) List of System Fault Trees (Sheets 1 – 3)	20-8
21-1 21-2	Common Cause Failure Analysis Summary Fault Tree Basic Events for Central Chilled Water System (Sheets 1 – 2) List of System Fault Trees (Sheets 1 – 3) Fault Tree Success Criteria Summary (Sheets 1 – 16)	
21-1 21-2 21-3	Common Cause Failure Analysis Summary Fault Tree Basic Events for Central Chilled Water System (Sheets 1 – 2) List of System Fault Trees (Sheets 1 – 3) Fault Tree Success Criteria Summary (Sheets 1 – 16) Notes Related to System Fault Tree Assumptions (Sheets 1 – 3)	
21-1 21-2 21-3 21-4	Common Cause Failure Analysis Summary Fault Tree Basic Events for Central Chilled Water System (Sheets 1 – 2) List of System Fault Trees (Sheets 1 – 3) Fault Tree Success Criteria Summary (Sheets 1 – 16) Notes Related to System Fault Tree Assumptions (Sheets 1 – 3) System Dependency Matrix	
21-1 21-2 21-3 21-4 21-5	Common Cause Failure Analysis Summary Fault Tree Basic Events for Central Chilled Water System (Sheets 1 – 2) List of System Fault Trees (Sheets 1 – 3) Fault Tree Success Criteria Summary (Sheets 1 – 16) Notes Related to System Fault Tree Assumptions (Sheets 1 – 3) System Dependency Matrix Component Test Assumptions	
21-1 21-2 21-3 21-4 21-5 21-6	Common Cause Failure Analysis Summary Fault Tree Basic Events for Central Chilled Water System (Sheets 1 – 2) List of System Fault Trees (Sheets 1 – 3) Fault Tree Success Criteria Summary (Sheets 1 – 16) Notes Related to System Fault Tree Assumptions (Sheets 1 – 3) System Dependency Matrix Component Test Assumptions	
21-1 21-2 21-3 21-4 21-5 21-6 21-7	Common Cause Failure Analysis Summary Fault Tree Basic Events for Central Chilled Water System (Sheets 1 – 2) List of System Fault Trees (Sheets 1 – 3) Fault Tree Success Criteria Summary (Sheets 1 – 16) Notes Related to System Fault Tree Assumptions (Sheets 1 – 3) System Dependency Matrix Component Test Assumptions Component Maintenance Assumptions Operator Actions and Misposition Analysis Summary	20-8 
21-1 21-2 21-3 21-4 21-5 21-6 21-7 21-8	Common Cause Failure Analysis Summary Fault Tree Basic Events for Central Chilled Water System (Sheets 1 – 2) List of System Fault Trees (Sheets 1 – 3) Fault Tree Success Criteria Summary (Sheets 1 – 16) Notes Related to System Fault Tree Assumptions (Sheets 1 – 3) System Dependency Matrix Component Test Assumptions Component Maintenance Assumptions Operator Actions and Misposition Analysis Summary Common Cause Failure Analysis Summary	
21-1 21-2 21-3 21-4 21-5 21-6 21-7 21-8 21-9	Common Cause Failure Analysis Summary Fault Tree Basic Events for Central Chilled Water System (Sheets 1 – 2) List of System Fault Trees (Sheets 1 – 3) Fault Tree Success Criteria Summary (Sheets 1 – 16) Notes Related to System Fault Tree Assumptions (Sheets 1 – 3) System Dependency Matrix Component Test Assumptions Component Maintenance Assumptions Operator Actions and Misposition Analysis Summary Common Cause Failure Analysis Summary Fault Tree Basic Events for AC Power System (Sheets 1 – 22)	

## LIST OF TABLES (Cont.)

### Title Table No. Page 22-1 22-2 22-3 22-4 22-5 22-6 22-7 22-8 22-9 Fault Tree Basic Events for Class 1E DC and UPS System (Sheets 1 – 12) ......22-29 22-10 System Power Requirements/Dependencies (Sheets 1 - 11)......22-41 23-1 23-2 23 - 323-4 23-5 23-6 23-7 Operator Actions and Misposition Analysis Summary......23-20 23 - 8Common Cause Failure Analysis Summary ......23-21 23-9 Fault Tree Basic Events for Non-Class 1E DC and UPS Power 24-1 24-2 24-3 Containment Penetrations Not Screened Out for Normal Operation 24-4 24-5a 24-5b 24-5c 24-6 24-7 System Dependency Matrix (Sheets 1 – 3)......24-24 24-8 24-9 24-10 Operator Actions and Misposition Analysis Summary......24-28 24-11 24-12 Fault Tree Basic Events for Containment Isolation System (Sheets 1 - 3)......24-29 25-1 25-2a 25-2b 25-2c Fault Tree CAIAIRP Success Criteria Summary......25-10 25-2d Fault Tree ENDCAIAI Success Criteria Summary......25-10

Table No.

AP1000 Probabilistic Risk Assessment

# LIST OF TABLES (Cont.)

<u>Title</u>

**1**00-

# Page

05.00	Eaule Tree ENDCALAD Suggess Criteria Summers	25.11
23-2e	Fault Tree ENDCAIAP Success Criteria Summary	
25-21	Fault Tree CASF Success Criteria Summary	
25-3	Notes Kelated to System Fault Tree Assumptions	
25-4	System Dependency Matrix	
25-5	Component Test Assumptions	25-12
25-6	Component Maintenance Assumptions	25-13
25-7	Operator Actions and Misposition Analysis Summary	25-13
25-8	Common Cause Failure Analysis Summary	25-13
25-9	Fault Tree Basic Events for Instrument Air Subsystem (Sheets 1 – 4)	25-14
26-1	List of System Fault Trees	26-25
20-1 26-29	Fault Tree RTPMS and RTPMS1 Success Criteria Summary	20-25 26_26
20-2a 26 2h	Fault Tree DTSTD Success Criteria Summary	20-20 26 26
20-20	Fault Tree DCL Success Cricina Summary	20-20 26 27
20-20	Fault Tree RCL Success Criteria Summary	
20-20.1	Fault Tree RC1 Success Criteria Summary	
26-20.2	Fault free KCN Success Criteria Summary	
20-2e	I&C Subtree Success Criteria Summary (Sneets 1 – 98)	
26-3a	PMS I&C Subtree Constructions (Sheets 1 – 19)	
26-35	Representative PMS I&C Subtree Plot Listing (Sheets 1 – 14)	
26-4	PMS Dependency Matrix (Sheets 1 – 3)	
26-5	PMS Components Test Assumptions	
26-6	Component Maintenance Assumptions	
26-7	Failure Probabilities Calculated in this Section (Sheets 1 – 5)	
26-8	Operator Actions and System Misposition Analysis Summary (Sheets 1 – 3)	
26-9	Common Cause Failure Analysis Summary (Sheets 1 – 2)	
26-10a	Fault Tree Basic Events for Reactor Trip System (Sheets 1-4)	
- <b>26-10</b> b	Fault Tree Basic Events for the I&C Subsystem (Sheets 1 - 49)	26-178
26-11	Assumed List of I&C Instrumentation (Sheets 1 – 3)	
•		
27-1	List of System Fault Trees	27-9
27-2a	Fault Tree DAS Success Criteria Summary	27-9
27-2b	Fault Tree DAS1 Success Criteria Summary	27-9
27-3	Notes Related to System Fault Tree Assumptions	27-10
27-4	System Dependency Matrix	27-10
27-5	Component Test Assumptions	27-10
27-6	Component Maintenance Assumptions	
27-7	Operator Actions and Misposition Analysis Summary	27-10
27-8	Common Cause Failure Analysis Summary	
27-9	Fault Tree Basic Events for Diverse Actuation System	27-12
28-1	List of System Fault Trees	
28-2	Fault Tree Success Criteria Summary (Sheets 1 – 22)	
28-3	PLS I&C Subtree Constructions (Sheets 1 – 9)	28-43

xliii

# LIST OF TABLES (Cont.)

<u>Table No.</u>	Title	<u>Page</u>
28-4	PLS Dependency Matrix (Sheets 1 – 2)	
28-5	PLS Components Test Assumptions	28-54
28-6	Component Maintenance Assumptions	28-54
28-7	Failure Probabilities Calculated in this Section (Sheets 1 – 3)	28-55
28-8	Operator Actions and System Misposition Analysis Summary (Sheets $1 - 2$ )	)28-58
28-9	Common Cause Failure Analysis Summary (Sheets 1 – 2)	
28-10	Fault Tree Basic Events for I&C Subsystem (Sheets 1 – 68)	28-62
<b>28-1</b> 1	Assumed List of I&C Instrumentation (Sheets 1 – 3)	
28-12	Assignments of Plant Systems to Logic Cabinets	
28-13	Assignments of Plant Systems to the Control Group Cabinets	
29-1	Electrical Components with Low CCF Rate	
29-2	Common-Cause Failure Calculations (Sheets 1 - 5)	29-19
29-3	Simplification of $Q_K/Q_T$ Equations	29-24
29A-1	Extreme Environmental Conditions (Generic Causes of Dependent Failures)	)
	Excerpted from the ANS/IEEE PRA Procedures Guide (NUREG-2300)	<b>29A-1</b> 1
29A-2	Common-Cause Failures Among Systems	29A-12
29A-3	Common-Cause Failure Equations for MGL Method	29A-13
30-1	AP1000 Human Error Probability Summary Results (Sheets 1 – 16)	
30-2	Manual DAS Actuation (Sheets 1 – 2)	
30-3	Dependency Level Evaluation Summary (Sheets 1 – 14)	
30-4	Dependency Level Evaluation (Sheets 1 – 3)	
30-5	List of Acronyms	
30A-1	Analyst Responsibility Based on Sharp Steps	
30A-2	Summary of Screening Values	30A-11
30A-3	Example of Operator Action Definition	30A-12
30A-4	HEP Data Bank (Sheets 1 – 5)	30A-13
31-1	Summary of Event Tree Scalar Probabilities	31-12
32-1	Generic Data Base (Sheets 1 – 13)	32-5
32-2	Test and Maintenance Outage Generic Data	32-21
32-3	Test and Maintenance Unavailabilities Used in AP1000 Core Damage	37-77
37_4	Common Cause Factors (Sheets $1 - 5$ )	37-73
32-5	SIMON.OUT File (Sheets $1 - 21$ )	
33_1	Summary of AP1000 System Fault Tree Failure Probabilities (Sheets 1	33_7
33_2	Example Accident Sequence Definitions for Large LOCA	22_20
33_3	APION PRA Dominant CDF Cuteete (Sheete 1 - 10)	22_21
55-5		

**AP1000 Probabilistic Risk Assessment** 

## LIST OF TABLES (Cont.)

4

### **<u>Title</u>** Table No. Page 33-4 33-5 33-6 34-1 34-2 34-3 34-4 34-5 34-6 34-7 34-8 34-9 34-10 34-11 34-12 34-13 34-14 34-15 34-16 34-17 · 34-18 34-19 34-20 34-21 34-22 34-23 34-24 34-25 34-26 34-27 34-28 35-1 35-2 35-3 35-4 35-5 Summary of Containment Event Tree Success Criteria (Sheets 1-3)......35-25 35-6 36-1 37-1

# LIST OF TABLES (Cont.)

<u>Table No.</u>	<u>Title</u> <u>Page</u>
38-1	Summary Table for Reflooding (CET Node RFL)
39-1	Material Inventories in AP1000 Reactor Vessel
39-2	Summary Table for Reactor Cavity Flooding (CET Node IR)
39-3	Summary Table for Debris Relocation to Cavity (CET Node VF)
39A-1	Core and Lower Internals Material Inventories in AP1000 Reactor Vessel
39A-2a	Mass and Power Distributions of Debris Layers in Top-Skewed
20 A 21	Power Shape Case
39A-26	Mass and Power Distributions of Debris Layers in Chopped Cosine
20 4 20	Power Shape Case
39A-3a 20 A 25	Results of Top-Skewed Power Shape Case
39A-30 20A /	Material Properties Used in In-Vessel Melting and Pelocation Calculation 30A.10
39A-5	Debris Relocation Time Line
40.1	
40-1	Summary of Nodal Failure Probabilities
40-2	Nominal and Bounding Containment Failure Probability at 24 and 72 Hours40-6
41-1	Containment Event Tree IG Nodal Failure Probability
41-2	Containment Event Tree Nodal Failure Probabilities
41-3	AP600 Scenario Dependencies for Early Detonation Analysis
41-4	Safety Margin Basis Containment Performance Requirement41-35
41A-1	Summary of System Assumptions for AP1000 MAAP4.04 Hydrogen
	Analyses (Sheets 1 – 7)
41A-2	Summary of Hydrogen Generation Results MAAP4 Hydrogen Mixing Analyses41A-10
41A-3	Summary of Early Compartment Gas Composition Results For MAAP4
	Hydrogen Mixing Analyses
41A-4	Summary of Early Compartment Gas Composition Results for MAAP4
	Hydrogen Mixing Analyses
41A-5	Summary of Hydrogen Generation Results MAAP4 Hydrogen Mixing Analyses41A-11
41A-6	Summary of Early Compartment Gas Composition Results for MAAP4
	Hydrogen Mixing Analyses
41A-7	Summary of Early Compartment Gas Composition Results for MAAP4
	Hydrogen Mixing Analyses
41A-8	Summary of Hydrogen Generation Results MAAP4 Hydrogen Mixing Analyses41A-13
41A-9	Summary of Early Compartment Gas Composition Results for MAAP4
41 4 10	ryulogen Mixing Analyses
41A-10	Summary of Early Compartment Gas Composition Results for MAAP4
A1 A 11	riverogen Mixing Analyses
41A-11	Summary of Hydrogen Generation Kesuits MAAP4 Hydrogen Mixing Analyses41A-15

AP1000 Probabilistic Risk Assessment

# LIST OF TABLES (Cont.)

訴

1

Table No.	Title	Page
41A-12	Summary of Early Compartment Gas Composition Results for MAAP4	
·	Hydrogen Mixing Analyses	41A-16
41A-13	Summary of Early Compartment Gas Composition Results for MAAP4	
· · · ·	Hydrogen Mixing Analyses	41A-16
41A-14	Summary of Hydrogen Generation Results MAAP4 Hydrogen Mixing Analyses	41A-17
41A-15	Summary of Early Compartment Gas Composition Results for MAAP4	
	Hydrogen Mixing Analyses	41A-17
41A-16	Summary of Early Compartment Gas Composition Results for MAAP4	
· .	Hydrogen Mixing Analyses	41A-18
41A-17	Summary of Hydrogen Generation Results MAAP4 Hydrogen Mixing Analyses	41A-18
41A-18	Summary of Early Compartment Gas Composition Results for MAAP4	
	Hydrogen Mixing Analyses	41A-19
41A-19	Summary of Early Compartment Gas Composition Results for MAAP4	
	Hydrogen Mixing Analyses	41A-19
41A-20	Summary of Hydrogen Generation Results MAAP4 Hydrogen Mixing Analyses	41A-20
41A-21	Summary of Early Compartment Gas Composition Results for MAAP4	
	Hydrogen Mixing Analyses	41A-20
41A-22	Summary of Early Compartment Gas Composition Results for MAAP4	
	Hydrogen Mixing Analyses	41A-21
41A-23	Sequence 1A-3a	41A-22
41A-24	Sequence 1A-4a	41A-23
41A-25	Sequence 1AP-3	41A-24
41A-26	Sequence 1AP-4	41A-25
41A-27	Sequence 3D-1	41A-26
41A-28	Sequence 3D-2	41A-27
41A-29	Sequence 3D-3	41A-28
41A-30	Sequence 3D-5	41A-29
41A-31	Sequence 3BL-1	41A-30
41A-32	Sequence 3BL-2	41A-31
41A-33	Sequence 3C-1	41A-32
41A-34	Sequence 3BR-1a	41A-33
41A-35	Sequence 3BE-1	41A-34
41A-36	Sequence 3BE-2	41A-35
41A-37	Sequence 3BE-4	41A-36
41A-38	Sequence 3BE-5	41A-37
41A-39	Sequence 3BE-6	41A-38
41A-40	Sequence 3BE-8	41A-39
41A-41	Sequence 3BE-9	41A-40
42-1	Parameters Used in the Construction of the AP1000 Conditional Containment	
-	Failure Probability Distribution for Containment Temperature = 400°F	42-9
42-2	Parameters Used in the Construction of the AP1000 Conditional Containment Failure Probability Distribution for Containment Temperature = 321°F	47-0
	ranars riveasing Distribution for Containment reinperature – 551 r	·····74-7

# LIST OF TABLES (Cont.)

<u>Table No.</u>	Title	Page
42-3	Cumulative Containment Failure Probability. Temperature = 400°F	
42-4	Cumulative Containment Failure Probability, Temperature = 331°F	42-11
43-1	Accident Class Frequencies	43-13
43-2	Boolean Expressions to Calculate Q1-Q29	43-14
43-3	CET Node Probabilities (Sheets 1 – 3)	43-15
43-4	Boolean Expressions for P1-P15	43-18
43-5	Contribution of PDS to LRF (Sheets 1 – 3)	43-19
43-6	Dominant CET Sequences Contributing to LRF (Sheets 1 – 69)	43-22
43-7	Summary of Release Frequency Calculations (Sheets 1 – 2)	<b>43-9</b> 1
43-8	LRF and Containment Effectiveness by Accident Class	43-93
43-9	Summary of AP1000 LRF Quantification for Internal Events At-Power	43-94
43-10	CET Event Tree Node Importances	43-95
43-11	Contribution of Initiating Events to Large Release	43-96
43-12	LRF Sensitivity Case – Non Credit for Standby Non-Safety	
	Systems (Sheets 1 – 9)	43-97
43-13	LRF Cutsets for the Case – Sensitivity to Standby Systems With Credit	
	for Manual DAS (Sheets 1 – 13)	43-106
43A-1	AP1000 PRA Dominant CDF Sequences for At-Power Events (Sheets $1 - 6$ ).	43A-2
43A-2	AP1000 PRA PDS Frequencies for At-Power Events	43A-8
43B-1	Calculation of Failure Probability of DP for PDS 6 (Sheets 1 – 7)	43B-2
43C-1	Evaluation of CET-Related Operator Actions	43C-2
44-1	MAAP Model Benchmarks (Sheets 1 – 4)	44-8
45-1	Environmental Release Fractions at 24 Hours After Core Damage	45 5
45.0	Per Release Category	45-5
45-2	Per Release Category	45-6
<b>49</b> -1	AP1000 Source Terms from Level 2 Analysis (MAAP)	49-9
49-2	AP1000 Source Terms for Dose Evaluation (MACCS2)	49-10
49-3	Site Boundary Whole Body Dose [Effective Dose Equivalent (EDE)], Sieverts	
49-4	Site Boundary Thyroid Dose, Sieverts	49-12
49-5	Population Whole Body Dose [Effective Dose Equivalent (EDE)],	
	0-80.5 km Person-Sieverts	49-13
49-6	Site Boundary Red Marrow Dose (Total Acute), Sieverts	49-14
49-7	Dose Summary	49-15
49-8	Site Boundary Whole Body EDE Dose Risk - 24 Hours	49-16

AP1000 Probabilistic Risk Assessment

# LIST OF TABLES (Cont.)

******-

Table No.	Title	<b>Page</b>
49-9	Site Boundary Whole Body EDE Dose Risk – 72 Hours	49-17
49-10	Population Whole Body EDE Dose Risk - 24 Hours	49-18
49-11	Population Whole Body EDE Dose Risk – 72 Hours	49-19
50-1	Core Damage for At-Power Events Contribution of Initiating Events to Plant	
	Core Damage Frequency	50-16
50-2	Core Damage for At-Power Events Conditional Core Damage Probability of Initiating Events	
50-3	AP1000 PRA Core Damage for At-Power Events Accident Sequence	
	Importances (Sheets 1 – 5)	
50-4	Core Damage for At-Power Events End State Importances	
50-5	Common Cause Importances – Risk Decrease (Sheets 1 – 2)	
50-6	Common Cause Importances – Risk Increase (Sheets 1 – 3)	
50-7	Human Error Risk Importances – Risk Decrease (Sheets 1 – 2)	
50-8	Human Error Risk Importances – Risk Increase (Sheets 1 – 2)	
50-9	Component Importances – Risk Decrease (Sheets 1 – 2)	
50-10	Component Importances – Risk Increase (Sheets 1 – 4)	
50-11	List of Systems for System Importance Analyses (Sheets 1 – 4)	
50-12	System Importance Calculation Results (Sheets 1 – 2)	
50-13	Systems Grouped by PRA System Importance	
50-14	Operator Actions in "CMTOT.OUT" File	
50-15	Contribution of IEVs to Core Damage Frequency	
50-16	Case 29 – Top 50 Dominant Cutsets (Sheets 1 – 2)	
50-17	Case 30 – Top 50 Dominant Cutsets (Sheets 1 – 2)	
50-18	Case 31 – Top 50 Dominant Cutsets (Sheets 1 – 3)	
50-19	Passive System Check Valves in "CMTOT.OUT" File	
50-20	Sensitivity Case 36 – Contribution of Initiating Events to CDF	50-56
50-21	Sensitivity Case 36 – Top 50 CDF Cutsets (Sheets 1 – 8)	50-57
50-22	Risk Importances Sorted by Basic Event Identification (Sheets 1 - 13)	50-65
50-23	Risk Importances Sorted by Risk Increase (Sheets 1 – 15)	50-78
50-24	Risk Importances Sorted by Risk Decrease (Sheets 1 – 15)	50-93
50-25	Risk Increases Sorted by Slope (Birnbaum) Importance (Sheets 1 – 13)	50-108
51-1	Summary of Results of AP1000 PRA Uncertainty Analysis for	· · ·
· · · ·	Internal Initiating Events at Power	51-9
51-2	List of Input Cutset Files	51-10
51A-1	Basic Event Uncertainties (Sheets 1 – 32)	51A-3
54-1	AP1000 Initiating Event Frequencies During Shutdown Conditions	54-18
54-2	AP1000 Design Impact on AP600 Shutdown Model	54-19
54-3	Times for Loss of RNS at Mid-loop Without IRWST Injection	54-20
54-4	AP1000 & AP600 Initiating Event CDF Contributions	54-21

xlix

## LIST OF TABLES (Cont.)

# Table No.

# <u>Title</u>

# Page

54-5	AP600 Shutdown Level 1 PRA Top 200 Cutsets (Sheets 1 – 25)
54-6	AP1000 Shutdown Level 1 PRA Top 200 Cutsets (Sheets 1 – 25)
54-7	Basic Event Probabilities Revised in Case 1
54-8	Revised CCF Basic Event Probabilities (Sheets 1 – 2)
54-9	Contribution of Initiating Events to Plant CDF – Shutdown Sensitivity Case 154-75
54-10	AP1000 Shutdown PRA Sensitivity Case 2 CDF Cutsets (Sheets 1 - 5)
54-11	List of Basic Events "Dropped" to Make the Sensitivity Case 2
54-12	Contribution of Initiating Events to Plant CDF – Shutdown Sensitivity Case 2
54-13	Shutdown PRA Sensitivity Case 3 (Sheets 1 – 28)
54-14	Basic Events Whose Probabilities are Changed in Case 3
54-15	AP1000 Shutdown PRA Sensitivity Case 4 CDF Cutsets (Sheets 1 – 7)
54-16	List of Basic Events "Dropped" to Make the Sensitivity Case 4
54-17	Contribution of Initiating Events to Plant CDF – Shutdown Sensitivity Case 454-120
54-18	AP1000 Shutdown PRA Basic Event Risk Importances – RAW (Sheets 1 – 8)54-121
54-19	AP1000 Shutdown PRA Basic Event Risk Importances – RRW (Sheets 1 – 3)54-129
54-20	AP1000 Shutdown PRA Case 2 Basic Event Risk Importances – RAW
	(Sheets 1 – 4)
54-21	AP1000 Shutdown PRA Case 2 Basic Event Risk Importances – RRW
	(Sheets 1 – 2)
55-1	Seismic Margin HCLPF Values (Sheets 1 – 4)
55-2	Basic Event HCLPF Values (Sheets 1 – 3)
55-3	EQ-IEV-STRUC HCLPF
55-4	EQ-IEV-RVFA HCLPF
55-5	EQ-IEV-LLOCA HCLPF55-29
55-6	EQ-IEV-SLOCA HCLPF55-29
55-7	EQ-IEV-ATWS HCLPF55-29
56-1	Flooding Analysis Initial Screening Results (Sheets 1 – 3)
56-2	At-Power Detailed Screening Results (Sheets 1 – 5)
56-3	At-Power Flooding-Induced Core Damage Frequency Quantification
	Summary Results (Sheets 1 – 6)
56-4	Power Upgrade Difference Between AP1000 and AP60056-64
56-5	Shutdown Flooding PRA
56-6	Shutdown Initiating Event CCDPs
57-1	AP1000 Fire Areas Excluding the Containment (Sheets 1 – 6)
57-2	AP1000 Fire Areas in the Containment (Sheets 1 – 2)
57-3	Fire Ignition Frequencies for AP1000 Fire Areas (Sheets 1 – 4)
57-4	Fire Ignition Frequencies for AP1000 Containment Fire Area
57-5	Fire Barrier Failure Probabilities
57-6	Automatic Suppression System Reliability

**AP1000 Probabilistic Risk Assessment** 

### LIST OF TABLES (Cont.)

14

### Table No. Title Page 57-7 Summary of Qualitative Evaluation Results - Power Operation -Plant except Containment and Main Control Room (Sheets 1-15)......57-63 57-8 Summary of Qualitative Evaluation Results for Containment at 57-9 57-10 57-11 57-12 57-13 57-14 57-15 57-16 57-17 57-18 57-19 57-20 57-21 57-22 57-23 57-24 57-25 57-26 57-27 57A-1 57A-2 57A-3 57A-4 DAS-ACT Fault Tree Cutsets After Subtree Reduction (Sheets 1 – 10)......57A-14 57A-5 DAS-ACT Fault Tree Cutsets After Subtree Reduction (Sheets 1 – 9)......57A-24 57A-6 AP1000 Fire PRA Scenario CCDPs for Over-Conservative Cases 57C-1 57C-2 59-1 59-2 59-3 Internal Initiating Events at Power Dominant Core Damage Sequences 59-4 Sequence 1 – Safety Injection Line Break Dominant Cutsets (SI-LB-07) 59-5

**Revision 4** 

li

## LIST OF TABLES (Cont.)

### Table No. Title **Page** Sequence 3 – Spurious ADS Actuation Dominant Cutsets (SPADS-08) 59-6 Sequence 4 – Safety Injection Line Break Dominant Cutsets (SI-LB-08) 59-7 59-8 Sequence 6 – Small LOCA Dominant Cutsets (SLOCA-05) (Sheets 1 – 3) ......59-56 59-9 59-10 Sequence 8 – Small LOCA Dominant Cutsets (SLOCA-12) (Sheets 1 – 3) ......59-62 59-11 Sequence 9 – Medium LOCA Dominant Cutsets (MLOCA-12) (Sheets 1 – 3).......59-65 59-12 59-13 Sequence 10 – Spurious ADS Actuation Dominant Cutsets (SPADS-09) Typical System Failure Probabilities, Showing Higher Reliabilities for 59-14 59-15 59-16 59-17 59-18

AP1000 Probabilistic Risk Assessment

# LIST OF FIGURES

¢,

Figure No.	Title	Page
2-1	Core Damage Logic Diagram for Internal Initiators (Sheets 1 – 4)	2-47
4A-1	Example Event Tree for Illustration of Terminology	4A-19
4A-2	Functional Event Tree	4A-20
4A-3	Illustration of A/B and A&B Notation	4A-21
4A-4	Illustration of Consequential Event and ATWS End States	4A-22
4A-5	AP1000 PRA Transients Template Event Tree (Sheets 1 - 3)	4A-23
4A-6	AP1000 PRA Small LOCA Template Event Tree (Sheets 1 – 2)	4A-26
4B-1	AP1000 Large LOCA Event Tree (Sheets 1 – 2)	4B-2
4B-2	AP1000 Large Spurious ADS Actuation Event Tree (Sheets 1 - 2)	4B-4
4B-3	AP1000 Medium LOCA Event Tree (Sheets 1 – 4)	4B-6
4B-4	AP1000 CMT Line Break Event Tree (Sheets 1-4)	4B-10
4B-5	AP1000 SI Line Break Event Tree (Sheets 1 – 3)	4B-14
4B-6	AP1000 Small LOCA Event Tree (Sheets 1 – 6)	4B-17
4B-7	AP1000 RCS Leak Event Tree	4B-23
4B-8	AP1000 Passive RHR Tube Rupture Event Tree	4B-24
4B-9a	AP1000 Steam Generator Tube Rupture Event Tree (Sheets 1 – 3)	4B-25
4B-9b	AP1000 SGTR Continues Event Tree (Sheets 1 – 6)	4B-28
4B-10	AP1000 Reactor Vessel Rupture Event Tree	4B-34
4B-11	AP1000 Interfacing Systems LOCA Event Tree	4B-35
4B-12	AP1000 Transients With Main Feedwater Event Tree (Sheets 1 - 4)	4B-36
4B-13	AP1000 Loss of Reactor Coolant Flow Event Tree (Sheets 1-4)	4B-40
4B-14	AP1000 Loss of Feedwater to One SG Tree (Sheets 1 – 4)	4B-44
4B-15	AP1000 Transients With Core Power Excursion Event Tree (Sheets 1 - 4)	4B-48
4B-16	AP1000 Transients With Loss of CCW/SW Event Tree (Sheets 1-4)	4B-52
4B-17	AP1000 Loss of MFW Event Tree (Sheets 1 – 4)	4B-56
4B-18	AP1000 Loss of Condenser Event Tree (Sheets 1 – 4)	4B-60
4B-19	AP1000 Loss of Main Compressed Air Event Tree (Sheets 1-4)	<b>4B-6</b> 4
4B-20	AP1000 Loss of Offsite Power Event Tree (Sheets 1 - 7)	4B-68
4B-21	Main Steam Line Break Downstream of MSIVs Event Tree (Sheets 1 - 5)	4B-75
4B-22	Main Steam Line Break Upstream of MSIVs Event Tree (Sheets 1 - 9)	4 <b>B-</b> 80
4B-23	Stuck Open Secondary Side Safety Valve Event Tree (Sheets 1 - 5)	4B-89
4B-24a	ATWS Precursor Without Main Feedwater	4 <b>B-9</b> 4
4B-24b	AP1000 ATWS Precursor Without Main Feedwater Continues	
	Event Tree (Sheets 1 – 6)	4B-95
4B-25	ATWS Precursor With SI (Sheets 1 – 6)	4B-101
4B-26	ATWS Precursor With MFW (Sheets 1 – 4)	4 <b>B-107</b>
7-1	Power/Control Model for Large Loads (6900-vac/480-vac Pumps, Fans, and Motors)	7-33
7-2	Power/Control Model for Motor-Operated Valves	7_35
7-3	Power/Control Model for Air-Operated Valves	7-37

liii

<u>Figure No.</u>	<u>Title</u> <u>Page</u>	:
7-4 7-5	Power/Control Model for Variable Speed Motor	
8-1	Given in Figure 7-1	
8-2	PRHR – Simplified Valve Control Diagram	
9-1 9-2	Passive Core Cooling System Simplified Sketch9-24 Passive Core Cooling System Piping and Instrumentation Diagram9-25	
10-1	Passive Core Cooling System – Accumulator Subsystem10-12	,
11-1	Automatic Depressurization System Simplified Piping and Instrumentation Diagram	
12-1	Simplified Piping & Instrumentation Diagram of the IRWST/Gravity Injection Subsystem	
13-1	Passive Containment Cooling System Sketch	
15-1	Chemical and Volume Control System Piping and Instrumentation Diagram (Sheets 1 – 2)15-25	
17-1	Normal Residual Heat Removal System Sketch	
18-1	Component Cooling Water System Piping and Instrumentation Diagram	
19-1	Service Water System Piping and Instrumentation Diagram	
20-1	Central Chilled Water Low-Capacity Subsystem Piping and Instrumentation Diagram (Sheets 1 – 2)20-11	
21-1	AC Power System One-Line Diagram21-55	
22-1 22-2	Class 1E DC System One-Line Diagram (Sheets 1 – 2)	
25-1	Compressed & Instrument Air System Piping and Instrumentation Diagram25-19	1
29-1	IRWST Valve Configuration	
30-1	Human Reliability Analysis Quantification Model	l
30A-1	Links Between SHARP Steps	ı

# LIST OF FIGURES (Cont.)

Figure No.	Title	Page
34-1	Case 3BE-1: Reactor Coolant System and Steam Generator Pressure	
	DVI Line Break, Containment Water Level	
34-2	Case 3BE-1: ADS Stage 4 Flow Rates DVI Line Break, Containment	
	Water Level	
34-3	Case 3BE-1: Accumulator/CMT Water Mass DVI Line Break,	
	Containment Water Level	34-53
34-4	Case 3BE-1: IRWST Injection Flow Rate DVI Line Break,	
	Containment Water Level	34-53
34-5	Case 3BE-1: Break Flow Rate DVI Line Break, Containment	
	Water Level	34-54
34-6	Case 3BE-1: Reactor Vessel Water Level DVI Line Break,	
	Containment Water Level	34-54
34-7	Case 3BE-1: Core Temperatures DVI Line Break, Containment	
	Water Level	34-55
34-8	Case 3BE-1: Containment Water Pool Elevations DVI Line Break,	
4	Containment Water Level	34-55
34-9	Case 3BE-1: Containment Pressure DVI Line Break, Containment	
•	Water Level	34-56
34-10	Case 3BE-1: Containment Gas Temperatures DVI Line Break,	1 - 1 <u>.</u>
	Containment Water Level	34-56
34-11	Case 3BE-1: Core Mass DVI Line Break, Containment Water Level	34-57
34-12	Case 3BE-1: Reactor Pressure Vessel to Cavity Water Heat Transfer	
	DVI Line Break, Containment Water Level	34-57
34-13	Case 3BE-1: In-Vessel Hydrogen Generation DVI Line Break,	
	Containment Water Level	34-58
34-14	Case 3BE-1: Mass Fraction of CsI Released to Containment	
-	DVI Line Break, Containment Water Level	34-58
34-15	Case 3BE-1: Mass Fraction of Noble Gases Released to Environment	
	DVI Line Break, Containment Water Level	34-59
34-16	Case 3BE-1: Mass Fraction of Fission Products Released to Environment	
	DVI Line Break, Containment Water Level	34-59
34-17	Case 3BE-1: Mass Fraction of SrO Released to Environment	
	DVI Line Break, Containment Water Level	34-60
34-18	Case 3BE-2: Reactor Coolant System and Steam Generator Pressure	•
· .	DVI Line Break, Fail Gravity Injection, No DVI Flooding	34-60
34-19	Case 3BE-2: ADS Stage 4 Flow Rates DVI Line Break, Fail Gravity	·
	Injection, No DVI Flooding	34-61
34-20	Case 3BE-2: Accumulator/CMT Water Mass DVI Line Break,	
	Fail Gravity Injection, No DVI Flooding	34-61
34-21	Case 3BE-2: IRWST Injection Flow Rate DVI Line Break,	
	Fail Gravity Injection, No DVI Flooding	34-62
34-22	Case 3BE-2: Break Flow Rate DVI Line Break, Fail Gravity Injection,	
· .	No DVI Flooding	34-62

lv

<u>Figure No.</u>	<u>Title</u>	Page 1
34-23	Case 3BE-2: Reactor Vessel Water Level DVI Line Break, Fail Gravity	
	Injection, No DVI Flooding.	
34-24	Case 3BE-2: Core Temperatures DVI Line Break, Fail Gravity Injection,	
	No DVI Flooding	
34-25	Case 3BE-2: Containment Water Pool Elevations DVI Line Break,	
	Fail Gravity Injection, No DVI Flooding.	
34-26	Case 3BE-2: Containment Pressure DVI Line Break, Fail Gravity Injection,	
	No DVI Flooding	
34-27	Case 3BE-2: Containment Gas Temperatures DVI Line Break,	
	Fail Gravity Injection, No DVI Flooding	34-65
34-28	Case 3BE-2: Core Mass DVI Line Break, Fail Gravity Injection,	
	No DVI Flooding	34-65
34-29	Case 3BE-2: Reactor Pressure Vessel to Cavity Water Heat Transfer	
	DVI Line Break, Fail Gravity Injection, No DVI Flooding	34-66
34-30	Case 3BE-2: In-Vessel Hydrogen Generation DVI Line Break,	
	Fail Gravity Injection, No DVI Flooding	34-66
34-31	Case 3BE-2: Mass Fraction of CsI Released to Containment	
	DVI Line Break, Fail Gravity Injection, No DVI Flooding	34-67
34-32	Case 3BE-2: Mass Fraction of Noble Gases Released to Environment	
	DVI Line Break, Fail Gravity Injection, No DVI Flooding	34-67
34-33	Case 3BE-2: Mass Fraction of Fission Products Released to Environment	
	DVI Line Break, Fail Gravity Injection, No DVI Flooding	34-68
34-34	Case 3BE-2: Mass Fraction of SrO Released to Environment	
	DVI Line Break, Fail Gravity Injection, No DVI Flooding	34-68
34-35	Case 3BE-4: Reactor Coolant System and Steam Generator Pressure	
	Spurious ADS, Failed Gravity Injection	34-69
34-36	Case 3BE-4: ADS Stage 4 Flow Rates Spurious ADS, Failed Gravity	
	Injection	34-69
34-37	Case 3BE-4: Accumulator/CMT Water Mass Spurious ADS, Failed	
	Gravity Injection	34-70
34-38	Case 3BE-4: IRWST Injection Flow Rate Spurious ADS, Failed Gravity	
	Injection	34-70
34-39	Case 3BE-4: Break Flow Rate Spurious ADS, Failed Gravity Injection	
34-40	Case 3BE-4: Reactor Vessel Water Level Spurious ADS, Failed Gravity	
	Injection	
34-41	Case 3BE-4: Core Temperatures Spurious ADS, Failed Gravity Injection	
34-42	Case 3BE-4: Containment Water Pool Elevations Spurious ADS,	
	Failed Gravity Injection	
34-43	Case 3BE-4: Containment Pressure Spurious ADS, Failed Gravity	
	Injection	34-73
34-44	Case 3BE-4: Containment Gas Temperatures Spurious ADS,	
	Failed Gravity Injection	
34-45	Case 3BE-4: Core Mass Spurious ADS, Failed Gravity Injection	34-74

AP1000 Probabilistic Risk Assessment

# LIST OF FIGURES (Cont.)

ξġ

Figure No.	Title	Page
34-46	Case 3BE-4: Reactor Pressure Vessel to Cavity Water Heat Transfer	
т. с. С. с.	Spurious ADS, Failed Gravity Injection	34-74
34-47	Case 3BE-4: In-Vessel Hydrogen Generation Spurious ADS, Failed	
	Gravity Injection	34-75
34-48	Case 3BE-4: Mass Fraction of CsI Released to Containment Spurious ADS.	
	Failed Gravity Injection	
34-49	Case 3BE-4: Mass Fraction of Noble Gases Released to Environment	
· · · · · · ·	Spurious ADS. Failed Gravity Injection	
34-50	Case 3BE-4: Mass Fraction of Fission Products Released to Environment	
	Spurious ADS. Failed Gravity Injection	34-76
34-51	Case 3BE-4. Mass Fraction of SrO Released to Environment Spurious ADS	
0101	Failed Gravity Injection	34-77
34-52	Case 3BE-5: Reactor Coolant System and Steam Generator Pressure	,J~~//
54-54	SBI OCA with Failed Gravity Injection	34.77
31-53	Case 3BE-S: ADS Stage / Flow Pater SBI OCA with Eailed Gravity	······J//
J <del>-</del> -JJ	Lisection	21 70
21 51	Case 2DE 5. A commulator/CMT Water Mass SDI OCA with Esilad	
34-34	Case 5DE-5: Accumulator/CMT water Mass 5DLOCA with Patien	24 70
24 65	Gravity Injection	
34-33	Case SBE-3: IKWS1 Injection Flow Rate SBLOCA with Failed	24.70
DAEC	Gravity Injection	
34-30	Case 3BE-5: Break Flow Rate SBLOCA with Failed Gravity Injection	
34-57	Case 3BE-5: Reactor Vessel Water Level SBLOCA with Failed	• • • • •
	Gravity Injection	
34-58	Case 3BE-5: Core Temperatures SBLOCA with Failed Gravity Injection	34-80
34-59	Case 3BE-5: Containment Water Pool Elevations SBLOCA with	
· · · · · · · · · · · · · · · · · · ·	Failed Gravity Injection	
34-60	Case 3BE-5: Containment Pressure SBLOCA with Failed Gravity Injection	34-81
34-61	Case 3BE-5: Containment Gas Temperature SBLOCA with Failed	
	Gravity Injection	34-82
34-62	Case 3BE-5: Core Mass SBLOCA with Failed Gravity Injection	34-82
34-63	Case 3BE-5: Reactor Pressure Vessel to Cavity Water Heat Transfer	
	SBLOCA with Failed Gravity Injection	34-83
34-64	Case 3BE-5: In-Vessel Hydrogen Generation SBLOCA with Failed	
	Gravity Injection	34-83
34-65	Case 3BE-5: Mass Fraction of CsI Released to Containment SBLOCA	1.
	with Failed Gravity Injection	34-84
34-66	Case 3BE-5: Mass Fraction of Noble Gases Released to Environment	
	SBLOCA with Failed Gravity Injection	34-84
34-67	Case 3BE-5: Mass Fraction of Fission Products Released to Environment	
	SBLOCA with Failed Gravity Injection	34-85
34-68	Case 3BE-5: Mass Fraction of SrO Released to Environment SBLOCA	
	with Failed Gravity Injection	34-85

Figure No.	Title	Page
34-69	Case 3BE-6: Reactor Coolant System and Steam Generator Pressure	
	SBLOCA with Failed Gravity Injection	34-86
34-70	Case 3BE-6: ADS Stage 4 Flow Rates SBLOCA with Failed Gravity	
	Injection	34-86
34-71	Case 3BE-6: Accumulator/CMT Water Mass SBLOCA with Failed	
	Gravity Injection	34-87
34-72	Case 3BE-6: IRWST Injection Flow Rate SBLOCA with Failed	
	Gravity Injection	34-87
34-73	Case 3BE-6: Break Flow Rate SBLOCA with Failed Gravity Injection	34-88
34-74	Case 3BE-6: Reactor Vessel Water Level SBLOCA with Failed Gravity	
	Injection	34-88
34-75	Case 3BE-6: Core Temperatures SBLOCA with Failed Gravity Injection	
34-76	Case 3BE-6: Containment Water Pool Elevations SBLOCA with	
	Failed Gravity Injection	34-89
34-77	Case 3BE-6: Containment Pressure SBLOCA with Failed Gravity Injection	
34-78	Case 3BE-6: Containment Gas Temperature SBLOCA with Failed	
	Gravity Injection	34-90
34-79	Case 3BE-6: Core Mass SBLOCA with Failed Gravity Injection	
34-80	Case 3BE-6: Reactor Pressure Vessel to Cavity Water Heat Transfer	
	SBLOCA with Failed Gravity Injection	34-91
34-81	Case 3BE-6: In-Vessel Hydrogen Generation SBLOCA with Failed	
	Gravity Injection	34-92
34-82	Case 3BE-6: Mass Fraction of CsI Released to Containment SBLOCA	
	with Failed Gravity Injection	34-92
34-83	Case 3BE-6: Mass Fraction of Noble Gases Released to Environment	
	SBLOCA with Failed Gravity Injection	34-93
34-84	Case 3BE-6: Mass Fraction of Fission Products Released to Environment	
	SBLOCA with Failed Gravity Injection	34-93
34-85	Case 3BE-6: Mass Fraction of SrO Released to Environment SBLOCA	
	with Failed Gravity Injection	34-94
34-86	Case 3BE-7: Reactor Coolant System and Steam Generator Pressure	
	SBLOCA with Failed Gravity Injection	34-94
34-87	Case 3BE-7: ADS Stage 4 Flow Rates SBLOCA with Failed Gravity	
	Injection	34-95
34-88	Case 3BE-7: Accumulator/CMT Water Mass SBLOCA with Failed	
	Gravity Injection	34-95
34-89	Case 3BE-7: IRWST Injection Flow Rate SBLOCA with Failed Gravity	
	Injection.	
34-90	Case 3BE-7: Break Flow Rate SBLOCA with Failed Gravity Injection	
34-91	Case 3BE-7: Reactor Vessel Water Level SBLOCA with Failed	
	Gravity Injection	34-97
34-92	Case 3BE-7: Core Temperatures SBLOCA with Failed Gravity Injection	
	· · · · · · · · · · · · · · · · · · ·	

**AP1000 Probabilistic Risk Assessment** 

## LIST OF FIGURES (Cont.)

### **Title** Figure No. Page 34-93 Case 3BE-7: Containment Water Pool Elevations SBLOCA with 34-94 Case 3BE-7: Containment Gas Temperature SBLOCA with Failed 34-95 34-96 Case 3BE-7: Reactor Pressure Vessel to Cavity Water Heat Transfer 34-97 Case 3BE-7: In-Vessel Hydrogen Generation SBLOCA with Failed 34-98 Case 3BE-7: Mass Fraction of CsI Released to Containment SBLOCA 34-99 34-100 Case 3BE-7: Mass Fraction of Noble Gases Released to Environment 34-101 Case 3BE-7: Mass Fraction of Fission Products Released to Environment Case 3BE-7: Mass Fraction of SrO Released to Environment SBLOCA 34-102 34-103 Case 3BE-3: Reactor Coolant System and Steam Generator Pressure Case 3BE-3: ADS Stage 4 Flow Rate DVI Line Break, Failed Gravity 34-104 Case 3BE-3: Accumulator/CMT Water Mass DVI Line Break, 34-105 34-106 Case 3BE-3: IRWST Injection Flow Rate DVI Line Break, Case 3BE-3: Break Flow Rate DVI Line Break, Failed Gravity Injection, 34-107 34-108 Case 3BE-3: Reactor Vessel Water Level DVI Line Break, Case 3BE-3: Core Temperatures DVI Line Break, Failed Gravity Injection, 34-109 Case 3BE-3: Containment Water Pool Elevations DVI Line Break, 34-110 34-111 Case 3BE-3: Containment Pressure DVI Line Break, Failed Gravity Case 3BE-3: Containment Gas Temperature DVI Line Break, Failed 34-112 34-113 Case 3BE-3: Core Mass DVI Line Break, Failed Gravity Injection, 34-114 Case 3BE-3: Reactor Pressure Vessel to Cavity Water Heat Transfer

lix

<u>Figure No.</u>	<u>Title</u>	<b>Page</b>
34-115	Case 3BE-3: In-Vessel Hydrogen Generation DVI Line Break, Failed	
	Gravity Injection, No PXS Flooding	
34-116	Case 3BE-3: Mass Fraction of CsI Released to Containment DVI	
	Line Break, Failed Gravity Injection, No PXS Flooding	
34-117	Case 3BE-3: Mass Fraction of Noble Gases Released to Environment	
	DVI Line Break, Failed Gravity Injection, No PXS Flooding	
34-118	Case 3BE-3: Mass Fraction of Fission Products Released to	
	Environment DVI Line Break, Failed Gravity Injection, No PXS	
	Flooding	34-110
34-119	Case 3BE-3: Mass Fraction of SrO Released to Environment DVI	
	Line Break, Failed Gravity Injection, No PXS Flooding	
34-120	Case 3BL-1: Reactor Coolant System and Steam Generator Pressure	
	SBLOCA with Failed Gravity Injection	
34-121	Case 3BL-1: ADS Stage 4 Flow Rates SBLOCA with Failed Gravity	
	Injection	34-112
34-122	Case 3BL-1: Accumulator/CMT Water Mass SBLOCA with Failed	
	Gravity Injection	34-112
34-123	Case 3BL-1: IRWST Injection Flow Rate SBLOCA with Failed Gravity	
	Injection	
34-124	Case 3BL-1: Break Flow Rate SBLOCA with Failed Gravity Injection	34-113
34-125	Case 3BL-1: Reactor Vessel Water Level SBLOCA with Failed Gravity	
	Injection	
34-126	Case 3BL-1: Core Temperatures SBLOCA with Failed Gravity Injection	
34-127	Case 3BL-1: Containment Water Pool Elevations SBLOCA with Failed	
	Gravity Injection	
34-128	Case 3BL-1: Containment Pressure SBLOCA with Failed Gravity Injection.	
34-129	Case 3BL-1: Containment Gas Temperature SBLOCA with Failed	
	Gravity Injection	
34-130	Case 3BL-1: Core Mass SBLOCA with Failed Gravity Injection	
34-131	Case 3BL-1: Reactor Pressure Vessel to Cavity Water Heat Transfer	
	SBLOCA with Failed Gravity Injection	
34-132	Case 3BL-1: In-Vessel Hydrogen Generation SBLOCA with Failed	04.117
24 122	Gravity Injection	
34-133	Case 3BL-1: Mass Fraction of CSI Released to Containment SBLOCA	24 110
24.124	with Failed Gravity Injection	
34-134	Case 3BL-1: Mass Fraction of Noble Gases Released to Environment	24 110
24.125	SBLOCA with Failed Gravity Injection	
34-135	Case 3BL-1: Mass Fraction of Fission Products Released to Environment	24.110
24 126	SBLUCA WIN Failed Gravity Injection	
34-130	Case SBL-1: Mass Fraction of SrU Keleased to Environment SBLUCA	24 110
24 127	WITH Failed Gravity Injection	
54-15/	Case SDL-2: Reactor Coolant System and Steam Generator Pressure	24 100
	DVI Line Break with Failed Gravity Injection	

AP1000 Probabilistic Risk Assessment

# LIST OF FIGURES (Cont.)

Figure No.	Title	<b>Page</b>
34-138	Case 3BL-2: ADS Stage 4 Flow Rates DVI Line Break with Failed	
1 .	Gravity Injection	
34-139	Case 3BL-2: Accumulator/CMT Water Mass DVI Line Break with	
	Failed Gravity Injection	
34-140	Case 3BL-2: IRWST Injection Flow Rate DVI Line Break with	
·	Failed Gravity Injection	
34-141	Case 3BL-2: Break Flow Rate DVI Line Break with Failed Gravity	
·	Injection	
34-142	Case 3BL-2: Reactor Vessel Water Level DVI Line Break with Failed	
	Gravity Injection	
34-143	Case 3BL-2: Core Temperatures DVI Line Break with Failed Gravity	
	Injection	
34-144	Case 3BL-2: Containment Water Pool Elevations DVI Line Break with	
	Failed Gravity Injection	
34-145	Case 3BL-2: Containment Pressure DVI Line Break with Failed	
	Gravity Injection	34-124
34-146	Case 3BL-2: Containment Gas Temperature DVI Line Break with	
1	Failed Gravity Injection	34-124
34-147	Case 3BL-2: Core Mass DVI Line Break with Failed Gravity Injection	
34-148	Case 3BL-2: Reactor Pressure Vessel to Cavity Water Heat Transfer	
	DVI Line Break with Failed Gravity Injection	34-125
34-149	Case 3BL-2: In-Vessel Hydrogen Generation DVI Line Break with	
	Failed Gravity Injection	34-126
34-150	Case 3BL-2: Mass Fraction of CsI Released to Containment DVI	
	Line Break with Failed Gravity Injection	34-126
34-151	Case 3BL-2: Mass Fraction of Noble Gases Released to Environment	
	DVI Line Break with Failed Gravity Injection	34-127
34-152	Case 3BL-2: Mass Fraction of Fission Products Released to Environment	
	DVI Line Break with Failed Gravity Injection	34-127
34-153	Case 3BL-2: Mass Fraction of SrO Released to Environment DVI	
	Line Break with Failed Gravity Injection	34-128
34-154	Case 3BR-1: Reactor Coolant System and Steam Generator Pressure	
	CL LBLOCA to Loop Compartment 2/2 Gravity Injection/Recirculation Line	s34-128
34-155	Case 3BR-1: ADS Stage 4 Flow Rates CL LBLOCA to Loop	
	Compartment 2/2 Gravity Injection/Recirculation Lines	34-129
34-156	Case 3BR-1: Accumulator/CMT Water Mass CL LBLOCA to Loop	1 <u>_</u>
	Compartment 2/2 Gravity Injection/Recirculation Lines	34-129
34-157	Case 3BR-1: IRWST Injection Flow Rate CL LBLOCA to Loop	·
	Compartment 2/2 Gravity Injection/Recirculation Lines	34-130
34-158	Case 3BR-1: Break Flow Rate CL LBLOCA to Loop Compartment	
	2/2 Gravity Injection/Recirculation Lines	34-130
34-159	Case 3BR-1: Reactor Vessel Water Level CL LBLOCA to Loop	
	Compartment 2/2 Gravity Injection/Recirculation Lines	

lxi

AP1000 Probabilistic Risk Assessment

<u>Figure No.</u>	Title	<u>Page</u>
34-160	Case 3BR-1: Core Temperatures CL LBLOCA to Loop	
	Compartment 2/2 Gravity Injection/Recirculation Lines	34-131
34-161	Case 3BR-1: Containment Water Pool Elevations CL LBLOCA to	
	Loop Compartment 2/2 Gravity Injection/Recirculation Lines	
34-162	Case 3BR-1: Containment Pressure CL LBLOCA to Loop	
	Compartment 2/2 Gravity Injection/Recirculation Lines	
34-163	Case 3BR-1: Containment Gas Temperature CL LBLOCA to Loop	
	Compartment 2/2 Gravity Injection/Recirculation Lines	
34-164	Case 3BR-1: Core Mass CL LBLOCA to Loop Compartment 2/2	
	Gravity Injection/Recirculation Lines	
34-165	Case 3BR-1: Reactor Pressure Vessel to Cavity Water Heat Transfer	
	CL LBLOCA to Loop Compartment 2/2 Gravity Injection/Recirculation	
	Lines	
34-166	Case 3BR-1: In-Vessel Hydrogen Generation CL LBLOCA to Loop	
	Compartment 2/2 Gravity Injection/Recirculation Lines	34-134
34-167	Case 3BR-1: Mass Fraction of CsI Released to Containment	
	CL LBLOCA to Loon Compartment 2/2 Gravity Injection/Recirculation	
	Lines	34-135
34-168	Case 3BR-1: Mass Fraction of Noble Gases Released to Environment	100
21100	CL LBLOCA to Loon Compartment 2/2 Gravity Injection/Recirculation	
	Lines	34-135
34-169	Case 3BR-1. Mass Fraction of Fission Products Released to Environment	
51105	CL LBLOCA to Loop Compartment 2/2 Gravity Injection/Recirculation	
	Lines	34-136
34-170	Case 3BR-1: Mass Fraction of SrO Released to Environment CL LBLOCA	
51170	to Loon Compartment 2/2 Gravity Injection/Recirculation Lines	34-136
34-171	Case 3BR-1a: Reactor Coolant System and Steam Generator Pressure	
51171	CLIBIOCA with Failed Accumulators	34-137
34-172	Case 3BR-12: ADS Stage / Flow Pater CL I BLOCA with Failed	
54-172	A compulsions	34-137
34-173	Case 3BD 1a: A commulator/CMT Water Mass CL I BLOCA with	
54-175	Easled A commutators	34 128
34-174	Case 2DD 1a: IDWST Injection Flow Date CL I DI OCA with Failed	
34-174	A compulators	34 128
34-175	Case 3PD 1a: Preak Flow Date CL I DI OCA with Eailed Accumulators	24 120
34-175	Case 3DR-1a. Dicar Flow Rate CL LDLOCA with Failed Accumulators	
54-170	A commulator	24 120
24 177	Case 2DD 1a: Com Tomporotures CL I DI OCA with Ended Accumulators	24 140
24-177	Case 3DR-1a. Cole Temperatures CL LDLOCA with Fallen Accumulators	
34-1/8	use JDR-1a: Containment water Pool Elevations CL LBLOUA	24 140
24 170	Case 2DD 1at Containment Draceure CL L DL OCA with Evilat	
34-179	Case SDK-1a: Containment Pressure CL LBLOUA with Pailed	<b>04 1 4</b>
	Accumulators	

**AP1000 Probabilistic Risk Assessment** 

### LIST OF FIGURES (Cont.)

### Figure No. Title Page 34-180 Case 3BR-1a: Containment Gas Temperature CL LBLOCA with 34-181 34-182 Case 3BR-1a: Reactor Pressure Vessel to Cavity Water Heat Transfer 34-183 Case 3BR-1a: In-Vessel Hydrogen Generation CL LBLOCA with 34-184 Case 3BR-1a: Mass Fraction of CsI Released to Containment Case 3BR-1a: Mass Fraction of Noble Gases Released to Environment 34-185 Case 3BR-1a: Mass Fraction of Fission Products Released to Environment 34-186 Case 3BR-1a: Mass Fraction of SrO Released to Environment CL LBLOCA 34-187 Case 3C-1: Reactor Coolant System and Steam Generator Pressure 34-188 34-189 34-190 34-191 34-192 34-193 34-194 34-195 34-196 34-197 34-198 Case 3C-1: Reactor Pressure Vessel to Cavity Water Heat Transfer 34-199 34-200 34-201 34-202 Case 3C-1: Mass Fraction of Noble Gas Released to Environment Vessel 34-203 Case 3C-1: Mass Fraction of Fission Products Released to Environment 34-204 34-205 Case 3C-2: Reactor Coolant System and Steam Generator Pressure Vessel 34-206 Case 3C-2: ADS Stage 4 Flow Rates Vessel Rupture with Containment Case 3C-2: Accumulator/CMT Water Mass Vessel Rupture with 34-207

**Revision 4** 

lxiii

13

<u>Figure No.</u>	Title	Page
34-208	Case 3C-2: IRWST Injection Flow Rate Vessel Rupture with	
	Containment Failure	
34-209	Case 3C-2: Break Flow Rate Vessel Rupture with Containment Failure	
34-210	Case 3C-2: Reactor Vessel Water Level Vessel Rupture with	
	Containment Failure	
34-211	Case 3C-2: Core Temperatures Vessel Rupture with Containment Failure	
34-212	Case 3C-2: Containment Water Pool Elevations Vessel Rupture with	
	Containment Failure	
34-213	Case 3C-2: Containment Pressure Vessel Rupture with Containment	
	Failure	
34-214	Case 3C-2: Containment Gas Temperature Vessel Rupture with	
	Containment Failure	
34-215	Case 3C-2: Core Mass Vessel Rupture with Containment Failure	
34-216	Case 3C-2: Reactor Pressure Vessel to Cavity Water Heat Transfer	
	Vessel Rupture with Containment Failure	
34-217	Case 3C-2: In-Vessel Hydrogen Generation Vessel Rupture with	
	Containment Failure	
34-218	Case 3C-2: Mass Fraction of CsI Released to Containment Vessel	
	Rupture with Containment Failure	34-160
34-219	Case 3C-2: Mass Fraction of Noble Gases Released to Environment	
	Vessel Rupture with Containment Failure	
34-220	Case 3C-2: Mass Fraction of Fission Products Released to Environment	
	Vessel Rupture with Containment Failure	
34-221	Case 3C-2: Mass Fraction of SrO Released to Environment Vessel	
	Rupture with Containment Failure	
34-222	Case 3D-1: Reactor Coolant System and Steam Generator Pressure	
	Spurious ADS-4 with Failed CMTs	34-162
34-223	Case 3D-1: ADS Stage 4 Flow Rates Spurious ADS-4 with Failed CMTs	
34-224	Case 3D-1: Accumulator/CMT Water Mass Spurious ADS-4 with	
	Failed CMTs	34-163
34-225	Case 3D-1: IRWST Injection Flow Rate Spurious ADS-4 with Failed	
	CMTs	
34-226	Case 3D-1: Break Flow Rate Spurious ADS-4 with Failed CMTs	
34-227	Case 3D-1: Reactor Vessel Water Level Spurious ADS-4 with Failed	
	CMTs	
34-228	Case 3D-1: Core Temperatures Spurious ADS-4 with Failed CMTs	
34-229	Case 3D-1: Containment Water Pool Elevations Spurious ADS-4 with	
	Failed CMTs.	
34-230	Case 3D-1: Containment Pressure Sourious ADS-4 with Failed CMTs	
34-231	Case 3D-1: Containment Gas Temperature Spurious ADS-4 with Failed	
	CMTs	
34-232	Case 3D-1: Core Mass Spurious ADS-4 with Failed CMTs	

AP1000 Probabilistic Risk Assessment

# LIST OF FIGURES (Cont.)

**

45

Figure No.	Title Page
34-233	Case 3D-1: Reactor Pressure Vessel to Cavity Water Heat Transfer
	Spurious ADS-4 with Failed CMTs
34-234	Case 3D-1: In-Vessel Hydrogen Generation Spurious ADS-4 with
	Failed CMTs
34-235	Case 3D-1: Mass Fraction of CsI Released to Containment Spurious
	ADS-4 with Failed CMTs
34-236	Case 3D-1: Mass Fraction of Noble Gases Released to Environment
	Spurious ADS-4 with Failed CMTs
34-237	Case 3D-1: Mass Fraction of Fission Products Released to Environment
	Spurious ADS-4 with Failed CMTs
34-238	Case 3D-1: Mass Fraction of SrO Released to Environment Spurious
	ADS-4 with Failed CMTs
34-239	Case 3D-2: Reactor Coolant System and Steam Generator Pressure
·	Spurious ADS-2 with Failed CMTs
34-240	Case 3D-2: ADS Stage 4 Flow Rates Spurious ADS-2 with Failed CMTs
34-241	Case 3D-2: Accumulator/CMT Water Mass Spurious ADS-2 with
	Failed CMTs
34-242	Case 3D-2: IRWST Injection Flow Rate Spurious ADS-2 with Failed CMTs34-172
34-243	Case 3D-2: Break Flow Rate Spurious ADS-2 with Failed CMTs
34-244	Case 3D-2: Reactor Vessel Water Level Spurious ADS-2 with Failed CMTs
34-245	Case 3D-2: Core Temperatures Spurious ADS-2 with Failed CMTs
34-246	Case 3D-2: Containment Pool Water Elevations Spurious ADS-2 with
	Failed CMTs
34-247	Case 3D-2: Containment Pressure Spurious ADS-2 with Failed CMTs
34-248	Case 3D-2: Containment Gas Temperature Spurious ADS-2 with Failed
	CMTs
34-249	Case 3D-2: Core Mass Spurious ADS-2 with Failed CMTs
34-250	Case 3D-2: Reactor Pressure Vessel to Cavity Water Heat Transfer
	Spurious ADS-2 with Failed CMTs
34-251	Case 3D-2: In-Vessel Hydrogen Generation Spurious ADS-2 with
	Failed CMTs
34-252	Case 3D-2: Mass Fraction of CsI Released to Containment Spurious
	ADS-2 with Failed CMTs
34-253	Case 3D-2: Mass Fraction of Noble Gas Released to Environment
	Spurious ADS-2 with Failed CMTs
34-254	Case 3D-2: Mass Fraction of Fission Products Released to Environment
	Spurious ADS-2 with Failed CMTs
34-255	Case 3D-2: Mass Fraction of SrO Released to Environment Spurious
	ADS-2 with Failed CMTs34-179
34-256	Case 3D-3: Reactor Coolant System and Steam Generator Pressure
	DVI Line Break with Failed ADS
34-257	Case 3D-3: ADS Stage 4 Flow Rates DVI Line Break with Failed ADS

lxv

# <u>Figure No.</u>

# <u>Title</u>

# Page 1

34-258	Case 3D-3: Accumulator/CMT Water Mass DVI Line Break with	
	Failed ADS	
34-259	Case 3D-3: IRWST Injection Flow Rate DVI Line Break with Failed ADS	34-181
34-260	Case 3D-3: Break Flow Rate DVI Line Break with Failed ADS	
34-261	Case 3D-3: Reactor Vessel Water Level DVI Line Break with Failed ADS	
34-262	Case 3D-3: Core Temperatures DVI Line Break with Failed ADS	
34-263	Case 3D-3: Containment Water Pool Elevations DVI Line Break with	
	Failed ADS	
34-264	Case 3D-3: Containment Pressure DVI Line Break with Failed ADS	
34-265	Case 3D-3: Containment Gas Temperature DVI Line Break with Failed	
	ADS	
34-266	Case 3D-3: Core Mass DVI Line Break with Failed ADS	
34-267	Case 3D-3: Reactor Pressure Vessel to Cavity Water Heat Transfer	
	DVI Line Break with Failed ADS	
34-268	Case 3D-3: In-Vessel Hydrogen Generation DVI Line Break with	
	Failed ADS	
34-269	Case 3D-3: Mass Fraction of CsI Released to Containment DVI	
	Line Break with Failed ADS	
34-270	Case 3D-3: Mass Fraction of Noble Gases Released to Environment	
	DVI Line Break with Failed ADS	
34-271	Case 3D-3: Mass Fraction of Fission Products Released to Environment	
	DVI Line Break with Failed ADS	
34-272	Case 3D-3: Mass Fraction of SrO Released to Environment DVI	
	Line Break with Failed ADS	
34-273	Case 3D-4: Reactor Coolant System and Steam Generator Pressure	
	Spurious ADS-2, Failed CMTs, Diffusion Flame	
34-274	Case 3D-4: ADS Stage 4 Flow Rates Spurious ADS-2, Failed CMTs,	
	Diffusion Flame	34-188
34-275	Case 3D-4: Accumulator/CMT Water Mass Spurious ADS-2, Failed CMTs,	
	Diffusion Flame	34-189
34-276	Case 3D-4: IRWST Injection Flow Rate Spurious ADS-2, Failed CMTs,	
	Diffusion Flame	34-189
34-277	Case 3D-4: Break Flow Rate Spurious ADS-2, Failed CMTs, Diffusion	
	Flame	
34-278	Case 3D-4: Reactor Vessel Water Level Spurious ADS-2, Failed CMTs,	
	Diffusion Flame	34-190
34-279	Case 3D-4: Core Temperatures Spurious ADS-2, Failed CMTs,	
	Diffusion Flame	34-191
34-280	Case 3D-4: Containment Water Pool Elevations Spurious ADS-2,	
	Failed CMTs, Diffusion Flame	
34-281	Case 3D-4: Containment Pressure Spurious ADS-2, Failed CMTs,	
	Diffusion Flame	34-192

**AP1000 Probabilistic Risk Assessment** 

### LIST OF FIGURES (Cont.)

1. H

### Figure No. **Title** Page Case 3D-4: Containment Gas Temperature Spurious ADS-2, Failed CMTs, 34-282 34-283 34-284 Case 3D-4: Reactor Pressure Vessel to Cavity Water Heat Transfer Case 3D-4: In-Vessel Hydrogen Generation Spurious ADS-2, Failed 34-285 Case 3D-4: Mass Fraction of CsI Released to Containment Spurious 34-286 Case 3D-4: Mass Fraction of Noble Gases Released to Environment 34-287 Case 3D-4: Mass Fraction of Fission Products Released to Environment 34-288 34-289 Case 3D-4: Mass Fraction of SrO Release to Environment Spurious Case 6E-1: Reactor Coolant System and Steam Generator Pressure 34-290 34-291 34-292 34-293 34-294 34-295 34-296 34-297 34-298 34-299 34-300 34-301 Case 6E-1: Reactor Pressure Vessel to Cavity Water Heat Transfer SGTR 34-302 Case 6E-1: Mass Fraction of CsI Released to Containment SGTR Early 34-303 34-304 Case 6E-1: Mass Fraction of Noble Gases Released to Environment 34-305 Case 6E-1: Mass Fraction of Fission Products Released to Environment Case 6E-1: Mass Fraction of SrO Released to Environment SGTR 34-306 34-307 Case 6L-1: Reactor Coolant System and Steam Generator Pressure Case 6L-1: ADS Stage 4 Flow Rates SGTR Core Melt Failure at 34-308

AP1000 Probabilistic Risk Assessment

<u>Figure No.</u>	Title	<u>Page</u>
34-309	Case 6L-1: Accumulator/CMT Water Mass SGTR Core Melt Failure	
	at Recirculation	
34-310	Case 6L-1: IRWST Injection Flow Rate SGTR Core Melt Failure	
	at Recirculation	
34-311	Case 6L-1: Break Flow Rate SGTR Core Melt Failure at Recirculation	
34-312	Case 6L-1: Reactor Vessel Water Level SGTR Core Melt Failure at	
	Recirculation	
34-313	Case 6L-1: Core Temperatures SGTR Core Melt Failure at Recirculation	
34-314	Case 6L-1: Containment Water Pool Elevations SGTR Core Melt	
	Failure at Recirculation	
34-315	Case 6L-1: Containment Pressure SGTR Core Melt Failure at	
	Recirculation	
34-316	Case 6L-1: Containment Gas Temperature SGTR Core Melt Failure at	
	Recirculation	
34-317	Case 6L-1: Core Mass SGTR Core Melt Failure at Recirculation	34-210
34-318	Case 6L-1: Reactor Pressure Vessel to Cavity Water Heat Transfer	
	SGTR Core Melt Failure at Recirculation	34-210
34-319	Case 6L-1: In-Vessel Hydrogen Generation SGTR Core Melt Failure	
	at Recirculation	
34-320	Case 6L-1: Mass Fraction of CsI Released to Containment SGTR	
	Core Melt Failure at Recirculation	34-211
34-321	Case 6L-1: Mass Fraction of Noble Gases Released to Environment	
	SGTR Core Melt Failure at Recirculation	34-212
34-322	Case 6L-1: Mass Fraction of Fission Products Released to Environment	
	SGTR Core Melt Failure at Recirculation	34-212
34-323	Case 6L-1: Mass Fraction of SrO Released to Environment SGTR	
	Core Melt Failure at Recirculation	34-213
34-324	Case 1AP-1: Reactor Coolant System and Steam Generator Pressure	
	SBLOCA with PRHR, CMTs Failed	34-213
34-325	Case 1AP-1: ADS Stage 4 Flow Rates SBLOCA with PRHR, CMTs Failed	34-214
34-326	Case 1AP-1: Accumulator/CMT Water Mass SBLOCA with PRHR,	
	CMTs Failed	34-214
34-327	Case 1AP-1: IRWST Injection Flow Rate SBLOCA with PRHR,	
	CMTs Failed	34-215
34-328	Case 1AP-1: Break Flow Rate SBLOCA with PRHR, CMTs Failed	34-215
34-329	Case 1AP-1: Reactor Vessel Water Level SBLOCA with PRHR,	
	CMTs Failed	34-216
34-330	Case 1AP-1: Core Temperatures SBLOCA with PRHR, CMTs Failed	34-216
34-331	Case 1AP-1: Containment Pool Water Elevations SBLOCA with PRHR,	
	CMTs Failed	34-217
34-332	Case 1AP-1: Containment Pressure SBLOCA with PRHR, CMTs Failed	
34-333	Case 1AP-1: Containment Gas Temperature SBLOCA with PRHR,	
	CMTs Failed	

AP1000 Probabilistic Risk Assessment

# LIST OF FIGURES (Cont.)

Figure No.	Title	Page
34-334	Case 1AP-1: Core Mass SBLOCA with PRHR, CMTs Failed	
34-335	Case 1AP-1: Reactor Pressure Vessel to Cavity Water Heat Transfer	
	SBLOCA with PRHR, CMTs Failed	
34-336	Case 1AP-1: In-Vessel Hydrogen Generation SBLOCA with PRHR,	
	CMTs Failed	
34-337	Case 1AP-1: Mass Fraction of CsI Released to Containment SBLOCA	
	with PRHR, CMTs Failed	
34-338	Case 1AP-1: Mass Fraction of Noble Gases Released to Environment	
	SBLOCA with PRHR, CMTs Failed	
34-339	Case 1AP-1: Mass Fraction of Fission Products Released to Environment	
	SBLOCA with PRHR, CMTs Failed	
34-340	Case 1AP-1: Mass Fraction of SrO Released to Environment SBLOCA	
	with PRHR, CMTs Failed	34-221
34-341	Case 1AP-2: Reactor Coolant System and Steam Generator Pressure	
·	SBLOCA with PRHR, CMTs Failed	
34-342	Case 1AP-2: ADS Stage 4 Flow Rates SBLOCA with PRHR,	· · ·
	CMTs Failed	34-222
34-343	Case 1AP-2: Accumulator/CMT Water Mass SBLOCA with PRHR,	
	CMTs Failed	
34-344	Case 1AP-2: IRWST Injection Flow Rate SBLOCA with PRHR,	. ·
	CMTs Failed	
34-345	Case 1AP-2: Break Flow Rate SBLOCA with PRHR, CMTs Failed	
34-346	Case 1AP-2: Reactor Vessel Water Level SBLOCA with PRHR,	
	CMTs Failed	
34-347	Case 1AP-2: Core Temperatures SBLOCA with PRHR, CMTs Failed	
34-348	Case 1AP-2: Containment Water Pool Elevations SBLOCA with PRHR,	· 2
	CMTs Failed	
34-349	Case 1AP-2: Containment Pressure SBLOCA with PRHR, CMTs Failed	34-226
34-350	Case 1AP-2: Containment Gas Temperature SBLOCA with PRHR,	
- 	CMTs Failed	34-226
34-351	Case 1AP-2: Core Mass SBLOCA with PRHR, CMTs Failed	34-227
34-352	Case 1AP-2: Reactor Pressure Vessel to Cavity Water Heat Transfer	
	SBLOCA with PRHR, CMTs Failed	34-227
34-353	Case 1AP-2: In-Vessel Hydrogen Generation SBLOCA with PRHR,	
· · · · · · · ·	CMTs Failed	34-228
34-354	Case 1AP-2: Mass Fraction of CsI Released to Containment SBLOCA	· ·
	with PRHR, CMTs Failed	
34-355	Case 1AP-2: Mass Fraction of Noble Gases Released to Environment	
-	SBLOCA with PRHR, CMTs Failed	
34-356	Case 1AP-2: Mass Fraction of Fission Products Released to Environment	
1	SBLOCA with PRHR, CMTs Failed	34-229
34-357	Case 1AP-2: Mass Fraction of SrO Released to Environment SBLOCA	
	with PRHR, CMTs Failed	34-230

### Figure No. Title Page Case 1A-1: Reactor Coolant System and Steam Generator Pressure 34-358 34-359 Case 1A-1: Accumulator/CMT Water Mass Transient with Creep of 34-360 34-361 34-362 34-363 34-364 Case 1A-1: Containment Pool Water Elevations Transient with Creep of 34-365 34-366 34-367 Case 1A-1: Containment Gas Temperature Transient with Creep of 34-368 34-369 Case 1A-1: Reactor Pressure Vessel to Cavity Water Heat Transfer Case 1A-1: In-Vessel Hydrogen Generation Transient with Creep of 34-370 34-371 Case 1A-1: Mass Fraction of CsI Released to Containment Transient 34-372 Case 1A-1: Mass Fraction of Noble Gases Released to Environment 34-373 Case 1A-1: Mass Fraction of Fission Products Released to Environment 34-374 Case 1A-1: Mass Fraction of SrO Released to Environment Transient 34-375 Case 1A-2: Reactor Coolant System and Steam Generator Pressure 34-376 Case 1A-2: Accumulator/CMT Water Mass Transient with Creep of 34-377 34-378 34-379 34-380 34-381 34-382 Case 1A-2: Containment Water Pool Elevations Transient with Creep 34-383 34-384 Case 1A-2: Containment Gas Temperature Transient with Creep of 34-385

lxx

**.** 

Figure No.	<u>Title</u> <u>Page</u>
34-386	Case 1A-2: Reactor Pressure Vessel to Cavity Water Heat Transfer
	Transient with Creep of SG Tubes
34-387	Case 1A-2: In-Vessel Hydrogen Generation Transient with Creep of
	SG Tubes
34-388	Case 1A-2: Mass Fraction of CsI Released to Containment Transient
	with Creep of SG Tubes
34-389	Case 1A-2: Mass Fraction of Noble Gases Released to Environment
	Transient with Creep of SG Tubes
34-390	Case 1A-2: Mass Fraction of Fission Products Released to Environment
	Transient with Creep of SG Tubes
34-391	Case 1A-2: Mass Fraction of SrO Released to Environment Transient
	with Creep of SG Tubes
34-392	Case 3BE-1: Containment Pressure DDT Intermediate Containment Failure
34-393	Case 3BE-1: Containment Gas Temperature DDT Intermediate
	Containment Failure
34-394	Case 3BE-1: Containment Hydrogen Concentration DDT Intermediate
	Containment Failure
34-395	Case 3BE-1: Noble Gases Release Fraction DDT Intermediate
	Containment Failure
34-396	Case 3BE-1: CsI and RbI Release Fraction DDT Intermediate
	Containment Failure
34-397	Case 3BE-1: TeO ₂ Release Fraction DDT Intermediate Containment Failure
34-398	Case 3BE-1: Sr0 Release Fraction DDT Intermediate Containment Failure
34-399	Case 3BE-1: Mo0 ₂ Release Fraction DDT Intermediate Containment Failure
34-400	Case 3BE-1: Cs0H and Rb0H Release Fraction DDT Intermediate
	Containment Failure
34-401	Case 3BE-1: Ba0 Release Fraction DDT Intermediate Containment Failure
34-402	Case 3BE-1: La ₂ 0 ₃ Release Fraction DDT Intermediate Containment Failure
34-403	Case 3BE-1: CeO ₂ Release Fraction DDT Intermediate Containment Failure
34-404	Case 3BE-1: Sb Release Fraction DDT Intermediate Containment Failure
34-405	Case 3BE-1: Te ₂ Release Fraction DDT Intermediate Containment Failure
34-406	Case 3BE-1: U0 ₂ Release Fraction DDT Intermediate Containment Failure
34-407	Case 3BE-1: RCS Pressure No PCS Water Cooling and Late Containment
	Failure
34-408	Case 3BE-1: Reactor Vessel Mixture Level No PCS Water Cooling and Late
· · · · · ·	Containment Failure
34-409	Case 3BE-1: Core-Exit Temperature No PCS Water Cooling and Late
· · · · .	Containment Failure
34-410	Case 3BE-1: In-Vessel Hydrogen Generation No PCS Water Cooling and Late
-	Containment Failure
34-411	Case 3BE-1: Containment Pressure No PCS Water Cooling and Late
	Containment Failure

<u>Figure No.</u>	Title	Page
34-412	Case 3BE-1: Containment Gas Temperature No PCS Water Cooling and Late	
	Containment Failure	34-257
34-413	Case 3BE-1: Containment Hydrogen Concentration No PCS Water Cooling	
	and Late Containment Failure	34-258
34-414	Case 3BE-1: Noble Gas Release Fraction No PCS Water Cooling and Late	
	Containment Failure	34-258
34-415	Case 3BE-1: CsI and RbI Release Fraction No PCS Water Cooling and Late	
	Containment Failure	34-259
34-416	Case 3BE-1: Te0 ₂ Release Fraction No PCS Water Cooling and Late	
	Containment Failure	34-259
34-417	Case 3BE-1: Sr0 Release Fraction No PCS Water Cooling and Late	
	Containment Failure	34-260
34-418	Case 3BE-1: Mo0 ₂ Release Fraction No PCS Water Cooling and Late	
	Containment Failure	34-260
34-419	Case 3BE-1: Cs0H and Rb0H Release Fraction No PCS Water Cooling and Late	
	Containment Failure	34-261
34-420	Case 3BE-1: Ba0 Release Fraction No PCS Water Cooling and Late	
	Containment Failure	34-261
34-421	Case 3BE-1: La ₂ 0 ₃ Release Fraction No PCS Water Cooling and Late	
	Containment Failure	34-262
34-422	Case 3BE-1: CeO ₂ Release Fraction No PCS Water Cooling and Late	
	Containment Failure	34-262
34-423	Case 3BE-1: Sb Release Fraction No PCS Water Cooling and Late Containment	
	Failure	34-263
34-424	Case 3BE-1: Te ₂ Release Fraction No PCS Water Cooling and Late	
	Containment Failure	34-263
34-425	Case 3BE-1: U0 ₂ Release Fraction No PCS Water Cooling and Late	
	Containment Failure	34-264
35-1	Containment Event Tree	35-29
<b>36-</b> 1	AP1000 Accident Class 1A Base Case for Node DP Success - RCS Pressure	36-7
36-2	AP1000 Accident Class 1A Base Case for Node DP Success – Core-Exit Gas	
	Temperature	36-8
36-3	AP1000 Accident Class 1A Base Case for Node DP Success – Steam Generator	
	Tube Creep Damage	36-9
36-4	AP1000 Steam Generator Tube Rupture with PRHR and Stuck-Open SV -	
	Passive RHR Heat Removal	36-10
36-5	AP1000 Steam Generator Tube Rupture with PRHR and Stuck-Open SV –	
	Core Makeup Tank Flow (one tank)	36-11
36-6	AP1000 Steam Generator Tube Rupture with PRHR and Stuck-Open SV -	
	Reactor Coolant System Pressure	36-12
AP1000 Probabilistic Risk Assessment

## LIST OF FIGURES (Cont.)

1

Figure No.	Title	Page
36-7	AP1000 Steam Generator Tube Rupture with PRHR and Stuck-Open SV –	26 12
	Core-Exit Gas Temperature	
39-1	AP1000 Base Case In-Vessel Retention of Molten Core Debris	
39-2	AP1000 Core Shroud	
39-3	Comparison of ULPU-2000 Configuration III and ULPU-2000 Configuration	IV39-25
39-4	Effect of Water Level on Water Circulation During IVR	
39-5	ULPU-2000 Configuration IV Results (Reference 39-4)	
39-6	AP1000 In-Vessel Retention of Molten Core Debris Quantification Zirconiur	n
	Oxidation Fraction Input Probability Distribution	
39-7	AP1000 In-Vessel Retention of Molten Core Debris Quantification Mass of	
	Steel in Debris Input Probability Distribution	
39-8	AP1000 In-Vessel Retention of Molten Core Debris Quantification Time of	
	Final Bounding State Input Probability Distribution	
39-9	AP1000 In-Vessel Retention of Molten Core Debris Quantification Height of	• •
	the Oxide Laver	
39-10	AP1000 In-Vessel Retention of Molten Core Debris Quantification Height of	
•• ••	the Metal Laver	
39-11	AP1000 In-Vessel Retention of Molten Core Debris Quantification Power	
	Density in Oxide Debris	
39-12	AP1000 In-Vessel Retention of Molten Core Debris Quantification Internal	
	Rayleigh Number in the Oxide Layer	
39-13	AP1000 In-Vessel Retention of Molten Core Debris Quantification External	
	Ravleigh Number in the Metal Laver	
39-14	AP1000 In-Vessel Retention of Molten Core Debris Quantification	
	Normalized Heat Fluxes	
39-15	AP1000 Passive Core Cooling System	
39-16	Containment Floodable Region	
39-17	Containment Floodable Region – Exploded View	
39-18	AP1000 Cavity Flooding Rate	
39-19	Schematic of the AP1000 Reactor Vessel, Vessel Cavity, Vessel Insulation.	
· . ·	and Vents	
39A-1	AP1000 Reactor Pressure Vessel, Core and Lower Internals	39A-21
39A-2	Core Shroud	39A-22
39A-3	Bottom of Core Shroud, Core Barrel, and Lower Core Support Plate	
	(Not to Scale)	39A-23
39A-4	Axial Power Shapes Used for Core Relocation Analysis	39A-24
39A-5	Radial Power Shape Used for Core Relocation Analysis	39A-25
39A-6	Cross Section Geometry of Finite Difference Computational Model	39A-26
39A-7	Computational Mesh for Finite Difference Computational Model	39A-27
39A-8	MAAP4 AP1000 Core Melting and Relocation, Top-Skewed Power Shape	
	Reactor - Coolant System Pressure	39A-28

lxxiii

<u>Figure No.</u>	Title	Page
39A-9	MAAP4 AP1000 Core Melting and Relocation, Top-Skewed Power Shape –	
	Containment and Reactor Coolant System Pressure	39A-28
39A-10	MAAP4 AP1000 Core Melting and Relocation, Chopped Cosine Power	
	Shape – Reactor Vessel Mixture Level.	39A-29
<b>39A-</b> 11	MAAP4 AP1000 Core Melting and Relocation, Top-Skewed Power Shape –	
	Hottest Temperature in Core	39A-29
39A-12	MAAP4 AP1000 Core Melting and Relocation, Top-Skewed Power Shape –	
	Mass of Hydrogen Generated in Core	39A-30
39A-13	MAAP4 AP1000 Core Melting and Relocation, Top-Skewed Power Shape	
	Temperature of Core Shroud/Barrel (Core Elevation 1.7 – 2.0 m)	39A-30
39A-14	MAAP4 AP1000 Core Melting and Relocation, Top-Skewed Power Shape	
	Temperature of Core Shroud/Barrel (Core Elevation 2.0 – 2.3 m)	39A-31
39A-15	MAAP4 AP1000 Core Melting and Relocation. Top-Skewed Power Shape –	
	Mass of Core Shroud/Barrel	<b>39A-3</b> 1
39A-16	MAAP4 AP1000 Core Melting and Relocation, Top-Skewed Power Shape	
	Volume of Debris in Reactor Vessel Lower Plenum	39A-32
39A-17	MAAP4 AP1000 Core Melting and Relocation, Chopped Cosine Power	
	Shape – Reactor Coolant System Pressure	39A-32
39A-18	MAAP4 AP1000 Core Melting and Relocation. Chopped Cosine Power	
	Shape – Containment and Reactor Coolant System Pressure	39A-33
39A-19	MAAP4 AP1000 Core Melting and Relocation, Chopped Cosine Power	
	Shape – Reactor Vessel Mixture Level	39A-33
39A-20	MAAP4 AP1000 Core Melting and Relocation, Chopped Cosine Power	
	Shape – Hottest Temperature in Core	39A-34
39A-21	MAAP4 AP1000 Core Melting and Relocation. Chopped Cosine Power	
	Shape – Mass of Hydrogen Generated in Core	
39A-22	MAAP4 AP1000 Core Melting and Relocation. Chopped Cosine Power Shape	
	Temperature of Core Shroud/Barrel (Core Elevation 1.1 – 1.4 m)	39A-35
39A-23	MAAP4 AP1000 Core Melting and Relocation. Chopped Cosine Power Shape	
	Temperature of Core Shroud/Barrel (Core Elevation 1.4 – 1.7 m)	39A-35
39A-24	MAAP4 AP1000 Core Melting and Relocation. Chopped Cosine Power	
	Shape – Mass of Core Shroud/Barrel	39A-36
39A-25	MAAP4 AP1000 Core Melting and Relocation Chopped Cosine Power	
0711 20	Shape Volume of Debris in Reactor Vessel Lower Plenum	394-36
39A-26	Initial Oxide Relocation to Lower Plenum	394-37
39A-27	Finite Difference Result for Ton-Skewed Power Shape at Level 5	394-38
39A-28	Finite Difference Temperature Man Level 5 at 5380 Seconds for	
5711 20	Ton-Skewed Power Shape Case	394-38
39A-29	MAAP4 Core Temperature Profile for Ton-Skewed Power Shape Core	
	Flevation = $20 - 23$ m Above Bottom of Active Fuel (Core Avial Pow 12)	304-30
39A-30	Relocation of Corium	304_30
304_31	Model for Pelocation to Lower Denum	20 4 10
JJM-J1		

**AP1000 Probabilistic Risk Assessment** 

#### LIST OF FIGURES (Cont.)

đ.

#### Figure No. **Title** Page 40-1 40-2 40-3 40-4 AP1000 Containment Venting Loss of Containment Air ......40-10 40-5 AP1000 Dry PCS Containment Pressure Response......40-11 40-6 41-1 IRWST Hydrogen Venting......41-36 41-2 Accident Class 3BE Early Detonation Decomposition Event Tree -41-3 Accident Class 3BE Early Detonation Decomposition Event Tree -Given RFL Failure......41-38 41-4 41-5 41-6 Accident Class 3D/1D Early Detonation Decomposition Event Tree......41-41 41-7 41-8 41-9 No Reflood Pre-Burn Containment Pressure Probability Density Function ......41-44 41-10 41-11 Early Reflood Hydrogen Generation Probability Density Function.......41-46 41-12 41-13 Early Reflood Hydrogen Deflagration Peak Pressure Probability......41-48 41-14 41-15 Late Reflood Pre-Burn Containment Pressure Probability Density Function ......41-50 41-16 41-17 Accident Class 3BE Intermediate Detonation Decomposition Event Tree -Accident Class 3BE Intermediate Detonation Decomposition Event Tree -41-18 Given RFL Failure......41-53 41-19 41-20 Accident Class 3C/3BR Intermediate Detonation Decomposition Event Tree .......41-55 41-21 Accident Class 3D/1D Intermediate Detonation Decomposition Event Tree ......41-56 41-22 41A-1 Case 3BE-1: Reactor Coolant System Pressure DVI Line Break for Containment Water Level......41A-41 Case 3BE-1: Core-Exit Gas Temperature DVI Line Break for 41A-2 41A-3 Case 3BE-1: Reactor Vessel Mixture Level DVI Line Break for Containment Water Level......41A-42 Case 3BE-1: Hydrogen Generated In-Vessel DVI Line Break for 41A-4

<u>Figure No.</u>	Title	<u>Page</u>
41A-5	Case 3BE-1: Containment Pressure DVI Line Break for Containment	
	Water Level	41A-43
41A-6	Case 3BE-1: Containment Gas Temperature DVI Line Break for	
	Containment Water Level	41 <b>A-43</b>
41A-7	Case 3BE-1: Containment Compartments Water Level DVI Line Break for	
	Containment Water Level	41A-44
41A-8	Case 3BE-1: Well-Mixed Compartment Hydrogen Concentration DVI Line	
	Break for Containment Water Level	41A-44
41A-9	Case 3BE-1: Well-Mixed Compartment Steam Concentration DVI Line	
	Break for Containment Water Level	41A-45
41A-10	Case 3BE-1: Well-Mixed Compartment Oxygen Concentration DVI Line	
	Break for Containment Water Level	41A-45
41A-11	Case 3BE-1: Confined Compartment Hydrogen Concentration DVI Line	
	Break for Containment Water Level	41A-46
41A-12	Case 3BE-1: Confined Compartment Steam Concentration DVI Line Break	
	for Containment Water Level	41A-46
41A-13	Case 3BE-1: Confined Compartment Oxygen Concentration DVI Line	
	Break for Containment Water Level	41A-47
41A-14	Case 3BE-1: Equivalence Ratio in SG Room DVI Line Break for	
	Containment Water Level	41A-47
41A-15	Case 3BE-1: Equivalence Ratio in CMT Room DVI Line Break for	
	Containment Water Level	41A-48
41A-16	Case 3BE-1: Equivalence Ratio in IRWST DVI Line Break for	
	Containment Water Level	41A-48
41A-17	Case 3BE-1: Equivalence Ratio in PXS DVI Line Break for Containment	
	Water Level	41A-49
41A-18	Case 3BE-2: Reactor Coolant System Pressure DVI Line Break with Failed	
	Gravity Injection and No PXS Flooding	41A-49
41A-19	Case 3BE-2: Core-Exit Gas Temperature DVI Line Break with Failed	
	Gravity Injection and No PXS Flooding	41A-50
41A-20	Case 3BE-2: Reactor Vessel Mixture Level DVI Line Break with Failed	
4111 20	Gravity Injection and No PXS Flooding	41A-50
41A-21	Case 3BE-2. Hydrogen Generated In-Vessel DVI Line Break with Failed	
111 21	Gravity Injection and No PXS Flooding	41A-51
41A-22	Case 3RE-2. Containment Pressure DVI I ine Break with Failed Gravity	
	Injection and No PXS Flooding	41A-51
41A-23	Case 3RE-2: Containment Gas Temperature DVI Line Break with Failed	
4111 25	Gravity Injection and No PXS Flooding	414-52
41A-24	Case 3RF-2. Containment Compartments Water I evel DVI I ine Break with	
7111-47	Failed Gravity Injection and No PXS Flooding	414-52
414-25	Case 3RE-2. Well-Mixed Compartment Hydrogen Concentration DVI Line	
717-23	Read with Failed Gravity Injection and No DVS Flooding	A1 A - 52
	Dicak with Fahou Olavity hijocubil and two FAS Flooding	

i 🖗 y

#### LIST OF FIGURES (Cont.)

#### Figure No. **Title** Page Case 3BE-2: Well-Mixed Compartment Steam Concentration DVI Line 41A-26 Break with Failed Gravity Injection and No PXS Flooding ......41A-53 41A-27 Case 3BE-2: Well-Mixed Compartment Oxygen Concentration DVI Line Break with Failed Gravity Injection and No PXS Flooding ......41A-54 Case 3BE-2: Confined Compartment Hydrogen Concentration DVI Line 41A-28 Break with Failed Gravity Injection and No PXS Flooding ......41A-54 41A-29 Case 3BE-2: Confined Compartment Steam Concentration DVI Line Break with Failed Gravity Injection and No PXS Flooding......41A-55 41A-30 Case 3BE-2: Confined Compartment Oxygen Concentration DVI Line Break with Failed Gravity Injection and No PXS Flooding......41A-55 41A-31 Case 3BE-2: Equivalence Ratio in SG Room DVI Line Break with Failed 41A-32 Case 3BE-2: Equivalence Ratio in CMT Room DVI Line Break with Failed Case 3BE-2: Equivalence Ratio in IRWST DVI Line Break with Failed 41A-33 Gravity Injection and No PXS Flooding......41A-57 Case 3BE-2: Equivalence Ratio in PXS DVI Line Break with Failed 41A-34 Gravity Injection and No PXS Flooding......41A-57 41A-35 Case 3BE-4: Reactor Coolant System Pressure Spurious ADS, Failed 41A-36 Case 3BE-4: Core-Exit Gas Temperature Spurious ADS, Failed Gravity 41A-37 Case 3BE-4: Reactor Vessel Mixture Level Spurious ADS, Failed Gravity Case 3BE-4: Hydrogen Generated In-Vessel Spurious ADS, Failed Gravity 41A-38 41A-39 41A-40 Case 3BE-4: Containment Gas Temperature Spurious ADS, Failed Case 3BE-4: Containment Compartments Water Level Spurious ADS, 41A-41 41A-42 Case 3BE-4: Well-Mixed Compartment Hydrogen Concentration Spurious 41A-43 Case 3BE-4: Well-Mixed Compartment Steam Concentration Spurious 41A-44 Case 3BE-4: Well-Mixed Compartment Oxygen Concentration Spurious 41A-45 Case 3BE-4: Confined Compartment Hydrogen Concentration Spurious 41A-46 Case 3BE-4: Confined Compartment Steam Concentration Spurious ADS, 41A-47 Case 3BE-4: Confined Compartment Oxygen Concentration Spurious ADS,

<u>Figure No.</u>	Title	Page 1
41A-48	Case 3BE-4: Equivalence Ratio in SG Room Spurious ADS, Failed	
	Gravity Injection	41A-64
41A-49	Case 3BE-4: Equivalence Ratio in CMT Room Spurious ADS, Failed	
	Gravity Injection	41A-65
41A-50	Case 3BE-4: Equivalence Ratio in IRWST Spurious ADS, Failed Gravity	
	Injection	41A-65
41A-51	Case 3BE-4: Equivalence Ratio in PXS Spurious ADS, Failed Gravity	
	Injection	41A-66
41A-52	Case 3BE-5: Reactor Coolant System Pressure SBLOCA with Failed	
	Gravity Injection	41A-66
41A-53	Case 3BE-5: Core-Exit Gas Temperature SBLOCA with Failed Gravity	
	Injection	41A-67
41A-54	Case 3BE-5: Reactor Vessel Mixture Level SBLOCA with Failed	
	Gravity Injection	41A-67
41A-55	Case 3BE-5: Hydrogen Generated In-Vessel SBLOCA with Failed	
	Gravity Injection	41A-68
41A-56	Case 3BE-5: Containment Pressure SBLOCA with Failed Gravity Injection	41A-68
41A-57	Case 3BE-5: Containment Gas Temperature SBLOCA with Failed	
	Gravity Injection	41A-69
41A-58	Case 3BE-5: Containment Compartments Water Level SBLOCA with	
	Failed Gravity Injection	41A-69
41A-59	Case 3BE-5: Well-Mixed Compartment Hydrogen Concentration SBLOCA	
	with Failed Gravity Injection	41A-70
41A-60	Case 3BE-5: Well-Mixed Compartment Steam Concentration SBLOCA	
	with Failed Gravity Injection	41A-70
41A-61	Case 3BE-5: Well-Mixed Compartment Oxygen Concentration SBLOCA	
	with Failed Gravity Injection	41A-71
41A-62	Case 3BE-5: Confined Compartment Hydrogen Concentration SBLOCA	
	with Failed Gravity Injection	41A-71
41A-63	Case 3BE-5: Confined Compartment Steam Concentration SBLOCA with	
	Failed Gravity Injection	41A-72
41A-64	Case 3BE-5: Confined Compartment Oxygen Concentration SBLOCA	
	with Failed Gravity Injection	41A-72
41A-65	Case 3BE-5: Equivalence Ratio in SG Room SBLOCA with Failed	
	Gravity Injection	41A-73
41A-66	Case 3BE-5: Equivalence Ratio in CMT Room SBLOCA with Failed	
	Gravity Injection	41A-73
41A-67	Case 3BE-5: Equivalence Ratio in IRWST SBLOCA with Failed	
	Gravity Injection	41A-74
41A-68	Case 3BE-5: Equivalence Ratio in PXS SBLOCA with Failed Gravity	
	Injection	41A-74
41A-69	Case 3BE-6: Reactor Coolant System Pressure SBLOCA with Failed	
	Gravity Injection	41A-75

AP1000 Probabilistic Risk Assessment

# LIST OF FIGURES (Cont.)

1

Figure No.	Title	Page
41A-70	Case 3BE-6: Core-Exit Gas Temperature SBLOCA with Failed Gravity	
	Injection	41A-75
41A-71	Case 3BE-6: Reactor Vessel Mixture Level SBLOCA with Failed	
A1 A 70	Gravity Injection	41A-76
41A-72	Gravity Injection	41 4-76
41A-73	Case 3BE-6: Containment Pressure SBLOCA with Failed Gravity Injection	<u></u> <u>414_77</u>
41A-74	Case 3BE-6: Containment Gas Temperature SBLOCA with Failed	······································
	Gravity Injection	41 A-77
41A-75	Case 3BE-6: Containment Compartments Water Level SBLOCA with	
	Failed Gravity Injection	41A-78
41A-76	Case 3BE-6: Well-Mixed Compartment Hydrogen Concentration SBLOCA	
	with Failed Gravity Injection	41A-78
41A-77	Case 3BE-6: Well-Mixed Compartment Steam Concentration SBLOCA	
	with Failed Gravity Injection	41A-79
41A-78	Case 3BE-6: Well-Mixed Compartment Oxygen Concentration SBLOCA	
	with Failed Gravity Injection	41A-79
41A-79	Case 3BE-6: Confined Compartment Hydrogen Concentration SBLOCA	:
	with Failed Gravity Injection	41A-80
41A-80	Case 3BE-6: Confined Compartment Steam Concentration SBLOCA with	
en e	Failed Gravity Injection	41A-80
41A-81	Case 3BE-6: Confined Compartment Oxygen Concentration SBLOCA with	
	Failed Gravity Injection	41A-81
41A-82	Case 3BE-6: Equivalence Ratio in SG Room SBLOCA with Failed	
	Gravity Injection	41A-81
41A-83	Case 3BE-6: Equivalence Ratio in CMT Room SBLOCA with Failed	
	Gravity Injection	41A-82
41A-84	Case 3BE-6: Equivalence Ratio in IRWST SBLOCA with Failed Gravity	
	Injection	41A-82
41A-85	Case 3BE-6: Equivalence Ratio in PXS SBLOCA with Failed Gravity	
	Injection	41A-83
41A-86	Case 3BE-8: Reactor Coolant System Pressure SGTR	41A-83
41A-87	Case 3BE-8: Core-Exit Gas Temperature SGTR	41A-84
41A-88	Case 3BE-8: Reactor Vessel Mixture Level SGTR	41 <b>A-8</b> 4
41A-89	Case 3BE-8: Hydrogen Generated In-Vessel SGTR	41A-85
41A-90	Case 3BE-8: Containment Pressure SGTR	41A-85
41A-91	Case 3BE-8: Containment Gas Temperature SGTR	41A-86
41A-92	Case 3BE-8: Containment Compartments Water Level SGTR	41A-86
41A-93	Case 3BE-8: Well-Mixed Compartment Hydrogen Concentration SGTR	41A-87
<b>41A-9</b> 4	Case 3BE-8: Well-Mixed Compartment Steam Concentration SGTR	41A-87
41A-95	Case 3BE-8: Well-Mixed Compartment Oxygen Concentration SGTR	41A-88
41A-96	Case 3BE-8: Confined Compartment Hydrogen Concentration SGTR	41A-88
41A-97	Case 3BE-8: Confined Compartment Steam Concentration SGTR	41A-89

### Figure No.

### <u>Title</u>

#### Page 1

41A-98	Case 3BE-8: Confined Compartment Oxygen Concentration SGTR	41A-89
41A-99	Case 3BE-8: Equivalence Ratio in SG Room SGTR	41 <b>A-90</b>
41A-100	Case 3BE-8: Equivalence Ratio in CMT Room SGTR	41 <b>A-90</b>
41A-101	Case 3BE-8: Equivalence Ratio in IRWST SGTR	41A-91
41A-102	Case 3BE-8: Equivalence Ratio in PXS SGTR	41 <b>A-9</b> 1
41A-103	Case 3BE-9: Reactor Coolant System Pressure SGTR	41A-92
41A-104	Case 3BE-9: Core-Exit Gas Temperature SGTR	41 <b>A-92</b>
41A-105	Case 3BE-9: Reactor Vessel Mixture Level SGTR	41A-93
41A-106	Case 3BE-9: Hydrogen Generated In-Vessel SGTR	41A-93
41A-107	Case 3BE-9: Containment Pressure SGTR	41A-94
41A-108	Case 3BE-9: Containment Gas Temperature SGTR	41A-94
41A-109	Case 3BE-9: Containment Compartments Water Level SGTR	41A-95
41A-110	Case 3BE-9: Well-Mixed Compartment Hydrogen Concentration SGTR	41A-95
<b>41A-1</b> 11	Case 3BE-9: Well-Mixed Compartment Steam Concentration SGTR	41A-96
41A-112	Case 3BE-9: Well-Mixed Compartment Oxygen Concentration SGTR	41A-96
41A-113	Case 3BE-9: Confined Compartment Hydrogen Concentration SGTR	41A-97
41A-114	Case 3BE-9: Confined Compartment Steam Concentration SGTR	41A-97
41A-115	Case 3BE-9: Confined Compartment Oxygen Concentration SGTR	41A-98
41A-116	Case 3BE-9: Equivalence Ratio in SG Room SGTR	41A-98
41A-117	Case 3BE-9: Equivalence Ratio in CMT Room SGTR	41A-99
41A-118	Case 3BE-9: Equivalence Ratio in IRWST SGTR	41A-99
41A-119	Case 3BE-9: Equivalence Ratio in PXS SGTR	41A-100
41A-120	Case 3BL-1: Reactor Coolant System Pressure SBLOCA with Failed	
	Gravity Recirculation	41A-100
41A-121	Case 3BL-1: Core-Exit Gas Temperature SBLOCA with Failed	
	Gravity Recirculation	41 <b>A-10</b> 1
41A-122	Case 3BL-1: Reactor Vessel Mixture Level SBLOCA with Failed	
	Gravity Recirculation	41A-101
41A-123	Case 3BL-1: Hydrogen Generated In-Vessel SBLOCA with Failed	
	Gravity Recirculation	41A-102
41A-124	Case 3BL-1: Containment Pressure SBLOCA with Failed Gravity	
	Recirculation	41A-102
41A-125	Case 3BL-1: Containment Gas Temperature SBLOCA with Failed	
	Gravity Recirculation	41A-103
41A-126	Case 3BL-1: Containment Compartments Water Level SBLOCA with	
	Failed Gravity Recirculation	41A-103
41A-127	Case 3BL-1: Well-Mixed Compartment Hydrogen Concentration SBLOCA	
	with Failed Gravity Recirculation	41A-104
41A-128	Case 3BL-1: Well-Mixed Compartment Steam Concentration SBLOCA	
	with Failed Gravity Recirculation	41A-104
41A-129	Case 3BL-1: Well-Mixed Compartment Oxygen Concentration SBLOCA	
	with Failed Gravity Recirculation	41A-105
	•	

AP1000 Probabilistic Risk Assessment

# LIST OF FIGURES (Cont.)

1

Figure No.	Title	Page
41A-130	Case 3BL-1: Confined Compartment Hydrogen Concentration SBLOCA	41 4 105
A1A_131	Case 3BL 1: Confined Compartment Steam Concentration SPLOCA with	41A-105
417-131	Eviled Gravity Reciprolation	41 4 106
414-132	Case 3BL-1: Confined Compartment Oxygen Concentration SBLOCA	
41A-152	with Failed Gravity Recirculation	A1 A 106
414-133	Case 3BL-1. Fourier Patio in SG Room SBLOCA with Failed	
4111-155	Gravity Recipulation	41 4-107
414-134	Case 3BL-1; Equivalence Patio in CMT Room SBLOCA with Foiled	
7121-197	Gravity Recirculation	414-107
41A-135	Case 3BI -1. Equivalence Ratio in IRWST SBI OCA with Failed	
+111-155	Gravity Recipulation	41 4-108
414-136	Case 3BL-1: Equivalence Ratio in PXS SBI OCA with Failed Gravity	
414-150	Perinculation	A1A 100
A1 A-137	Case 3RI -2. Deactor Coolant System Drossure DVI Line Break with Evilad	+1A-1V0
414-137	Case JDL-2. Reactor Coolant System Flessure D VI Line Dieak with Fancu Gravity Decirculation	41 4 100
414-138	Case 2BL 2: Core Exit Gas Temperature DVI Line Proof with Foiled	
414-130	Case 5DL-2. Cole-Exit Gas Temperature DVT Line Bleak with Failed	41 4 100
A1 A_120	Case 2PI 2: Deastor Vessel Mixture I aval DVI I in Drock with Esilad	41A-109
414-137	Case 5DL-2. Reaction Vessel Wixture Level DVI Line Bleak with Falled	41.4 110
A1 A-140	Case 2BL 2: Hudrogen Generated In Vessel DVI Line Break with Eniled	41A-110
417-140	Case JDL-2. Hydrogen Generated III- Vessel DVI Line Dieak with Paried	41 4 110
A1 A 1A1	Case 2PL 2: Containment Program DVI Line Proof with Earled Gravity	41A-110
417-141	Case JBL-2. Containment Plessure DVI Line Bleak with Fallet Gravity	414 111
A1 A 140	Core 2DI 2. Containment Con Temperature DVI Line Devel- with Bailed	41A-111
41A-142	Case 3BL-2: Containment Gas Temperature DVI Line Break with Falled	41 4 111
A1 A 142	Case 2BL 2: Containment Comportments Water Level DVI Line Breek	41A-111
41 <b>A-1</b> 45	with Failed Gravity Pagingulation	41 4 113
A1 A 144	Case 2DL 2: Wall Mized Compartment Hudrogen Concentration	41A-112
417-144	DVI Line Proof: with Epiled Compartment Hydrogen Concentration	41 4 110
A1A 145	Care 2DL 2: Wall Mized Compariment Steem Concentration DVI Line	41A-112
41A-14J	Case 3DL-2: Well-Wilkey Compariment Steam Concentration DVI Line Brook with Failed Gravity Designation	41 4 110
A1 A 146	Core 2DL 2: Wall Mired Comportment Orway Concentration DVI Line	41A-115
41A-140	Case 5DL-2: Well-Wilked Compariment Oxygen Concentration DVI Line	41 4 112
A1 A 147	Core 2DL 2. Confined Composition Hudroney Concentration DVI Line	41A-115
41/3-14/	Case 3BL-2: Commed Compariment Hydrogen Concentration DVI Line	414 114
A1 A 140	Gree 2 PL 2: Configed Concentration Concentration DVI Line Druck	41A-114
41A-140	Case 5BL-2: Commed Compariment Steam Concentration DVI Line Break	A1 A 11 A
41 4 140	Case 2DL 2. Confined Comparison Concentration DNUL inc	41A-114
41M-147	Case 3DL-2: Confined Compariment Oxygen Concentration DVI Line	A1 A 11-
A1 & 160	Case 2DL 2. Equivalence Detic in SC Description Diff. in the Description of the Science Diff.	41A-115
41A-150	Case 3DL-2: Equivalence kano in SG Koom DVI Line Break with Failed	
	Gravity Recirculation	41A-115

: lxxxi

<u>Figure No.</u>	Title	Page
41A-151	Case 3BL-2: Equivalence Ratio in CMT Room DVI Line Break with	
	Failed Gravity Recirculation	41A-116
41A-152	Case 3BL-2: Equivalence Ratio in IRWST DVI Line Break with Failed	
	Gravity Recirculation	41A-116
41A-153	Case 3BL-2: Equivalence Ratio in PXS DVI Line Break with Failed	
	Gravity Recirculation	41A-117
41A-154	Case 3BR-1: Reactor Coolant System Pressure CL LBLOCA with	
	Accumulator Failure	41A-117
41A-155	Case 3BR-1: Core-Exit Gas Temperature CL LBLOCA with	
	Accumulator Failure	41A-118
41A-156	Case 3BR-1: Reactor Vessel Mixture Level CL LBLOCA with	
	Accumulator Failure	41A-118
41A-157	Case 3BR-1: Hydrogen Generated In-Vessel CL LBLOCA with	
	Accumulator Failure	41A-119
41A-158	Case 3BR-1: Containment Pressure CL LBLOCA with Accumulator	
	Failure	41A-119
41A-159	Case 3BR-1: Containment Gas Temperature CL LBLOCA with	
	ccumulator Failure	41A-120
41A-160	Case 3BR-1: Containment Compartments Water Level CL LBLOCA	
	with Accumulator Failure	41A-120
41A-161	Case 3BR-1: Well-Mixed Compartment Hydrogen Concentration	
	CL LBLOCA with Accumulator Failure	41A-121
41A-162	Case 3BR-1: Well-Mixed Compartment Steam Concentration CL LBLOCA	
	with Accumulator Failure	41A-121
41A-163	Case 3BR-1: Well-Mixed Compartment Oxygen Concentration CL LBLOC	A
	with Accumulator Failure	41A-122
41A-164	Case 3BR-1: Confined Compartment Hydrogen Concentration CL LBLOCA	
	with Accumulator Failure	
41A-165	Case 3BR-1: Confined Compartment Steam Concentration CL LBLOCA	
	with Accumulator Failure	41A-123
41A-166	Case 3BR-1: Confined Compartment Oxygen Concentration CL LBLOCA	
	with Accumulator Failure	
41A-167	Case 3BR-1: Equivalence Ratio in SG Room CL LBLOCA with	
	Accumulator Failure	41A-124
41A-168	Case 3BR-1: Equivalence Ratio in CMT Room CL LBLOCA with	
	Accumulator Failure	41A-124
41A-169	Case 3BR-1: Equivalence Ratio in IRWST CL LBLOCA with	
	Accumulator Failure	
41A-170	Case 3BR-1: Equivalence Ratio in PXS CL LBLOCA with Accumulator	
	Failure	
41A-171	Case 3BR-1a: Reactor Coolant System Pressure CL L BLOCA with	
	Accumulator Failure	41A-126

- 5

Figure No.	Title	Page
41A-172	Case 3BR-1a: Core-Exit Gas Temperature CL LBLOCA with	
•	Accumulator Failure	41A-126
41A-173	Case 3BR-1a: Reactor Vessel Mixture Level CL LBLOCA with	
	Accumulator Failure	41A-127
41A-174	Case 3BR-1a: Hydrogen Generated In-Vessel CL LBLOCA with	
	Accumulator Failure	41A-127
41A-175	Case 3BR-1a: Containment Pressure CL LBLOCA with Accumulator	
т	Failure	41A-128
41A-176	Case 3BR-1a: Containment Gas Temperature CL LBLOCA with	
the second second	Accumulator Failure	41A-128
41A-177	Case 3BR-1a: Containment Compartments Water Level CL LBLOCA	
· · · ·	with Accumulator Failure	41A-129
41A-178	Case 3BR-1a: Well-Mixed Compartment Hydrogen Concentration	
·	CL LBLOCA with Accumulator Failure	41A-129
41A-179	Case 3BR-1a: Well-Mixed Compartment Steam Concentration CL LBLOC	A ·
1	with Accumulator Failure	41A-130
41A-180	Case 3BR-1a: Well-Mixed Compartment Oxygen Concentration	
	CL LBLOCA with Accumulator Failure	41A-130
41A-181	Case 3BR-1a: Confined Compartment Hydrogen Concentration	
	CL LBLOCA with Accumulator Failure	41A-131
41A-182	Case 3BR-1a: Confined Compartment Steam Concentration CL LBLOCA	
	with Accumulator Failure	41A-131
41A-183	Case 3BR-1a: Confined Compartment Oxygen Concentration CL LBLOCA	
	with Accumulator Failure	41A-132
41A-184	Case 3BR-1a: Equivalence Ratio in SG Room CL LBLOCA with	
	Accumulator Failure	41A-132
41A-185	Case 3BR-1a: Equivalence Ratio in CMT Room CL LBLOCA with	
	Accumulator Failure	41A-133
41A-186	Case 3BR-1a: Equivalence Ratio in IRWST CL LBLOCA with	
	Accumulator Failure	41A-133
41A-187	Case 3BR-1a: Equivalence Ratio in PXS CL LBLOCA with	
	Accumulator Failure	41A-134
41A-188	Case 3C-1: Reactor Coolant System Pressure Vessel Rupture	41A-134
41A-189	Case 3C-1: Core-Exit Gas Temperature Vessel Rupture	41A-135
41A-190	Case 3C-1: Reactor Vessel Mixture Level Vessel Rupture	41A-135
41A-191	Case 3C-1: Hydrogen Generated In-Vessel Vessel Rupture	41A-136
41A-192	Case 3C-1: Containment Pressure Vessel Rupture	41A-136
41A-193	Case 3C-1: Containment Gas Temperature Vessel Rupture	41A-137
41A-194	Case 3C-1: Containment Compartments Water Level Vessel Rupture	41A-137
41A-195	Case 3C-1: Well-Mixed Compartment Hydrogen Concentration Vessel	
	Rupture	41A-138
41A-196	Case 3C-1: Well-Mixed Compartment Steam Concentration Vessel	
• •	Rupture	41A-138

<u>Figure No.</u>	Title	<u>Page</u>
41A-197	Case 3C-1: Well-Mixed Compartment Oxygen Concentration Vessel	
	Rupture	41A-139
41A-198	Case 3C-1: Confined Compartment Hydrogen Concentration Vessel	
	Rupture	41A-139
41A-199	Case 3C-1: Confined Compartment Steam Concentration Vessel	
	Rupture	41A-140
41A-200	Case 3C-1: Confined Compartment Oxygen Concentration Vessel	
	Rupture	41A-140
41A-201	Case 3C-1: Equivalence Ratio in SG Room Vessel Rupture	41A-141
41A-202	Case 3C-1: Equivalence Ratio in CMT Room Vessel Rupture	41A-141
41A-203	Case 3C-1: Equivalence Ratio in IRWST Vessel Rupture	41A-142
41A-204	Case 3C-1: Equivalence Ratio in PXS Vessel Rupture	41A-142
41A-205	Case 3D-1: Reactor Coolant System Pressure Spurious ADS-4 with Failed	
	CMTs	41A-143
41A-206	Case 3D-1: Core-Exit Gas Temperature Spurious ADS-4 with Failed	
	CMTs.	41A-143
41A-207	Case 3D-1: Reactor Vessel Mixture Level Spurious ADS-4 with Failed	
	CMTs.	41A-144
41A-208	Case 3D-1: Hydrogen Generated In-Vessel Spurious ADS-4 with Failed	
41 4 000		41A-144
41A-209	Case 3D-1: Containment Pressure Spurious ADS-4 with Failed CM1s	41A-145
41A-210	Case 3D-1: Containment Gas Temperature Spurious ADS-4 with Failed	41 4-145
41A-211	Case 3D-1: Containment Compartments Water Level Spurious ADS-4 with	
	Failed CMTs	
41A-212	Case 3D-1: Well-Mixed Compartment Hydrogen Concentration Spurious	
	ADS-4 with Failed CMTs	41A-146
41A-213	Case 3D-1: Well-Mixed Compartment Steam Concentration Spurious	
	ADS-4 with Failed CMTs	41A-147
41A-214	Case 3D-1: Well-Mixed Compartment Oxygen Concentration Spurious	
	ADS-4 with Failed CMTs	41A-147
41A-215	Case 3D-1: Confined Compartment Hydrogen Concentration Spurious	
	ADS-4 with Failed CMTs	41A-148
41A-216	Case 3D-1: Confined Compartment Steam Concentration Spurious	
	ADS-4 with Failed CMTs	41A-148
41A-217	Case 3D-1: Confined Compartment Oxygen Concentration Spurious	
	ADS-4 with Failed CMTs	41A-149
41A-218	Case 3D-1: Equivalence Ratio in SG Room Spurious ADS-4 with Failed	
	CMTs	41A-149
41A-219	Case 3D-1: Equivalence Ratio in CMT Room Spurious ADS-4 with	
	Failed CMTs.	41A-150
41A-220	Case 3D-1: Equivalence Ratio in IRWST Spurious ADS-4 with Failed	
	CMTs	41A-150

AP1000 Probabilistic Risk Assessment

## LIST OF FIGURES (Cont.)

**Q** 

Figure No.	Title	Page
41A-221	Case 3D-1: Equivalence Ratio in PXS Spurious ADS-4 with Failed	
	CMTs.	41A-151
41A-222	Case 3D-2: Reactor Coolant System Pressure Spurious ADS-2, Failed	
	CMTs	41A-151
41A-223	Case 3D-2: Core-Exit Gas Temperature Spurious ADS-2, Failed	
,	CMTs	41A-152
41A-224	Case 3D-2: Reactor Vessel Mixture Level Spurious ADS-2, Failed	
	CMTs	41A-152
41A-225	Case 3D-2: Hydrogen Generated In-Vessel Spurious ADS-2, Failed	
	CMTs	41A-153
41A-226	Case 3D-2: Containment Pressure Spurious ADS-2, Failed CMTs	41A-153
41A-227	Case 3D-2: Containment Gas Temperature Spurious ADS-2, Failed	
	CMTs.	41A-154
41A-228	Case 3D-2: Containment Compartments Water Level Spurious ADS-2,	
	Failed CMTs	41A-154
41A-229	Case 3D-2: Well-Mixed Compartment Hydrogen Concentration Spurious	44 4 4 5 5
	ADS-2, Failed CMTs	41A-155
41A-230	Case 3D-2: Well-Mixed Compartment Steam Concentration Spurious	414 122
A1 A 021	ADS-2, Falled CM15	41A-155
41A-231	ADS 2. Encloyed Compariment Oxygen Concentration Spurious	A1 A 15C
41 4 222	ADS-2, Failed CM15	41A-150
414-252	ADS 2 Failed CMTs	A1A-156
414-233	Case 3D-2. Confined Compartment Steam Concentration Spurious ADS-2	
TIM-2JJ	Failed CMTs	414-157
41A-234	Case 3D-2. Confined Compartment Oxygen Concentration Spurious	
-111 20-	ADS-2. Failed CMTs	41A-157
41A-235	Case 3D-2: Equivalence Ratio in SG Room Spurious ADS-2. Failed	
	CMTs.	41A-158
41A-236	Case 3D-2: Equivalence Ratio in CMT Room Spurious ADS-2, Failed	
	CMTs.	41A-158
41A-237	Case 3D-2: Equivalence Ratio in IRWST Spurious ADS-2, Failed	
	CMTs	41A-159
41A-238	Case 3D-2: Equivalence Ratio in PXS Spurious ADS-2, Failed CMTs	41A-159
41A-239	Case 3D-3: Reactor Coolant System Pressure DVI Line Break with	
	no ADS	41A-160
41A-240	Case 3D-3: Core-Exit Gas Temperature DVI Line Break with no ADS	41A-160
41A-241	Case 3D-3: Reactor Vessel Mixture Level DVI Line Break with no	
	ADS	41A-161
41A-242	Case 3D-3: Hydrogen Generated In-Vessel DVI Line Break with no	
· · · ·	ADS	41A-161
41A-243	Case 3D-3: Containment Pressure DVI Line Break with no ADS	41A-162

<u>Figure No.</u>	Title	Page
41A-244	Case 3D-3: Containment Gas Temperature DVI Line Break with no	
	ADS	41A-162
41A-245	Case 3D-3: Containment Compartments Water Level DVI Line Break	
	with no ADS	41A-163
41A-246	Case 3D-3: Well-Mixed Compartment Hydrogen Concentration DVI	
	Line Break with no ADS	41A-163
41A-247	Case 3D-3: Well-Mixed Compartment Steam Concentration DVI Line	
	Break with no ADS	41A-164
41A-248	Case 3D-3: Well-Mixed Compartment Oxygen Concentration DVI Line	
	Break with no ADS	41A-164
41A-249	Case 3D-3: Confined Compartment Hydrogen Concentration DVI Line	
	Break with no ADS	41A-165
41A-250	Case 3D-3: Confined Compartment Steam Concentration DVI Line Break	
	with no ADS	41A-165
41A-251	Case 3D-3: Confined Compartment Oxygen Concentration DVI Line	
	Break with no ADS	41A-166
41A-252	Case 3D-3: Equivalence Ratio in SG Room DVI Line Break with no	
		41A-166
41A-253	Case 3D-3: Equivalence Ratio in CMT Room DVI Line Break with	
	no ADS	41A-167
41A-254	Case 3D-3: Equivalence Ratio in IRWST DVI Line Break with no	
	ADS.	41A-167
41A-255	Case 3D-3: Equivalence Ratio in PXS DVI Line Break with no ADS	41A-168
41A-256	Case 3D-5: Reactor Coolant System Pressure Spurious ADS-2, Failed	
	CMTs, Diffusion Flame	41A-168
41A-257	Case 3D-5: Core-Exit Gas Temperature Spurious ADS-2, Failed CMTs,	41 4 1 60
	Diffusion Flame	41A-169
41A-258	Case 3D-5: Reactor Vessel Mixture Level Spurious ADS-2, Failed CMTs,	41 4 1 60
	Diffusion Flame	41A-169
41A-259	Case 3D-5: Hydrogen Generated In-Vessel Spurious ADS-2, Failed CMTs,	41 4 100
	Diffusion Flame	41A-170
41A-260	Case 3D-5: Containment Pressure Spurious ADS-2, Failed CM1s,	41 4 170
41 4 0/1	Diffusion Flame	41A-170
41A-261	Case 3D-5: Containment Gas Temperature Spurious ADS-2, Failed CMTs,	41 4 171
41 4 979		41A-171
41A-262	Case 3D-5: Containment Compartments water Level Spurious ADS-2,	41 4 171
41 4 979	Failed CMTs, Diffusion Flame	41A-171
41A-263	Case 3D-5: Well-Mixed Compartment Hydrogen Concentration Spurious	41 4 170
41 4 964	ADS-2, Failed CMTs, Diffusion Flame	41A-172
41A-264	Case 3D-3: Well-Mixed Compartment Steam Concentration Spurious	41 4 170
41 4 0/5	ADS-2, Failed CMTs, Diffusion Flame	41A-1/2
41A-265	Case 3D-3: Well-Mixed Compartment Oxygen Concentration Spurious	A1 A 170
	ADS-2, Failed CMTs, Diffusion Flame	41A-1/3

AP1000 Probabilistic Risk Assessment

## LIST OF FIGURES (Cont.)

**1** 

1

Figure No.	Title	Page
41A-266	Case 3D-5: Confined Compartment Hydrogen Concentration Spurious	<i>A</i> 1A 173
41A-267	Case 3D-5: Confined Compartment Steam Concentration Spurious ADS-2, Failed CMTs, Diffusion Flame	
41A-268	Case 3D-5: Confined Compartment Oxygen Concentration Spurious ADS-2, Failed CMTs, Diffusion Flame	41A-174
41A-269	Case 3D-5: Equivalence Ratio in SG Room Spurious ADS-2, Failed CMTs, Diffusion Flame	41A-175
41A-270	Case 3D-5: Equivalence Ratio in CMT Room Spurious ADS-2, Failed CMTs, Diffusion Flame	41A-175
41A-271	Case 3D-5: Equivalence Ratio in IRWST Spurious ADS-2, Failed CMTs, Diffusion Flame	41A-176
41A-272	Case 3D-5: Equivalence Ratio in PXS Spurious ADS-2, Failed CMTs, Diffusion Flame	41A-176
41A-273	Case 1A-3: Reactor Coolant System Pressure FW Failure with Creep of SG Tubes	41A-177
41A-274	Case 1A-3: Core-Exit Gas Temperature FW Failure with Creep of SG Tubes	41A-177
41A-275	Case 1A-3: Reactor Vessel Mixture Level FW Failure with Creep of SG Tubes	41A-178
41A-276	Case 1A-3: Hydrogen Generated In-Vessel FW Failure with Creep of SG Tubes	41A-178
41A-277	Case 1A-3: Containment Pressure FW Failure with Creep of SG Tubes	41A-179
41A-278	Case 1A-3: Containment Gas Temperature FW Failure with Creep of SG Tubes	41A-179
41A-279	Case 1A-3: Containment Compartments Water Level FW Failure with Creep of SG Tubes	41A-180
41A-280	Case 1A-3: Well-Mixed Compartment Hydrogen Concentration FW Failure with Creep of SG Tubes	41A-180
41A-281	Case 1A-3: Well-Mixed Compartment Steam Concentration FW Failure with Creep of SG Tubes	41A-181
41A-282	Case 1A-3: Well-Mixed Compartment Oxygen Concentration FW Failure with Creep of SG Tubes	41A-181
41A-283	Case 1A-3: Confined Compartment Hydrogen Concentration FW Failure with Creep of SG Tubes	41A-182
41A-284	Case 1A-3: Confined Compartment Steam Concentration FW Failure with Creep of SG Tubes	41A-182
41A-285	Case 1A-3: Confined Compartment Oxygen Concentration FW Failure with Creep of SG Tubes	
41A-286	Case 1A-3: Equivalence Ratio in SG Room FW Failure with Creep of SG Tubes	41 A-183
41A-287	Case 1A-3: Equivalence Ratio in CMT Room FW Failure with Creep of SG Tubes	41A-184

lxxxvii

Figure No.	Title	<u>Page</u>
41A-288	Case 1A-3: Equivalence Ratio in IRWST FW Failure with Creep of SG Tubes	414-184
41A-289	Case 1A-3: Equivalence Ratio in PXS FW Failure with Creen of SG Tubes.	41A-185
41A-290	Case 1A-3a: Reactor Coolant System Pressure Transient with Creep	
	of SG Tubes	41A-185
41A-291	Case 1A-3a: Core-Exit Gas Temperature Transient with Creep of SG Tubes.	41A-186
41A-292	Case 1A-3a: Reactor Vessel Mixture Level Transient with Creep of	
	SG Tubes	41A-186
41A-293	Case 1A-3a: Hydrogen Generated In-Vessel Transient with Creep of	
	SG Tubes	41A-187
41A-294	Case 1A-3a: Containment Pressure Transient with Creep of SG Tubes	41A-187
41A-295	Case 1A-3a: Containment Gas Temperature Transient with Creep of	
	SG Tubes	41A-188
41A-296	Case 1A-3a: Containment Compartments Water Level Transient with	
	Creep of SG Tubes	41A-188
41A-297	Case 1A-3a: Well-Mixed Compartment Hydrogen Concentration	
	Transient with Creep of SG Tubes	41A-189
41A-298	Case 1A-3a: Well-Mixed Compartment Steam Concentration Transient	
	with Creep of SG Tubes	41A-189
41 <b>A-299</b>	Case 1A-3a: Well-Mixed Compartment Oxygen Concentration Transient	
	with Creep of SG Tubes	41A-190
41A-300	Case 1A-3a: Confined Compartment Hydrogen Concentration Transient	
	with Creep of SG Tubes	41A-190
41A-301	Case 1A-3a: Confined Compartment Steam Concentration Transient with	
	Creep of SG Tubes	41A-191
41A-302	Case 1A-3a: Confined Compartment Oxygen Concentration Transient	
41 4 909	with Creep of SG Tubes	41A-191
41A-303	Case IA-3a: Approximate Detonation Cell Width in SG Room Transient	
41 4 994	with Creep of SG Tubes	41A-192
41A-304	Case IA-3a: Approximate Detonation Cell Width in CMT Room Transient	
41 4 205	with Creep of SG Tubes	41A-192
41A-305	Case IA-3a: Equivalence Ratio in IRWST Transient with Creep of	41 4 100
A1 A 20C	SG HUDES	41A-193
41A-300	Case 1A-3a: Approximate Detonation Cell width in PXS Transient with	41 4 102
41 4 207	Creep of SG Tubes	41A-193
41A-307	of SC Types	41 4 104
A1 A 209	Or SG Tubes	41A-194
41A-306	Case 1A-4: Core-Exit Gas Temperature F w Failure with Creep of	41 4 104
A1 A_300	Case 1 A d. Denotor Vassel Mixture I and EW Eathurs with Cases of	41A-194
717-307	Case 1A-4. Reactor Vesser Mixture Level FW Failure with Creep Of	A1 A 105
414-310	Case 1 A.A. Hydrogen Congrated In Vascal FW Enilyre with Cross of	41A-193
-11-510	SG Tubee	A1 A 105
	55 1 40-5	

1

1.2

#### LIST OF FIGURES (Cont.)

#### Figure No. Title Page 41A-311 Case 1A-4: Containment Pressure FW Failure with Creep of SG Tubes .......41A-196 41A-312 Case 1A-4: Containment Gas Temperature FW Failure with Creep of 41A-313 Case 1A-4: Containment Compartments Water Level FW Failure with 41A-314 Case 1A-4: Well-Mixed Compartment Hydrogen Concentration 41A-315 Case 1A-4: Well-Mixed Compartment Steam Concentration FW Failure 41A-316 Case 1A-4: Well-Mixed Compartment Oxygen Concentration FW Failure 41A-317 Case 1A-4: Confined Compartment Hydrogen Concentration FW Failure 41A-318 Case 1A-4: Confined Compartment Steam Concentration FW Failure Case 1A-4: Confined Compartment Oxygen Concentration FW Failure 41A-319 41A-320 Case 1A-4: Equivalence Ratio in SG Room FW Failure with Creep of 41A-321 Case 1A-4: Equivalence Ratio in CMT Room FW Failure with Creep Case 1A-4: Equivalence Ratio in IRWST FW Failure with Creep of 41A-322 41A-323 Case 1A-4: Equivalence Ratio in PXS FW Failure with Creep of SG Tubes.......41A-202 41A-324 Case 1A-4a: Reactor Coolant System Pressure Transient with Creep of 41A-325 Case 1A-4a: Core-Exit Gas Temperature Transient with Creep of SG Tubes .......41A-203 41A-326 Case 1A-4a: Reactor Vessel Mixture Level Transient with Creep of 41A-327 Case 1A-4a: Hydrogen Generated In-Vessel Transient with Creep of 41A-328 41A-329 Case 1A-4a: Containment Gas Temperature Transient with Creep of Case 1A-4a: Containment Compartments Water Level Transient with 41A-330 41A-331 Case 1A-4a: Well-Mixed Compartment Hydrogen Concentration 41A-332 Case 1A-4a: Well-Mixed Compartment Steam Concentration Transient 41A-333 Case 1A-4a: Well-Mixed Compartment Oxygen Concentration Transient

Figure No.	<u>Title</u>	<u>Page</u>
41A-334	Case 1A-4a: Confined Compartment Hydrogen Concentration Transient	
	with Creep of SG Tubes	41 <b>A-207</b>
41A-335	Case 1A-4a: Confined Compartment Steam Concentration Transient with	
	Creep of SG Tubes	41A-208
41A-336	Case 1A-4a: Confined Compartment Oxygen Concentration Transient with Creep of SG Tubes	41A-208
41A-337	Case 1A-4a: Approximate Detonation Cell Width in SG Room Transient	
	with Creep of SG Tubes	41A-209
41A-338	Case 1A-4a: Equivalence Ratio in CMT Room Transient with Creep of	
	SG Tubes	41A-209
41A-339	Case 1A-4a: Equivalence Ratio in IRWST Transient with Creep of	
	SG Tubes	41A-210
41A-340	Case 1A-4a: Equivalence Ratio in PXS Transient with Creep of SG Tubes	41A-210
<b>41A-34</b> 1	Case 1AP-3: Reactor Coolant System Pressure SBLOCA, Failed PRHR	
	and CMTs	41A-211
41A-342	Case 1AP-3: Core-Exit Gas Temperature SBLOCA, Failed PRHR	
	and CMTs	41A-211
41A-343	Case 1AP-3: Reactor Vessel Mixture Level SBLOCA, Failed PRHR	
	and CMTs	41A-212
41A-344	Case 1AP-3: Hydrogen Generated In-Vessel SBLOCA, Failed PRHR	
	and CMTs	41A-212
41A-345	Case 1AP-3: Containment Pressure SBLOCA, Failed PRHR and CMTs	41A-213
41A-346	Case 1AP-3: Containment Gas Temperature SBLOCA, Failed PRHR	
	and CMTs	41A-213
41A-347	Case 1AP-3: Containment Compartments Water Level SBLOCA, Failed	
	PRHR and CMTs	41A-214
41A-348	Case 1AP-3: Well-Mixed Compartment Hydrogen Concentration SBLOCA,	
	Failed PRHR and CMTs	41A-214
41A-349	Case 1AP-3: Well-Mixed Compartment Steam Concentration SBLOCA,	
	Failed PRHR and CMTs	41A-215
41A-350	Case 1AP-3: Well-Mixed Compartment Oxygen Concentration SBLOCA,	
	Failed PRHR and CMTs	41A-215
41A-351	Case 1AP-3: Confined Compartment Hydrogen Concentration SBLOCA,	
	Failed PRHR and CMTs	41A-216
41A-352	Case 1AP-3: Confined Compartment Steam Concentration SBLOCA,	
	Failed PRHR and CMTs	41A-216
41A-353	Case 1AP-3: Confined Compartment Oxygen Concentration SBLOCA,	
	Failed PRHR and CMTs	41A-217
41A-354	Case 1AP-3: Equivalence Ratio in SG Room SBLOCA, Failed PRHR	
	and CMTs	41A-217
41A-355	Case 1AP-3: Equivalence Ratio in CMT Room SBLOCA, Failed PRHR	
	and CMTs	41A-218

AP1000 Probabilistic Risk Assessment

# LIST OF FIGURES (Cont.)

25

<u>Figure No.</u>	Title	Page
41A-356	Case 1AP-3: Equivalence Ratio in IRWST SBLOCA, Failed PRHR and CMTs	
41A-357	Case 1AP-3: Equivalence Ratio in PXS SBLOCA, Failed PRHR and CMTs	41A-219
41A-358	Case 1AP-4: Reactor Coolant System Pressure SBLOCA with Failed PRHR and ADS	41A-219
41A-359	Case 1AP-4: Core-Exit Gas Temperature SBLOCA with Failed PRHR and ADS	41A-220
41A-360	Case 1AP-4: Reactor Vessel Mixture Level SBLOCA with Failed PRHR and ADS	41A-220
41A-361	Case 1AP-4: Hydrogen Generated In-Vessel SBLOCA with Failed PRHR and ADS	41A-221
41A-362	Case 1AP-4: Containment Pressure SBLOCA with Failed PRHR and ADS	41A-221
41A-363	Case 1AP-4: Containment Gas Temperature SBLOCA with Failed PRHR and ADS	41A-222
41A-364	Case 1AP-4: Containment Compartments Water Level SBLOCA with Failed PRHR and ADS	41A-222
41A-365	Case 1AP-4: Well-Mixed Compartment Hydrogen Concentration SBLOCA with Failed PRHR and ADS	41A-223
41A-366	Case 1AP-4: Well-Mixed Compartment Steam Concentration SBLOCA with Failed PRHR and ADS	41A-223
41A-367	Case 1AP-4: Well-Mixed Compartment Oxygen Concentration SBLOCA with Failed PRHR and ADS.	41A-224
41A-368	Case 1AP-4: Confined Compartment Hydrogen Concentration SBLOCA with Failed PRHR and ADS	41A-224
41A-369	Case 1AP-4: Confined Compartment Steam Concentration SBLOCA with Failed PRHR and ADS	41A-225
41A-370	Case 1AP-4: Confined Compartment Oxygen Concentration SBLOCA with Failed PRHR and ADS	41A-225
41A-371	Case 1AP-4: Equivalence Ratio in SG Room SBLOCA with Failed PRHR and ADS	41A-226
41A-372	Case 1AP-4: Equivalence Ratio in CMT Room SBLOCA with Failed PRHR and ADS	41A-226
41A-373	Case 1AP-4: Equivalence Ratio in IRWST SBLOCA with Failed PRHR and ADS	41A-227
<b>41A-374</b>	Case 1AP-4: Equivalence Ratio in PXS SBLOCA with Failed PRHR and ADS	41A-227
41B-1	Case 3BR – LLOCA with Accumulator Failure Reactor Coolant	11B_2
41B-2	Case 3BR – LLOCA with Accumulator Failure Reactor Vessel Mixture Level	41B-3

xci

<u>Figure No.</u>	Title	Page
41B-3	Case 3BR – LLOCA with Accumulator Failure Core-Exit Gas Temperature	41 <b>B</b> -4
41B-4	Case 3BR – LLOCA with Accumulator Failure Hydrogen Generated	
	In-Vessel	41 <b>B-</b> 4
41B-5	Case 3BR – LLOCA with Accumulator Failure Containment Pressure	41 <b>B-5</b>
41 <b>B-6</b>	Case 3BR – LLOCA with Accumulator Failure Containment Gas	
	Temperature	41 <b>B-5</b>
41B-7	Case 3BR – LLOCA with Accumulator Failure Containment	
	Compartment Hydrogen Concentration	41 <b>B-6</b>
41B-8	Case 3BR – LLOCA with Accumulator Failure Hydrogen Flow Rate	
	Through Break	41B-6
41 <b>B-9</b>	Case 3BR – LLOCA with Accumulator Failure Well-Mixed	
	Compartment Hydrogen Concentration	41 <b>B-7</b>
41B-10	Case 3BR – LLOCA with Accumulator Failure Well-Mixed	
	Compartment Oxygen Concentration	41 <b>B-7</b>
41B-11	Case 3BR – LLOCA with Accumulator Failure Well-Mixed	
	Compartment Steam Concentration	41 <b>B</b> -8
41B-12	Case 3BR – LLOCA with Accumulator Failure Approximate	
	Detonation Cell Width in Steam Generator Compartment	41B-8
41B-13	Case 3BR – LLOCA with Accumulator Failure Containment	
	Compartments Water Level	41 <b>B-9</b>
41B-14	Case 3BR – LLOCA with Accumulator Failure Hydrogen Flow Rate	
	Through ADS to IRWST	41 <b>B-9</b>
41B-15	Case 3BR – LLOCA with Accumulator Failure Confined	
	Compartment Hydrogen Concentration	41 <b>B</b> -10
41B-16	Case 3BR – LLOCA with Accumulator Failure Confined	
	Compartment Oxygen Concentration	41B-10
41B-17	Case 3BR – LLOCA with Accumulator Failure Confined	
	Compartment Steam Concentration	41 <b>B</b> -11
42-1	AP1000 Containment Fragility at Containment Temperature of 400°F	
42-2	AP1000 Containment Fragility at Containment Temperature of 331°F	
43-1	Plant Damage State Contributions to CDF	43-119
43-2	Containment Event Tree – CET (Sheets 1 – 3)	43-120
43-3	3BE CET (Sheets 1 – 3)	43-123
43-4	3BL CET (Sheets 1 – 3)	43-126
43-5	3BR CET (Sheets 1 – 3)	43-129
43-6	1A CET (Sheets 1 – 3)	43-132
43-7	1AP CET (Sheets 1 – 3)	43-135
43-8	3A CET (Sheets 1 – 3)	43-138
43-9	3C CET (Sheets 1 – 3)	43-141
43-10	3D CET (Sheets 1 – 3)	43-144
43-11	6 CET (Sheets 1 – 3)	43-147

AP1000 Probabilistic Risk Assessment

# LIST OF FIGURES (Cont.)

ز

4 C

A

Figure No.	Title	Page
43-12	Contribution of PDS to LRF	43-150
43-13	Summary of CET Quantification (Sheets 1 – 2)	43-151
44-1	MAAP4 AP1000 Containment Nodalization	44-12
45-1	Release Category IC, Case 3BE-5 – SBLOCA with Failed Gravity Injection:	A5 7
45.2	Release Category IC Case 3BE-5 - SBLOCA with Eailed Gravity Injection.	4.)-7
	Release Fraction of Cesium Iodide	45-7
45-3	Release Category IC Case 3BE-5 - SBLOCA with Failed Gravity Injection	······································
	Release Fraction of Tellurium Dioxide	45-8
45-4	Release Category IC Case 3BE-5 – SBLOCA with Failed Gravity Injection:	······································
	Release Fraction of Strontium Oxide	45-8
45-5	Release Category IC. Case 3BE-5 – SBLOCA with Failed Gravity Injection:	
	Release Fraction of Molybdenum Dioxide	45-9
45-6	Release Category IC. Case 3BE-5 - SBLOCA with Failed Gravity Injection:	
	Release Fraction of Cesium Hydroxide	45-9
45-7	Release Category IC. Case 3BE-5 – SBLOCA with Failed Gravity Injection:	
	Release Fraction of Barium Oxide	
45-8	Release Category IC, Case 3BE-5 – SBLOCA with Failed Gravity Injection:	
	Release Fraction of Dilanthanum Trioxide	
45-9	Release Category IC. Case 3BE-5 - SBLOCA with Failed Gravity Injection:	
	Release Fraction of Cerium Dioxide	45-11
45-10	Release Category IC, Case 3BE-5 – SBLOCA with Failed Gravity Injection:	
	Release Fraction of Tin	45-11
45-11	Release Category IC, Case 3BE-5 – SBLOCA with Failed Gravity Injection:	
	Release Fraction of Tellurium	45-12
45-12	Release Category IC, Case 3BE-5 – SBLOCA with Failed Gravity Injection:	
	Release Fraction of Uranium Dioxide	45-12
45-13	Release Category BP, Case 6E-1 - SGTR with Stuck Open SG Safety Valve:	-
	Release Fraction of Noble Gases	45-13
45-14	Release Category BP, Case 6E-1 – SGTR with Stuck Open SG Safety Valve:	
	Release Fraction of Cesium Iodide	45-13
45-15	Release Category BP, Case 6E-1 – SGTR with Stuck Open SG Safety Valve:	
	Release Fraction of Tellurium Dioxide	45-14
45-16	Release Category BP, Case 6E-1 – SGTR with Stuck Open SG Safety Valve:	
	Release Fraction of Strontium Oxide	45-14
45-17	Release Category BP, Case 6E-1 – SGTR with Stuck Open SG Safety Valve:	
	Release Fraction of Molybdenum Dioxide	45-15
45-18	Release Category BP, Case 6E-1 - SGTR with Stuck Open SG Safety Valve:	
	Release Fraction of Cesium Hydroxide	45-15
45-19	Release Category BP, Case 6E-1 – SGTR with Stuck Open SG Safety Valve:	
	Release Fraction of Barium Oxide	45-16

	Figure No.	Title	Page
	45-20	Release Category BP, Case 6E-1 – SGTR with Stuck Open SG Safety Valve:	15 16
1	45.01	Release Fraction of Dilanuanum movide	43-10
	45-21	Release Category BP, Case 6E-1 – SGTR with Stuck Open SG Safety valve:	45 17
ı	45.00	Release Fraction of Cenum Dioxide	43-17
	45-22	Release Category BP, Case 6E-1 – SOTK with Stock Open SO Safety valve.	45 17
1	45.00	Release Fraction of Tim	
	45-25	Release Category BP, Case 0E-1 - SOTK with Stuck Open SO Safety valve.	45 19
I	45.04	Release Category DD Case 6E 1 SCTD with Stuck Open SC Safety Value:	
	45-24	Release Category BP, Case 0E-1 - SOTK with Stuck Open SO Safety valve.	45 19
	45.05	Release Fraction of Uranium Dioxide	49-16
	45-25	Release Category CI, Case 5C-2 – Vessel Rupture with Containment Failure.	45 10
	45.06	Release Fraction of Noble Gases	
	45-20	Release Category CI, Case 5C-2 – Vessel Rupture with Containment Failure.	45 10
	45.07	Release Fraction of Cestum Iodide	4J-19
	45-27	Release Category CI, Case 5C-2 – Vessel Rupture with Containment Fahure.	45 20
	45 09	Release Fraction of Tenurium Dioxide	43-20
	45-28	Release Category CI, Case 3C-2 – Vessel Rupture with Containment Failure.	45 20
	45.00	Release Fraction of Strontum Oxide	43-20
	45-29	Release Category CI, Case 3C-2 – Vessel Rupture with Containment Failure.	45 01
	45.20	Release Fraction of Molybdellum Dioxide	4J-21
	45-30	Release Category CI, Case 3C-2 – Vessel Rupture with Containment Failure.	45 21
	45 21	Release Fraction of Cestum Hydroxide	4J-21
	45-31	Release Category CI, Case 3C-2 – Vessel Rupture with Containment Failure.	45.00
	45.20	Release Fraction of Barlum Oxide	43-22
	45-32	Release Category CI, Case 3C-2 – Vessel Rupture with Containment Fahure.	45 22
	45 22	Release Fraction of Dilantianum Thoxide	4J-22
	43-33	Release Category CI, Case 5C-2 – Vessel Rupture with Containment Panure.	45 22
	45.04	Release Fraction of Cenum Dioxide	
	45-34	Release Category CI, Case 3C-2 – Vessel Rupture with Containment Fahure.	45 02
	45.05	Release Fraction of 11n	43-23
	45-35	Release Category CI, Case 3C-2 – Vessel Rupture with Containment Failure:	45 24
	45.06	Release Fraction of Tellunum	43-24
	45-36	Release Category CI, Case 3C-2 – Vessel Rupture with Containment Failure:	45 04
	45.00	Release Fraction of Uranium Dioxide	45-24
	45-37	Release Category CFE, Case 3D-4 – Spurious ADS-2, Failed CM1s,	45.05
	45.00	Diffusion Flame: Release Fraction of Noble Gases	45-25
	45-38	Release Category CFE, Case 3D-4 – Spurious ADS-2, Failed CM1s,	45.05
		Diffusion Flame: Release Fraction of Cesium Iodide	45-25
	45-39	Release Category CFE, Case 3D-4 – Spurious ADS-2, Failed CMTs,	15 00
		Diffusion Flame: Release Fraction of Tellurium Dioxide	45-26
	45-40	Release Category CFE, Case 3D-4 – Spurious ADS-2, Failed CMTs,	
		Diffusion Flame: Release Fraction of Strontium Oxide	45-26

#### **AP1000 Probabilistic Risk Assessment**

#### LIST OF FIGURES (Cont.)

#### Figure No. <u>Title</u> Page 45-41 Release Category CFE, Case 3D-4 – Spurious ADS-2, Failed CMTs, Diffusion Flame: Release Fraction of Molybdenum Dioxide ......45-27 45-42 Release Category CFE, Case 3D-4 – Spurious ADS-2, Failed CMTs, Diffusion Flame: Release Fraction of Cesium Hydroxide ......45-27 45-43 Release Category CFE, Case 3D-4 - Spurious ADS-2, Failed CMTs, Diffusion Flame: Release Fraction of Barium Oxide......45-28 45-44 Release Category CFE, Case 3D-4 - Spurious ADS-2, Failed CMTs, Diffusion Flame: Release Fraction of Dilanthanum Trioxide......45-28 45-45 Release Category CFE, Case 3D-4 – Spurious ADS-2, Failed CMTs, Release Category CFE, Case 3D-4 – Spurious ADS-2, Failed CMTs, 45-46 Diffusion Flame: Release Fraction of Tin......45-29 45-47 Release Category CFE, Case 3D-4 - Spurious ADS-2, Failed CMTs, Diffusion Flame: Release Fraction of Tellurium ......45-30 45-48 Release Category CFE, Case 3D-4 - Spurious ADS-2, Failed CMTs, Release Category CFI, Case 3BE-3 – DVI Line Break, Failed Gravity 45-49 Injection, No PXS Flooding: Release Fraction of Noble Gases.......45-31 45-50 Release Category CFI, Case 3BE-3 – DVI Line Break, Failed Gravity Injection, No PXS Flooding: Release Fraction of Cesium Iodide.......45-31 45-51 Release Category CFI, Case 3BE-3 – DVI Line Break, Failed Gravity 45-52 Release Category CFI, Case 3BE-3 – DVI Line Break, Failed Gravity 45-53 Release Category CFL, Case 3BE-3 – DVI Line Break, Failed Gravity Injection, No PXS Flooding: Release Fraction of Molybdenum Dioxide......45-33 45-54 Release Category CFI, Case 3BE-3 – DVI Line Break, Failed Gravity Injection, No PXS Flooding: Release Fraction of Cesium Hydroxide......45-33 45-55 Release Category CFI, Case 3BE-3 – DVI Line Break, Failed Gravity Injection, No PXS Flooding: Release Fraction of Barium Oxide ......45-34 45-56 Release Category CFI, Case 3BE-3 – DVI Line Break, Failed Gravity 45-57 Release Category CFI, Case 3BE-3 - DVI Line Break, Failed Gravity 45-58 Release Category CFL, Case 3BE-3 - DVI Line Break, Failed Gravity Injection, No PXS Flooding: Release Fraction of Tin ......45-35 Release Category CFI, Case 3BE-3 - DVI Line Break, Failed Gravity 45-59 45-60 Release Category CFI, Case 3BE-3 – DVI Line Break, Failed Gravity Injection, No PXS Flooding: Release Fraction of Uranium Dioxide......45-36 45-61 Release Category CFL, Case 3BE-7 – SBLOCA with Failed Gravity

AP1000 Probabilistic Risk Assessment

<u>Figure No.</u>	<u>Title</u> <u>Page</u>
45-62	Release Category CFL, Case 3BE-7 – SBLOCA with Failed Gravity
	Injection: Release Fraction of Cesium Iodide
45-63	Release Category CFL, Case 3BE-7 – SBLOCA with Failed Gravity
	Injection: Release Fraction of Tellurium Dioxide
45-64	Release Category CFL, Case 3BE-7 – SBLOCA with Failed Gravity
	Injection: Release Fraction of Strontium Oxide
45-65	Release Category CFL. Case 3BE-7 – SBLOCA with Failed Gravity
	Injection: Release Fraction of Molybdenum Dioxide
45-66	Release Category CFL, Case 3BE-7 – SBLOCA with Failed Gravity
	Injection: Release Fraction of Cesium Hydroxide
45-67	Release Category CFL. Case 3BE-7 – SBLOCA with Failed Gravity
	Injection: Release Fraction of Barium Oxide
45-68	Release Category CFL. Case 3BE-7 – SBLOCA with Failed Gravity
	Injection: Release Fraction of Dilanthanum Trioxide
45-69	Release Category CFL. Case 3BE-7 – SBLOCA with Failed Gravity
	Injection: Release Fraction of Cerium Dioxide
45-70	Release Category CFL, Case 3BE-7 – SBLOCA with Failed Gravity
	Injection: Release Fraction of Tin
45-71	Release Category CFL. Case 3BE-7 – SBLOCA with Failed Gravity
10 / 1	Injection: Release Fraction of Tellurium 45-42
45-72	Release Category CFL, Case 3BE-7 – SBLOCA with Failed Gravity
10 12	Injection: Release Fraction of Uranium Dioxide
45-73	Release Category IC, Case 3BE-5 – SBLOCA with Failed Gravity
10 10	Injection Direct-Release Sensitivity: Release Fraction of Noble Gases
45-74	Release Category IC. Case 3BE-5 – SBLOCA with Failed Gravity
	Injection Direct-Release Sensitivity: Release Fraction of Cesium Jodide
45-75	Release Category IC Case 3BE-5 - SBI OCA with Failed Gravity
10 10	Injection Direct-Release Sensitivity: Release Fraction of Tellurium Dioxide 45-44
45-76	Release Category IC Case 3RE-5 - SRI OCA with Failed Gravity
15 / 0	Injection Direct. Release Sensitivity: Release Fraction of Strontium Oxide 45.44
45-77	Release Category IC Case 3RE-5 - SRI OCA with Failed Gravity Injection
13 11	Direct. Release Sensitivity: Release Fraction of Molyhdenum Dioxide 45.45
45-78	Release Category IC Case 3RE-5 - SRI OCA with Failed Gravity
45-70	Injection Direct Palage Sensitivity: Palage Fraction of Casium Hydroxide 45.45
45-70	Palasse Cotegory IC Case 3DE 5 SEI OCA with Eailed Cravity
43-13	Injection Direct Palease Sensitivity: Palease Erection of Barium Oxide
45-80	Pelease Category IC Case 3RE 5 SELOCA with Eailed Gravity Injection
43-00	Direct Delesse Sensitivity, Delesse Erection of Dilenthenum Trioxide
15 91	Direct-Release Schshlvity. Release Flaction of Diranmanum movide
+J-01	Acted to Calcoury IC, Cast JDE-J - SOLUCA WILL Falley Uravity
15-82	Delease Category IC Case 2DE 5 SPI OCA with Eailed Crewity
+J-02	Acidase Calegoly IC, Case JDE-J - JDLOCA WILL Falled Oravity
	injection Direct-Kelease Sensitivity: Kelease Fraction of 11n45-47

AP1000 Probabilistic Risk Assessment

# LIST OF FIGURES (Cont.)

12-

and a second

Figure No.	Title Page
45-83	Release Category IC, Case 3BE-5 – SBLOCA with Failed Gravity
	Injection Direct-Release Sensitivity: Release Fraction of Tellurium
45-84	Release Category IC, Case 3BE-5 – SBLOCA with Failed Gravity
	Injection Direct-Release Sensitivity: Release Fraction of Uranium Dioxide45-48
45A-1	AP1000 Fission Product Release Fractions for Release Category CFE –
	Noble Gases45A-3
45A-2	AP1000 Fission Product Release Fractions for Release Category CFE –
	CsI and RbI45A-3
45A-3	AP1000 Fission Product Release Fractions for Release Category CFE –
	TeO ₂ 45A-4
45A-4	AP1000 Fission Product Release Fractions for Release Category CFE –
	SrO
45A-5	AP1000 Fission Product Release Fractions for Release Category CFE –
	MoO2
45A-6	AP1000 Fission Product Release Fractions for Release Category CFE -
	CsOH and RbOH 454-5
454-7	AP1000 Fission Product Release Eractions for Release Category CEE -
-511-7	RaO
454-8	APIMA Fission Product Release Fractions for Release Category CEF
-571-0	I 2.O.
154-0	A DIAM Eission Droduct Delease Erections for Delease Category CEP
-JU-2	AT 1000 TISSION TIOLUCE RECEASE TIACUOUS IOF RECEASE CALEGOLY CITE =
454 10	A Dirac English Broduct Delegas Experience for Delegas Category CEE
434-10	AF 1000 FISSION FIDduct Release Flactions for Release Category CFE -
ARA 11	A D1000 Eigeign Deschart Delesse Erections for Delesse Category CEE To A5A 9
4JA-11 .	AP1000 Fission Product Release Fractions for Release Category CFE - 162
45A-12	AP1000 FISSION Froduct Release Fractions for Release Category CFE - UU ₂
43A-15	AP1000 SBE-1 Case with intermediate DD1 Containment Pailure –
- AEA 14	A D1000 ODE 1 Case with Internet lists DDE Case is a result of the resul
45A-14	AP1000 3BE-1 Case with Intermediate DD1 Containment Failure –
	Keactor Vessel Mixture Level
43A-15	AP1000 3BE-1 Case with Intermediate DDT Containment Failure –
	Core-Exit Temperature
45A-16	AP1000 3BE-1 Case with Intermediate DDT Containment Failure –
	In-Vessel Hydrogen Generation
45A-17	AP1000 3BE-1 Case with Intermediate DDT Containment Failure –
	Containment Pressure
45A-18	AP1000 3BE-1 Case with Intermediate DDT Containment Failure –
	Containment Gas Temperature
45A-19	AP1000 3BE-1 Case with Intermediate DDT Containment Failure –
	Containment Hydrogen Concentration
45A-20	AP1000 3BE-1 Case with Intermediate DDT Containment Failure -
	Noble Gases Release Fraction45A-12

xcvii

<u>Figure No.</u>	<u>Title</u>	Page
45A-21	AP1000 3BE-1 Case with Intermediate DDT Containment Failure –	
	CsI and RbI Release Fraction	45A-13
45A-22	AP1000 3BE-1 Case with Intermediate DDT Containment Failure –	
	TeO ₂ Release Fraction	45A-13
45A-23	AP1000 3BE-1 Case with Intermediate DDT Containment Failure –	
	SrO Release Fraction	45A-14
45A-24	AP1000 3BE-1 Case with Intermediate DDT Containment Failure –	
	MoO ₂ Release Fraction	45A-14
45A-25	AP1000 3BE-1 Case with Intermediate DDT Containment Failure –	
	CsOH and RbOH Release Fraction	45A-15
45A-26	AP1000 3BE-1 Case with Intermediate DDT Containment Failure –	
	BaO Release Fraction	45A-15
45A-27	AP1000 3BE-1 Case with Intermediate DDT Containment Failure –	
	La ₂ O ₃ Release Fraction	45A-16
45A-28	AP1000 3BE-1 Case with Intermediate DDT Containment Failure –	
	CeO ₂ Release Fraction	45A-16
45A-29	AP1000 3BE-1 Case with Intermediate DDT Containment Failure –	
	Sb Release Fraction	
45A-30	AP1000 3BE-1 Case with Intermediate DDT Containment Failure –	
	Te ₂ Release Fraction	
45A-31	AP1000 3BE-1 Case with Intermediate DDT Containment Failure –	
	UO ₂ Release Fraction	45A-18
45A-32	AP1000 3BE-1 Case with no PCS Water Cooling and Late Containment	
	Failure – Containment Pressure	45A-18
45A-33	AP1000 3BE-1 Case with no PCS Water Cooling and Late Containment	
	Failure – Noble Gases Release Fraction	45A-19
45A-34	AP1000 3BE-1 Case with no PCS Water Cooling and Late Containment	
1511 51	Failure _ CsI and RbI Release Fraction	454-19
454-35	AP1000 3BE-1 Case with no PCS Water Cooling and Late Containment	
-511-55	Failure - TeQ. Release Fraction	454-20
454-36	AP1000 3BE-1 Case with no PCS Water Cooling and I ate Containment	······································
-571-50	Failure _ SrO Release Fraction	454-20
454-37	A P1000 3BE-1 Case with no PCS Water Cooling and Late Containment	
-54-51	Failure MoO. Belease Fraction	454-21
154-38	A D1000 3RE 1 Case with no DCS Water Cooling and Late Containment	
477-20	Failure CoOH and PhOH Palasse Erection	45 4 21
45 A 20	A D1000 2DE 1 Case with no DCS Water Cooling and Late Containment	4JA-21
434-37	Failure BoO Palassa Erection	45 4 22
15 A 10	A B1000 2BE 1 Core with no DCC Water Cooling and Late Containment	43A-22
4373-40	Friture I a O Balance Fraction	15 4 00
A5 A A1	A B1000 2DE 1 Construction DOC Water Coaling and Late Containment	43A-22
43A-41	AP1000 SBE-1 Case with no PUS water Cooling and Late Containment	AE 4 00
	ratiure – CeO ₂ Kelease Fraction	43A-23

## LIST OF FIGURES (Cont.)

10

Ŧ,

Figure No.	Title	Page
45A-42	AP1000 3BE-1 Case with no PCS Water Cooling and Late Containment	
	Failure – Sb Release Fraction	45A-23
45A-43	AP1000 3BE-1 Case with no PCS Water Cooling and Late Containment	
151 11	Failure – Te ₂ Release Fraction	45A-24
45A-44	AP1000 3BE-1 Case with no PCS water Cooling and Late Containment	45 4 04
	$Failure - UO_2 \text{ Kelease Fraction}$	45A-24
40.1	Denulation Whole Dady Dece DD Source Term 24 Hours	40.20
47-1	Population Whole Body Dose - BP Source Term 72 Hours	
47-2	Site Boundary Whole Body Dose - BP Source Term 24 Hours	49 <u>-</u> 20 <i>A</i> Q_21
49-J 40_A	Site Boundary Whole Body Dose - BP Source Term, 24 Hours	
49-4	Site Boundary Red Bone Marrow Dose - BP Source Term, 72 Hours	
49-6	Site Boundary Red Bone Marrow Dose - BP Source Term, 22 Hours	
40-7	Site Boundary Thyroid Dose - BP Source Term 24 Hours	49_22
49-8	Site Boundary Thyroid Dose – BP Source Term, 24 Hours	49-23
49-0	Population Whole Body Dose - CFE Source Term, 72 Hours	49-74
49-10	Population Whole Body Dose – CFE Source Term, 2 Hours	
49-11	Site Boundary Whole Body Dose – CFE Source Term, 72 Hours	
49-12	Site Boundary Whole Body Dose – CFE Source Term, 22 Hours	
49-13	Site Boundary Red Bone Marrow Dose – CFE Source Term, 24 Hours	
49-14	Site Boundary Red Bone Marrow Dose – CFE Source Term, 72 Hours	49-26
49-15	Site Boundary Thyroid Dose – CFE Source Term. 24 Hours	
49-16	Site Boundary Thyroid Dose – CFE Source Term, 72 Hours	
49-17	Population Whole Body Dose – CFI Source Term, 24 Hours	
49-18	Population Whole Body Dose – CFI Source Term, 72 Hours	
49-19	Site Boundary Whole Body Dose – CFI Source Term. 24 Hours	
49-20	Site Boundary Whole Body Dose – CFI Source Term, 72 Hours	
49-21	Site Boundary Red Bone Marrow Dose - CFI Source Term, 24 Hours	
49-22	Site Boundary Red Bone Marrow Dose - CFI Source Term, 72 Hours	49-30
49-23	Site Boundary Thyroid Dose - CFI Source Term, 24 Hours	
49-24	Site Boundary Thyroid Dose - CFI Source Term, 72 Hours	
49-25	Population Whole Body Dose - CFL Source Term, 24 Hours	49-32
49-26	Population Whole Body Dose - CFL Source Term, 72 Hours	
49-27	Site Boundary Whole Body Dose - CFL Source Term, 24 Hours	
49-28	Site Boundary Whole Body Dose - CFL Source Term, 72 Hours	49-33
49-29	Site Boundary Red Bone Marrow Dose - CFL Source Term, 24 Hours	49-34
49-30	Site Boundary Red Bone Marrow Dose - CFL Source Term, 72 Hours	
49-31	Site Boundary Thyroid Dose - CFL Source Term, 24 Hours	
49-32	Site Boundary Thyroid Dose - CFL Source Term, 72 Hours	49-35
49-33	Population Whole Body Dose - CI Source Term, 24 Hours	49-36
49-34	Population Whole Body Dose - CI Source Term, 72 Hours	
49-35	Site Boundary Whole Body Dose - CI Source Term, 24 Hours	49-37
<b>49-36</b>	Site Boundary Whole Body Dose - CI Source Term, 72 Hours	

# Figure No.

## <u>Title</u>

### Page

49-37	Site Boundary Red Bone Marrow Dose - CI Source Term, 24 Hours	49-38
49-38	Site Boundary Red Bone Marrow Dose - CI Source Term, 72 Hours	49-38
49-39	Site Boundary Thyroid Dose - CI Source Term, 24 Hours	49-39
49-40	Site Boundary Thyroid Dose - CI Source Term, 72 Hours	49-39
49-41	Population Whole Body Dose - DIRECT Source Term, 24 Hours	49-40
49-42	Population Whole Body Dose - DIRECT Source Term, 72 Hours	49-40
49-43	Site Boundary Whole Body Dose - DIRECT Source Term, 24 Hours	49-41
49-44	Site Boundary Whole Body Dose - DIRECT Source Term, 72 Hours	49-41
49-45	Site Boundary Red Bone Marrow Dose - DIRECT Source Term, 24 Hours	49-42
49-46	Site Boundary Red Bone Marrow Dose - DIRECT Source Term, 72 Hours	49-42
49-47	Site Boundary Thyroid Dose - DIRECT Source Term, 24 Hours	49-43
49-48	Site Boundary Thyroid Dose - DIRECT Source Term, 72 Hours	49-43
49-49	Population Whole Body Dose - IC Source Term, 24 Hours	49-44
49-50	Population Whole Body Dose - IC Source Term, 72 Hours	49-44
49-51	Site Boundary Whole Body Dose - IC Source Term, 24 Hours	49-45
49-52	Site Boundary Whole Body Dose - IC Source Term, 72 Hours	49-45
49-53	Site Boundary Red Bone Marrow Dose - IC Source Term, 24 Hours	49-46
49-54	Site Boundary Red Bone Marrow Dose - IC Source Term, 72 Hours	49-46
49-55	Site Boundary Thyroid Dose - IC Source Term, 24 Hours	49-47
49-56	Site Boundary Thyroid Dose - IC Source Term, 72 Hours	49-47
49-57	Overall Dose Risk - Site Boundary Whole Body EDE Dose, 24 Hours	49-48
49-58	Overall Dose Risk - Site Boundary Red Bone Marrow Dose (Acute), 24 Hours	49-49
51-1	AP1000 Base Core Damage Frequency Uncertainty Analysis	51-11
51-2	AP1000 Sensitivity Case Uncertainty Analysis	51-11
51B-1	Distribution for Plant Core Damage Frequency	51B-2
51B-2	Safety Injection Line Break	51B-2
51B-3	Large LOCA	51B-3
51B-4	Large Spurious ADS Actuation	51B-3
51B-5	Small LOCA	51B-4
51B-6	Medium LOCA	51B-4
51B-7	Reactor Vessel Rupture	51B-5
51B-8	Steam Generator Tube Rupture	51B-5
51B-9	Safety Injection Line Break - Sequence 7	51B-6
51B-10	Large LOCA – Sequence 9	51B-6
51B-11	Spurious ADS – Sequence 8	51B-7
51B-12	Safety Injection Line Break - Sequence 8d	51B-7
51B-13	Reactor Vessel Rupture – Sequence 2	51B-8
51B-14	Small LOCA – Sequence 5	51B-8
51B-15	Medium LOCA – Sequence 5	51B-9
51B-16	Small LOCA – Sequence 12	51B-9
51B-17	Medium LOCA – Sequence 12	.51B-10

AP1000 Probabilistic Risk Assessment

## LIST OF FIGURES (Cont.)

. 1917

# Figure No.

# <u>Title</u>

51B-18	Spurious ADS – Sequence 9	1B-10
51B-19	Spurious ADS – Sequence 7	1B-11
51B-20	Safety Injection Line Break – Sequence 3	IB-11
51B-21	SGTR Event – Sequence 41	IB-12
51B-22	ATWS Precursor with no MFW – Sequence 23	IB-12
51B-23	Small LOCA – Sequence 9.	IB-13
51B-24	Medium LOCA – Sequence 9	IB-13
51B-25	SGTR Event – Sequence 13	IB-14
51B-26	Large LOCA – Sequence 8	IB-14
51B-27	CMT Line Break – Sequence 5	IB-15
516-21		
54-1	Loss of Offsite Power During Hot/Cold Shutdown (RCS Filled)	
	Event Tree (Sheets 1 – 2)	4-138
54-2	Loss of RNS During Hot/Cold Shutdown (RCS Filled) Event Tree	4-140
54-3	Loss of CCW/SW During Hot/Cold Shutdown (RCS Filled) Event Tree	4-141
54-4	LOCA/RNS-V024 Opens During Hot/Cold Shutdown (RCS Filled) Event Tree54	4-142
54-5	LOCA/RNS Pipe Rupture During Hot/Cold Shutdown (RCS Filled) Event Tree54	4-143
54-6	Overdraining of Reactor Coolant System During Draindown to Mid-loop	
	Event Tree	4-144
54-7	Loss of Offsite Power During RCS drained Condition Event Tree	4-145
54-8	Loss of RNS During RCS drained Condition Event Tree	4-146
54-9	Loss of CCW/SW During RCS drained Condition Event Tree	4-147
54-10	LOCA/RNS-V024 Opens During RCS drained Condition Event Tree	4-148
55-1	Seismic Initiating Event Hierarchy Tree	55-30
-		
57-1	Example Event Tree Model	7-125
57-2	Contribution of Plant Areas to Fire CDF	7-126
57-3	Contribution of Fire Area to Fire CDF57	7-127
57A-1	DAS-ACT Fault Tree	A-37
		70 10
57C-1	0000 AF 00 Yard Building (Including Transformer Yard)	/C-12
57C-2	1200 AF 01 RCA of Auxiliary Building (All Zones)	/C-13
57C-3	1200 AF 02 New Fuel and Used Fuel Storage, Waste Disposal	
	Container (All Zones)	/C-14
57C-4	1200 AF 03 Corridors 100' & 117' 6"	/C-15
57C-5	1201 AF 02 Division B Batteries/DC Equipment Room/Instrumentation	
	and Control	/C-16
57C-6	1201 AF 03 Division D DC Equipment/1&C	/C-17
57C-7	1201 AF 04 Division B/D VBS Equipment	/C-18
57C-8	1201 AF US MSIV Compartment A	/C-19
57C-9	1201 AF 06 MSIV Compartment B	/C-20

#### Figure No. Title Page 57C-10 1202 AF 03 Division C Batteries/DC Equipment/I&C Room/ 57C-11 57C-12 57C-13 1204 AF 01 RNS Pump Room B ......57C-24 57C-14 57C-15 57C-16 1210 AF 01 Corridor/Spare Battery Room/Spare Room/Spare Battery 57C-17 57C-18 1230 AF 01 Corridor Division A, B, C, D and Remote Shutdown Workstation ...... 57C-30 57C-19 57C-20 1230 AF 02 Non-Class 1E Electrical Compartment - 100'......57C-31 57C-21 57C-22 1240 AF 01 Non-Class 1E Electrical Compartment - 117'......57C-33 57C-23 57C-24 57C-25 57C-26 57C-27 57C-28 57C-29 57C-30 57C-31 57C-32 57C-33 57C-34 57C-35 57C-36 57C-37 4003 AF 01 Demineralized Water Deoxygenating Room/ 57C-38 4031 AF 01 Battery Room and Battery Charger Room 1......57C-49 57C-39 4031 AF 02 Battery Room and Battery Charger Room 2/ 57C-40 4031 AF 05 Corridor/Spare Battery Room/Spare Room/ 57C-41 57C-42 4032 AF 01 Decontamination Room, Non-Radiological and 57C-43 57C-44 57C-45 57C-46

AP1000 Probabilistic Risk Assessment

## LIST OF FIGURES (Cont.)

de .

## Figure No.

## <u>Title</u>

57C-47	4041 AF 02 Corridor/Restroom
57C-48	4042 AF 01 Non-Class 1E Switchgear #1
57C-49	4042 AF 02 Non-Class 1E Switchgear #2
57C-50	4052 AF 01 Staging and Storage Area/Containment Air Filtration
	Exhaust Rooms A & B
57C-51	5031 AF 01 Radwaste Building
57C-52	6030 AF 01 Diesel Generator Room A
57C-53	6030 AF 02 Diesel Generator Room B
57C-54	6030 AF 03 Fuel Oil Day Tank Room A
57C-55	6030 AF 04 Fuel Oil Day Take Room B
57C-56	1100 AF 11204 Reactor Coolant Drain Tank Room
57C-57	1100 AF 11206 Accumulator Room A
57C-58	1100 AF 11207 Accumulator Room B
57C-59	1100 AF 11208 RNS Valve Room
57C-60	1100 AF 11300A Maintenance Floor (SE Quadrant Access)
57C-61	1100 AF 11300B Maintenance Floor (NNE Quadrant) and RCDT Access
57C-62	1100 AF 11301 SG Compartment 1
57C-63	1100 AF 11302 SG Compartment 2
57C-64	1100 AF 11303 Pressurizer Compartment
57C-65	1100 AF 11303A ADS Lower Valve Area
57C-66	1100 AF 11303B ADS Upper Valve Area
57C-67	1100 AF 11500 Operating Deck
57C-68	1200 AF 12341 Middle Annulus
57C-69	1200 AF 12555 Main Control Room Emergency Habitability System Air
	Storage/Operating Deck Staging Area
59-1	Contribution of Initiating Events to Core Damage
59-2	24-Hour Site Boundary Dose Cumulative Frequency Distribution

#### **Revision 1 Change Roadmap**

#### **REVISION 1 CHANGE ROADMAP**

Section	Page No.	<u>Type of Change⁽¹⁾</u>
AP1000 Document Cover Sheet		Editorial
Probabilistic Risk Assessment, Title Page		Editorial
T of C	i through c	Editorial
Revision 1 Change Roadmap	ci through civ	Editorial
1	1-6	Editorial
3	3-4	Editorial
Attachment 4B	4B-24	720.027
Attachment 4B	4B-74	Editorial
6	6-9	720.025 (720.029)
6	6-12	720.025 (720.029) Editorial
6	6-16	Editorial
6	6-17	720.026
6	6-19 through 6-53	720.023 (720.024) (720.097)
6	6-62	720.031
6	6-69	720.025 (720.029)
6	6-71	720.025 (720.029)
8	8-23 and 8-25	Editorial
12	12-6	720.033
12	12-30	720.033
26	26-11 and 26-12	Editorial
28	28-10 and 28-11	Editorial
29	29-17	720.033
29	29-21	720.033

#### **Revision 1 Change Roadmap**

#### AP1000 Probabilistic Risk Assessment

Section	Page No.	<u>Type of Change⁽¹⁾</u>
30	30-35 and 30-36	720.068
30	30-66 and 30-67	720.068
30	30-110	Editorial
34	34-1	720.042
34	34-4 and 34-5	720.042
34	34-6 and 34-7	720.042 Editorial
34	34-8 through 34-243	720.042
35	35-28	720.043
39	39-4	720.073 Editorial
39	39-5	720.088 (720.048, 720.074, 720.083, 720.089)
39	39-6	720.088 720.073 (720.048, 720.074, 720.082, and 720.080)
20	20.12	720.005, and 720.009) Editorial
30	39-12	Editorial
30	30-20	720 073
39	39-21	Editorial 720.088
Attachment 39A	39A-1 through 39A-40	720.088 (720.048, 720.074, 720.083, and 720.089)
41	41-6	720.042
41	41-15	720.093
41	41-20	720.054
41	41-31	Editorial
Attachment 41A	41A-1 through 41A-228	720.042
Attachment 41B	41B-1 through 41B-11	720.093
43	43-126 and 43-127	Editorial
Attachment 43C	43C-1 and 43C-2	720.043
44	44-7	Editorial

#### **REVISION 1 CHANGE ROADMAP (Cont.)**

## REVISION 1 CHANGE ROADMAP (Cont.)

Section	Page No.	Type of Change ⁽¹⁾
45	45-1 through 45-3	470.013
	-	(470.012)
45	45-4	470.013
		(470.012)
		Editorial
45	45-5 through 45-48	470.013
		(470.012)
49	49-1	720.056
49	49-4 through 49-6	720.056
49	49-9 through 49-49	720.056
50	50-14	720.034
55	55-5	DSER OI 19A.2-5 (R1)
55	55-7	DSER OI 19A.2-4 (R1)
		DSER OI 19A.2-5 (R1)
		DSER OI 19A.2-6 (R1)
55	55-20	DSER OI 19A.2-6 (R1)
57	57-1 through 57-109	Letter DCP/NRC1515
Attachment 57A	57A-1 through 57A-37	Letter DCP/NRC1515
Attachment 57B	57B-1 through 57B-6	Letter DCP/NRC1515
Attachment 57C	57C-1 through 57C-80	Letter DCP/NRC1515
Attachment 57D	57D-1 through 57D-7	Letter DCP/NRC1515
59	59-20 and 59-21	Editorial
59	59-23 through 59-25	Letter DCP/NRC1515
59	59-26	720.056
59	59-28	Editorial
59	59-29 through 59-32	720.038
59	59-34 through 59-38	720.038
59	59-72	Editorial
59	59-73	Technical
59	59-83	Editorial
59	59-75 through 59-96	720.038
59	59-97	720.038
		720.066
59	59-98	720.038
59	59-100	Technical

#### **Revision 1 Change Roadmap**

#### AP1000 Probabilistic Risk Assessment

#### **REVISION 1 CHANGE ROADMAP (Cont.)**

i Vili

Section	Page No.	<u>Type of Change⁽¹⁾</u>
Appendix A	A-1 through A-166	720.007
	2	720.010
		720.011
		720.012
		720.013
		720.015
		720.016
Appendix B	B-6	720.058
Appendix B	B-13	720.076
Appendix D	D-14 and D-15	720.078
Appendix D	D-31	720.078
Appendix D	D-35 and D-36	Technical
Appendix D	D-37 through D-58	720.078

1. Changes incorporated as a result of Westinghouse responses to NRC Request for Additional Information (RAI) identified by RAI number. RAI number in parenthesis contains a reference to RAI response listed above.

**Revision 4** 

#### **Revision 2 Change Roadmap**

AP1000 Probabilistic Risk Assessment

### **REVISION 2 CHANGE ROADMAP**

Section	Page No.	Type of Change ⁽¹⁾
AP1000 Document Cover Sheet		Editorial
Probabilistic Risk Assessment,		Editorial
Title Page		
T of C	i through c	Editorial
Revision 2 Change Roadmap	cv through cvii	Editorial
_	<pre></pre>	500.00( (01)
6	6-17	720.026 (R1)
6	6-28	720.024 (R1)
6	6-32 and 6-33	720.024 (R1)
6	6-37 through 6-39	720.024 (R1)
6	6-41	720.024 (R1)
6	6-50 through 6-53	720.024 (R1)
6	6-69	720.029 (R1)
<b>7</b> 4 '	24,17	720 046 (R1)
24	24-17 24-22 and 24-23	720.046 (R1)
24	24-22 and 24-25	720.046 (R1)
24		720.040 (ICI)
30	30-26a through 30-28	720.029 (R1)
35	35-28	720.043 (R1)
43	43-9 and 43-9a	720.039 (R2)
43	43-9b	Editorial
43	43-10a	720.039 (R2)
43	43-10ь	Editorial
43	43-93a through 43-93w	720.039 (R2)
43	93-93x	Editorial
Attachment 43C	43C-2	720.043 (R1)
50	50-1	
50	50-1a and 50-1b	Editorial
50	50-14	720.039 (R2)
50	50-14a	720.039 (R2)
50	50-14b	Editorial
54	54-1 through 54-131	720.038 (R2)

. - -
# **Revision 2 Change Roadmap**

## **AP1000 Probabilistic Risk Assessment**

# **REVISION 2 CHANGE ROADMAP (Cont.)**

Section	Page No.	<u>Type of Change⁽¹⁾</u>
56	56-1	720.038 (R1)
		Editorial
56	56-9	Editorial
56	56-17 and 56-18	Editorial
56	56-20	Editorial
56	56-36 and 56-37	Editorial
56	56-38	Editorial
		720.038 (R1)
56	56-38a through 56-38k	720.038 (R1)
56	56-381	Editorial
56	56-47 through 56-49	Editorial
56	56-51	Editorial
56	56-54 and 56-55	720.038 (R1)
57	57-14 and 57-15	280.011 (R1)
57	57-15a and 57-15b	Editorial
59	59-23 and 59-23a	720.038 (R1)
59	59-23b	Editorial
59	59-34	720.038 (R1)
59	59-72	720.038 (R1)
Appendix A	A-12	Editorial
Appendix A	A-24 through A-26	440.014 (R1)
Appendix A	A-26a	440.014 (R1)
		720.024 (R1)
Appendix A	A-26b	Editorial
Appendix A	A-27	720.012 (R1)
Appendix A	A-31	720.012 (R1)
Appendix A	A-33	720.010 (R1)
Appendix A	A-33a and A-33b	Editorial
Appendix A	A-44	Editorial
Appendix A	A-57 through A-61	720.012 (R1)
Appendix A	A-63	720.012 (R1)
Appendix A	A-66	720.012 (R1)
Appendix A	A-103a through A-103b	440.014 (R1)
Appendix A	A-103c and A-103d	720.012 (R1)
Appendix A	A-151 and A-152	720.013 (R1)
Appendix A	A-165 and A-166	720.013 (R1)

cix

# **REVISION 2 CHANGE ROADMAP (Cont.)**

Section	Page No.	Type of Change ⁽¹⁾
Appendix D	D-13 and D-14	720.080 (R1)
Appendix D	D-35 and D-36	720.080 (R1)

1. Changes incorporated as a result of Westinghouse responses to NRC Request for Additional Information (RAI) identified by RAI number.

## **Revision 3 Change Roadmap**

## AP1000 Probabilistic Risk Assessment

## **REVISION 3 CHANGE ROADMAP**

Section	Page No.	<u>Type of Change⁽¹⁾</u>
AP1000 Document Cover Sheet		Editorial
Probabilistic Risk Assessment, Title Page		Editorial
TofC	i through cii	Editorial
Revision 3 Change Roadmap	СХ	Editorial
Attachment 45A	45A-1 through 45A-24	Technical
57	57-1 and 57-2	Editorial
57	57-4	Editorial
57	57-11 and 57-12	Editorial
57	57-17	Editorial
57	57-22 and 57-23	Editorial
57	57-30 through 57-39	720.038 (R1)
57	57-40	720.038 (R1) Editorial
57	57-41 and 57-42	720.038 (R1)
57	57-78	Editorial
57	57-117 through 57-124	720.038 (R1)
Appendix A	A-23 through A-25	720.009 (R2)
Appendix A	A-105 through A-111	720.009 (R2)

1. Changes incorporated as a result of Westinghouse responses to NRC Request for Additional Information (RAI) identified by RAI number.

cxi

## **Revision 4 Change Roadmap**

AP1000 Probabilistic Risk Assessment

# **REVISION 4 CHANGE ROADMAP**

Section	Page No.	Type of Change ⁽¹⁾
AP1000 Document Cover Sheet		Editorial
Probabilistic Risk Assessment,		Editorial
Title Page		
T of C	i through ciii	Editorial
<b>Revision 4 Change Roadmap</b>	cxii and cxiii	Editorial
34	34-4	Editorial
34	34-16	DSER OI 19.1.10.3-1 (R1)
34	34-19 through 34-21	DSER OI 19.1.10.3-1 (R1)
34	34-50 and 34-51	DSER OI 19.1.10.3-1 (R1)
34	34-247 through 34-264	DSER OI 19.1.10.3-1 (R1)
42	42-3	DSER OI 19.2.6-1 (R1)
42	42-6	DSER OI 19.2.6-3
42	42-7 and 42-8	Editorial
43	43-10	Editorial
43	43-13	Editorial
Attachment 43D	43D-1	DSER OI 19.1.3.2-1
Attachment 43E	43E-1 and 43E-2	DSER OI 19.1.3.2-2
45	45-2	DSER OI 19.1.10.3-1 (R1)
45	45-5 and 45-6	DSER OI 19.1.10.3-1 (R1)
45	45-13 through 45-18	DSER OI 19.1.10.3-1 (R1)
45	45-31 through 45-42	DSER OI 19.1.10.3-1 (R1)
Attachment 45A	45A-1 through 45A-24	Deleted per DSER OI
		19.1.10.3-1 (R1)
49	49-6	DSER OI 19.1.10.3-1 (R1)
49	49-9 through 49-49	DSER OI 19.1.10.3-1 (R1)
50	50-1	Editorial
54	54.0	
54	54-9	DSER OI 19.1.10.2-3
54 84	<b>54-12</b>	DSEK OI 19.1.10.2-3
54 54	<b>54-13</b>	
54	54-22 through 54-71	
54	54-76 through 54-80	DSER OI 19.1.10.2-5 Editorial
		EXHIOTIAL

**Revision 4 Change Roadmap** 

AP1000 Probabilistic Risk Assessment

# REVISION 4 CHANGE ROADMAP (Cont.)

54       54-83 through 54-110       DSER OI 19.1.         54       54-112 through 54-118       DSER OI 19.1.         54       54-121 through 54-137       DSER OI 19.1.         54       54-121 through 54-137       DSER OI 19.1.         55       55-5       DSER OI 19A.2         55       55-7       DSER OI 19A.2         55       55-16 through 55-18       Editorial         55       55-20       DSER OI 19A.2         55       55-25 through 55-29       Editorial	10.2-5 10.2-5 10.2-3
54       54-112 through 54-118       DSER OI 19.1.         54       54-121 through 54-137       DSER OI 19.1.         55       55-5       DSER OI 19A.2         55       55-7       DSER OI 19A.2         55       55-7       DSER OI 19A.2         55       55-16 through 55-18       Editorial         55       55-20       DSER OI 19A.2         55       55-25 through 55-29       Editorial	10.2-5 10.2-3
54       54-121 through 54-137       DSER OI 19.1.         55       55-5       DSER OI 19A.2         55       55-7       DSER OI 19A.2         55       55-7       DSER OI 19A.2         55       55-7       DSER OI 19A.2         55       55-16 through 55-18       Editorial         55       55-20       DSER OI 19A.2         55       55-25 through 55-29       Editorial	10.2-3
55       55-5       DSER OI 19A.2         55       55-7       DSER OI 19A.2         55       55-7       DSER OI 19A.2         DSER OI 19A.2       DSER OI 19A.2         DSER OI 19A.2       DSER OI 19A.2         55       55-16 through 55-18       Editorial         55       55-20       DSER OI 19A.2         55       55-25 through 55-29       Editorial	
55       55-7       DSER OI 19A.1         55       55-16 through 55-18       Editorial         55       55-20       DSER OI 19A.2         55       55-25 through 55-29       Editorial	2-5 (R1)
55       55-16 through 55-18       Editorial         55       55-20       DSER OI 19A.2         55       55-25 through 55-29       Editorial	2-4 (R1) 2-5 (R1) 2-6 (R1)
55         55-20         DSER OI 19A.2           55         55-25 through 55-29         Editorial	
55         55-25 through 55-29         Editorial	2-6 (R1)
56 56-46 DSER OI 19.3.1	10-1
59 59-26 DSER OI 19.1.	10.3-1 (R1)
59 59-37 DSER OI 19A.3	3-2 (R1)
59 59-45 through 59-70 Editorial	
59 59-73 DSER OI 19.1.1	10.3-1 (R1)
59 59-74 Editorial	
59         59-100         DSER OI 19.1.1	10 3-1 (R1)

1. Changes incorporated as a result of Draft Safety Evaluation Report (DSER) Open Item (OI) Response identified by DSER OI number.

cxiii

## CHAPTER 34

## SEVERE ACCIDENT PHENOMENA TREATMENT

#### 34.1 Introduction

This chapter describes how the AP1000 containment addresses challenges from severe accident phenomena, and how the challenges are evaluated in the probabilistic risk assessment (PRA). In the PRA, the Modular Accident Analysis Program (MAAP) version 4.04 code (Reference 34-8) is used to evaluate severe accident scenarios. Severe accident phenomenological uncertainties are treated with Risk-Oriented Accident Analysis Methodology (ROAMM) (Reference 34-2) phenomenological evaluations, with AP1000-specific decomposition event tree phenomenological evaluations or with assumptions that certain low-frequency severe accident phenomena fail the containment. The objective of these studies is to show, with a high degree of confidence, that the AP1000 containment will accommodate the effects of severe accidents in a range of scenarios for at least the first 24 hours after the onset of core damage. Such evaluations demonstrate the robustness of the containment design.

## 34.2 Treatment of Physical Processes

The following eight issues are identified in Reference 34-1 as being representative of the phenomenological issues pertaining to severe accident conditions.

- 1. Loss-of-coolant accident (LOCA)
- 2. Fuel-coolant interaction (steam explosion)
- 3. Hydrogen combustion and detonation
- 4. Melt attack on concrete structure or containment pressure boundary
- 5. High-pressure melt ejection
- 6. Core-concrete interaction (CCI)
- 7. Containment pressurization from decay heat
- 8. Elevated temperature (equipment survivability)

The challenge to the containment integrity from a LOCA blowdown is covered in the containment design basis and is not specifically addressed here. Treatment of physical processes affecting the remaining challenges is discussed in this chapter. For the AP1000 design, issues 4 and 6 above arise primarily from the same physical processes: ex-vessel debris coolability. Therefore, they are discussed together within that subject in Section 34.2.5.

Phenomenological analyses and event trees are developed for key severe accident phenomena to provide a systematic and logical method to investigate the uncertainties in the phenomena.

## 34.2.1 In-Vessel Retention of Molten Core Debris

In-vessel retention (IVR) of core debris by external reactor vessel cooling is a severe accident mitigation attribute of the AP1000 design; it is discussed in detail in Chapter 39. With the reactor vessel intact and debris retained in the lower head, phenomena such as molten

core-concrete interaction and ex-vessel steam explosion, which occur as a result of core debris relocation to the reactor cavity, are prevented.

The AP1000 reactor vessel insulation and containment geometry promote in-vessel retention. Engineered design features of the AP1000 containment flood the containment reactor cavity region during accidents, and thereby, submerge the reactor vessel in water. Liquid effluent released through the break during a LOCA event is directed to the reactor cavity. The AP1000 functional restoration guidelines include a provision for draining the in-containment refueling water storage tank (IRWST) water into the reactor cavity through an operator action action if automatic draining fails. Therefore, in an accident the reactor pressure vessel is most likely submerged in water.

Chapter 39 presents an AP1000-specific evaluation to determine the likelihood that sufficient heat can be removed from the outside surface of the submerged reactor pressure vessel lower head to prevent reactor vessel failure and relocation of debris to containment. The methodology used to quantify the margin to vessel failure in Reference 34-2 for the AP600 was adapted to the AP1000. For the AP1000 the methodology assumes that:

- The RCS is depressurized.
- The reactor vessel is submerged above the 98-ft elevation in the containment.
- The reflective insulation promotes the two-phase natural circulation in the reactor vessel cooling annulus.
- The external surface treatment promotes wetability of the reactor vessel.

The containment event tree includes a node to ascertain that the reactor coolant system (RCS) is depressurized and a node to determine if adequate water is available in the cavity to achieve two-phase natural circulation. Success at both of these nodes is required to demonstrate that the conditions and assumptions of the IVR analysis presented in Chapter 39 are met. The AP1000 design specifies that the reactor vessel insulation is designed appropriately and that the outer surface of the reactor vessel promotes wetability.

Accounting for the uncertainties in thermal-hydraulic parameters, the heat fluxes to the vessel wall and reactor vessel internals from the debris pool are calculated. These heat fluxes are compared to the critical heat flux limit for the downward-facing curved surface. Vessel failure is assumed if the critical heat flux is exceeded. The results show large margin to failure for the reactor vessel if it is externally cooled by water. Therefore, reactor vessel integrity is assured at node VF in the containment event tree analysis if the reactor coolant system is depressurized and the cavity adequately flooded.

## 34.2.2 Fuel-Coolant Interaction (Steam Explosions)

A steam explosion may occur as a result of molten metal or oxide core debris mixing with water and interacting thermally. Steam is created at a very high rate, producing a sonic pressure front and dynamic loading on local structures. Steam explosions are postulated to occur inside the reactor vessel when debris relocates from the core region into the lower plenum and in the reactor cavity if the vessel fails and debris is ejected from it into water in the reactor cavity.

*

### 34.2.2.1 In-Vessel Fuel-Coolant Interaction

In-vessel steam explosions were studied extensively in the AP600 analyses. A ROAAM analysis of the AP600 reactor vessel lower head integrity under in-vessel steam explosion loading is presented in Reference 34-3. The analysis focused on failure of the lower head since that steam explosion vessel failure mode would impair the in-vessel retention capability of the reactor vessel. The ROAAM analysis concludes that lower-head vessel failure from in-vessel steam explosion is physically unreasonable with very large margin to failure.

Based on the in-vessel core relocation scenario for the AP1000, the in-vessel steam explosion ROAAM analysis presented for the AP600 can be extended to the AP1000. Molten debris relocation from the upper core region to the lower plenum is expected to occur as a result of a sidewall failure of the core shroud and core barrel. Downward relocation is not considered to be a reasonable relocation mode due to the large heat sink below the active fuel region formed by the fuel rod lower plenum zircaloy plugs, the bottom nozzles of the fuel assemblies and the lower core support plate. The sideward failure allows a limited mass of molten debris to initially relocate to the lower plenum. The mass flow rate, superheat and composition of debris in the relocation from the upper core region to the lower head is expected to be essentially the same as the AP600. The geometry of the lower head of the AP1000 is the same as the AP600. Therefore, it is reasonable to extend the results of the AP600 in-vessel steam explosion ROAAM analysis to the AP1000.

The results of the in-vessel steam explosion ROAAM can also be extended to containment failure induced by in-vessel steam explosions ( $\alpha$ -mode containment failure). The sideward failure mode does not initially relocate sufficient debris to the lower head. The in-vessel fuel-coolant interaction cannot generate sufficient energy, in a short time scale, to produce a missile that could fail the AP1000 containment. The likelihood for vessel failure and subsequent containment failure due to in-vessel steam explosion is so small as to be negligible. This conclusion is in agreement with the conclusions of the U.S. Nuclear Regulatory Commission (NRC)-sponsored Steam Explosion Review Group (Reference 34-4).

### 34.2.2.2 Ex-Vessel Fuel-Coolant Interaction

The first level of defense for ex-vessel steam explosion is the in-vessel retention of the molten core debris. If molten debris does not relocate from the vessel to the containment, there are no conditions for ex-vessel steam explosion. In the event that the reactor cavity is not flooded and the vessel fails, the PRA containment event tree assumes that the containment fails in the early time frame.

An analysis of the structural response of the reactor cavity was performed for the AP600 (Reference 34-5, Appendix B). As in the in-vessel steam explosion analysis, the results of this AP600 ex-vessel steam explosion analysis are extended to the AP1000. The vessel failure modes for AP600 and AP1000 are the same. The initial debris mass, superheat and composition are assumed to be the same as the AP600. The mass assumption is conservative since the AP1000 vessel lower head is closer to the cavity floor resulting in less debris mass

participating in the interaction. The reactor cavity geometry and water depth prior to vessel failure are the same as AP600. Therefore, the results of the AP600 ex-vessel steam explosion analysis are considered to be appropriate for the AP1000.

## 34.2.3 Hydrogen Combustion and Detonation

A decomposition event tree analysis discussed in Chapter 41 evaluates the potential for hydrogen combustion threatening the containment integrity during a severe accident sequence in the AP1000. The analysis examines diffusion flame burning and local detonation occurring during in-vessel hydrogen generation prior to hydrogen mixing in the containment and global deflagration and detonation, which may occur later when the hydrogen is mixed throughout the containment. Only in-vessel hydrogen generation is considered, since vessel failure and ex-vessel debris relocation is assumed to fail containment.

If the igniters are operational, the potential for diffusion-flame-induced containment failures is considered during the hydrogen generation and release from the reactor coolant system (RCS). Diffusion flames may be formed when high-concentration, nonflammable hydrogen plumes encounter oxygen and burn as a standing flame. Flames that have a large view factor or that impinge on the containment pressure boundary may fail the containment pressure boundary due to the locally high temperatures. The pathways that in-vessel hydrogen can take to containment are reviewed for potential impact on containment integrity. Locations where diffusion flames may be postulated are examined for potential failure of the containment due to creep of the containment shell at high temperature.

The AP1000 provides defense-in-depth to address hydrogen diffusion flames that may challenge containment integrity. The first level of defense is the stage four automatic depressurization system (ADS Stage 4) lines from the RCS, which prevent significant hydrogen releases to the in-containment refueling water storage tank (IRWST) and Passive Core Cooling System (PXS) compartments. The ADS Stage 4 lines provide a path of least resistance to release hydrogen generated in-vessel to the containment. ADS Stage 4 vents from the RCS hot legs to the loop compartments, which are shielded from the containment shell and have a constant source of oxygen from the natural circulation in the containment. Hydrogen can burn as a diffusion flame in the loop compartments without threatening the containment integrity. If ADS Stage 4 fails, the AP1000 has provided design considerations in the IRWST vents to mitigate diffusion flames near the containment walls. Vents from the passive injection system compartments and chemical volume and control system compartment are located away from the containment shell and penetrations in order to mitigate the threat from hydrogen diffusion flames.

Containment failure from a directly initiated detonation wave is not considered to be a credible event for the AP1000 containment. There are no ignition sources of sufficient energy to directly initiate a detonation in the AP1000 containment. Deflagration to detonation transition (DDT) is considered to be the only likely mechanism to produce a detonation in the AP1000 containment.

The likelihood of DDT in the AP1000 containment is evaluated locally in confined compartments during in-vessel hydrogen generation and globally after in-vessel generation is concluded and hydrogen is mixed in the containment. For a DDT to occur, the combination of

the gas mixture sensitivity to detonation and the geometric configuration potential for flame acceleration must be conducive to DDT. Since the hydrogen concentration necessary to form a detonable mixture depends on the size of the enclosure, concentration requirements for DDT in different regions of the AP1000 containment are extrapolated from the FLAME facility data (Reference 34-6) using scaling arguments based on the detonation cell width. The geometric requirement is evaluated considering aspects such as the degree of confinement and the extent and type of obstacles present in the postulated flame propagation path. In all cases, DDT is assumed to result in containment failure in the containment event tree analysis.

Global hydrogen deflagration and the potential for containment failure are modeled on the containment event tree. Adiabatic, isochoric, complete combustion (AICC) is assumed, and peak pressure probability distributions are developed for the accident scenarios. The probability of containment failure due to hydrogen deflagration is evaluated from the containment failure probability distribution combined with the peak pressure probability distribution.

### 34.2.4 High-Pressure Melt Ejection

The AP1000 incorporates design features that prevent high-pressure core melt. These features include the passive residual heat removal (PRHR) system and the ADS. These design features provide primary system heat removal and depressurization to prevent high pressure core damage conditions. The consequences from postulated high pressure melt ejection (HPME) are mitigated by the containment layout which provides a torturous pathway to the upper compartment and no direct pathway for the impingement of debris on the containment shell.

In high-pressure core damage sequences (i.e., non-LOCA or very small LOCA events with the ADS and PRHR inoperable), the potential exists for creep-rupture-induced failures of the RCS piping at the hot-leg nozzles, the surge line, the steam generator tubes and, given debris relocation to the lower plenum, in the reactor vessel lower head. Failure of the hot-leg nozzle or surge line prior to failures of other components results in the rapid depressurization of the RCS. Failure of the steam generator tubes results in a containment bypass and a large release of fission products to the environment. Failure of the lower head of the reactor vessel results in the potential for HPME.

The AP1000 RCS loops have canned-motor pumps mounted to the steam generator outlet plenum. The coolant loops do not have water-trap loop seals as in conventional plant designs. A large natural-circulation flow heats the reactor coolant loop components in a relatively uniform manner. Hot-leg nozzle failure is expected prior to steam generator tube failure, but because of large uncertainties, hot-leg nozzle creep rupture failure is not credited with preventing steam generator tube failure. In the PRA, steam generator tube failure is assumed for high-pressure sequences in the containment event tree analysis unless operator action to depressurize the RCS with the ADS is successful.

#### 34.2.5 Core Debris Coolability

In accident sequences where the reactor pressure vessel failure is not prevented, core debris may be discharged into the reactor cavity. The likely vessel failure modes produce a low pressure melt ejection (LPME) to the containment. The AP1000 cavity design provides area for the core debris to spread. Condensate from the passive containment cooling system (PCS) returns to the reactor cavity, thereby providing a long-term supply of water to cool the core debris.

To accommodate the requirements for in-vessel retention of core debris, the AP1000 provides highly reliable RCS depressurization and cavity flooding capability. At vessel failure it is very likely that the cavity will be filled with water from the RCS, core makeup tanks (CMTs), and accumulators to at least the 83-ft elevation. There are significant uncertainties associated with debris spreading into a water-filled cavity. Debris-spreading is mainly a function of the highly uncertain vessel failure mode. A large-scale lower head failure releasing debris at a high rate would enhance spreading, while a localized failure mode would release debris at a slow rate, which would most likely cause the debris to pile up under the reactor vessel and minimize spreading.

Given the uncertainties in the debris-spreading and in non-condensable gas generation and combustion, the containment event tree analysis does not credit containment integrity in the event of failure of the lower head of the vessel and relocation of the core.

A limited set of deterministic analyses of debris spreading and core-concrete interaction in the AP1000 cavity is presented in Appendix B. The analyses show that basemat melt-through is not predicted to occur within 24 hours of the accident initiation. Basemat melt through is predicted to occur before pressurization of the containment by non-condensable gases challenges the containment integrity.

## 34.2.6 Containment Pressurization from Decay Heat

The AP1000 containment is cooled via the PCS (see Chapter 40). Evaporative water cooling of the containment shell provides long-term containment cooling and limits the containment pressure to less than the design pressure for all severe accident events except hydrogen combustion, which is addressed separately. Containment water is provided to the top of the containment via redundant, diverse system of valves and lines, including a line that can be connected to an outside water source such as a fire truck.

In the unlikely event that water cannot be supplied to the top of the containment shell for an extended period of time, air-only cooling by air flowing through the PCS annulus provides significant cooling to the containment. Under the right environmental conditions, the containment is expected to reach an equilibrium pressure that will not challenge containment integrity. However, under nominal-to-conservative environmental conditions, containment integrity by air-only cooling cannot be assured. In this case, containment failure is predicted to occur more than 24 hours after accident initiation.

A significant amount of time is available for operator action to vent the containment under the severe accident management guidance (SAMG). Containment venting mitigates uncontrolled releases of fission products from a failed containment. The AP1000 can be vented on an ad-hoc basis under the SAMG from a number of containment penetrations. Once venting is concluded, the increased steam concentration in the containment improves the air-only cooling from the PCS such that no further venting is anticipated. Containment venting also reduces the partial pressure of non-condensable gases in the containment, and thus creates a new containment underpressure failure mode that may occur if containment is cooled after venting.

**.** 

#### **34.2.7** Elevated Temperature (Equipment Survivability)

Reference 34-7 states that equipment identified as being useful to mitigate the consequences of severe accidents must be designed to provide reasonable assurance that it will continue to operate in a severe accident environment for the length of time needed to accomplish its function. Also, 10 CFR 50.34(f) requires safety equipment to continue performing its function after being exposed to a containment environment created as a consequence of generating a quantity of hydrogen equivalent to that from 100-percent cladding oxidation. As the AP1000 design uses thermal igniters to burn hydrogen in a controlled manner, it is necessary to demonstrate that the safety equipment can continue to perform its function in the high-temperature environment created by the hydrogen burning.

The functions of the equipment in containment for which credit is taken in the AP1000 PRA were reviewed to determine if the equipment is required to operate in a severe accident environment and beyond design basis limits. The equipment and the basis for operation are the same as the AP600. Therefore, the results of the AP600 are extended to the AP1000 for equipment survivability. In the calculation of the large release frequency (LERF), only the containment pressure boundary is credited to perform beyond its design basis. The performance of the AP1000 containment pressure boundary beyond its design basis is evaluated in Chapter 42. Other equipment is credited in the analysis, but either the containment environmental conditions do not exceed the equipment qualification conditions at the time the function is performed, or the design basis for the equipment is a severe accident environment. The radiation environment for equipment qualification for safety-related equipment in containment is based on the severe accident source term involving significant in-vessel fuel melting described in NUREG-1465. The equipment credited in the LERF calculation is assumed to survive the radiation dose associated with the accidents over the time required to perform its function.

Equipment considered to be useful for post-accident monitoring is presented in Table 34-1.

### 34.2.8 Summary

The potential for and the consequences of severe accident phenomena are evaluated. The preventive and mitigative features of the AP1000 addressing the severe accident phenomena are discussed. This information is applied to the containment event trees and used in the quantification of the LERF.

### 34.3 Analysis Method

The analyses of the fission-product source terms for the release categories discussed in Chapter 45 are completed with the MAAP4.04 computer code (Reference 34-8).

The following sections are presented for each of the accident classes for the fission-product source term MAAP4.04 analyses. First, the intact containment (IC) analyses are described,

including any sensitivity analyses completed to define the most conservative system assumptions, then the relevant containment failure analyses are presented.

Table 34-2 provides a summary of the accident classes for the AP1000 Level 1 quantification. Table 34-3 summarizes the Level 2 release categories.

34.4 Severe Accident Analyses

### 34.4.1 Accident Class 3BE – Intact Containment

### 34.4.1.1 3BE-1

The sequence description and assumptions are listed below.

- DVI line break in PXS compartment (PXS is flooded through broken DVI line)
- Failure of PRHR
- 2/2 ADS stage 1 automatic
- 2/2 ADS stage 2 automatic
- 2/2 ADS stage 3 automatic
- 4/4 ADS stage 4 automatic
- 1/2 CMTs
- 1/2 accumulators
- 0/2 IRWST gravity injection lines
- 0/2 IRWST recirculation lines
- 2/2 cavity flooding lines
- Hydrogen igniters operating

No containment failure is considered, and thus, the release category is IC. However, normal leakage from the containment is assumed.

The main events of the case are shown in Table 34-4, while relevant plots are presented in Figures 34-1 through 34-17.

## 34.4.1.2 3BE-2

The sequence description and assumptions are listed below.

- DVI line break in PXS compartment (PXS is not flooded through broken DVI line)
- Failure of PRHR
- 2/2 ADS stage 1 automatic
- 2/2 ADS stage 2 automatic
- 2/2 ADS stage 3 automatic
- 4/4 ADS stage 4 automatic
- 1/2 CMTs
- 1/2 accumulators
- 0/2 IRWST gravity injection lines
- 0/2 IRWST recirculation lines

- 2/2 cavity flooding lines
- Hydrogen igniters operating

The main events of the case are shown in Table 34-5, while relevant plots are presented in Figures 34-18 through 34-34. Note that without flooding of the PXS compartment, RCS reflood does not occur.

42

### 34.4.1.3 3BE-4

The sequence description and assumptions are listed below.

- One valve of ADS Stage 4 spuriously opens
- Failure of PRHR
- 2/2 ADS stage 1 automatic
- 2/2 ADS stage 2 automatic
- 2/2 ADS stage 3 automatic
- 4/4 ADS stage 4 automatic
- 2/2 CMTs
- 2/2 accumulators
- 0/2 IRWST gravity injection lines
- 0/2 IRWST recirculation lines
- 2/2 cavity flooding lines
- Hydrogen igniters operating

The main events of the case are shown in Table 34-6, while relevant plots are presented in Figures 34-35 through 34-51.

#### 34.4.1.4 3BE-5

The sequence description and assumptions are listed below.

- 2-inch hot-leg break to steam generator compartment
- Failure of PRHR
- 2/2 ADS stage 1 automatic
- 2/2 ADS stage 2 automatic
- 2/2 ADS stage 3 automatic
- 4/4 ADS stage 4 automatic
- 2/2 CMTs
- 2/2 accumulators
- 0/2 IRWST gravity injection lines
- 0/2 IRWST recirculation lines
- 2/2 cavity flooding lines
- Hydrogen igniters operating

The main events of the case are shown in Table 34-7, while relevant plots are presented in Figures 34-52 through 34-68.

## 34.4.1.5 3BE-6

The sequence description and assumptions are listed below.

- 2-inch hot-leg break to steam generator compartment
- Failure of PRHR
- 2/2 ADS stage 1 automatic
- 2/2 ADS stage 2 automatic
- 2/2 ADS stage 3 automatic
- 4/4 ADS stage 4 automatic
- 2/2 CMTs
- 2/2 accumulators
- 0/2 IRWST gravity injection lines
- 0/2 IRWST recirculation lines
- 1/2 cavity flooding lines
- Hydrogen igniters operating

The main events of the case are shown in Table 34-8, while relevant plots are presented in Figures 34-69 through 34-85.

## 34.4.2 Accident Class 3BE – Failed Containment

## 34.4.2.1 3BE-7

The sequence description and assumptions are listed below.

- 2-inch hot-leg break to steam generator compartment
- Containment failure at peak of debris quench (vessel failure)
- Failure of PRHR
- 2/2 ADS stage 1 automatic
- 2/2 ADS stage 2 automatic
- 2/2 ADS stage 3 automatic
- 4/4 ADS stage 4 automatic
- 2/2 CMTs
- 2/2 accumulators
- 0/2 IRWST gravity injection lines
- 0/2 IRWST recirculation lines
- 0/2 cavity flooding lines
- Hydrogen igniters operating

The main events of the case are shown in Table 34-9, while relevant plots are presented in Figures 34-86 through 34-102.

## 34.4.2.2 3BE-3

The sequence description and assumptions are listed below.

- DVI line break in PXS compartment (PXS is flooded through broken DVI line)
- Hydrogen burn and containment failure after reflood
- Failure of PRHR
- 2/2 ADS stage 1 automatic
- 2/2 ADS stage 2 automatic
- 2/2 ADS stage 3 automatic
- 4/4 ADS stage 4 automatic
- 1/2 CMTs
- 1/2 accumulators
- 0/2 IRWST gravity injection lines
- 0/2 IRWST recirculation lines
- 2/2 cavity flooding lines
- No hydrogen igniters operating

The main events of the case are shown in Table 34-10, while relevant plots are presented in Figures 34-103 through 34-119.

34.4.3 Accident Class 3BL – Intact Containment

34.4.3.1 3BL-1

The sequence description and assumptions are listed below.

- 2-inch hot-leg break to steam generator compartment
- Failure of PRHR
- 2/2 ADS stage 1 automatic
- 2/2 ADS stage 2 automatic
- 2/2 ADS stage 3 automatic
- 4/4 ADS stage 4 automatic
- 2/2 CMTs
- 2/2 accumulators
- 2/2 IRWST gravity injection lines
- 0/2 IRWST recirculation lines
- Hydrogen igniters operating
- Cavity flooding unnecessary (IRWST gravity injection successful)

No containment failure is considered, and thus, the release category is IC. However, normal leakage from the containment is assumed. Reflooding the core via the hot leg break is not credited.

The main events of the case are shown in Table 34-11, while relevant plots are presented in Figures 34-120 through 34-136.

## 34.4.3.2 3BL-2

This case compares the results of changes to system assumptions to the dominant sequence discussed above. The results of this comparison are used to define the system assumptions for subsequent 3BL containment failure analyses.

The sequence description and assumptions are listed below.

- DVI line break in PXS compartment (PXS is not flooded through broken DVI line)
- Failure of PRHR
- 2/2 ADS stage 1 automatic
- 2/2 ADS stage 2 automatic
- 2/2 ADS stage 3 automatic
- 4/4 ADS stage 4 automatic
- 1/2 CMTs
- 1/2 accumulators
- 1/2 IRWST gravity injection lines
- 0/2 IRWST recirculation lines
- Hydrogen igniters operating
- Cavity flooding unnecessary (IRWST gravity injection successful)

The main events of the case are shown in Table 34-12, while relevant plots are presented in Figures 34-137 through 34-153.

### 34.4.4 Accident Class 3BR – Intact Containment

## 34.4.4.1 3BR-1

The sequence description and assumptions are listed below.

- Double-ended guillotine break (DEGB) in the cold leg to the steam generator compartment
- Failure of PRHR
- 2/2 ADS stage 1 automatic
- 2/2 ADS stage 2 automatic
- 2/2 ADS stage 3 automatic
- 4/4 ADS stage 4 automatic
- 2/2 CMTs
- 0/2 accumulators
- 2/2 IRWST gravity injection lines
- 2/2 IRWST recirculation lines
- Hydrogen igniters operating
- Cavity flooding unnecessary (IRWST gravity injection successful)

No containment failure is considered, and thus, the release category is IC. However, normal leakage from the containment is assumed.

The main events of the case are shown in Table 34-13, while relevant plots are presented in Figures 34-154 through 34-170.

## 34.4.4.2 3BR-1a

The sequence description and assumptions are listed below.

- Double-ended guillotine break (DEGB) in the cold leg to the steam generator compartment
- Failure of PRHR
- 2/2 ADS stage 1 automatic
- 2/2 ADS stage 2 automatic
- 2/2 ADS stage 3 automatic
- 4/4 ADS stage 4 automatic
- 2/2 CMTs
- 0/2 accumulators
- 0/2 IRWST gravity injection lines
- 0/2 IRWST recirculation lines
- Hydrogen igniters operating
- Cavity flooding unnecessary (IRWST gravity injection successful)

No containment failure is considered, and thus, the release category is IC. However, normal leakage from the containment is assumed.

The main events of the case are shown in Table 34-14, while relevant plots are presented in Figures 34-171 through 34-187.

### 34.4.5 Accident Class 3C – Intact Containment

### 34.4.5.1 3C-1

The sequence description and assumptions are listed below.

- Large LOCA at belt of vessel into cavity
- Failure of PRHR
- 2/2 ADS stage 1 automatic
- 2/2 ADS stage 2 automatic
- 2/2 ADS stage 3 automatic
- 4/4 ADS stage 4 automatic
- 2/2 CMTs
- 2/2 accumulators
- 2/2 IRWST gravity injection lines
- 2/2 IRWST recirculation lines
- Hydrogen igniter operating
- Cavity flooding unnecessary (IRWST gravity injection successful)

No containment failure is considered, and thus, the release category is IC. However, normal leakage from the containment is assumed.

The main events of the case are shown in Table 34-15, while relevant plots are presented in Figures 34-188 through 34-204.

## 34.4.6 Accident Class 3C – Failed Containment

34.4.6.1 3C-2

The sequence description and assumptions are listed below.

- Large LOCA at belt of vessel into cavity
- Containment failure at start of event
- Failure of PRHR
- 2/2 ADS stage 1 automatic
- 2/2 ADS stage 2 automatic
- 2/2 ADS stage 3 automatic
- 4/4 ADS stage 4 automatic
- 2/2 CMTs
- 2/2 accumulators
- 2/2 IRWST gravity injection lines
- 2/2 IRWST recirculation lines
- Hydrogen igniter operating
- Cavity flooding unnecessary (IRWST gravity injection successful)

The main events of the case are shown in Table 34-16, while relevant plots are presented in Figures 34-205 through 34-221.

## 34.4.7 Accident Class 3D – Intact Containment

## 34.4.7.1 3D-1

The sequence description and assumptions are listed below.

- One valve of ADS Stage 4 spuriously opens
- Failure of PRHR
- 0/2 ADS stage 1
- 0/2 ADS stage 2
- 0/2 ADS stage 3
- 0/4 ADS stage 4
- 0/2 CMTs
- 2/2 accumulators
- 0/2 IRWST gravity injection lines
- 0/2 IRWST recirculation lines
- 2/2 cavity flooding
- Hydrogen igniters operating

No containment failure is considered, and thus, the release category is IC. However, normal leakage from the containment is assumed.

The main events of the case are shown in Table 34-17, while relevant plots are presented in Figures 34-222 through 34-238.

19-5

## 34.4.7.2 3D-2

The sequence description and assumptions are listed below.

- Two valves of ADS Stage 4 spuriously open
- Failure of PRHR
- 0/2 ADS stage 1
- 0/2 ADS stage 2
- 0/2 ADS stage 3
- 0/4 ADS stage 4
- 0/2 CMTs
- 2/2 accumulators
- 0/2 IRWST gravity injection lines
- 0/2 IRWST recirculation lines
- 2/2 cavity flooding
- Hydrogen igniters operating

The main events of the case are shown in Table 34-18, while relevant plots are presented in Figures 34-239 through 34-255.

#### 34.4.7.3 3D-3

The sequence description and assumptions are listed below.

- DVI line break in PXS compartment
- Failure of PRHR
- 0/2 ADS stage 1
- 0/2 ADS stage 2
- 0/2 ADS stage 3
- 0/4 ADS stage 4
- 1/2 CMTs (no low-2 CMT signal)
- 1/2 accumulators
- 0/2 IRWST gravity injection lines
- 0/2 IRWST recirculation lines
- 2/2 cavity flooding
- Hydrogen igniters operating

The main events of the case are shown in Table 34-19, while relevant plots are presented in Figures 34-256 through 34-272.

## 34.4.8 Accident Class 3D – Failed Containment

## 34.4.8.1 3D-4

The sequence description and assumptions are listed below.

- Two valves of ADS Stage 2 spuriously open
- Failure of PRHR
- 0/2 ADS stage 1
- 0/2 ADS stage 2
- 0/2 ADS stage 3
- 0/4 ADS stage 4
- 0/2 CMTs
- 2/2 accumulators
- 0/2 IRWST gravity injection lines
- 0/2 IRWST recirculation lines
- 2/2 cavity flooding lines
- Hydrogen igniters operating
- Upper compartment failure due to hydrogen release from IRWST

The main events of the case are shown in Table 34-20, while relevant plots are presented in Figures 34-273 through 34-289.

## 34.4.9 Accident Class 6E – Bypass Containment

34.4.9.1 6E-1

The sequence description and assumptions are listed below.

- Coincident rupture of five hot side steam generator tubes
- Broken steam generator SV fails to reseat upon automatic opening
- Success of PRHR
- 0/2 ADS stage 1
- 0/2 ADS stage 2
- 0/2 ADS stage 3
- 0/4 ADS stage 4
- 2/2 CMTs
- 2/2 accumulators
- 2/2 IRWST gravity injection lines
- 2/2 IRWST recirculation lines
- 2/2 cavity flooding lines
- Hydrogen igniters operating

This is a containment bypass sequence; thus the release category is BP. Note that due to the lack of ADS Stage 4, no IRWST injection flow is available to provide core cooling.

The main events of the case are shown in Table 34-21, while relevant plots are presented in Figures 34-290 through 34-306.

## 34.4.10 Accident Class 6L – Bypass Containment

34.4.10.1 6L-1

The sequence description and assumptions are listed below.

- Coincident rupture of 5 hot side steam generator tubes
- Broken steam generator SV fails to reseat upon automatic opening
- Success of PRHR
- 2/2 ADS stage 1 automatic
- 2/2 ADS stage 2 automatic
- 2/2 ADS stage 3 automatic
- 4/4 ADS stage 4 automatic
- 2/2 CMTs
- 2/2 accumulators
- 2/2 IRWST gravity injection lines
- 0/2 IRWST recirculation lines
- Cavity flooding unnecessary (IRWST gravity injection successful)
- Hydrogen igniters operating

The main events of the case are shown in Table 34-22, while relevant plots are presented in Figures 34-307 through 34-323.

## 34.4.11 Accident Class 1AP

34.4.11.1 1AP-1

The sequence description and assumptions are listed below.

- 3/8-inch hot-leg break to steam generator compartment
- Creep rupture of five steam generator tubes
- Success of PRHR
- 0/2 ADS stage 1
- 0/2 ADS stage 2
- 0/2 ADS stage 3
- 0/4 ADS stage 4
- 0/2 CMTs
- 2/2 accumulators
- 0/2 IRWST gravity injection lines
- 0/2 IRWST recirculation lines
- 2/2 cavity flooding lines
- Hydrogen igniters operating

This is a containment bypass sequence; thus the release category is BP.

The main events of the case are shown in Table 34-23, while relevant plots are presented in Figures 34-324 through 34-340. The temperatures of the steam generator tubes were monitored for creep rupture potential based on the Larsen-Miller correlation (Reference 34-9).

## 34.4.11.2 1AP-2

The sequence description and assumptions are listed below.

- 3/8-inch hot-leg break to steam generator compartment
- Creep rupture of five steam generator tubes
- Success of PRHR
- 0/2 ADS stage 1
- 0/2 ADS stage 2
- 0/2 ADS stage 3
- 0/4 ADS stage 4
- 2/2 CMTs
- 2/2 accumulators
- 0/2 IRWST gravity injection lines
- 0/2 IRWST recirculation lines
- 0/2 cavity flooding lines
- Hydrogen igniters operating

This is a containment bypass sequence; thus the release category is BP.

The main events of the case are shown in Table 34-24, while relevant plots are presented in Figures 34-341 through 34-357. The temperatures of the hot leg and steam generator tubes were monitored for creep rupture potential based on the Larsen-Miller correlation (Reference 34-9).

## 34.4.12 Accident Class 1A

## 34.4.12.1 1A-1

The sequence description and assumptions are listed below.

- Loss of feedwater transient
- Creep rupture of five steam generator tubes
- Failure of PRHR
- 0/2 ADS stage 1
- 0/2 ADS stage 2
- 0/2 ADS stage 3
- 0/4 ADS stage 4
- 2/2 CMTs
- 2/2 accumulators
- 2/2 IRWST gravity injection lines
- 2/2 IRWST recirculation lines

- 2/2 cavity flooding lines
- Hydrogen igniters operating

This is a containment bypass sequence; thus the release category is BP.

The main events of the case are shown in Table 34-25, while relevant plots are presented in Figures 34-358 through 34-374. The temperatures of the hot leg and steam generator tubes were monitored for creep rupture potential based on the Larsen-Miller correlation (Reference 34-9).

## 34.4.12.2 1A-2

The sequence description and assumptions are listed below.

- Loss of feedwater transient
- Creep rupture of five steam generator tubes
- Creep rupture of hot leg
- Failure of PRHR
- 0/2 ADS stage 1
- 0/2 ADS stage 2
- 0/2 ADS stage 3
- 0/4 ADS stage 4
- 0/2 CMTs
- 2/2 accumulators
- 0/2 IRWST gravity injection lines
- 2/2 IRWST recirculation lines
- 0/2 cavity flooding lines
- Hydrogen igniters operating

This is a containment bypass sequence; thus the release category is BP.

The main events of the case are shown in Table 34-26, while relevant plots are presented in Figures 34-375 through 34-391. The temperatures of the hot leg and steam generator tubes were monitored for creep rupture potential based on the Larsen-Miller correlation (Reference 34-9). The steam generator tubes failed first.

## 34.4.13 Intermediate and Late Containment Failure Cases

## 34.4.13.1 CFI – Intermediate Containment Failure Case

The sequence description and assumptions are listed below:

- Accident class 3BE DVI line break in the PXS compartment (PXS is flooded through broken DVI line)
- Hydrogen burn and containment failure from deflagration-to-detonation transition (DDT) when containment global hydrogen concentration exceeds 10 percent

- 2/2 ADS stage 1 automatic
- 2/2 ADS stage 2 automatic
- 2/2 ADS stage 3 automatic
- 4/4 ADS stage 4 automatic
- 1/2 CMTs
- 1/2 accumulators
- 0/2 IRWST gravity injection lines
- 1/2 cavity flooding through recirculation lines
- No hydrogen igniters operating

The accident sequence timing is presented in Table 34-27. Relevant plots are presented in Figures 34-392 through 34-406.

## 34.4.13.2 CFL – Late Containment Failure Case

The sequence description and assumptions are listed below:

- Accident class 3BE Medium LOCA in a hot leg to the loop compartment
- Failure of passive containment cooling system cooling water
- Containment failure from long-term containment overpressure at 91 psig (ASME service level C)
- 2/2 ADS stage 1 automatic
- 2/2 ADS stage 2 automatic
- 2/2 ADS stage 3 automatic
- 4/4 ADS stage 4 automatic
- 2/2 CMTs
- 2/2 accumulators
- 0/2 IRWST gravity injection lines
- 1/2 cavity flooding through recirculation lines

No hydrogen igniters credited; containment is steam inerted

The accident sequence timing is presented in Table 34-28. Relevant plots are presented in Figures 34-407 through 34-425.

### 34.5 Insights and Conclusions

The analyses of the severe accident phenomena for the AP1000 PRA highlight the following insights and conclusions:

- The design of the AP1000 reactor vessel, vessel insulation and reactor cavity, and the ability to flood the cavity after a severe accident reduce the potential challenges to the containment integrity by maintaining the vessel integrity.
- Should a failure of the reactor vessel occur, the design of the reactor cavity enhances the ability to cool any core debris that exits the vessel.
- Lower head vessel failure due to in-vessel steam explosions is physically unreasonable.
- The ADS and PRHR system are design features that can be used to prevent high-pressure core melt in a severe accident.
- A directly-initiated hydrogen detonation in the AP1000 containment is not a credible event.
- The equipment needed to mitigate the consequences of a severe accident is designed to provide reasonable assurance that it will continue to operate during an accident.

### 34.6 References

- 34-1 Letter from D. A. Ward, Advisory Committee on Reactor Safeguards, to K. A. Carr, Chairman, Nuclear Regulatory Commission, "Proposed Criteria to Accommodate Severe Accidents in Containment Design," dated May 17, 1991.
- 34-2 Theofanous, T. G., et al., "In-Vessel Coolability and Retention of a Core Melt," DOE/ID-10460, July 1995.
- 34-3 Theofanous, T. G., et al., "Lower Head Integrity Under In-Vessel Steam Explosion Loads," DOE/ID-10541, July 1996.
- 34-4 NUREG-1116, A Review of the Current Understanding of the Potential for Containment Failure From In-Vessel Steam Explosions, 1985.
- 34-5 GW-GL-022, AP600 Probabilistic Risk Assessment, August 1998.

- 34-6 Sherman, M. P., Tieszen, S. R., and Benedick, W. B., FLAME Facility The Effects of Obstacles and Transverse Venting on Flame Acceleration and Transition to Detonation for Hydrogen-Air Mixtures at Large Scale, NUREG/CR-5275, April 1989.
- 34-7 Attachment to letter from D. M. Crutchfield, Office of Nuclear Reactor Regulation, to E. E. Kintner, Advanced Light Water Reactor Steering Committee, "Major Technical and Policy Issues Concerning the Evolutionary and Passive Plant Designs," dated February 27, 1992.
- 34-8 "EPRI MAAP 4.0 Users Manual."
- 34-9 Larson, F. R., Miller, J., "A Time-Temperature Relationship for Rupture and Creep Stress," Transactions of the American Society of Mechanical Engineers, pp. 765-775, July 1952.

# AP1000 Probabilistic Risk Assessment

Table 34-1 (Sheet 1 of 2)			
	POST-ACCIDENT MONITORING EQUIPMENT		
Parameter	Primary Purposes	Method of Measurement (or Estimate)	
Steam Generator Water Level RCS Pressure	<ul> <li>To determine if there is an RCS heat sink available</li> <li>To determine if creep rupture of the steam generator tubes is a concern</li> <li>To mitigate fission-product releases from faulty or leaking steam generator tubes</li> <li>To determine the ability to inject into the RCS</li> <li>To determine if high-pressure melt</li> </ul>	<ul> <li>Wide-range steam generator level</li> <li>Narrow-range steam generator level</li> <li>Wide-range RCS pressure</li> <li>Pressurizer pressure</li> </ul>	
Core Temperature (RCS Temperature or Reactor Vessel Level)	<ul> <li>ejection is a concern</li> <li>To determine if there is an uncontrolled opening in the RCS</li> <li>To determine if the core is covered with water</li> </ul>	<ul> <li>Accumulator pressure</li> <li>CMT flow</li> <li>IRWST flow</li> <li>Core-exit thermocouples</li> <li>Hot-leg/cold-leg RTDs</li> <li>Subcooling margin monitor</li> <li>Reactor vessel level</li> </ul>	
Containment Water Level	<ul> <li>To determine if equipment and instruments are flooded</li> <li>To determine if core cooling in the recirculation mode is possible</li> <li>To determine if the outside of the reactor vessel is covered with water</li> <li>To determine if the core is coolable if reactor vessel failure occurs</li> </ul>	<ul> <li>Source range monitor</li> <li>Power range monitor</li> <li>Containment recirculation sump level</li> <li>IRWST water level</li> </ul>	
Site Release	• To determine if release mitigation is desired	Site-specific list	

51

Table 34-1 (Sheet 2 of 2)			
	POST-ACCIDENT MONITORING EQUIPMENT		
Parameter	Primary Purposes	Method of Measurement (or Estimate)	
Containment Pressure	<ul> <li>To determine if there is a challenge to the containment due to overpressurization or due to a sub-atmospheric condition</li> <li>To determine if the containment atmosphere is steam inerted</li> <li>To determine if there is a challenge to the containment due to hydrogen flammability</li> </ul>	<ul> <li>Containment pressure</li> <li>Wide-range containment pressure</li> <li>Water levels that use containment as reference leg</li> <li>Containment hydrogen monitor</li> </ul>	

AP1000 Probabilistic Risk Assessment

Table 34-2			
	LEVEL 1 ACCIDENT CLASS		
	FUNCTI	ONAL DEFINITIONS OF LEVEL 1 ACCIDENT CLASS	
Accident Class	Subclass	Definition	
1	Α	Core damage with RCS at high pressure following transient or RCS leak	
1	AP	Core damage with no depressurization following small LOCA and RCS leak with PRHR operating or medium LOCA	
1	D	Core damage with partial depressurization of RCS following transient	
3	Α	Core damage with RCS at high pressure following ATWS or main steam line break inside containment	
3	BR	Core damage following large LOCA with full RCS depressurization, but accumulator failed	
3	BE	Core damage following large LOCA or other event with full depressurization	
3	BL	Core damage at long term following failure of water recirculation to reactor pressure vessel (RPV) after successful gravity injection	
3	C	Core damage following vessel rupture	
3	D	Core damage following small or medium LOCA with partial depressurization	
6	Е	Core damage following steam generator tube rupture or interfacing systems LOCA – early core damage (loss of injection)	
6	2 . <b>L</b>	Core damage following steam generator tube rupture – late core damage (loss of reciprolation)	

**Revision 4** 

Table 34-3		
SUMMARY OF RELEASE CATEGORIES		
Release Category	Release Category Name	Release Category Description
IC	Intact Containment	Containment integrity is maintained throughout the accident, and the release of radiation to the environment is due to nominal leakage.
BP	Bypass Containment	Fission products are released directly from the RCS to the environment via the secondary system or other interfacing system bypass. Containment failure occurs prior to onset of core damage.
CI	Containment Isolation Failure	Fission products are released through a failure of the system or valves that close the penetrations between the containment and the environment. Containment failure occurs prior to onset of core damage.
CFE	Early Containment Failure	Fission products are released through a containment failure caused by dynamic severe accident phenomena occurring after the onset of core damage, but prior to core relocation. Such phenomena include hydrogen detonation, hydrogen diffusion flame, steam explosions, and vessel failure.
CFI	Intermediate Containment Failure	Fission products are released through a containment failure caused by dynamic severe accident phenomena occurring after core relocation, but before 24 hours. Such phenomena include hydrogen detonation and hydrogen deflagration.
CFL	Late Containment Failure	Fission products are released through a containment failure caused by severe accident phenomena occurring after 24 hours. Such phenomena include the failure of containment heat removal (failure of passive containment cooling).

AP1000 Probabilistic Risk Assessment

Table 34-4		
	3BE-1 EVENT SUMMARY	
Time (Second)	Description	
0.0	DVI Line Break to PXS Compartment	
20.5	Reactor Scram	
25.3	Main Coolant Pump Trip	
25.3	CMT Actuation	
56.0	PCS Actuation	
615.0	ADS Stage 1 Actuation - Automatic	
735.7	ADS Stage 2 Actuation - Automatic	
855.7	ADS Stage 3 Actuation - Automatic	
901.0	Accumulator Water Depleted	
1594.0	ADS Stage 4 Actuation - Automatic	
1670.0	Cavity Water Level @ 83'	
3359.3	Cavity Flooding Actuation	
3405.0	Onset of Core Melting	
5050.0	Cavity Water Level @ 98'	
N/A	Hot Leg Submerged	
N/A	PRHR Actuation	
N/A	IRWST Injection Initiated	
N/A	IRWST Low Level - Switchover to Recirculation	
N/A	Begin Core Relocation to Lower Plenum	
N/A	Lower Plenum Dryout	
N/A	Vessel Failure	
N/A	Containment Failure	
N/A	Creep Rupture of RCS	

1.0

**AP1000 Probabilistic Risk Assessment** 

Table 34-5	
<b>3BE-2 EVENT SUMMARY</b>	
Time (Second)	Description
0.0	DVI Line Break to PXS Compartment
20.5	Reactor Scram
25.3	Main Coolant Pump Trip
25.3	CMT Actuation
56.0	PCS Actuation
616.0	ADS Stage 1 Actuation - Automatic
736.4	ADS Stage 2 Actuation - Automatic
856.4	ADS Stage 3 Actuation - Automatic
901.0	Accumulator Water Depleted
1500.0	Cavity Water Level @ 83'
1594.4	ADS Stage 4 Actuation - Automatic
3359.0	Cavity Flooding Actuation
3406.4	Onset of Core Melting
5100.0	Cavity Water Level @ 98'
5880.0	Begin Core Relocation to Lower Plenum
7500.0	Lower Plenum Dryout
N/A	Hot Leg Submerged
N/A	PRHR Actuation
N/A	IRWST Injection Initiated
N/A	IRWST Low Level - Switchover to Recirculation
N/A	Vessel Failure
N/A	Containment Failure
N/A	Creep Rupture of RCS

# AP1000 Probabilistic Risk Assessment

	Table 34-6		
	<b>3BE-4 EVENT SUMMARY</b>		
Time (Second)	Description		
0.0	Spurious ADS Stage 4		
5.0	Reactor Scram		
5.3	Main Coolant Pump Trip		
5.3	CMT Actuation		
5.3	PCS Actuation		
240.0	Cavity Water Level @ 83'		
371.5	Accumulator Water Depleted		
659.6	ADS Stage 1 Actuation - Automatic		
779.6	ADS Stage 2 Actuation - Automatic		
899.6	ADS Stage 3 Actuation - Automatic		
1416.0	ADS Stage 4 Actuation - Automatic		
3156.5	Cavity Flooding Actuation		
3406.4	Onset of Core Melting		
4650.0	Cavity Water Level @ 98'		
5572.0	Begin Core Relocation to Lower Plenum		
7400.0	Lower Plenum Dryout		
N/A	Hot Leg Submerged		
N/A	PRHR Actuation		
N/A	IRWST Injection Initiated		
N/A	IRWST Low Level - Switchover to Recirculation		
N/A	Vessel Failure		
N/A	Containment Failure		
N/A	Creep Rupture of RCS		

Table 34-7		
3BE-5 EVENT SUMMARY		
Time (Second)	Description	
0.0	2-inch Hot-Leg Break to Steam Generator Compartment	
149.0	Reactor Scram	
165.2	Main Coolant Pump Trip	
165.2	CMT Actuation	
289.3	PCS Actuation	
371.5	Accumulator Water Depleted	
2047.4	ADS Stage 1 Actuation - Automatic	
2167.4	ADS Stage 2 Actuation - Automatic	
2287.4	ADS Stage 3 Actuation - Automatic	
2300.0	Cavity Water Level @ 83'	
2946.0	ADS Stage 4 Actuation - Automatic	
4792.3	Cavity Flooding Actuation	
4847.5	Onset of Core Melting	
6300.0	Cavity Water Level @ 98'	
7617.0	Begin Core Relocation to Lower Plenum	
N/A	Hot Leg Submerged	
N/A	PRHR Actuation	
N/A	IRWST Injection Initiated	
N/A	IRWST Low Level - Switchover to Recirculation	
N/A	Lower Plenum Dryout	
N/A	Vessel Failure	
N/A	Containment Failure	
N/A	Creep Rupture of RCS	

AP1000 Probabilistic Risk Assessment

Table 34-8 3BE-6 EVENT SUMMARY	
0.0	2-inch Hot-Leg Break to Steam Generator Compartment
149.1	Reactor Scram
165.7	Main Coolant Pump Trip
165.7	CMT Actuation
287.8	PCS Actuation
2046.3	ADS Stage 1 Actuation - Automatic
2163.6	ADS Stage 2 Actuation - Automatic
2283.6	ADS Stage 3 Actuation - Automatic
2300.0	Cavity Water Level @ 83'
2511.5	Accumulator Water Depleted
2948.9	ADS Stage 4 Actuation - Automatic
4793.2	Cavity Flooding Actuation
4847.7	Onset of Core Melting
7525.0	Begin Core Relocation to Lower Plenum
7800.0	Cavity Water Level @ 98'
N/A	Hot Leg Submerged
N/A	PRHR Actuation
N/A	IRWST Injection Initiated
N/A	IRWST Low Level - Switchover to Recirculation
N/A	Lower Plenum Dryout
N/A	Vessel Failure
N/A	Containment Failure
N/A	Creep Rupture of RCS

1. L.

34-31
Table 34-9	
3BE-7 EVENT SUMMARY	
Time (Second)	Description
0.0	2-inch Hot-Leg Break to Steam Generator Compartment
149.0	Reactor Scram
165.2	Main Coolant Pump Trip
165.2	CMT Actuation
289.3	PCS Actuation
1949.9	ADS Stage 4 Actuation - Automatic
2044.1	ADS Stage 1 Actuation - Automatic
2164.1	ADS Stage 2 Actuation - Automatic
2284.1	ADS Stage 3 Actuation - Automatic
2400.0	Cavity Water Level @ 83'
2512.6	Accumulator Water Depleted
4782.1	Cavity Flooding Actuation
4839.0	Onset of Core Melting
7520.0	Begin Core Relocation to Lower Plenum
9000.0	Lower Plenum Dryout
11302.0	Vessel Failure
11302.0	Containment Failure
N/A	Cavity Water Level @ 98'
N/A	Hot Leg Submerged
N/A	PRHR Actuation
N/A	IRWST Injection Initiated
N/A	IRWST Low Level - Switchover to Recirculation
N/A	Creep Rupture of RCS

	Table 34-10	
	3BE-3 EVENT SUMMARY	
Time (Second)	Description	
0.0	DVI Line Break to PXS Compartment	
20.5	Reactor Scram	
25.3	Main Coolant Pump Trip	
25.3	CMT Actuation	
58.1	PCS Actuation	
613.0	ADS Stage 1 Actuation - Automatic	
733.0	ADS Stage 2 Actuation - Automatic	
853.0	ADS Stage 3 Actuation - Automatic	
898.2	Accumulator Water Depleted	
1588.5	ADS Stage 4 Actuation - Automatic	
1700.0	Cavity Water Level @ 83'	
3347.0	Cavity Flooding Actuation	
3394.4	Onset of Core Melting	
5000.0	Cavity Water Level @ 98'	
10010.0	Containment Failure	
N/A	Hot Leg Submerged	
N/A	PRHR Actuation	
N/A	IRWST Injection Initiated	
N/A	IRWST Low Level - Switchover to Recirculation	
N/A	Begin Core Relocation to Lower Plenum	
N/A	Lower Plenum Dryout	
N/A	Vessel Failure	
N/A	Creep Rupture of RCS	

nel-

34-33

Table 34-11	
	3BL-1 EVENT SUMMARY
Time (Second)	Description
0.0	2-inch Hot-Leg Break to Steam Generator Compartment
149.0	Reactor Scram
165.3	Main Coolant Pump Trip
165.3	CMT Actuation
289.5	PCS Actuation
2043.7	ADS Stage 1 Actuation - Automatic
2100.0	Cavity Water Level @ 83'
2163.7	ADS Stage 2 Actuation - Automatic
2283.7	ADS Stage 3 Actuation - Automatic
2511.0	Accumulator Water Depleted
2945.3	ADS Stage 4 Actuation - Automatic
2945.3	IRWST Injection Initiated
5750.0	Cavity Water Level @ 98'
27651.1	Onset of Core Melting
30456.0	Begin Core Relocation to Lower Plenum
40000.0	Lower Plenum Dryout
N/A	Hot Leg Submerged
N/A	PRHR Actuation
N/A	IRWST Low Level - Switchover to Recirculation
N/A	Cavity Flooding Actuation
N/A	Vessel Failure
N/A	Containment Failure
N/A	Creep Rupture of RCS

AP1000 Probabilistic Risk Assessment

	Table 34-12	
	3BL-2 EVENT SUMMARY	
Time (Second)	Description	
0.0	DVI Line Break to PXS Compartment	
20.5	Reactor Scram	
25.3	Main Coolant Pump Trip	
25.3	CMT Actuation	
56.0	PCS Actuation	
617.2	ADS Stage 1 Actuation - Automatic	
737.2	ADS Stage 2 Actuation - Automatic	
857.2	ADS Stage 3 Actuation - Automatic	
902.0	Accumulator Water Depleted	
1500.0	Cavity Water Level @ 83'	
1594.4	ADS Stage 4 Actuation - Automatic	
1594.4	IRWST Injection Initiated	
8800.0	Cavity Water Level @ 98'	
45358.2	Onset of Core Melting	
53093.0	Begin Core Relocation to Lower Plenum	
64000.0	Lower Plenum Dryout	
N/A	Hot Leg Submerged	
N/A	PRHR Actuation	
N/A	IRWST Low Level - Switchover to Recirculation	
N/A	Cavity Flooding Actuation	
N/A	Vessel Failure	
N/A	Containment Failure	
N/A	Creep Rupture of RCS	

. .

Table 34-13		
	3BR-1 EVENT SUMMARY	
Time (Second)	Description	
0.0	Large LOCA in Cold Leg to Steam Generator Compartment	
0.6	Reactor Scram	
1.3	Main Coolant Pump Trip	
1.3	CMT Actuation	
1.3	PCS Actuation	
383.8	ADS Stage 1 Actuation - Automatic	
503.8	ADS Stage 2 Actuation - Automatic	
618.8	ADS Stage 3 Actuation - Automatic	
700.0	Cavity Water Level @ 83'	
1134.6	ADS Stage 4 Actuation - Automatic	
3900.0	Cavity Water Level @ 98'	
N/A	Hot Leg Submerged	
N/A	Onset of Core Melting	
N/A	Begin Core Relocation to Lower Plenum	
N/A	Accumulator Water Depleted	
N/A	PRHR Actuation	
N/A	IRWST Injection Initiated	
N/A	IRWST Low Level - Switchover to Recirculation	
N/A	Cavity Flooding Actuation	
N/A	Lower Plenum Dryout	
N/A	Vessel Failure	
N/A	Containment Failure	
N/A	Creep Rupture of RCS	

# AP1000 Probabilistic Risk Assessment

	Table 34-14
	3BR-1a EVENT SUMMARY
Time (Second)	Description
0.0	Large LOCA in Cold Leg to Steam Generator Compartment
0.2	Reactor Scram
0.7	Main Coolant Pump Trip
0.7	CMT Actuation
0.7	PCS Actuation
372.3	ADS Stage 1 Actuation - Automatic
492.3	ADS Stage 2 Actuation - Automatic
612.3	ADS Stage 3 Actuation - Automatic
1000.0	Cavity Water Level @ 83'
1131.5	ADS Stage 4 Actuation - Automatic
2848.2	Onset of Core Melting
5157.0	Begin Core Relocation to Lower Plenum
7000.0	Lower Plenum Dryout
N/A	Cavity Water Level @ 98'
N/A	Hot Leg Submerged
	Accumulator Water Depleted
N/A	PRHR Actuation
N/A	IRWST Injection Initiated
	IRWST Low Level - Switchover to Recirculation
N/A	Cavity Flooding Actuation
N/A	Vessel Failure
N/A	Containment Failure
N/A	Creep Rupture of RCS

Table 34-15	
3C-1 EVENT SUMMARY	
Time (Second)	Description
0.0	Large LOCA at Belt of Reactor Vessel
0.05	Reactor Scram
0.6	Main Coolant Pump Trip
0.6	CMT Actuation
0.6	PCS Actuation
50.0	Cavity Water Level @ 83'
302.8	Accumulator Water Depleted
555.5	ADS Stage 1 Actuation – Automatic
675.5	ADS Stage 2 Actuation – Automatic
795.5	ADS Stage 3 Actuation – Automatic
1312.5	ADS Stage 4 Actuation - Automatic
1312.5	IRWST Injection Initiated
1511.0	Begin Core Relocation to Lower Plenum
4300.0	Cavity Water Level @ 98'
7611.8	Onset of Core Melting
N/A	Hot Leg Submerged
N/A	PRHR Actuation
N/A	IRWST Low Level - Switchover to Recirculation
N/A	Cavity Flooding Actuation
N/A	Lower Plenum Dryout
N/A	Vessel Failure
N/A	Containment Failure
N/A	Creep Rupture of RCS

ſ

# AP1000 Probabilistic Risk Assessment

Table 34-16		
	3C-2 EVENT SUMMARY	
Time (Second)	Description	
0.0	Large LOCA at Belt of Reactor Vessel	
0.0	Containment Failure	
0.1	Reactor Scram	
0.6	Main Coolant Pump Trip	
0.6	<b>CMT Actuation</b>	
0.6	PCS Actuation	
30.0	Cavity Water Level @ 83'	
293.8	Accumulator Water Depleted	
352.8	Onset of Core Melting	
561.2	ADS Stage 1 Actuation - Automatic	
681.2	ADS Stage 2 Actuation - Automatic	
801.2	ADS Stage 3 Actuation - Automatic	
1318.0	ADS Stage 4 Actuation - Automatic	
1318.0	IRWST Injection Initiated	
1533.0	Begin Core Relocation to Lower Plenum	
4350.0	Cavity Water Level @ 98'	
N/A	Hot Leg Submerged	
N/A	PRHR Actuation	
N/A	IRWST Low Level - Switchover to Recirculation	
N/A	Cavity Flooding Actuation	
N/A	Lower Plenum Dryout	
N/A	Vessel Failure	
N/A	Creep Rupture of RCS	

## **Revision 4**

**AP1000 Probabilistic Risk Assessment** 

Table 34-17		
	<b>3D-1 EVENT SUMMARY</b>	
Time (Second)	Description	
0.0	Spurious ADS Stage 4	
5.0	Reactor Scram	
5.3	Main Coolant Pump Trip	
5.3	PCS Actuation	
300.0	Cavity Water Level @ 83'	
372.3	Accumulator Water Depleted	
1490.0	Cavity Flooding Actuation	
1532.5	Onset of Core Melting	
3400.0	Cavity Water Level @ 98'	
3468.0	Begin Core Relocation to Lower Plenum	
4900.0	Lower Plenum Dryout	
N/A	Hot Leg Submerged	
N/A	CMT Actuation	
N/A	ADS Stage 1 Actuation - Automatic	
N/A	ADS Stage 2 Actuation - Automatic	
N/A	ADS Stage 3 Actuation - Automatic	
N/A	ADS Stage 4 Actuation - Automatic	
N/A	PRHR Actuation	
N/A	IRWST Injection Initiated	
N/A	IRWST Low Level - Switchover to Recirculation	
N/A	Vessel Failure	
N/A	Containment Failure	
N/A	Creep Rupture of RCS	

	Table 34-18	
	<b>3D-2 EVENT SUMMARY</b>	
Time (Second)	Description	
0.0	Spurious ADS Stage 2	
2.9	Reactor Scram	
4.0	Main Coolant Pump Trip	
22.2	PCS Actuation	
1927.5	Accumulator Water Depleted	
2000.0	Cavity Water Level @ 83'	
3427.4	Cavity Flooding Actuation	
3491.3	Onset of Core Melting	
5300.0	Cavity Water Level @ 98'	
5825.0	Begin Core Relocation to Lower Plenum	
7500.0	Lower Plenum Dryout	
N/A	Hot Leg Submerged	
N/A	CMT Actuation	
N/A	ADS Stage 1 Actuation - Automatic	
N/A	ADS Stage 2 Actuation - Automatic	
N/A	ADS Stage 3 Actuation - Automatic	
N/A	ADS Stage 4 Actuation - Automatic	
N/A	PRHR Actuation	
N/A	IRWST Injection Initiated	
N/A	IRWST Low Level - Switchover to Recirculation	
N/A	Vessel Failure	
N/A	Containment Failure	
N/A	Creep Rupture of RCS	

**6**1.

34-41

Table 34-19	
	3D-3 EVENT SUMMARY
Time (Second)	Description
0.0	DVI Line Break to PXS Compartment
20.5	Reactor Scram
25.3	Main Coolant Pump Trip
25.3	CMT Actuation
56.1	PCS Actuation
1800.0	Cavity Water Level @ 83'
4227.9	Accumulator Water Depleted
4767.8	Cavity Flooding Actuation
4881.3	Onset of Core Melting
6400.0	Cavity Water Level @ 98'
7714.0	Begin Core Relocation to Lower Plenum
9500.0	Lower Plenum Dryout
N/A	Hot Leg Submerged
N/A	ADS Stage 1 Actuation - Automatic
N/A	ADS Stage 2 Actuation - Automatic
N/A	ADS Stage 3 Actuation - Automatic
N/A	ADS Stage 4 Actuation - Automatic
N/A	PRHR Actuation
N/A	IRWST Injection Initiated
N/A	IRWST Low Level - Switchover to Recirculation
N/A	Vessel Failure
N/A	Containment Failure
N/A	Creep Rupture of RCS

AP1000 Probabilistic Risk Assessment

	Table 34-20	
	<b>3D-4 EVENT SUMMARY</b>	
Time (Second)	Description	
0.0	Spurious ADS Stage 2	
2.9	Reactor Scram	
4.0	Main Coolant Pump Trip	
22.2	PCS Actuation	
1927.5	Accumulator Water Depleted	
2000.0	Cavity Water Level @ 83'	
3491.3	Onset of Core Melting	
4491.0	Containment Failure	
5350.0	Cavity Water Level @ 98'	
5831.0	Begin Core Relocation to Lower Plenum	
7500.0	Lower Plenum Dryout	
N/A	Hot Leg Submerged	
N/A	ADS Stage 1 Actuation – Automatic	
N/A	ADS Stage 2 Actuation – Automatic	
N/A	ADS Stage 3 Actuation – Automatic	
N/A	ADS Stage 4 Actuation - Automatic	
N/A	PRHR Actuation	
N/A	IRWST Injection Initiated	
N/A	IRWST Low Level - Switchover to Recirculation	
N/A	CMT Actuation	
N/A	Cavity Flooding Actuation	
N/A	Vessel Failure	
N/A	Creep Rupture of RCS	

.

**Revision 4** 

: 34-43

Table 34-21		
	6E-1 EVENT SUMMARY	
Time (Second)	Description	
0.0	Steam Generator Tube Rupture (five tubes)	
147.7	Reactor Scram	
164.6	Main Coolant Pump Trip	
164.6	CMT Actuation	
166.8	PRHR Actuation	
3673.3	Accumulator Water Depleted	
19184.0	IRWST Injection Initiated	
32612.0	Cavity Flooding Actuation	
32706.0	Onset of Core Melting	
33000.0	Cavity Water Level @ 83'	
35050.0	Cavity Water Level @ 98'	
36844.0	Begin Core Relocation to Lower Plenum	
38500.0	Lower Plenum Dryout	
39911.3	IRWST Low Level - Switchover to Recirculation	
68637.0	PCS Actuation	
N/A	Hot Leg Submerged	
N/A	ADS Stage 1 Actuation - Automatic	
N/A	ADS Stage 2 Actuation - Automatic	
N/A	ADS Stage 3 Actuation - Automatic	
N/A	ADS Stage 4 Actuation - Automatic	
N/A	Vessel Failure	
N/A	Containment Failure	
N/A	Creep Rupture of RCS	

AP1000 Probabilistic Risk Assessment

· .	Table 34-22	
6L-1 EVENT SUMMARY		
Time (Second)	Description	
0.0	Steam Generator Tube Rupture (five tubes)	
148.7	Reactor Scram	
165	Main Coolant Pump Trip	
165	CMT Actuation	
167.0	PRHR Actuation	
3672.5	Accumulator Water Depleted	
17028.0	ADS Stage 1 Actuation - Automatic	
17148.0	ADS Stage 2 Actuation - Automatic	
17268.0	ADS Stage 3 Actuation - Automatic	
17863.0	ADS Stage 4 Actuation - Automatic	
17863.0	IRWST Injection Initiated	
18500.0	Cavity Water Level @ 83'	
22000.0	Cavity Water Level @ 98'	
23793.0	PCS Actuation	
44464.0	Onset of Core Melting	
48447.0	Begin Core Relocation to Lower Plenum	
53000.0	Lower Plenum Dryout	
N/A	Hot Leg Submerged	
N/A	IRWST Low Level - Switchover to Recirculation	
N/A	Cavity Flooding Actuation	
N/A	Vessel Failure	
N/A	Containment Failure	
N/A	Creep Rupture of RCS	

13

Table 34-23			
	1AP-1 EVENT SUMMARY		
Time (Second)	Description		
0.0	3/8-inch Hot-Leg Break to Steam Generator Compartment		
4689.8	Reactor Scram		
4697.2	Main Coolant Pump Trip		
4698.0	PRHR Actuation		
14001.0	PCS Actuation		
36000.0	Cavity Water Level @ 83'		
86381.8	Accumulator Water Depleted		
133253.0	Creep Rupture of RCS (Steam Generator Tube Creep)		
137540.1	Cavity Flooding Actuation		
137740.7	Onset of Core Melting		
139000.0	Cavity Water Level @ 98'		
144724.0	Begin Core Relocation to Lower Plenum		
146000.0	Lower Plenum Dryout		
N/A	Hot Leg Submerged		
N/A	ADS Stage 1 Actuation - Automatic		
N/A	ADS Stage 2 Actuation - Automatic		
N/A	ADS Stage 3 Actuation - Automatic		
N/A	ADS Stage 4 Actuation - Automatic		
N/A	CMT Actuation		
N/A	IRWST Injection Initiated		
N/A	IRWST Low Level - Switchover to Recirculation		
N/A	Vessel Failure		
N/A	Containment Failure		

**•** 

# AP1000 Probabilistic Risk Assessment

	Table 34-24		
	1AP-2 EVENT SUMMARY		
Time (Second)	Description		
0.0	3/8-inch Hot-Leg Break to Steam Generator Compartment		
4689.8	Reactor Scram		
4697.2	Main Coolant Pump Trip		
4697.2	CMT Actuation		
4698.0	PRHR Actuation		
15556.1	PCS Actuation		
40000.0	Cavity Water Level @ 83'		
92439.2	Accumulator Water Depleted		
139113.0	Creep Rupture of RCS (Steam Generator Tube Creep)		
150556.0	Onset of Core Melting		
157909.0	Begin Core Relocation to Lower Plenum		
160000.0	Lower Plenum Dryout		
N/A	Cavity Water Level @ 98'		
N/A	Hot Leg Submerged		
N/A	ADS Stage 1 Actuation - Automatic		
N/A	ADS Stage 2 Actuation - Automatic		
N/A	ADS Stage 3 Actuation - Automatic		
N/A	ADS Stage 4 Actuation - Automatic		
N/A	IRWST Injection Initiated		
N/A	IRWST Low Level - Switchover to Recirculation		
N/A	Cavity Flooding Actuation		
N/A	Vessel Failure		
N/A	Containment Failure		

34-47

AP1000 Probabilistic Risk Assessment

Table 34-25			
	1A-1 EVENT SUMMARY		
Time (Second)	Description		
0.0	Feedwater Failure		
3.8	Reactor Scram		
4015.5	Main Coolant Pump Trip		
4015.5	CMT Actuation		
4015.5	PCS Actuation		
10500.0	Cavity Water Level @ 83'		
14000.0	Creep Rupture of RCS (Steam Generator Tube Creep)		
15413.0	IRWST Injection Initiated		
15721.5	Cavity Flooding Actuation		
15864.0	Onset of Core Melting		
17700.0	Cavity Water Level @ 98'		
19604.0	Begin Core Relocation to Lower Plenum		
20500.0	Lower Plenum Dryout		
N/A	Hot Leg Submerged		
N/A	ADS Stage 1 Actuation - Automatic		
N/A	ADS Stage 2 Actuation - Automatic		
N/A	ADS Stage 3 Actuation - Automatic		
N/A	ADS Stage 4 Actuation - Automatic		
N/A	Accumulator Water Depleted		
N/A	PRHR Actuation		
N/A	IRWST Low Level - Switchover to Recirculation		
N/A	Vessel Failure		
N/A	Containment Failure		

AP1000 Probabilistic Risk Assessment

	Table 34-26		
	1A-2 EVENT SUMMARY		
Time (Second)		Description	
0.0	Feedwater Failure		
3.8	Reactor Scram		
4015.5	Main Coolant Pump Trip		
4015.5	PCS Actuation		
7000.0	Creep Rupture of RCS (Steam Gene	erator Tube Creep)	
8550.1	Onset of Core Melting		
11495.0	Begin Core Relocation to Lower Ple	enum	
12250.0	Lower Plenum Dryout		
22175.0	Creep Rupture of RCS (Hot-Leg Cr	reep) anti-anti-	
22333.8	Accumulator Water Depleted		
22500.0	Cavity Water Level @ 83'		
N/A	Cavity Water Level @ 98'		
N/A	Hot Leg Submerged		
N/A	ADS Stage 1 Actuation - Automatic	<b>;</b>	
N/A	ADS Stage 2 Actuation - Automatic	<b>;</b>	
N/A	ADS Stage 3 Actuation - Automatic	;	
N/A	ADS Stage 4 Actuation - Automatic	<ul> <li>An estimate</li> </ul>	
N/A	CMT Actuation		
N/A	PRHR Actuation		
N/A	IRWST Injection Initiated		
N/A	IRWST Low Level - Switchover to I	Recirculation	
N/A	Cavity Flooding Actuation		
N/A	Vessel Failure	A Sub-	
N/A	Containment Failure		

1

34-49

	Table 34-27	
1	CFI EVENT SUMMARY	
Time (Seconds)	Description	
0.0	DVI Line Break to PXS Compartment	
20.5	Reactor Scram	
25.3	Main Coolant Pump Trip	
25.3	CMT Actuation	
57.2	PCS Actuation	
617.4	ADS Stage 1 Actuation – Automatic	
737.4	ADS Stage 2 Actuation – Automatic	
857.4	ADS Stage 3 Actuation – Automatic	
904.8	Accumulator Water Depleted	
1298.0	Containment Water Level @ 83'	
1587.8	ADS Stage 4 Actuation - Automatic	
2480.0	Core Uncovery	
3370.9	Cavity Flooding Actuation	
3422.0	Onset of Core Melting (TCRHOT > 2500K)	
6250.0	Containment Water Level @ 98'	
N/A	Core Relocation to Lower Plenum	
N/A	Lower Plenum Dryout	
7080.0	Hot Leg Submerged	
N/A	PRHR Actuation	
N/A	IRWST Injection Initiated	
N/A	IRWST Low Level - Switchover to Recirculation	
N/A	Vessel Failure	
25000.0	Global Hydrogen Burn and DDT	
25002.0	Containment Failure	

	Table 34-28	
	CFL EVENT SUMMARY	
Time (Seconds)	Description	
0.0	MLOCA Hot Leg Break to Loop Compartment	
35.0	Reactor Scram	
42.7	Main Coolant Pump Trip	
42.7	CMT Actuation	
N/A	PCS Actuation	
690.0	Containment Water Level @ 83'	
757.4	ADS Stage 1 Actuation – Automatic	
877.4	ADS Stage 2 Actuation – Automatic	
977.4	ADS Stage 3 Actuation – Automatic	
1070.8	Accumulator Water Depleted	
1729.5	ADS Stage 4 Actuation – Automatic	
2461.1	Core Uncovery	
3315.5	Cavity Flooding Actuation	
3402.0	Onset of Core Melting (TCRHOT > 2500K)	
4990.0	Containment Water Level @ 98'	
N/A	Core Relocation to Lower Plenum	
<b>N/A</b>	Lower Plenum Dryout	
5621.0	Hot Leg Submerged	
N/A	PRHR Actuation	
N/A	IRWST Injection Initiated	
N/A	IRWST Low Level - Switchover to Recirculation	
N/A	Vessel Failure	
108573.0	Containment Failure	

ų.,

34-51



Case 3BE-1: Reactor Coolant System and Steam Generator Pressure DVI Line Break, Containment Water Level



Figure 34-2

Case 3BE-1: ADS Stage 4 Flow Rates DVI Line Break, Containment Water Level





## Case 3BE-1: Accumulator/CMT Water Mass DVI Line Break, Containment Water Level



### Figure 34-4

Case 3BE-1: IRWST Injection Flow Rate DVI Line Break, Containment Water Level



Figure 34-5

Case 3BE-1: Break Flow Rate DVI Line Break, Containment Water Level



Figure 34-6

Case 3BE-1: Reactor Vessel Water Level DVI Line Break, Containment Water Level

#### 34. Severe Accident Phenomena Treatment



Case 3BE-1: Core Temperatures DVI Line Break, Containment Water Level



Case 3BE-1: Containment Water Pool Elevations DVI Line Break, Containment Water Level



Case 3BE-1: Containment Pressure DVI Line Break, Containment Water Level



Figure 34-10

Case 3BE-1: Containment Gas Temperatures DVI Line Break, Containment Water Level

34. Severe Accident Phenomena Treatment



Case 3BE-1: Core Mass DVI Line Break, Containment Water Level





34. Severe Accident Phenomena Treatment



Case 3BE-1: In-Vessel Hydrogen Generation DVI Line Break, Containment Water Level



Figure 34-14



•

34. Severe Accident Phenomena Treatment



Case 3BE-1: Mass Fraction of Noble Gases Released to Environment DVI Line Break, Containment Water Level







Case 3BE-1: Mass Fraction of SrO Released to Environment DVI Line Break, Containment Water Level



Figure 34-18

## Case 3BE-2: Reactor Coolant System and Steam Generator Pressure DVI Line Break, Fail Gravity Injection, No DVI Flooding











Case 3BE-2: IRWST Injection Flow Rate DVI Line Break, Fail Gravity Injection, No DVI Flooding



Figure 34-22

Case 3BE-2: Break Flow Rate DVI Line Break, Fail Gravity Injection, No DVI Flooding



Case 3BE-2: Reactor Vessel Water Level DVI Line Break, Fail Gravity Injection, No DVI Flooding



Figure 34-24

Case 3BE-2: Core Temperatures DVI Line Break, Fail Gravity Injection, No DVI Flooding



Case 3BE-2: Containment Water Pool Elevations DVI Line Break, Fail Gravity Injection, No DVI Flooding







Case 3BE-2: Containment Gas Temperatures DVI Line Break, Fail Gravity Injection, No DVI Flooding







Figure 34-29





Figure 34-30












Case 3BE-2: Mass Fraction of Fission Products Released to Environment DVI Line Break, Fail Gravity Injection, No DVI Flooding







Case 3BE-4: Reactor Coolant System and Steam Generator Pressure Spurious ADS, Failed Gravity Injection



Figure 34-36

Case 3BE-4: ADS Stage 4 Flow Rates Spurious ADS, Failed Gravity Injection



Figure 34-37





Case 3BE-4: IRWST Injection Flow Rate Spurious ADS, Failed Gravity Injection





Case 3BE-4: Break Flow Rate Spurious ADS, Failed Gravity Injection







Figure 34-41

Case 3BE-4: Core Temperatures Spurious ADS, Failed Gravity Injection



Case 3BE-4: Containment Water Pool Elevations Spurious ADS, Failed Gravity Injection

**AP1000 Probabilistic Risk Assessment** 



Case 3BE-4: Containment Pressure Spurious ADS, Failed Gravity Injection







Figure 34-45

Case 3BE-4: Core Mass Spurious ADS, Failed Gravity Injection

















Figure 34-49

Case 3BE-4: Mass Fraction of Noble Gases Released to Environment Spurious ADS, Failed Gravity Injection





**AP1000 Probabilistic Risk Assessment** 



Case 3BE-4: Mass Fraction of SrO Released to Environment Spurious ADS, Failed Gravity Injection







Figure 34-53





Case 3BE-5: Accumulator/CMT Water Mass SBLOCA with Failed Gravity Injection

34. Severe Accident Phenomena Treatment







Figure 34-56

### Case 3BE-5: Break Flow Rate SBLOCA with Failed Gravity Injection



Figure 34-57





Figure 34-58

Case 3BE-5: Core Temperatures SBLOCA with Failed Gravity Injection



Case 3BE-5: Containment Water Pool Elevations SBLOCA with Failed Gravity Injection



Case 3BE-5: Containment Pressure SBLOCA with Failed Gravity Injection



Figure 34-61





Figure 34-62

### Case 3BE-5: Core Mass SBLOCA with Failed Gravity Injection





Case 3BE-5: Reactor Pressure Vessel to Cavity Water Heat Transfer SBLOCA with Failed Gravity Injection







Figure 34-65

Case 3BE-5: Mass Fraction of CsI Released to Containment SBLOCA with Failed Gravity Injection



Figure 34-66

Case 3BE-5: Mass Fraction of Noble Gases Released to Environment SBLOCA with Failed Gravity Injection



Case 3BE-5: Mass Fraction of Fission Products Released to Environment SBLOCA with Failed Gravity Injection







Case 3BE-6: Reactor Coolant System and Steam Generator Pressure SBLOCA with Failed Gravity Injection



Case 3BE-6: ADS Stage 4 Flow Rates SBLOCA with Failed Gravity Injection





Case 3BE-6: Break Flow Rate SBLOCA with Failed Gravity Injection



Figure 34-74

Case 3BE-6: Reactor Vessel Water Level SBLOCA with Failed Gravity Injection

### 34. Severe Accident Phenomena Treatment





# Case 3BE-6: Core Temperatures SBLOCA with Failed Gravity Injection



Figure 34-76

Case 3BE-6: Containment Water Pool Elevations SBLOCA with Failed Gravity Injection





Case 3BE-6: Containment Pressure SBLOCA with Failed Gravity Injection



Figure 34-78

Case 3BE-6: Containment Gas Temperature SBLOCA with Failed Gravity Injection



Figure 34-79

Case 3BE-6: Core Mass SBLOCA with Failed Gravity Injection



Figure 34-80





Figure 34-81

Case 3BE-6: In-Vessel Hydrogen Generation SBLOCA with Failed Gravity Injection



Figure 34-82

Case 3BE-6: Mass Fraction of CsI Released to Containment SBLOCA with Failed Gravity Injection

34. Severe Accident Phenomena Treatment



Case 3BE-6: Mass Fraction of Noble Gases Released to Environment SBLOCA with Failed Gravity Injection







Figure 34-85









Case 3BE-7: ADS Stage 4 Flow Rates SBLOCA with Failed Gravity Injection



Figure 34-88

Case 3BE-7: Accumulator/CMT Water Mass SBLOCA with Failed Gravity Injection

34. Severe Accident Phenomena Treatment



Figure 34-89





Figure 34-90

Case 3BE-7: Break Flow Rate SBLOCA with Failed Gravity Injection

Core



## Case 3BE-7: Reactor Vessel Water Level SBLOCA with Failed Gravity Injection



Figure 34-92

Case 3BE-7: Core Temperatures SBLOCA with Failed Gravity Injection



Case 3BE-7: Containment Water Pool Elevations SBLOCA with Failed Gravity Injection



Case 3BE-7: Containment Pressure SBLOCA with Failed Gravity Injection







Figure 34-96

Case 3BE-7: Core Mass SBLOCA with Failed Gravity Injection



Case 3BE-7: Reactor Pressure Vessel to Cavity Water Heat Transfer SBLOCA with Failed Gravity Injection



Figure 34-98

Case 3BE-7: In-Vessel Hydrogen Generation SBLOCA with Failed Gravity Injection

## 34. Severe Accident Phenomena Treatment



Case 3BE-7: Mass Fraction of CsI Released to Containment SBLOCA with Failed Gravity Injection







Case 3BE-7: Mass Fraction of Fission Products Released to Environment SBLOCA with Failed Gravity Injection







Case 3BE-3: Reactor Coolant System and Steam Generator Pressure DVI Line Break, Failed Gravity Injection, No PXS Flooding



Figure 34-104









Figure 34-106

Case 3BE-3: IRWST Injection Flow Rate DVI Line Break, Failed Gravity Injection, No PXS Flooding


Case 3BE-3: Break Flow Rate DVI Line Break, Failed Gravity Injection, No PXS Flooding



Figure 34-108







Case 3BE-3: Core Temperatures DVI Line Break, Failed Gravity Injection, No PXS Flooding



Figure 34-110

Case 3BE-3: Containment Water Pool Elevations DVI Line Break, Failed Gravity Injection, No PXS Flooding



Case 3BE-3: Containment Pressure DVI Line Break, Failed Gravity Injection, No PXS Flooding



Case 3BE-3: Containment Gas Temperature DVI Line Break, Failed Gravity Injection, No PXS Flooding





Case 3BE-3: Core Mass DVI Line Break, Failed Gravity Injection, No PXS Flooding







Case 3BE-3: In-Vessel Hydrogen Generation DVI Line Break, Failed Gravity Injection, No PXS Flooding



Figure 34-116





Figure 34-117





Figure 34-118





Case 3BE-3: Mass Fraction of SrO Released to Environment DVI Line Break, Failed Gravity Injection, No PXS Flooding



Figure 34-120

Case 3BL-1: Reactor Coolant System and Steam Generator Pressure SBLOCA with Failed Gravity Injection



Figure 34-121





Figure 34-122

Case 3BL-1: Accumulator/CMT Water Mass SBLOCA with Failed Gravity Injection

**AP1000 Probabilistic Risk Assessment** 

## 34. Severe Accident Phenomena Treatment



# Case 3BL-1: IRWST Injection Flow Rate SBLOCA with Failed Gravity Injection



Figure 34-124

# Case 3BL-1: Break Flow Rate SBLOCA with Failed Gravity Injection



Figure 34-125





Figure 34-126

Case 3BL-1: Core Temperatures SBLOCA with Failed Gravity Injection



Case 3BL-1: Containment Water Pool Elevations SBLOCA with Failed Gravity Injection



Figure 34-128

Case 3BL-1: Containment Pressure SBLOCA with Failed Gravity Injection



Figure 34-129





Figure 34-130

Case 3BL-1: Core Mass SBLOCA with Failed Gravity Injection

**AP1000 Probabilistic Risk Assessment** 

34. Severe Accident Phenomena Treatment



Case 3BL-1: Reactor Pressure Vessel to Cavity Water Heat Transfer SBLOCA with Failed Gravity Injection



Figure 34-132

Case 3BL-1: In-Vessel Hydrogen Generation SBLOCA with Failed Gravity Injection

**AP1000 Probabilistic Risk Assessment** 



Case 3BL-1: Mass Fraction of CsI Released to Containment SBLOCA with Failed Gravity Injection



Figure 34-134

Case 3BL-1: Mass Fraction of Noble Gases Released to Environment SBLOCA with Failed Gravity Injection



2.5 3

Case 3BL-1: Mass Fraction of Fission Products Released to Environment SBLOCA with Failed Gravity Injection







Case 3BL-2: Reactor Coolant System and Steam Generator Pressure DVI Line Break with Failed Gravity Injection



Figure 34-138

Case 3BL-2: ADS Stage 4 Flow Rates DVI Line Break with Failed Gravity Injection



Case 3BL-2: Accumulator/CMT Water Mass DVI Line Break with Failed Gravity Injection



Figure 34-140

Case 3BL-2: IRWST Injection Flow Rate DVI Line Break with Failed Gravity Injection





Case 3BL-2: Break Flow Rate DVI Line Break with Failed Gravity Injection



Figure 34-142

Case 3BL-2: Reactor Vessel Water Level DVI Line Break with Failed Gravity Injection



Case 3BL-2: Core Temperatures DVI Line Break with Failed Gravity Injection







Figure 34-145

Case 3BL-2: Containment Pressure DVI Line Break with Failed Gravity Injection



Figure 34-146

Case 3BL-2: Containment Gas Temperature DVI Line Break with Failed Gravity Injection

**AP1000 Probabilistic Risk Assessment** 

34. Severe Accident Phenomena Treatment



14

Figure 34-147

Case 3BL-2: Core Mass DVI Line Break with Failed Gravity Injection







Figure 34-149

# Case 3BL-2: In-Vessel Hydrogen Generation DVI Line Break with Failed Gravity Injection



Figure 34-150



**AP1000 Probabilistic Risk Assessment** 

34. Severe Accident Phenomena Treatment



Figure 34-151

Case 3BL-2: Mass Fraction of Noble Gases Released to Environment DVI Line Break with Failed Gravity Injection







Figure 34-153





Figure 34-154





Figure 34-155

Case 3BR-1: ADS Stage 4 Flow Rates CL LBLOCA to Loop Compartment 2/2 Gravity Injection/Recirculation Lines







Figure 34-157





Figure 34-158



Core



Case 3BR-1: Reactor Vessel Water Level CL LBLOCA to Loop Compartment 2/2 Gravity Injection/Recirculation Lines



Figure 34-160





Figure 34-161

**Case 3BR-1: Containment Water Pool Elevations** CL LBLOCA to Loop Compartment 2/2 Gravity Injection/Recirculation Lines



**Case 3BR-1: Containment Pressure** CL LBLOCA to Loop Compartment 2/2 Gravity Injection/Recirculation Lines



Case 3BR-1: Containment Gas Temperature CL LBLOCA to Loop Compartment 2/2 Gravity Injection/Recirculation Lines







Case 3BR-1: Reactor Pressure Vessel to Cavity Water Heat Transfer CL LBLOCA to Loop Compartment 2/2 Gravity Injection/Recirculation Lines



Figure 34-166

Case 3BR-1: In-Vessel Hydrogen Generation CL LBLOCA to Loop Compartment 2/2 Gravity Injection/Recirculation Lines



Case 3BR-1: Mass Fraction of CsI Released to Containment CL LBLOCA to Loop Compartment 2/2 Gravity Injection/Recirculation Lines







Case 3BR-1: Mass Fraction of Fission Products Released to Environment CL LBLOCA to Loop Compartment 2/2 Gravity Injection/Recirculation Lines







Case 3BR-1a: Reactor Coolant System and Steam Generator Pressure CL LBLOCA with Failed Accumulators



34-137



Figure 34-173





Figure 34-174

Case 3BR-1a: IRWST Injection Flow Rate CL LBLOCA with Failed Accumulators



# Case 3BR-1a: Break Flow Rate

**CL LBLOCA with Failed Accumulators** 



Collapsed Water Level

Figure 34-176

Case 3BR-1a: Reactor Vessel Water Level CL LBLOCA with Failed Accumulators



Figure 34-177

Case 3BR-1a: Core Temperatures CL LBLOCA with Failed Accumulators



Figure 34-178

Case 3BR-1a: Containment Water Pool Elevations CL LBLOCA with Failed Accumulators


## Case 3BR-1a: Containment Pressure CL LBLOCA with Failed Accumulators





Figure 34-180

Case 3BR-1a: Containment Gas Temperature CL LBLOCA with Failed Accumulators





Case 3BR-1a: Core Mass CL LBLOCA with Failed Accumulators





34. Severe Accident Phenomena Treatment



Case 3BR-1a: In-Vessel Hydrogen Generation CL LBLOCA with Failed Accumulators







Case 3BR-1a: Mass Fraction of Noble Gases Released to Environment CL LBLOCA with Failed Accumulators







# Figure 34-187















Case 3C-1: Accumulator/CMT Water Mass Vessel Rupture

**AP1000 Probabilistic Risk Assessment** 



Figure 34-191

Case 3C-1: IRWST Injection Flow Rate Vessel Rupture



Figure 34-192

Case 3C-1: Break Flow Rate Vessel Rupture



Figure 34-193





Figure 34-194

Case 3C-1: Core Temperatures Vessel Rupture



Figure 34-195





Figure 34-196

Case 3C-1: Containment Pressure Vessel Rupture



Figure 34-197





Case 3C-1: Core Mass Vessel Rupture



Case 3C-1: Reactor Pressure Vessel to Cavity Water Heat Transfer Vessel Rupture



Figure 34-200

# Case 3C-1: In-Vessel Hydrogen Generation Vessel Rupture



Figure 34-201

Case 3C-1: Mass Fraction of CsI Released to Containment Vessel Rupture







Figure 34-203

Case 3C-1: Mass Fraction of Fission Products Released to Environment Vessel Rupture







Case 3C-2: Reactor Coolant System and Steam Generator Pressure Vessel Rupture with Containment Failure



Case 3C-2: ADS Stage 4 Flow Rates Vessel Rupture with Containment Failure



Case 3C-2: Accumulator/CMT Water Mass Vessel Rupture with Containment Failure



Figure 34-208

Case 3C-2: IRWST Injection Flow Rate Vessel Rupture with Containment Failure



Figure 34-209

Case 3C-2: Break Flow Rate Vessel Rupture with Containment Failure



Case 3C-2: Reactor Vessel Water Level Vessel Rupture with Containment Failure



Case 3C-2: Core Temperatures Vessel Rupture with Containment Failure



Figure 34-212

Case 3C-2: Containment Water Pool Elevations Vessel Rupture with Containment Failure



Case 3C-2: Containment Pressure Vessel Rupture with Containment Failure



Figure 34-214

Case 3C-2: Containment Gas Temperature Vessel Rupture with Containment Failure

34. Severe Accident Phenomena Treatment





Case 3C-2: Core Mass Vessel Rupture with Containment Failure







Figure 34-217

# Case 3C-2: In-Vessel Hydrogen Generation Vessel Rupture with Containment Failure





34. Severe Accident Phenomena Treatment



Case 3C-2: Mass Fraction of Noble Gases Released to Environment Vessel Rupture with Containment Failure







Figure 34-221













Figure 34-224

Case 3D-1: Accumulator/CMT Water Mass Spurious ADS-4 with Failed CMTs

#### 34. Severe Accident Phenomena Treatment



Figure 34-225





Figure 34-226

Case 3D-1: Break Flow Rate Spurious ADS-4 with Failed CMTs



# Figure 34-227

# **Case 3D-1: Reactor Vessel Water Level** Spurious ADS-4 with Failed CMTs



Figure 34-228

**Case 3D-1: Core Temperatures Spurious ADS-4 with Failed CMTs** 



Figure 34-229





Case 3D-1: Containment Pressure Spurious ADS-4 with Failed CMTs



## Case 3D-1: Containment Gas Temperature Spurious ADS-4 with Failed CMTs



Figure 34-232

## Case 3D-1: Core Mass Spurious ADS-4 with Failed CMTs



Figure 34-233





Case 3D-1: In-Vessel Hydrogen Generation Spurious ADS-4 with Failed CMTs

34. Severe Accident Phenomena Treatment



Figure 34-235

Case 3D-1: Mass Fraction of CsI Released to Containment Spurious ADS-4 with Failed CMTs







Figure 34-237









Figure 34-239

Case 3D-2: Reactor Coolant System and Steam Generator Pressure Spurious ADS-2 with Failed CMTs



Case 3D-2: ADS Stage 4 Flow Rates Spurious ADS-2 with Failed CMTs



Figure 34-241

# Case 3D-2: Accumulator/CMT Water Mass Spurious ADS-2 with Failed CMTs



Figure 34-242

Case 3D-2: IRWST Injection Flow Rate Spurious ADS-2 with Failed CMTs





Case 3D-2: Break Flow Rate Spurious ADS-2 with Failed CMTs



Figure 34-244

Case 3D-2: Reactor Vessel Water Level Spurious ADS-2 with Failed CMTs



Figure 34-245





Case 3D-2: Containment Pool Water Elevations Spurious ADS-2 with Failed CMTs





# **Case 3D-2: Containment Pressure** Spurious ADS-2 with Failed CMTs







Figure 34-249

Case 3D-2: Core Mass Spurious ADS-2 with Failed CMTs




**AP1000 Probabilistic Risk Assessment** 

34. Severe Accident Phenomena Treatment











Figure 34-253







AP1000 Probabilistic Risk Assessment



Figure 34-255

Case 3D-2: Mass Fraction of SrO Released to Environment Spurious ADS-2 with Failed CMTs













Case 3D-3: Accumulator/CMT Water Mass DVI Line Break with Failed ADS

**AP1000 Probabilistic Risk Assessment** 

34. Severe Accident Phenomena Treatment





## Case 3D-3: IRWST Injection Flow Rate DVI Line Break with Failed ADS



Figure 34-260

Case 3D-3: Break Flow Rate DVI Line Break with Failed ADS



Figure 34-261





Case 3D-3: Core Temperatures DVI Line Break with Failed ADS



## Figure 34-263





Figure 34-264

Case 3D-3: Containment Pressure DVI Line Break with Failed ADS



Figure 34-265





Case 3D-3: Core Mass DVI Line Break with Failed ADS



Figure 34-267

Case 3D-3: Reactor Pressure Vessel to Cavity Water Heat Transfer DVI Line Break with Failed ADS







Figure 34-269

Case 3D-3: Mass Fraction of CsI Released to Containment DVI Line Break with Failed ADS



Figure 34-270



AP1000 Probabilistic Risk Assessment

#### 34. Severe Accident Phenomena Treatment



Figure 34-271

Case 3D-3: Mass Fraction of Fission Products Released to Environment DVI Line Break with Failed ADS













Case 3D-4: ADS Stage 4 Flow Rates Spurious ADS-2, Failed CMTs, Diffusion Flame



Case 3D-4: Accumulator/CMT Water Mass Spurious ADS-2, Failed CMTs, Diffusion Flame







## Case 3D-4: Break Flow Rate Spurious ADS-2, Failed CMTs, Diffusion Flame



Figure 34-278

Case 3D-4: Reactor Vessel Water Level Spurious ADS-2, Failed CMTs, Diffusion Flame







Case 3D-4: Containment Water Pool Elevations Spurious ADS-2, Failed CMTs, Diffusion Flame





Case 3D-4: Containment Pressure Spurious ADS-2, Failed CMTs, Diffusion Flame



Figure 34-282

Case 3D-4: Containment Gas Temperature Spurious ADS-2, Failed CMTs, Diffusion Flame





Case 3D-4: Core Mass Spurious ADS-2, Failed CMTs, Diffusion Flame







Figure 34-285

Case 3D-4: In-Vessel Hydrogen Generation Spurious ADS-2, Failed CMTs, Diffusion Flame



Figure 34-286





Figure 34-287







**AP1000 Probabilistic Risk Assessment** 



Case 3D-4: Mass Fraction of SrO Release to Environment Spurious ADS-2, Failed CMTs, Diffusion Flame



Figure 34-290

## Case 6E-1: Reactor Coolant System and Steam Generator Pressure SGTR Early Core Melt









Figure 34-292

Case 6E-1: Accumulator/CMT Water Mass SGTR Early Core Melt

AP1000 Probabilistic Risk Assessment









Figure 34-294

Case 6E-1: Break Flow Rate SGTR Early Core Melt



Figure 34-295





Figure 34-296

Case 6E-1: Core Temperatures SGTR Early Core Melt









Case 6E-1: Containment Pressure SGTR Early Core Melt



Figure 34-299





Figure 34-300

Case 6E-1: Core Mass SGTR Early Core Melt



Figure 34-301





Figure 34-302

Case 6E-1: In-Vessel Hydrogen Generation SGTR Early Core Melt

**AP1000 Probabilistic Risk Assessment** 

34. Severe Accident Phenomena Treatment



Figure 34-303









Figure 34-305









Case 6L-1: Reactor Coolant System and Steam Generator Pressure SGTR Core Melt Failure at Recirculation



Figure 34-308

Case 6L-1: ADS Stage 4 Flow Rates SGTR Core Melt Failure at Recirculation



Figure 34-309





Case 6L-1: IRWST Injection Flow Rate SGTR Core Melt Failure at Recirculation



Case 6L-1: Break Flow Rate SGTR Core Melt Failure at Recirculation



Collapsed Water Level

Figure 34-312

Case 6L-1: Reactor Vessel Water Level SGTR Core Melt Failure at Recirculation



Figure 34-313





Figure 34-314

Case 6L-1: Containment Water Pool Elevations SGTR Core Melt Failure at Recirculation



.

Figure 34-315

Case 6L-1: Containment Pressure SGTR Core Melt Failure at Recirculation

----- Loop Compartment ----- Upper Compartment ------ IRWST ----- PXS



Figure 34-316

Case 6L-1: Containment Gas Temperature SGTR Core Melt Failure at Recirculation



Figure 34-317

Case 6L-1: Core Mass SGTR Core Melt Failure at Recirculation









# Case 6L-1: In-Vessel Hydrogen Generation SGTR Core Melt Failure at Recirculation







Figure 34-321








Figure 34-323









Figure 34-325

Case 1AP-1: ADS Stage 4 Flow Rates SBLOCA with PRHR, CMTs Failed



Figure 34-326

Case 1AP-1: Accumulator/CMT Water Mass SBLOCA with PRHR, CMTs Failed

34. Severe Accident Phenomena Treatment



Figure 34-327

## Case 1AP-1: IRWST Injection Flow Rate SBLOCA with PRHR, CMTs Failed



Case IAP-1: Break Flow Rate SBLOCA with PRHR, CMTs Failed





Case 1AP-1: Reactor Vessel Water Level SBLOCA with PRHR, CMTs Failed



Figure 34-330

Case 1AP-1: Core Temperatures SBLOCA with PRHR, CMTs Failed





# Case 1AP-1: Containment Pool Water Elevations SBLOCA with PRHR, CMTs Failed



Figure 34-332

Case 1AP-1: Containment Pressure SBLOCA with PRHR, CMTs Failed



Figure 34-333

#### Case 1AP-1: Containment Gas Temperature SBLOCA with PRHR, CMTs Failed



Figure 34-334

Case 1AP-1: Core Mass SBLOCA with PRHR, CMTs Failed

,



Figure 34-335





Figure 34-336

Case 1AP-1: In-Vessel Hydrogen Generation SBLOCA with PRHR, CMTs Failed



Figure 34-337









Case 1AP-1: Mass Fraction of Fission Products Released to Environment SBLOCA with PRHR, CMTs Failed













Figure 34-342

Case 1AP-2: ADS Stage 4 Flow Rates SBLOCA with PRHR, CMTs Failed



Figure 34-343

#### Case 1AP-2: Accumulator/CMT Water Mass SBLOCA with PRHR, CMTs Failed



Figure 34-344

# Case 1AP-2: IRWST Injection Flow Rate SBLOCA with PRHR, CMTs Failed





## Case 1AP-2: Break Flow Rate SBLOCA with PRHR, CMTs Failed



Figure 34-346

Case 1AP-2: Reactor Vessel Water Level SBLOCA with PRHR, CMTs Failed





# Case 1AP-2: Core Temperatures SBLOCA with PRHR, CMTs Failed



Figure 34-348

Case 1AP-2: Containment Water Pool Elevations SBLOCA with PRHR, CMTs Failed





# Case 1AP-2: Containment Pressure SBLOCA with PRHR, CMTs Failed



Figure 34-350

Case 1AP-2: Containment Gas Temperature SBLOCA with PRHR, CMTs Failed

**AP1000 Probabilistic Risk Assessment** 



Figure 34-351

## Case 1AP-2: Core Mass SBLOCA with PRHR, CMTs Failed









## Case 1AP-2: In-Vessel Hydrogen Generation SBLOCA with PRHR, CMTs Failed



Figure 34-354

## Case 1AP-2: Mass Fraction of CsI Released to Containment SBLOCA with PRHR, CMTs Failed

34. Severe Accident Phenomena Treatment



Case 1AP-2: Mass Fraction of Noble Gases Released to Environment SBLOCA with PRHR, CMTs Failed







Figure 34-357

Case 1AP-2: Mass Fraction of SrO Released to Environment SBLOCA with PRHR, CMTs Failed



Figure 34-358

#### Case 1A-1: Reactor Coolant System and Steam Generator Pressure Transient with Creep of SG Tubes



Figure 34-359





Figure 34-360

Case 1A-1: Accumulator/CMT Water Mass Transient with Creep of SG Tubes



Figure 34-361





Figure 34-362

Case 1A-1: Break Flow Rate Transient with Creep of SG Tubes



# **Case 1A-1: Reactor Vessel Water Level Transient with Creep of SG Tubes**



Figure 34-364

**Case 1A-1: Core Temperatures Transient with Creep of SG Tubes** 



Figure 34-365

Case 1A-1: Containment Pool Water Elevations Transient with Creep of SG Tubes



Figure 34-366

Case 1A-1: Containment Pressure Transient with Creep of SG Tubes



#### Figure 34-367





Figure 34-368

Case 1A-1: Core Mass Transient with Creep of SG Tubes



Figure 34-369





Figure 34-370

Case 1A-1: In-Vessel Hydrogen Generation Transient with Creep of SG Tubes

34. Severe Accident Phenomena Treatment



Figure 34-371









Figure 34-373

Case 1A-1: Mass Fraction of Fission Products Released to Environment Transient with Creep of SG Tubes





34. Severe Accident Phenomena Treatment



Figure 34-375

Case 1A-2: Reactor Coolant System and Steam Generator Pressure Transient with Creep of SG Tubes



Figure 34-376

Case 1A-2: ADS Stage 4 Flow Rates Transient with Creep of SG Tubes



Figure 34-377





Figure 34-378

Case 1A-2: IRWST Injection Flow Rate Transient with Creep of SG Tubes





## Case 1A-2: Break Flow Rate Transient with Creep of SG Tubes



Case 1A-2: Reactor Vessel Water Level Transient with Creep of SG Tubes



Figure 34-381







300

20000



Figure 34-384

emperature

400

200

100000



80000

34-243

40000 60000 Time (s)



Figure 34-385

Case 1A-2: Core Mass Transient with Creep of SG Tubes





34. Severe Accident Phenomena Treatment



Figure 34-387

Case 1A-2: In-Vessel Hydrogen Generation Transient with Creep of SG Tubes







Figure 34-389

Case 1A-2: Mass Fraction of Noble Gases Released to Environment Transient with Creep of SG Tubes





34. Severe Accident Phenomena Treatment



#### Figure 34-391





Figure 34-392

Case 3BE-1: Containment Pressure DDT Intermediate Containment Failure



Figure 34-393





Figure 34-394

Case 3BE-1: Containment Hydrogen Concentration DDT Intermediate Containment Failure


## Figure 34-395

## Case 3BE-1: Noble Gases Release Fraction DDT Intermediate Containment Failure



Figure 34-396

Case 3BE-1: CsI and RbI Release Fraction DDT Intermediate Containment Failure



Figure 34-397

## Case 3BE-1: TeO₂ Release Fraction DDT Intermediate Containment Failure



Figure 34-398

Case 3BE-1: SrO Release Fraction DDT Intermediate Containment Failure



Figure 34-399

# Case 3BE-1: MoO₂ Release Fraction DDT Intermediate Containment Failure



Figure 34-400

Case 3BE-1: CsOH and RbOH Release Fraction DDT Intermediate Containment Failure

AP1000 Probabilistic Risk Assessment



Figure 34-401

# Case 3BE-1: BaO Release Fraction DDT Intermediate Containment Failure



Figure 34-402

Case 3BE-1: La₂O₃ Release Fraction DDT Intermediate Containment Failure



Figure 34-403

# Case 3BE-1: CeO₂ Release Fraction DDT Intermediate Containment Failure



Figure 34-404

Case 3BE-1: Sb Release Fraction DDT Intermediate Containment Failure



Figure 34-405

# Case 3BE-1: Te₂ Release Fraction DDT Intermediate Containment Failure



Figure 34-406

Case 3BE-1: UO₂ Release Fraction DDT Intermediate Containment Failure



Figure 34-407

# Case 3BE-1: RCS Pressure No PCS Water Cooling and Late Containment Failure



Figure 34-408

Case 3BE-1: Reactor Vessel Mixture Level No PCS Water Cooling and Late Containment Failure



Figure 34-409

Case 3BE-1: Core-Exit Temperature No PCS Water Cooling and Late Containment Failure



Figure 34-410

- +

Case 3BE-1: In-Vessel Hydrogen Generation No PCS Water Cooling and Late Containment Failure



## Figure 34-411





# Figure 34-412

Case 3BE-1: Containment Gas Temperature No PCS Water Cooling and Late Containment Failure



Figure 34-413

## Case 3BE-1: Containment Hydrogen Concentration No PCS Water Cooling and Late Containment Failure



Figure 34-414

Case 3BE-1: Noble Gases Release Fraction No PCS Water Cooling and Late Containment Failure

## **AP1000 Probabilistic Risk Assessment**

## 34. Severe Accident Phenomena Treatment





# Case 3BE-1: CsI and RbI Release Fraction No PCS Water Cooling and Late Containment Failure



Figure 34-416

Case 3BE-1: TeO₂ Release Fraction No PCS Water Cooling and Late Containment Failure



Figure 34-417

# Case 3BE-1: SrO Release Fraction No PCS Water Cooling and Late Containment Failure



Figure 34-418

Case 3BE-1: MoO₂ Release Fraction No PCS Water Cooling and Late Containment Failure

#### **AP1000 Probabilistic Risk Assessment**

#### 34. Severe Accident Phenomena Treatment



----- 3BE-1 with Late Containment Failure

Figure 34-419

# Case 3BE-1: CsOH and RbOH Release Fraction No PCS Water Cooling and Late Containment Failure



Figure 34-420

Case 3BE-1: BaO Release Fraction No PCS Water Cooling and Late Containment Failure



----- 3BE-1 with Late Containment Failure

Figure 34-421

# Case 3BE-1: La₂O₃ Release Fraction No PCS Water Cooling and Late Containment Failure



Figure 34-422

Case 3BE-1: CeO₂ Release Fraction No PCS Water Cooling and Late Containment Failure



_____ 3BE-1 with Late Containment Failure

## Figure 34-423

# Case 3BE-1: Sb Release Fraction No PCS Water Cooling and Late Containment Failure



Figure 34-424

Case 3BE-1: Te₂ Release Fraction No PCS Water Cooling and Late Containment Failure



Figure 34-425

Case 3BE-1: UO₂ Release Fraction No PCS Water Cooling and Late Containment Failure

# CHAPTER 42

# CONDITIONAL CONTAINMENT FAILURE PROBABILITY DISTRIBUTION

## 42.1 Introduction

The probability distribution for containment failure due to internal pressurization of the containment has been developed for the AP1000 containment vessel.

The AP1000 containment and its structural properties are described in subsection 3.8.2 of the AP1000 Design Control Document (DCD). The limiting containment failure modes that have been identified include:

- General yielding of the cylindrical shell
- Buckling of the ellipsoidal head
- Buckling of the two 16-ft. equipment hatches
- Yielding of the personnel airlock

Other containment failure modes are examined, as discussed in subsection 3.8.2 of the DCD. Other failure modes, such as general yielding of the ellipsoidal head and failure of the piping penetrations, are not considered to be independent containment failure modes. Rather, these other failure modes are bounded by the failure criteria for the limiting failure identified above. Failures of the mechanical penetration bellows, and leakage of the equipment hatches due to ovalization, do not occur prior to general yielding of the cylinder. Failures of the electrical penetration assemblies do not occur prior to general yielding of the cylinder for temperatures equal to or less than 400°F.

Each of the limiting failure modes is examined to determine the best estimate of the failure pressure. In addition, the random and subjective uncertainties associated with each of the failure modes are identified. These failure characteristics are then used to develop a probabilistic model to predict the containment failure due to internal static pressurization. The details of the model development and the results of the analysis are presented in the following sections.

#### **Probabilistic Model**

42.2

To define the probability of a containment failure due to internal pressurization, it is necessary to select a statistical distribution with the correct properties. The engineering justification for a particular probability density function is made based on the gathering and evaluation of relevant information that can serve to characterize the nature of the random data and physical processes that lead to the random data. The nature of the random data, and in particular any limits or bounds on the data, is as important as the predicted means and variances from statistical analysis of the data. Thus, specific limits in the data and characteristics, such as skewness, are utilized to specify the probability density function. Five potential probability distributions are considered: the Gaussian, the Gamma, the Gumbel, the lognormal, and the Weibull. Based on a review of the characteristics of the five potential probability distributions, it was determined that both the Weibull and the lognormal distributions would be suitable to describe the containment failure probabilities. An additional review of the containment failure probability distributions reported in a number of the Individual Plant Examinations submitted to the Nuclear Regulatory Commission (in response to the Commission's Generic Letter 88-20) indicates that the lognormal distribution is the most commonly used distribution form for predicting containment failure from internal pressurization. Therefore, the lognormal distribution is selected to construct the conditional containment failure probability distribution.

# 42.3 Containment Failure Characteristics

The characteristic parameters for containment failure due to internal pressurization are derived from detailed analyses of the containment vessel, supplemented by applicable test data for certain design features of the containment, as described in subsection 3.8.2 of the DCD. For the construction of the conditional containment failure probability distribution, the required characteristic parameters are the median failure pressure and the statistical variance that represent the uncertainty associated with these values.

# 42.3.1 Median Values for Containment Failure

The development of the conditional containment failure probability distribution requires the specification of the median value for containment failure for each of the possible containment failure modes. Subsection 3.8.2 of the DCD provides values for the ultimate containment pressure capability at 100°F and 400°F. These failure pressures are based on code-specified minimum material properties. To obtain the median values for the probability distribution, the failure pressures of subsection 3.8.2 of the DCD are adjusted to account for the expected material properties and this adjusted best-estimate failure pressure is considered as the median value of the lognormal distribution.

The containment vessel is designed using SA738, Grade B material. This has a specified minimum yield of 60 ksi and minimum ultimate of 85 ksi. Test data for materials having similar chemical properties to SA738 were reviewed from two United States and two Japanese steel suppliers. Some of the data were from tests of steel procured to SA537, Class 2, while the remaining data were identified by the steel supplier as having similar chemistry. In a sample of 122 tests for thicknesses equaling or exceeding 1.50 inches and less than 1.75 inches, the actual yield had a mean value of 69.1 ksi with a standard deviation of 3.3 ksi, giving a mean yield value equal to 1.15 times the specified minimum yield with a coefficient of variation of 0.048. Test data for 389 tests for thicknesses from 0.31 inch to 3.16 inches showed a mean yield value of 71.7 ksi with a standard deviation of 5.7 ksi, giving a mean yield value equal to 1.19 times the specified minimum yield with a coefficient of 0.079.

Reference 42-1 confirms that the actual yield strength of containment construction material can typically be expected to be 9 to 22 percent higher than the specified minimum material strength with coefficients of variation of 6 to 13 percent (the lower yield strengths reported are not applicable to containment material. The ABS steel is procured to an ABS specification and not to the American Society for Testing and Materials (ASTM) specification; the static yield stress is a little lower than ASTM test yield. Since the median containment strength is to be used to construct a probability distribution that includes random uncertainties in material properties as well as subjective uncertainties in modeling of the containment strength, it is appropriate to use the expected, as-built containment strength (i.e., best estimate) for the median value of the distribution. However, since as-built information is not available for the AP1000, the fragility is conservatively calculated using only a 10-percent increase above the specified yield and this value is used as the median value of the lognormal distribution. This is consistent with the recommendation of Reference 42-3.

The containment internal pressure value used for the median value of the containment failure probability distribution is the expected failure pressure, evaluated at 400°F. A review of the severe accident sequences in which the containment internal pressure approaches the failure pressure of the containment leads to the conclusion that the containment shell is likely to be at the containment saturation temperature (for the internal containment pressure) for most severe accident sequences. With the passive containment cooling provided by the containment design, the highest likelihood of containment failure due to overpressurization is due to extreme cases of severe accident phenomena (e.g., hydrogen detonations and noncoolable ex-vessel core debris). The temperature of the containment vessel steel does not significantly exceed the design temperature of 300°F. Therefore, the use of a uniform containment shell temperature of 400°F for evaluation of the containment material properties is bounding for the prediction of the conditional containment failure probability distribution.

It is noted that a containment conditional failure probability distribution for a containment temperature at 331°F which corresponds to saturation at 90 psig is also developed. This distribution is referenced in the discussion on passive containment cooling system (PCS) failure and fission-product release category CFL (see Chapters 34 and 45). The 90 psig [620 KPa] is the maximum pressure calculated in accordance with 10 CFR 50.34 for the severe accident phenomena for Service Level C evaluation that includes hydrogen burn.

A maximum containment pressure of 81 psig [559 KPa] is calculated at 24 hours following the onset of core damage for the bounding severe accident phenomena as described in subsection 40.4.2. This bounds the more likely severe accident challenges that are required to be evaluated against Service Level C in accordance with SECY-93-087 Requirements.

The values used to construct the conditional containment failure probability distribution are identified in the next section.

#### 42.3.2 Uncertainties in Containment Failure

The uncertainties identified and examined include both random uncertainties and subjective uncertainties. The broad categories of uncertainties considered are:

Geometric Properties: This category of uncertainty is principally concerned with the variations between the as-built containment vessel and the design utilized in the analysis. Some of these variations include containment dimensions, placement of stiffeners, and thickness of the steel plates used to make up the containment vessel. Also included in this category are construction practices such as the strength of weldments, etc. It has been

**Revision 4** 

reported [Reference 42-1] that the overall uncertainty in the containment strength is generally insensitive to variations in geometric properties, except for buckling mode of failure.

Structural Analysis: The uncertainties in the overall containment strength can be sensitive to uncertainties in assumptions and models used in the structural analysis of the ultimate strength of the containment structure. Some of the sources of uncertainty include: the definition of containment failure used in the analysis, the simplified geometric model used in the analysis, the analysis method, the analysis focus of failure locations and modes, the yield criterion for biaxial stresses, the rate of loading, the effect of non-uniform geometries, the effect of local temperature and the interpretation of test results to construct the analytical model. These uncertainties are subjectively evaluated since no complete investigation of these uncertainties is available. Reference 42-1 provides several estimates of the actual-to-predicted results, which vary according to the failure mode assumed in the analysis, the person doing the evaluation, and the method of analysis. The range suggested by these values is a mean value for the actual-to-predicted results tending to unity and a standard deviation in the range between 0.08 and 0.24. Reference 42-2 suggests that a value of 0.12 be used in constructing the probability distribution for the ultimate strength of the containment.

*Material Properties:* Uncertainties in material properties can be important in estimating the overall containment failure uncertainty. The total uncertainties in materials consider the estimation of statistical properties from a small sample (e.g., is the calculated mean the real mean) and assumptions on uniformity of properties. There is a wide range of application of material properties to estimate uncertainties and, except for the buckling mode of failure, most analyses neglect all uncertainties except the random, measurable variations in material properties. Reference 42-1 provides several estimates of the uncertainty in material properties that show a coefficient of variation in the range of 0.044 to 0.11 for conditions that may be applicable to the passive containment shell. Reference 42-2 recommends that a coefficient of variation between 0.06 and 0.08 be used to define the random variation in material properties for the containment shell. Based on sampling of test results of material similar to that specified for the AP1000 containment shell as described in subsection 42.3.1, the coefficient of variation was found to be 0.048. Finally, Reference 42-3 notes a coefficient of variation of 0.11 for material properties.

Gross Errors: Gross errors in construction and/or design are not quantifiable since they lead to catastrophic results that are not predictable by reliability methods.

The values used to construct the conditional containment failure probability distribution are identified in the next section.

# 42.4 Containment Failure Predictions

# 42.4.1 Containment Cylindrical Shell

The response of the cylindrical portion of the containment vessel to internal pressurization has been analyzed, and the results reported in Table 3.8.2-2 of the DCD. The best estimate of the pressure at which failure would occur is 129 psig, based on specified material properties at a uniform containment wall temperature of 400°F. This was adjusted to 141 psig to account for the expected actual material properties. For consideration of a containment wall

temperature of 331°F, the containment failure pressure was determined by increasing the 400°F failure pressure by 6 psig, based on the temperature effect estimates provided in Subsection 3.8.2 of the DCD. Thus, for a 331°F containment temperature, the failure pressure is calculated to be 147 psig.

A coefficient of variation of 0.11 is used to represent the random uncertainty in material properties, based on References 42-1 and 42-3. For the subjective uncertainty associated with modeling of the ultimate containment failure pressure, a coefficient of variation of 0.12 is used, based on Reference 42-2.

#### 42.4.2 Ellipsoidal Upper Head

The response of the ellipsoidal upper head of the containment vessel to internal pressurization has been analyzed, and the results are reported in subsection 3.8.2 and Table 3.8.2-2 of the DCD. Failure is predicted to occur either in the knuckle region or at the crown and may be initiated by buckling in the knuckle region. Failures due to tensile stresses (plastic collapse) are bounded by the variations considered for yield of the cylindrical shell. Only the buckling failure mode at the knuckle region can be considered to be an independent failure mode that must be separately considered in determining the conditional containment failure probability distribution.

The best-estimate internal pressure at which the ellipsoidal head of the containment vessel would fail due to post-yield buckling in the knuckle region is 144 psig, using minimum specified yield strength of the containment materials at 400°F. Since this buckling is associated with yield in the knuckle region, the capacity was adjusted to account for actual material properties by the ratio of actual to minimum yield to give a predicted pressure of 159 psig. For consideration of a containment wall temperature of 331°F, the containment failure pressure was determined by increasing the 400°F failure pressure by 7 psig, based on the temperature effect estimates provided in subsection 3.8.2 of the DCD. Thus, for a 331°F containment temperature, the failure pressure is calculated to be 166 psig.

A coefficient of variation of 0.11 is used to represent the random uncertainty in material properties, based on References 42-1 and 42-3. For the subjective uncertainty associated with modeling of the ultimate containment failure pressure, a coefficient of variation of 0.12 is used, based on Reference 42-2.

## 42.4.3 Equipment Hatches

The response of the two 16-foot diameter equipment hatches to internal pressurization has been analyzed, and the results are reported in subsection 3.8.2 of the DCD. The containment internal pressure acts on the concave face of the dished head and the hatch covers are in compression under containment internal pressure loads. The predicted failure mode is elastic buckling of the hatch covers. The best estimate of the pressure at which failure would occur for the 16-foot equipment hatches is 297 psig at a uniform containment wall temperature of 400°F, based on 150 percent of the critical buckling pressure as indicated by a review of test data for buckling of spherical caps. For consideration of a containment temperature of 331°F, the containment failure pressure was determined by increasing the 400°F failure pressure by 4 psig, based on the temperature effect estimates provided in subsection 3.8.2 of the DCD, and assuming 150 percent of this pressure, as discussed above. Thus, for a 331°F containment temperature, the failure pressure for the 16-foot equipment hatches is 301 psig.

A coefficient of variation of 0.11 is used to represent the random uncertainty in material properties, based on References 42-1 and 42-3. For the subjective uncertainty associated with modeling of the ultimate containment failure pressure, a coefficient of variation of 0.12 is used, based on Reference 42-2.

The contribution to the CCFP from each equipment hatch has been taken as independent.

# 42.4.4 Personnel Airlock

The response of the personnel airlock to internal pressurization has also been analyzed, and the results are reported in subsection 3.8.2 of the DCD. The estimated pressure at which failure would occur is in excess of 300 psig, based on test results. Since this median failure pressure is far above the median failure estimates for the other containment failure modes, no further analysis of the personnel airlock is performed. Since its expected contribution to the overall containment failure probability distribution is negligible, it is not included further in the development of the conditional containment failure probability distribution.

# 42.5 Overall Failure Distribution

Based on the uncertainties defined above and the best-estimate containment failure pressure at the bounding severe accident temperature of 400°F, a containment failure probability distribution can be constructed. The best-estimate containment failure pressure is used as the median value of the lognormal distribution. The median value and uncertainties used to construct the lognormal distributions for each failure mode are given in Table 42-1. Table 42-2 provides the same parameters for consideration of a containment temperature of 331°F.

The lognormal conditional containment failure probability distribution is calculated via the distribution function:

$$F(x) = \exp(\mu + k\beta)$$

where:

F(x) = lognormal distribution of x

- $\mu$  = natural logarithm of median
- k = lognormal multiplier
- $\beta$  = lognormal standard deviation

The appropriate lognormal standard deviation is defined from the coefficient of variation according to:

$$V_{tot} = (\exp(\beta^2) - 1.0)^{0.5}$$

where:

 $V_{tot}$  = total coefficient of variation  $\beta$  = lognormal standard deviation The total coefficient of variation,  $V_{tot}$ , is calculated via the square root of the sum of the squares of the modeling coefficient of variation and the material coefficient of variation:

# $V_{tot} = (V_{model}^2 + V_{material}^2)^{0.5}$

Using the parameters given in Table 42-1, the conditional containment failure probability distribution is developed using a lognormal distribution for each of the failure modes. Figure 42-1 presents a graphical representation of the conditional containment failure probability distribution for each of the failure locations as well as the overall failure distribution for the AP1000 containment.

The conditional containment failure probability for each of the failure locations and the cumulative containment failure probability, over the range of 80 to 240 psig, is given in Table 42-3. The analogous data for a containment temperature of 331°F are presented in Table 42-4 and Figure 42-2, respectively.

#### 42.6 Summary and Conclusions

The cumulative containment failure probability distribution has been developed, using a lognormal distribution, which is based on best-estimate predictions of containment strength and accounts for random uncertainties in material properties and subjective modeling uncertainties. Based on this model, the median internal pressure at which the AP1000 containment vessel is predicted to fail for a containment temperature of 400°F is 135 psig. This is the best-estimate or expected containment failure pressure. This value is comparable to, or slightly higher than, the expected containment failure probability for other conventional pressurized water reactor (PWR) plants using pre-stressed or post-tensioned concrete containment structures. The 5th and 95th percentile failure probabilities for a containment temperature of 400°F are 106 psig and 169 psig, respectively.

For consideration of a containment temperature of 331°F, the median failure pressure is 141 psig while the 5th and 95th percentile failure probabilities are 110 psig and 176 psig, respectively.

The cutoff for consideration of containment failure due to internal pressurization during a severe accident is defined as the pressure at which the containment failure probability is less than  $10^{-3}$ . Below this point, the failure probability is so low that, when combined with the small core damage frequency numbers, the overall probability of a core damage accident resulting in containment failure is in the  $10^{-10}$  range. This is generally considered to be a negligible calculated number. From the lognormal distribution, the containment pressure corresponding to a  $10^{-3}$  probability of failure is approximately 95 psig.

#### 42.7 References

- 42-1 "Reliability of Containments Under Overpressure," L. Greimann and F. Fanous, Pressure Vessel and Piping Technology, 1985, pp. 835 - 856.
- 42-2 "Reliability of Steel Containment Strength," L. Greimann, et al., NUREG/CR-2442, June 1988.

I

42-3 "Development of a Probability Based Load Criterion for American National Standard A58," National Bureau of Standards Special Publication 577, U.S. Government Printing Office, Washington, 1980.

. . .

#### Table 42-1

# PARAMETERS USED IN THE CONSTRUCTION OF THE AP1000 CONDITIONAL CONTAINMENT FAILURE PROBABILITY DISTRIBUTION FOR CONTAINMENT TEMPERATURE = 400°F

· · · · · · · · · · · · · · · · · · ·	t All and All	Median Failure Coefficient of Va		of Variation
Failure Location	Failure Mode	Pressure (psig)	Material	Modeling
Cylindrical Shell	Membrane Yield	141	0.11	0.12
Ellipsoidal Head	Buckling	159	0.11	0.12
16-Ft. Equipment Hatch 1	Buckling	297	0.11	0.12
16-Ft. Equipment Hatch 2	Buckling	297	0.11	0.12
Personnel Hatch		300	0.11	0.12

#### Table 42-2

## PARAMETERS USED IN THE CONSTRUCTION OF THE AP1000 CONDITIONAL CONTAINMENT FAILURE PROBABILITY DISTRIBUTION FOR CONTAINMENT TEMPERATURE = 331°F

	Median Failure		<b>Coefficient of Variation</b>		
Failure Location	Failure Mode	Pressure (psig)	Material	Modeling	
Cylindrical Shell	Membrane Yield	147	· · · · · <b>0.11</b>	0.12	
Ellipsoidal Head	Buckling	166	0.11	0.12	
16-Ft. Equipment Hatch 1	Buckling	297	0.11	0.12	
16-Ft. Equipment Hatch 2	Buckling	297	0.11	0.12	
Personnel Hatch		300	0.11	0.12	

AP1000 Probabilistic Risk Assessment

Table 42-3 CUMULATIVE CONTAINMENT FAILURE PROBABILITY, TEMP = 400°F						
Containment	Probability of Containment Failure					
Pressure (psig)	Cylinder	Head	16-ft. Hatch 1	16-ft. Hatch 2	Total	
75	6.42E-05	0.00E+00	0	0	6.4162357E-05	
80	2.55E-04	1.29E-05	0	0	2.6757609E-04	
85	9.51E-04	7.11E-05	0	0	1.0216351E-03	
90	2.92E-03	2.41E-04	0	0	3.1632982E-03	
95	7.85E-03	8.03E-04	0	0	8.6436719E-03	
100	1.79E-02	2.22E-03	0	0	2.0063917E-02	
105	3.63E-02	5.52E-03	0	0	4.1621218E-02	
110 ·	6.43E-02	1.23E-02	0	0	7.5748576E-02	
115	1.06E-01	2.36E-02	0	0	1.2761578E-01	
120	1.65E-01	4.38E-02	0	0	2.0188557E-01	
125	2.34E-01	7.11E-02	0	0	2.8856262E-01	
130	3.17E-01	1.10E-01	0	0	3.9219245E-01	
135	4.00E-01	1.62E-01	0	0	4.9744637E-01	
140	4.83E-01	2.20E-01	0	0	5.9704704E-01	
145	5.62E-01	2.94E-01	0	0	6.9031671E-01	
150	6.38E-01	3.67E-01	1.439E-05	1.439E-05	7.7129628E-01	
155	7.15E-01	4.41E-01	3.481E-05	3.481E-05	8.4093741E-01	
160	7.75E-01	5.14E-01	8.179E-05	8.179E-05	8.9061391E-01	
165	8.21E-01	5.82E-01	0.0001606	0.0001606	9.2500334E-01	
170	8.66E-01	6.50E-01	0.000308	0.000308	9.5317929E-01	
175	9.06E-01	7.18E-01	0.0005847	0.0005847	9.7356417E-01	
180	9.30E-01	7.72E-01	0.0010675	0.0010675	9.8397554E-01	
185	9.52E-01	8.12E-01	0.0018581	0.0018581	9.9097418E-01	
190	9.65E-01	8.52E-01	0.0030475	0.0030475	9.9482087E-01	
195	9.76E-01	8.93E-01	0.0050676	0.0050676	9.9748024E-01	
200	9.83E-01	9.17E-01	0.0077772	0.0077772	9.9857868E-01	

1

AP1000 Probabilistic Risk Assessment

	Table 42-4						
СИМИ	CUMULATIVE CONTAINMENT FAILURE PROBABILITY, TEMP = 331°F						
Containment		Probabi	lity of Containmen	t Failure			
Pressure (psig)	Cylinder	Head	16-ft. Hatch 1	16-ft. Hatch 2	Total		
75	1.84E-05	0.00E+00	0	· 0 ·	1.8353575E-05		
80	9.60E-05	0.00E+00	0	0	9.6027695E-05		
85	4.04E-04	1.98E-05	0	0	4.2376543E-04		
90	1.36E-03	9.07E-05	0	0	1.4485475E-03		
95	3.83E-03	3.06E-04	0	0 -	4.1360177E-03		
100	9.12E-03	9.39E-04	0	0	1.0054584E-02		
105	1.95E-02	2.49E-03	0	0	2.1953678E-02		
110	3.90E-02	5.80E-03	0	0	4.4573820E-02		
115	6.67E-02	1.26E-02	0	0	7.8462291E-02		
120	1.08E-01	2.35E-02	0	0	1.2862289E-01		
125	1.64E-01	4.25E-02	0	0	1.9967182E-01		
130	2.29E-01	6.76E-02	0	0 -	2.8119018E-01		
135	3.09E-01	1.03E-01	0	0	3.7964769E-01		
140	3.88E-01	1.53E-01	0	0	4.8173260E-01		
145	4.68E-01	2.04E-01	0	0	5.7640913E-01		
150	5.44E-01	2.74E-01	0	0	6.6921873E-01		
155	6.18E-01	3.45E-01	2.329E-05	2.329E-05	7.4974381E-01		
160	6.92E-01	4.15E-01	6.325E-05	6.325E-05	8.1985324E-01		
165	7.59E-01	4.86E-01	0.000115	0.000115	8.7625944E-01		
170	8.03E-01	5.52E-01	0.0002287	0.0002287	9.1180652E-01		
175	8.47E-01	6.18E-01	0.000456	0.000456	9.4139587E-01		
180	8.90E-01	6.83E-01	0.000817	0.000817	9.6526821E-01		
185	9.18E-01	7.48E-01	0.0014694	0.0014694	9.7932724E-01		
190	9.40E-01	7.88E-01	0.0023959	0.0023959	9.8738440E-01		
195	9.57E-01	8.26E-01	0.0040207	0.0040207	9.9260555E-01		
200	9.69E-01	8.65E-01	0.0060227	0.0060227	9.9592431E-01		
205	9.78E-01	9.02E-01	0.0092794	0.0092794	9.9791316E-01		
210	9.84E-01	9.22E-01	0.0141633	0.0141633	9.9881465E-01		
215	9.90E-01	9.42E-01	1.95E-02	1.95E-02	9.9945360E-01		
220	9.93E-01	9.57E-01	2.74E-02	2.74E-02	9.9971245E-01		

**F** 

ц.

ř. 1

ţ

42-11



Figure 42-1

AP1000 Containment Fragility at Containment Temperature of 400°F

1



Figure 42-2

AP1000 Containment Fragility at Containment Temperature of 331°F

# CHAPTER 43

# **RELEASE FREQUENCY QUANTIFICATION**

#### 43.1 Introduction

The scope of this chapter is to provide for internal initiating events at power the fission product release category frequencies defined by the end states of the containment event tree model developed in Chapter 35.

The following seven fission product release categories are defined by the end states of the containment event tree:

Release Category	Description		
BP	Containment Bypass		
CFE	Early Containment Failure		
CFI	Intermediate Containment Failure		
CFL	Late Containment Failure		
CFV	Containment Venting		
CI	Containment Isolation Failure		
IC	Intact Containment		

In Chapter 33, the plant core damage frequency (CDF) for internal initiating events at power is calculated. The end states of the event trees used for core damage modeling are referred to as plant damage states (PDS). In this chapter, first the PDS frequencies are calculated and PDS cutsets are identified in Section 43.1. Then the containment event tree (CET) node probabilities are calculated in Section 43.2. Finally, the CETs for all PDSs are quantified to calculate the fission product release category frequencies (Section 43.3).

The summary of results is discussed in Section 43.4; importance and sensitivity analyses are provided in Section 43.5. Conclusions and insights are given in Section 43.6.

Two acronyms used in this chapter are defined below.

• Containment Effectiveness (C_{eff}):

Ratio of the frequency of core damage sequences ending in "Intact Containment" (IC) end state to the plant CDF.

43-1

• Large Release Frequency (LRF):

Frequency of containment failure plus bypass sequences (excluding IC).

LRF includes frequencies of BP, CI, CFE, CFI, CFL, and CFV release categories.

Also, the terms "accident class" and "plant damage state" are used interchangeably in the present document.

# 43.2 Plant Damage State Frequency Calculations

During the plant CDF analysis of Chapter 33 for internal initiating events at power, 190 dominant accident sequences are identified and their cutsets are stored in individual files. These sequences and summary of information about them is provided in Table 43A-1 of Attachment 43A. Note that each sequence file starts with the 2-character designation for an end state (PDS). These PDS designations are:

PDS	Accident Class	Description
1A	1A	High RCS Pressure (Transient or SLOCA)
1P	1AP	High RCS Pressure (PRHR operating or MLOCA)
3A	3A	High RCS Pressure and ATWS
3C	3C	Vessel Failure
3D	3D+1D	Partial RCS Depressurization
2E	3BE	RCS Depressurized
2L	3BL	RCS Depressurized (Gravity Injection successful; Sump Recirculation fails)
2R	3BR	RCS Depressurized (CMT and ACC fail)
6	6E+6L	Containment Bypass by SGTR or ISLOCA
Others		Not further modeled since the CDF is very small (1.2 E-11/year)

Thus, 9 PDS categories are identified at the end of CDF analysis for further processing. The CDF for each of these PDS categories is calculated as shown in Table 43-1 and Figure 43-1.

Attachment 43A provides information about calculation of PDS frequencies. Note that PDS and accident class designators are used interchangeably throughout the chapter.

# 43.3 Containment Event Tree Node Frequencies

# 43.3.1 CET Nodes

For each PDS state defined in Section 43.2, the CET (as defined in Chapter 35) is to be quantified with potentially different event tree nodal probabilities to obtain the Release

Frequency Calculations (RFCs). The PDS cutset files are the input to the CET as the "initiating events." There are 14 CET top events:

- 1. AC (PDS) PDS Occurs (CUTSETS)
- 2. DP RCS Depressurization After Core Uncovery (CUTSETS)

₹¥¥¶

- 3. IS Containment Isolation (CUTSETS)
- 4. IR Reactor Cavity Flooding (CUTSETS)
- 5. RFL Reflooding of a Degraded Core
- 6. VF Debris Relocation to the Reactor Cavity
- 7. PC Passive Containment Cooling
- 8. VT Containment Venting Operator Action
- 9. IF Overpressured Containment Intact at 24 Hrs
- 10. IG Hydrogen Control System (CUTSETS)
- 11. DF Diffusion Flame
- 12. DTE Early Hydrogen Detonation
- 13. DFG Hydrogen Deflagration
- 14. DTI Intermediate Hydrogen Detonation

The CET is shown in Figure 43-2.

Five of the 14 event tree nodes are represented by cutsets, rather than scalars. The Boolean Logic multiplication of these nodes must be performed first, and their nodal probabilities are obtained, before the CET is quantified using scalar operations. To reduce the cutsets to scalar probabilities, the model in the next subsection is first used.

43.3.2 CET Node Probabilities From Boolean Expressions

In this section, a model is developed to calculate the probabilities of those CET nodes represented by fault tree models, and resulting cutset files. There are four such nodes (DP, IS, IR, IG) plus the accident classes (AC), as given in the previous subsection.

A sub-event tree containing the five nodes with cutsets is constructed as follows:



CET sequences 10 and 20 not shown above contain success of IS, and IR nodes, but do not involve the PC and IG nodes.

Boolean multiplication by using the WLINK code is first used to evaluate the expression such as:

SYS-AC	SYS-DP				CET Seq. 23
SYS-AC	DEL-DP	SYS-IS			CET Seq. 22
SYS-AC	DEL-DP	DEL-IS	SYS-IR		CET Seq. 21
SYS-AC	DEL-DP	DEL-IS	DEL-IR	SYS-P	C Ū
SYS-AC	DEL-DP	DEL-IS	DEL-IR	DEL-PC	SYS-IG

whenever applicable for each PDS category. Then, scalar event tree node probabilities are assigned to each of the nodes AC, DP, IS, IR, PC, and IG by taking the appropriate ratios of the above numbers with the PDS frequencies.

To perform the above-mentioned scalar probability assignment to the five nodes, first the success criteria definitions in Chapter 35 are used to identify the needed cutset files for each PDS state. These are summarized as follows:

AC	DP	IS	IR	PC	IG
2E	0	CIC	IWF	PCS	VLH
2L	0	CIC	0	PCS	VLH
2R	0	CID	0	PCS	VLH
1A	ADTLT	CIC	0	PCS	VLH
1 <b>P</b>	ADTLT	CIC	0	PCS	VLH
3A	ADALT	CID	0	PCS	VLH
3C	0	XCID	0	PCS	VLH
3D	0	CIC	IWF	PCS	VLH
6	Note 6				

#### Notes:

- 1. 0 means the success of the node is given by the definition of the PDS state.
- 2. 1 means the failure of the node is given by the definition of the PDS state.
- 3. XCID = CID + OTH-CNU
- 4. ADALT = CM2NL + RCN + PRTA + OTH-SGTR

5. OTH-CNU = 0.001OTH-SGTR = 0.01

6. DP failure for PDS-6 is calculated in Attachment 43C for the other CET nodes, 3BL probabilities are used; for IR node, 3BE is used.

From the above definitions, Boolean expressions are defined for the sub-event tree for all PDSs. These are shown in Table 43-2. Twenty nine runs with WLINK are made for each of these expressions, which are named Q1 through Q29. The frequencies obtained in this file will be referred to as Q1 through Q29, respectively. These frequencies are placed in column D of Table 43-3.

Another set of probabilities are defined as P1 through P15 (representing success paths associated with CET nodes represented by fault trees) in Table 43-4 and are calculated using WLINK code system. The results are given in Table 43-3. These probabilities are also placed in Table 43-3, column G.

The PDS frequencies are calculated in Attachment A and are placed in column A of Table 43-3.

Q, P, and PDS frequencies are used to calculate the probabilities of various CET event tree nodes, as given in Table 43-3. This table contains the following data.

Column B on the top left-hand-side contains the PDS frequencies input. Column D contains the frequencies Q1 to Q29. Column H contains the frequencies P1 through P15. Column L shows the DP, IS, IR, PC and IG node probabilities calculated in the spreadsheet. The second page of the table contains the actual event tree node probabilities used to quantify the CETs.

All the probabilities used for CET quantification of the nine PDS states are summarized on the second page of Table 43-3. These probabilities are either calculated in this section, as shown above, or are taken from PRA Chapters.

When a CET node involves a Boolean expression (e.g., FT cutsets), the split fraction for that node is calculated as follows:

A Boolean expression qn is generated to calculate the product of cutsets of the PDS state, the failed node, and the success of the other nodes in between containing Boolean expression. Another Boolean expression, pm, containing the product of PDS state cutsets and the success of other nodes in between the PDS and the node in question is also created. The ratio of the value of qn to pm is the conditional probability of failure of the node in question. Note that this conditional probability must be equal to or larger than the value of the Boolean expression for the node in question. The equality only holds if the cutsets of the node are not contained in the PDS cutsets (those that are not already removed by the failure of the previous nodes with Boolean expressions).

By this process, the Boolean expressions are replaced by scalar split fractions to quantify the CET.

## AP1000 Probabilistic Risk Assessment

# 43. Release Frequency Quantification

# 43.3.3 Probabilities for Hydrogen-Related CET Nodes

The probabilities of CET event nodes DF, DTE, DFG, and DTI are taken from Chapter 35. These probabilities are summarized below:

Accident Class	DF Node Probability	DTE Node Probability	DFG Node Probability	DTI Node Probability
3BE	0	0.245 if RFL is successful	0	0.124 if RFL is successful
	0	0.117 if RFL fails	0	0.0013 if RFL fails
3BL	0	0.005	0	0.0013
3BR	0	0.19	0	0.13
1A	0	0	0	0
1AP	0.017	0.054	0	0.13
3A	0	0	0	0
3C	0	0.19	0	0.13
3D	0.017	0.115	0	0.0013
6	0	0.005	· 0	0.0013

# 43.3.4 Other CET Node Probabilities

The remaining CET nodes are RFL and VF. Probabilities of RFL and VF nodes are taken from Chapter 35.

The VT and IF nodes are assigned conservative failure probabilities.

These probabilities are given in Table 43-3, and are also summarized below:

PDS	RFL	VF	VT	IF
2E	0.267	0	1	1
2L	1.0	0	1	1
2R	0	0	1	1
1A	0	0	1	1
1 <b>P</b>	0	0	1	1
3A	0	0	1	1
3C	0	0.1	1	1
3D	1.0	0	1	1
6	1.0	0	1	1

#### 43.4 Containment Event Tree Quantification

#### 43.4.1 Containment Event Tree

The CETs are quantified by using the event tree node probabilities from Table 43-3. The results are shown in Figures 43-3 through 43-11.

Most of the CET sequences go to the containment intact containment end state, which does not have severe fission product release potential. Only 8.1 percent of the PDS frequency goes to containment failure end states, such as BP, CFE, etc. Thus, the containment effectiveness is 91.9 percent in avoiding severe release given core damage.

Contribution of PDS to LRF is shown in Table 43-5 and Figure 43-12.

## **43.4.2 Dominant CET Sequences**

Dominant CET sequences contributing to LRF are given in Table 43-6. The top sequences are BP release category.

#### 43.4.3 LRF Cutsets for Dominant Sequences

The large release frequency cutsets in terms of initiating events, component and operator action failures, and containment safeguards failures are identified for the dominant accident sequences. For this purpose, the top 6 LRF CET sequences are used from Table 43-6.

	SEQUENCE				
1	23	BP	3A		
2	23	BP	6		
3	21	CFE	2E		
4	21	CFE	3D		
5	23	BP	1A		
6	10	CFE	•••• • <b>3C</b>		

The cutsets for the dominant CET LRF sequences are following:

## 43.5 Summary of Results

The fission product release category frequencies from the nine PDS states quantified in Section 43.4 are combined to obtain the total release category frequencies. These results are summarized in Tables 43-7, 43-8 and 43-9.

The results show that following a core damage event, the containment will be intact 91.9 percent of the time, preventing a severe fission product release. This is given by the ratio
of the CET end state IC (Intact Containment) frequency divided by the CDF. This quantity is termed as Containment Effectiveness which has a value of 0.919.

8.1 percent of the total CDF for internal initiating events (events at power) results in containment failure (including containment bypass), leading to potentially severe release categories (CET end states other than IC). The frequency of CET sequences where the containment is bypassed or failed (LRF) is 1.95 E-08/year. The containment event tree quantification results are displayed in Figure 43-13.

The containment bypass and failure CET sequences are dominated by release categories BP (bypass) and CFE (early containment failure) with contributions of 6.6 percent and 3.9 percent respectively to the plant CDF. With a total frequency of 1.8 E-08, these two categories make up 92 percent of the plant LRF, followed by 7 percent contribution from containment isolation failure category. Contributions of CFL and CFI categories to LRF are negligible.

Figure 43-12 shows the contribution of accident classes to LRF.

#### 43.6 Importance and Sensitivity Analyses

In this section, CET node importance and sensitivity analyses are performed to provide a better understanding of the contributors to LRF.

#### 43.6.1 CET Event Node Importance Analysis

In this section, the importances of the eleven CET nodes are calculated by setting the failure probability of each of these nodes to 1.0 (failure). The results are summarized in Table 43-10.

#### 43.6.2 No Credit Taken for DP Node for PDS-6

Set DP(fail) = 1.0 for PDS-6.

In this case, the LRF becomes 2.49 E-08/year, with a containment failure probability of 10.3 percent.

#### 43.6.3 Lesser Reliability for Containment Isolation

Set IS(fail) = 0.1 (all PDS)

In this case, the LRF becomes 4.05 E-08/year, with a containment failure probability of 16.8 percent.

## 43.6.4 Lesser Reliability for Hydrogen Igniters

In this sensitivity analysis, the VLH (IG node) probability is assigned a value of 0.1 for all PDS. The LRF becomes 2.31 E-08/year.

From this sensitivity analysis results, it is concluded that the LRF is not sensitive to the VLH failure as long is this failure probability is 0.1 or less. On the other hand, the LRF is sensitive to the failure of VLH (e.g. when no credit is taken for VLH).

#### 43.6.5 Lesser Reliability for PCS

In this sensitivity analysis, the PCS failure probability is assigned a value of 0.001 for all PDSs. The LRF becomes 1.97 E-08/year.

From this sensitivity analysis results, it is concluded that the LRF is not sensitive to the PCS failure as long is this failure probability is 0.001 or less. On the other hand, the LRF is sensitive to the failure of PCS (e.g., when no credit is taken for PCS).

43.6.6 No Credit for Depressurization for High Pressure PDS

Set DP(fail) = 1.0 for all HP PDS: 1A, 1AP, 3A, 6.

This is the same as the node importance calculated in 44.5.1. The LRF is 2.91 E-08/year.

#### 43.6.7 Set PDS-3C Vessel Failure Probability to 1.0

Set VF(fail) = 1.0 for PDS-3C.

This is the same as the node importance calculated in 44.5.1. The LRF is 2.85 E-08/year.

#### 43.6.8 Set 3D and 1AP Diffusion Flame and Detonation Failure Probability to 1.0

Set DF(fail) = 1.0 for PDS-3D and 1AP.

Set DTE(fail) = 1.0 for PDS-3D and 1AP.

In this case, the LRF becomes 7.66 E-08/year.

## 43.7 Other Importance and Sensitivity Analyses

In this section, the initiating event importances are calculated and reported. Also, a sensitivity analysis is made for the case when standby nonsafety systems are unavailable.

#### 43.7.1 Initiating Event Importances

In order to calculate the initiating event importances, first more LRF cutsets need to be collected to have accurate results. For this purpose, dominant cutsets from additional dominant sequences are collected. In this process, some of the split fractions assigned to PDS-6 are more accurately calculated. This caused the LRF frequency to reduce slightly to 1.91E-08/year. The initiating event importances thus calculated are reported in Table 43-11. ATWS, SGTR, SPADS, and SI-LB initiating events lead the list of contributors to LRF, with a total contribution of 56 percent.

Since the base case LRF was already calculated to be 1.95E-08/yr and reported in various places, it will be retained as the value of record.

#### 43.7.2 Sensitivity to Standby Systems

This sensitivity case is analogous to the similar case for CDF, reported in Chapter 50 to support RTNSS. A sensitivity study is performed to estimate the LRF increase when no credit is taken for nonsafety standby systems. This study removes (assumes to fail) the hydrogen ignitors in addition to the CVS, SFS, RNS, DAS, and DGs. The calculation is done by setting the standby system components to failure in the plant LRF cutsets. The LRF increases from 1.9E-8/year to 5.2E-6/year. This LRF frequency is still in the 10-6 range and is small.

Table 43-12 provides the top LRF cutsets for this sensitivity case. An examination of the top cutsets shows that they contain CCF of PMS software or cards in slow developing initiating events, such as TRANS and LSP. These LRF precursor sequences can be recovered from by credible operator actions. This considerably decreases the LRF. However, such recovery credit is not taken at this time.

### 43.7.3 Sensitivity to Standby Systems With Credit for Manual DAS

This sensitivity case is similar to the previous case reported above. A sensitivity study is performed to estimate the LRF increase when no credit is taken for nonsafety standby systems, but manual DAS is retained. This study removes (assumes to fail) the hydrogen ignitors in addition to the CVS, SFS, RNS, automatic DAS, and DGs. The calculation is done by setting the standby system components to failure in the plant LRF cutsets. The LRF increases from 1.9E-8/year to 3.9E-7/year. This LRF frequency is in the 10-7 range and is small. This case is intended to show the benefit of putting administrative controls on manual DAS. Table 43-13 provides the top LRF cutsets for this sensitivity case.

#### 43.8 Conclusions and Insights

From the results of the containment event tree quantification and sensitivity analyses, the following conclusions and insights related to AP1000 LRF can be derived:

- The containment effectiveness for AP1000 is over 90 percent, which provides an order of magnitude decrease from CDF to LRF. Since this results already includes CDF sequences that directly bypass the containment, the containment effectiveness for remaining sequences is actually much better. For example, for five (3BE, 3BL, 3BR, 3C, 3D) of the nine accident classes studied, the containment effectiveness ranges from 90 to 99.8 percent.
- 2. The containment effectiveness is lowest for the 3A accident class where the reactor coolant system (RCS) pressure is high after core damage. The post-core-damage depressurization for this class proves to be ineffective since failure of the automatic depressurization systems (ADS) by common cause failures leading to core damage also causes failure of post-core-damage depressurization.

- 3. Based on detailed analysis, the containment effectiveness for accident class 6, mainly steam generator tube rupture (SGTR) events, is 56.9 percent, due to those sequences where the RCS pressure is low after the postulated core damage. In such sequences, the fission products can be retained in the pressure vessel, shielded by the water in the faulted steam generator. A sensitivity analysis where all accident class 6 events are assigned to LRF shows that the plant containment effectiveness drops slightly to 89.7 percent (from 91.9 percent). Thus, the LRF results are not very sensitive to the treatment of the SGTR events for LRF.
- 4. A frequency of 1.0E-08/year has been assigned to the vessel failure initiating event (accident class 3C). In 90 percent of these events, the vessel is assumed to undergo failures that will be above the beltline: in which case the molten core could be cooled and containment would not be challenged. In the remaining 10 percent of the cases, the failure is assumed to be below the pressure vessel beltline, whereby the molten core would drop into the containment. In this case, it is conservatively assumed that the containment would fail. A sensitivity analysis is made whereby 100 percent of the failures would be below the beltline. The result shows that the containment effectiveness drops to 88.2 percent. This change is not significant, and the assumptions behind the case are very conservative.
- 5. The LRF results are sensitive to failure of hydrogen igniters. If no credit is taken for hydrogen igniters, the containment effectiveness drops to 74 percent.
- 6. However, LRF is not very sensitive to the reliability of hydrogen igniters; if IG reliability is assumed to be degraded (0.1) across the board for all accident classes, the containment effectiveness becomes 90.5 percent, which is an insignificant change from the base case.
- 7. For accident classes 3D and 1AP, if the large hydrogen releases through the in-containment refueling water storage tank (IRWST) is conservatively assumed to cause containment failure, the containment effectiveness drops to 84.5 percent. The LRF increases to 7.58 E-08/year. The increase is about a factor of 4 of the base. Such an increase is significant. This sensitivity analysis addresses the uncertainties in hydrogen mixing model for the case where the hydrogen is released into the IRWST and comes out from the IRWST vents above the operating deck.
- 8. The LRF is dominated (53.9 percent) by containment failures or bypasses due to SGTR, and unmitigated high-RCS-pressure core damage sequences, classified as BP. The remaining containment failures are dominated by an early containment failure due to reactor cavity flooding failure.
- 9. The LRF is not very sensitive to the reliability of PCS. If PCS reliability is assumed to be 0.001 across the board for all accident classes, the LRF becomes 1.97E-08, which is an insignificant change from the base case.

10. If no credit is taken for standby non-safety systems (the case for the RTNSS), the plant LRF becomes 5.2E-06/yr. This LRF frequency is still in the 10-6 range and is small. If credit for manual DAS is introduced in this case, the LRF becomes 3.9E-07/yr, which shows the benefit obtained from manual DAS.

AP1000 Probabilistic Risk Assessment

	Table 43-1										
	ACCIDENT CLASS FREQUENCIES										
PDS	Frequency	Percentage	Description								
1A	5.01E-09	2.1	High RCS Pressure (Transient or SLOCA)								
. 1P .	1.48E-09	0.6	High RCS Pressure (PRHR operating)								
2E	2E 8.06E-08 33.4 RCS Depressurized										
2L	2.40E-08	9.9	RCS Depres. (Gravity Injection succ.; Sump Recirc. fails)								
2R	4.63E-08	19.2	RCS Depressurized (CMT and ACC fail)								
3A	4.43E-09	1.8	High RCS Pressure and ATWS								
3C	1.00E-08	4.2	Vessel Failure								
3D	3D 5.97E-08 24.8 Partial RCS Depressurization										
6	9.52E-09	4.0	Containment Bypass by SGTR or ISLOCA								
CDF =	2.41E-07	100.0									

**Revision 4** 

AP1000 Probabilistic Risk Assessment

	Table 43-2											
	<b>BOOLEAN EXPRESSIONS TO CALCULATE Q1-Q29</b>											
1	1.00E-04	2	SYS-2E	SYS-CIC								
2	9.90E-05	3	SYS-2E	DEL-CIC	SYS-IWF							
3	9.70E-05	5	SYS-2E	DEL-CIC	DEL-IWF	DEL-PCT	SYS-VLH					
4	1.00E-04	2	SYS-2L	SYS-CIC								
5	9.80E-05	4	SYS-2L	DEL-CIC	DEL-PCT	SYS-VLH						
6	1.00E-04	2	SYS-2R	SYS-CID								
7	9.80E-05	4	SYS-2R	DEL-CID	DEL-PCT	SYS-VLH						
8	1.00E-04	2	SYS-1A	SYS-ADTLT								
9	1.00E-06	3	SYS-1A	DEL-ADTLT	SYS-CIC							
10	9.80E-07	5	SYS-1A	DEL-ADTLT	DEL-CIC	DEL-PCT	SYS-VLH					
11	1.00E-04	2	SYS-1P	SYS-ADTLT								
12	1.00E-06	3	SYS-1P	DEL-ADTLT	SYS-CIC							
13	9.80E-07	5	SYS-1P	DEL-ADTLT	DEL-CIC	DEL-PCT	SYS-VLH					
14	1.00E-04	2	SYS-3A	SYS-ADALT								
15	1.00E-06	3	SYS-3A	DEL-ADALT	SYS-CID							
16	9.80E-07	5	SYS-3A	DEL-ADALT	DEL-CID	DEL-PCT	SYS-VLH					
17	1.00E-04	2	SYS-3C	SYS-XCID								
18	9.80E-05	4	SYS-3C	DEL-XCID	DEL-PCT	SYS-VLH						
19	1.00E-04	2	SYS-3D	SYS-CID								
20	9.90E-05	3	SYS-3D	DEL-CID	SYS-IWF							
21	9.70E-05	5	SYS-3D	DEL-CID	DEL-IWF	DEL-PCT	SYS-VLH					
22	9.80E-05	4	SYS-2E	DEL-CIC	DEL-IWF	SYS-PCT						
23	9.90E-05	3	SYS-2L	DEL-CIC	SYS-PCT							
24	9.90E-05	3	SYS-2R	DEL-CID	SYS-PCT							
25	9.90E-07	4	SYS-1A	DEL-ADTLT	DEL-CIC	SYS-PCT						
26	9.90E-07	4	SYS-1P	DEL-ADTLT	DEL-CIC	SYS-PCT						
27	9.90E-07	4	SYS-3A	DEL-ADALT	DEL-CID	SYS-PCT						
28	9.90E-05	3	SYS-3C	DEL-XCID	SYS-PCT							
29	9.80E-05	4	SYS-3D	DEL-CID	DEL-IWF	SYS-PCT						

### AP1000 Probabilistic Risk Assessment

	Table 43-3 (Sheet 1 of 3)										
а. а. а			ана алана Калада		CET NOD	E PROBAE	BILITIES				
PDS	Frequency		Probability	Symbol	Description	•	Probability	Symbol	Description	Failure Prob.	Node
2E	8.06E-08		1.32E-10	Q1	2E/CIC		8.05E-08	P1	2E/CIC	4.08E-01	1A-DP
2L	2.40E-08		2.67E-09	Q2	2E/IWF		7.85E-08	P2	2E/CIC/IWF	4.10E-01	1P-DP
2R	4.63E-08		2.67E-09	Q3	2E/VLH		7.85E-08	P3	2E/CIC/IWF/PCT	9.21E-01	3A-DP
1A .	5.01E-09		5.83E-10	Q4	2L/CIC		2.34E-08	P4	2L/CIC	1.64E-03	2E-IS
1 <b>P</b>	1.48E-09		3.66E-11	Q5	2L/VLH		4.63E-08	P5	2R/CID	2.43E-02	2L-IS
3A	4.43E-09		7.67E-11	Q6	2R/CID		3.35E-09	P6	1A/ADTLT	1.66E-03	2R-IS
3 <b>C</b>	1.00E-08	an An ann an Ann	5.28E-11	Q7	2R/VLH		3.35E-09	P7	1A/ADTLT/CIC	1.55E-03	1A-IS
3D	5.97E-08		2.04E-09	Q8	1A/ADTLT		9.61E-10	P8	1P/ADTLT	1.52E-03	1P-IS
6	9.52E-09		5.20E-12	Q9	1A/CIC		9.61E-10	P9	1P/ADTLT/CIC	1.81E-02	3A-IS
			2.17E-11	Q10	1A/VLH		3.61E-10	P10	3A/ADALT	2.66E-03	3C-IS
CDF =	2.409E-07		6.05E-10	Q11	1P/ADTLT		3.61E-10	P11	3A/ADALT/CID	6.07E-03	3D-IS
			1.46E-12	Q12	1P/CIC		1.00E-08	P12	3C/XCID	3.32E-02	2E-IR
		·	1.04E-12	Q13	1P/VLH		5.97E-08	P13	3D/CID	3.45E-02	3D-IR
		e al com	4.08E-09	Q14	3A/ADALT		5.81E-08	P14	3D/CID/IWF	3.40E-02	2E-IG
			6.53E-12	Q15	3A/CID		5.81E-08	P15	3D/CID/IWF/PCT	1.56E-03	2L-IG
			7.58E-12	Q16	3A/VLH					1.14E-03	2R-IG
			2.66E-11	Q17	3C/XCID					6.49E-03	1A-IG
			1.15E-11	Q18	3C/VLH			:		1.08E-03	1P-IG

**Revision 4** 

and Nie

	Table 43-3 (Sheet 2 of 3)														
CET NODE PROBABILITIES															
PDS	POS Frequency Probability Symbol Description Probability Symbol Symbol Failure   Probability Symbol Description Probability Symbol Symbol Description Failure														
			3.62E-10	Q19	3D/CID					2.10E-02	3A-IG				
			2.06E-09	Q20	3D/IWF					1.15E-03	3C-IG				
			1.50E-10	Q21	3D/VLH					2.59E-03	3D-IG				
			1.35E-13	Q22	2E/PCT					1.72E-06	2E-PCT				
			2.35E-14	Q23	2L/PCT					1.01E-06	2L-PCT				
			5.21E-14	Q24	2R/PCT					1.12E-06	2R-PCT				
			1.10E-14	Q25	1A/PCT					3.28E-06	1A-PCT				
			0.00E+00	Q26	1P/PCT					0.00E+00	1P-PCT				
			2.54E-14	Q27	ЗА/РСТ					7.04E-05	ЗА-РСТ				
			1.16E-14	Q28	3C/PCT					1.16E-06	3C-PCT				
			8.73E-14	Q29	3D/PCT					1.50E-06	3D-PCT				
	2E	2L	2R	1A	1P	3A	3C	3D	6						
AC	8.06E-08	2.40E-08	4.63E-08	5.01E-09	1.48E-09	4.43E-09	1.00E-08	5.97E-08	9.52E-09						
DP	0.00E+00	0.00E+00	0.00E+00	4.08E-01	4.10E-01	9.21E-01	0.00E+00	0.00E+00	3.97E-01						
15	1.64E-03	2.43E-02	1.66E-03	1.55E-03	1.52E-03	1.81E-02	2.66E-03	6.07E-03	2.43E-02						
IR	3.32E-02	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	3.45E-02	3.32E-02						
RFL	2.67E-01	1.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.00E+00	1.00E+00						

.

# AP1000 Probabilistic Risk Assessment

					Table 4	43-3 (Sheet 3	6 of 3)							
	CET NODE PROBABILITIES													
PDS	Frequency		Probability	Symbol	Description		Probability	Symbol	Description	Failure Prob.	Node			
VF	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.00E-01	0.00E+00	0.00E+00					
PC	1.72E-06	1.01E-06	1.12E-06	3.28E-06	0.00E+00	7.04E-05	1.16E-06	1.50E-06	1.01E-06					
VT	1.00E+00	1.00E+00	1.00E+00	1.00E+00	1.00E+00	1.00E+00	1.00E+00	1.00E+00	1.00E+00					
IF	1.00E+00	1.00E+00	1.00E+00	1.00E+00	1.00E+00	1.00E+00	1.00E+00	1.00E+00	1.00E+00					
IG	3.40E-02	1.56E-03	1.14E-03	6.49E-03	1.08E-03	2.10E-02	1.15E-03	2.59E-03	1.56E-03					
DF	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.70E-02	0.00E+00	0.00E+00	1.70E-02	0.00E+00					
DTE	2.45E-01	5.00E-03	1.90E-01	0.00E+00	5.40E-02	0.00E+00	1.90E-01	1.15E-01	5.00E-03					
DFG	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00					
DTI	1.24E-01	1.30E-03	1.30E-01	0.00E+00	1.30E-01	0.00E+00	1.30E-01	1.30E-03	1.30E-03	×				
DTI-2	1.30E-03	(if RFL fail	s)						· · · ·					
DTE-2	0.117	(if RFL fail	5)					in the second	and the second second					

**Revision 4** 

.

AP1000 Probabilistic Risk Assessment

	Table 43-4											
<b>BOOLEAN EXPRESSIONS FOR P1-P15</b>												
1	9.90E-03	2	SYS-2E	DEL-CIC								
2	9.80E-03	3	SYS-2E	DEL-CIC	DEL-IWF							
3	9.70E-03	4	SYS-2E	DEL-CIC	DEL-IWF	DEL-PCT						
4	9.90E-03	2	SYS-2L	DEL-CIC								
5	9.90E-03	2	SYS-2R	DEL-CID								
6	1.00E-04	2	SYS-1A	DEL-ADTLT								
7	9.90E-05	3	SYS-1A	DEL-ADTLT	DEL-CIC							
8	1.00E-04	2	SYS-1P	DEL-ADTLT								
9	9.90E-05	3	SYS-1P	DEL-ADTLT	DEL-CIC							
10	1.00E-04	2	SYS-3A	DEL-ADALT								
11	9.90E-05	3	SYS-3A	DEL-ADALT	DEL-CID							
12	9.90E-03	2	SYS-3C	DEL-XCID								
13	9.90E-03	2	SYS-3D	DEL-CID								
14	9.80E-03	3	SYS-3D	DEL-CID	DEL-IWF							
15	9.70E-03	4	SYS-3D	DEL-CID	DEL-IWF	DEL-PCT						

### AP1000 Probabilistic Risk Assessment

				· · ·	Table 43-5 (Sheet 1 of 3)
· · · ·				CO	NTRIBUTION OF PDS TO LRF
CET SEQ	REL CAT	PDS	FREQ	%	Sequence Description
23	BP	3A	4.08E-09	20.9%	Containment Bypass
23	BP	6	3.78E-09	19.4%	Containment Bypass
21	CFE	2E	2.67E-09	13.7%	Sump Flooding Fails
21	CFE	3D	2.05E-09	10.5%	Sump Flooding Fails
23	BP	1A	2.04E-09	10.5%	Containment Bypass
10	CFE	3C	9.97E-10	5.1%	Vessel Failure
12	CFE	3D	9.71E-10	5.0%	Core Reflooding Fails; Diffusion Flame
23	BP	1P	6.05E-10	3.1%	Containment Bypass
22	CI	2L	5.83E-10	3.0%	Containment Isolation Fails
. 6	CFE	2E	4.75E-10	2.4%	Hydrogen Igniters Fail; Early DDT
22	CI	3D	3.62E-10	1.9%	Containment Isolation Fails
21	CFE	6	1.86E-10	1.0%	Sump Flooding Fails
4	CFI	2E	1.82E-10	<b>0.9%</b> .	Hydrogen Igniters fails; Intermediate DDT
22	CI	6	1.40E-10	0.7%	Containment Isolation Fails
22	CI	2E	1.32E-10	0.7%	Containment Isolation Fails
16	CFE	2E	8.27E-11	0.4%	Core Reflooding Fails; Hydrogen Igniters Fail; Early DDT
22	CI	2R	7.67E-11	0.4%	Containment Isolation Fails
22	CI	3C	2.66E-11	0.1%	Containment Isolation Fails

**Revision 4** 

1.1.10

 $\xi_{-}$ 

	Table 43-5 (Sheet 2 of 3)									
CONTRIBUTION OF PDS TO LRF										
CET SEQ	REL CAT	PDS	FREQ	%	Sequence Description					
16	CFE	3D	1.70E-11	0.1%	Core Reflooding Fails; Hydrogen Igniters Fail; Early DDT					
2	CFE	1P	1.48E-11	0.1%	Diffusion Flame					
6	CFE	2R	1.00E-11	0.1%	Hydrogen Igniters Fail; Early DDT					
22	CI	3A	6.33E-12	0.0%	Containment Isolation Fails					
4	CFI	2R	5.55E-12	0.0%	Hydrogen Igniters Fails; Intermediate DDT					
22	22 CI 1A 4.60E-12 0.0% Containment Isolation Fails									
6	CFE	3C	1.95E-12	0.0%	Hydrogen Igniters Fail; Early DDT					
22	CI	1P	1.32E-12	0.0%	Containment Isolation Fails					
4	CFI	3C	1.08E-12	0.0%	Hydrogen Igniters Fails; Intermediate DDT					
14	CFI	2E	8.11E-13	0.0%	Core Reflooding Fails; Hydrogen Igniters fails; Intermediate DDT					
16	CFE	2L	1.83E-13	0.0%	Core Reflooding Fails; Hydrogen Igniters Fail; Early DDT					
14	CFI	3D	1.70E-13	0.0%	Core Reflooding Fails; Hydrogen Igniters fails; Intermediate DDT					
4	CFI	1P	1.15E-13	0.0%	Hydrogen Igniters Fails; Intermediate DDT					
9	CFL	2E	9.80E-14	0.0%	Passive Containment Cooling Fails; Venting Fails; Containment Fails					
19	CFL	3D	8.60E-14	0.0%	Core Reflooding Fails; Passive Containment Cooling Fails; Venting Fails; Containment Fails					
9	CFL	2R	5.20E-14	0.0%	Passive Containment Cooling Fails; Venting Fails; Containment Fails					
6	CFE	1P	5.05E-14	0.0%	Hydrogen Igniters Fail; Early DDT					
14	CFI	2L	4.72E-14	0.0%	Core Reflooding Fails; Hydrogen Igniters Fails; Intermediate DDT					

 $\leftarrow$ 

	Table 43-5 (Sheet 3 of 3)											
CONTRIBUTION OF PDS TO LRF												
CET SEQ	REL CAT	PDS	FREQ	%	Sequence Description							
16	CFE	6	4.23E-14	0.0%	Core Reflooding Fails; Hydrogen Igniters Fail; Early DDT							
19	CFL	2E	3.57E-14	0.0%	Core Reflooding Fails; Passive Containment Cooling Fails; Venting Fails; Containment Fails							
9	9 CFL 3A 2.42E-14 0.0% Passive Containment Cooling Fails; Venting Fails; Containment Fails											
19	CFL	2L	2.35E-14	0.0%	Core Reflooding Fails; Passive Containment Cooling Fails; Venting Fails; Containment Fails							
14	CFI	6	1.09E-14	0.0%	Core Reflooding Fails; Hydrogen Igniters fails; Intermediate DDT							
9	CFL	3C	1.04E-14	0.0%	Passive Containment Cooling Fails; Venting Fails; Containment Fails							
9	CFL	1A	9.71E-15	0.0%	Passive Containment Cooling Fails; Venting Fails; Containment Fails							
19	CFL	6	5.44E-15	0.0%	Core Reflooding Fails; Passive Containment Cooling Fails; Venting Fails; Containment Fails							
		Sum	1.95E-08	100.0%								

43-21

**Revision 4** 

STATISTICS

5. 71-34

£----

	Table 43-6 (Sheet 1 of 69)											
	DOMINANT CET SEQUENCES CONTRIBUTING TO LRF											
Title: LR	Title: LRF Cutsets for 23BP3A											
Reduced	Sum of Cuts	ets: 4.077(	)E-09									
Number	Cutset Prob.	Percent	Basic Event Name	Event Prob.	Identifier							
1	3.01E-09	73.83	ATWS PRECURSOR WITH NO MFW INITIATING EVENT OCCURS	4.81E-01	IEV-ATWS							
			OPERATOR FAILS TO MANUALLY TRIP REACTOR VIA PMS	5.20E-02	ATW-MAN03							
			CCF OF SAFETY PT LT CONTINUOUSLY INTERFACING HIGH PRESSURE	4.78E-04	CCX-XMTR							
			COMMON CAUSE FAILURE OF PZR LEVEL SENSORS	4.78E-04	CCX-XMTR195							
			COND. PROB. OF ATW-MAN04 (OPER. FAILS TO TRIP REACTOR)	5.26E-01	ATW-MAN04C							
2	6.95E-10	17.05	ATWS PRECURSOR WITH MFW AVAILA. INITIATING EVENT OCCURS	1.17E+00	IEV-ATW-T							
			OPERATOR FAILS TO MANUALLY TRIP REACTOR VIA PMS	5.20E-03	ATW-MAN05							
			CCF OF SAFETY PT LT CONTINUOUSLY INTERFACING HIGH PRESSURE	4.78E-04	CCX-XMTR							
			COMMON CAUSE FAILURE OF PZR LEVEL SENSORS	4.78E-04	CCX-XMTR195							
			COND. PROB. OF ATW-MAN06 (OPER. FAILS TO TRIP REACTOR	5.00E-01	ATW-MAN06C							
3	1.58E-10	3.88	ATWS PRECURSOR WITH NO MFW INITIATING EVENT OCCURS	4.81E-01	IEV-ATWS							
			SOFTWARE CCF OF ALL CARDS	1.20E-06	CCX-SFTW							
			OPERATOR FAILS TO MANUALLY TRIP REACTOR VIA PMS	5.20E-02	ATW-MAN03							
			UNAVAILABILITY GOAL FOR DAS	1.00E-02	DAS							
	1		COND. PROB. OF ATW-MAN04 (OPER. FAILS TO TRIP REACTOR)	5.26E-01	ATW-MAN04C							

(-

	Table 43-6 (Sheet 2 of 69)											
DOMINANT CET SEQUENCES CONTRIBUTING TO LRF												
Number	Cutset Prob.	Percent	Basic Event Name	Event Prob.	Identifier							
4	9.25E-11	2.27	ATWS PRECURSOR WITH SI SIGNAL INITIATING EVENT OCCURS	1.48E-02	IEV-ATW-S							
			OPERATOR FAILS TO MANUALLY TRIP REACTOR VIA PMS	5.20E-02	ATW-MAN03							
			CCF OF SAFETY PT LT CONTINUOUSLY INTERFACING HIGH PRESSURE	4.78E-04	CCX-XMTR							
			COMMON CAUSE FAILURE OF PZR LEVEL SENSORS	4.78E-04	CCX-XMTR195							
			COND. PROB. OF ATW-MAN04 (OPER. FAILS TO TRIP REACTOR)	5.26E-01	ATW-MAN04C							
5	5.71E-11	1.4	ATWS PRECURSOR WITH NO MFW INITIATING EVENT OCCURS	4.81E-01	IEV-ATWS							
			OPERATOR FAILS TO MANUALLY TRIP REACTOR VIA PMS	5.20E-02	ATW-MAN03							
			CCF OF SAFETY PT LT CONTINUOUSLY INTERFACING HIGH PRESSURE	4.78E-04	CCX-XMTR							
ж. 			COMMON CAUSE FAILURE OF PZR LEVEL SENSORS	4.78E-04	CCX-XMTR195							
		-	FAILURE OF MANUAL DAS REACTOR TRIP HARDWARE	1.00E-02	MDAS							
6	1.39E-11	0.34	ATWS PRECURSOR WITH MFW AVAILA. INITIATING EVENT OCCURS	1.17E+00	IEV-ATW-T							
			OPERATOR FAILS TO MANUALLY TRIP REACTOR VIA PMS	5.20E-03	ATW-MAN05							
1			CCF OF SAFETY PT LT CONTINUOUSLY INTERFACING HIGH PRESSURE	4.78E-04	CCX-XMTR							
			COMMON CAUSE FAILURE OF PZR LEVEL SENSORS	4.78E-04	CCX-XMTR195							
			FAILURE OF MANUAL DAS REACTOR TRIP HARDWARE	1.00E-02	MDAS							

**Revision 4** 

			Table 43-6 (Sheet 3 of 69)	Table 43-6 (Sheet 3 of 69)							
	DOMINANT CET SEQUENCES CONTRIBUTING TO LRF										
Number	Cutset Prob.	Percent	Basic Event Name	Event Prob.	Identifier						
7	1.00E-11	0.25	ATWS PRECURSOR WITH NO MFW INITIATING EVENT OCCURS	4.81E-01	IEV-ATWS						
		ļ	CONTROL ROD MG SETS FAIL TO TRIP	1.75E-03	OTH-MGSET						
			OPERATOR FAILS TO MANUALLY TRIP REACTOR VIA PMS	5.20E-02	ATW-MAN03						
			CCF OF SAFETY PT LT CONTINUOUSLY INTERFACING HIGH PRESSURE	4.78E-04	CCX-XMTR						
	!		COMMON CAUSE FAILURE OF PZR LEVEL SENSORS	4.78E-04	CCX-XMTR195						
8	9.15E-12	0.22	ATWS PRECURSOR WITH NO MFW INITIATING EVENT OCCURS	4.81E-01	IEV-ATWS						
	!		SOFTWARE CCF OF ALL CARDS	1.20E-06	CCX-SFTW						
	1		OPERATOR FAILS TO MANUALLY TRIP REACTOR VIA PMS	5.20E-02	ATW-MAN03						
			EDS3 EA 1 DISTR. PNL FAILURE OR T&M	3.05E-04	ED3MOD07						
9	4.96E-12	0.12	ATWS PRECURSOR WITH NO MFW INITIATING EVENT OCCURS	4.81E-01	IEV-ATWS						
	1		PMS REACTOR TRIP SYSTEM HARDWARE CCF	7.89E-05	CCX-PMS-HARDWARE						
			OPERATOR FAILS TO MANUALLY TRIP REACTOR VIA PMS	5.20E-02	ATW-MAN03						
4 /			UNAVAILABILITY GOAL FOR DAS	1.00E-02	DAS						
	l l		COND. PROB. OF ATW-MAN04 (OPER. FAILS TO TRIP REACTOR)	5.26E-01	ATW-MAN04C						
			CCF NON-SAFETY TRANSMITTERS INTERFACING SYSTEM PRESSURE	4.78E-04	CCX-TRNSM						

# **Revision 4**

f---

(-

### AP1000 Probabilistic Risk Assessment

			Table 43-6 (Sheet 4 of 69)		
			DOMINANT CET SEQUENCES CONTRIBUTING TO LRF		
Number	Cutset Prob.	Percent	Basic Event Name	Event Prob.	Identifier
10	4.96E-12	0.12	ATWS PRECURSOR WITH NO MFW INITIATING EVENT OCCURS	4.81E-01	IEV-ATWS
			PMS REACTOR TRIP SYSTEM HARDWARE CCF	7.89E-05	CCX-PMS-HARDWARE
			OPERATOR FAILS TO MANUALLY TRIP REACTOR VIA PMS	5.20E-02	ATW-MAN03
	•		UNAVAILABILITY GOAL FOR DAS	1.00E-02	DAS
			COND. PROB. OF ATW-MAN04 (OPER. FAILS TO TRIP REACTOR)	5.26E-01	ATW-MAN04C
			CCF OF SAFETY PT LT CONTINUOUSLY INTERFACING HIGH PRESSURE	4.78E-04	CCX-XMTR
11	4.86E-12	0.12	ATWS PRECURSOR WITH SI SIGNAL INITIATING EVENT OCCURS	1.48E-02	IEV-ATW-S
			SOFTWARE CCF OF ALL CARDS	1.20E-06	CCX-SFTW
			OPERATOR FAILS TO MANUALLY TRIP REACTOR VIA PMS	5.20E-02	ATW-MAN03
			UNAVAILABILITY GOAL FOR DAS	1.00E-02	DAS
			COND. PROB. OF ATW-MAN04 (OPER. FAILS TO TRIP REACTOR)	5.26E-01	ATW-MAN04C
12	3.00E-12	0.07	ATWS PRECURSOR WITH NO MFW INITIATING EVENT OCCURS	4.81E-01	IEV-ATWS
			SOFTWARE CCF OF ALL CARDS	1.20E-06	CCX-SFTW
			OPERATOR FAILS TO MANUALLY TRIP REACTOR VIA PMS	5.20E-02	ATW-MAN03
			UNAVAILABILITY GOAL FOR DAS	1.00E-02	DAS
			FAILURE OF MANUAL DAS REACTOR TRIP HARDWARE	1.00E-02	MDAS

43-25

.

1.20.

(______

			Table 43-6 (Sheet 5 of 69)	Table 43-6 (Sheet 5 of 69)						
	DOMINANT CET SEQUENCES CONTRIBUTING TO LRF									
Number	Cutset Prob.	Percent	Basic Event Name	Event Prob.	Identifier					
13	2.43E-12	0.06	ATWS PRECURSOR WITH MFW AVAILA. INITIATING EVENT OCCURS	1.17E+00	IEV-ATW-T					
			CONTROL ROD MG SETS FAIL TO TRIP	1.75E-03	OTH-MGSET					
	1		OPERATOR FAILS TO MANUALLY TRIP REACTOR VIA PMS	5.20E-03	ATW-MAN05					
			CCF OF SAFETY PT LT CONTINUOUSLY INTERFACING HIGH PRESSURE	4.78E-04	CCX-XMTR					
			COMMON CAUSE FAILURE OF PZR LEVEL SENSORS	4.78E-04	CCX-XMTR195					
14	1.76E-12	0.04	ATWS PRECURSOR WITH SI SIGNAL INITIATING EVENT OCCURS	1.48E-02	IEV-ATW-S					
			OPERATOR FAILS TO MANUALLY TRIP REACTOR VIA PMS	5.20E-02	ATW-MAN03					
			CCF OF SAFETY PT LT CONTINUOUSLY INTERFACING HIGH PRESSURE	4.78E-04	CCX-XMTR					
			COMMON CAUSE FAILURE OF PZR LEVEL SENSORS	4.78E-04	CCX-XMTR195					
			FAILURE OF MANUAL DAS REACTOR TRIP HARDWARE	1.00E-02	MDAS					
15	1.74E-12	0.04	ATWS PRECURSOR WITH NO MFW INITIATING EVENT OCCURS	4.81E-01	IEV-ATWS					
		1	OPERATOR FAILS TO MANUALLY TRIP REACTOR VIA PMS	5.20E-02	ATW-MAN03					
			CCF OF SAFETY PT LT CONTINUOUSLY INTERFACING HIGH PRESSURE	4.78E-04	CCX-XMTR					
			COMMON CAUSE FAILURE OF PZR LEVEL SENSORS	4.78E-04	CCX-XMTR195					
			EDS3 EA 1 DISTR. PNL FAILURE OR T&M	3.05E-04	ED3MOD07					

(-

	Annald A	-	Table 43-6 (Sheet 6 of 69)		
			DOMINANT CET SEQUENCES CONTRIBUTING TO LRF		
Number	Cutset Prob.	Percent	Basic Event Name	Event Prob.	Identifier
16	9.68E-13	0.02	ATWS PRECURSOR WITH NO MFW INITIATING EVENT OCCURS	4.81E-01	IEV-ATWS
			REACTOR TRIP BREAKERS CCF	8.10E-06	RCX-RB-FA
			UNAVAILABILITY GOAL FOR DAS	1.00E-02	DAS
			OPERATOR FAILS TO MANUALLY TRIP REACTOR VIA DAS	5.20E-02	ATW-MAN04
			CCF NON-SAFETY TRANSMITTERS INTERFACING SYSTEM PRESSURE	4.78E-04	CCX-TRNSM
17	9.68E-13	0.02	ATWS PRECURSOR WITH NO MFW INITIATING EVENT OCCURS	4.81E-01	IEV-ATWS
			REACTOR TRIP BREAKERS CCF	8.10E-06	RCX-RB-FA
	· · · ·		UNAVAILABILITY GOAL FOR DAS	1.00E-02	DAS
			OPERATOR FAILS TO MANUALLY TRIP REACTOR VIA DAS	5.20E-02	ATW-MAN04
			CCF OF SAFETY PT LT CONTINUOUSLY INTERFACING HIGH PRESSURE	4.78E-04	CCX-XMTR
18	8.26E-13	0.02	ATWS PRECURSOR WITH NO MFW INITIATING EVENT OCCURS	4.81E-01	IEV-ATWS
			SOFTWARE CCF OF ALL CARDS	1.20E-06	CCX-SFTW
			OPERATOR FAILS TO MANUALLY TRIP REACTOR VIA PMS	5.20E-02	ATW-MAN03
			TURBINE IMPULSE CHAMBER PRESSURE TRANSMITTER 002 FAILURE	5.23E-03	MSHTP002RI
			COND. PROB. OF ATW-MAN04 (OPER. FAILS TO TRIP REACTOR)	5.26E-01	ATW-MAN04C
			CONSEQUENTIAL SGTR OCCURS	1.00E-02	OTH-SGTR

**Revision 4** 

			Table 43-6 (Sheet 7 of 69)							
	DOMINANT CET SEQUENCES CONTRIBUTING TO LRF									
Number	Cutset Prob.	Percent	Basic Event Name	Event Prob.	Identifier					
19	8.26E-13	0.02	ATWS PRECURSOR WITH NO MFW INITIATING EVENT OCCURS	4.81E-01	IEV-ATWS					
			SOFTWARE CCF OF ALL CARDS	1.20E-06	CCX-SFTW					
			OPERATOR FAILS TO MANUALLY TRIP REACTOR VIA PMS	5.20E-02	ATW-MAN03					
			TURBINE IMPULSE CHAMBER PRESSURE TRANSMITTER 001 FAILURE	5.23E-03	MSHTP001RI					
			COND. PROB. OF ATW-MAN04 (OPER. FAILS TO TRIP REACTOR)	5.26E-01	ATW-MAN04C					
			CONSEQUENTIAL SGTR OCCURS	1.00E-02	OTH-SGTR					
20	5.68E-13	0.01	ATWS PRECURSOR WITH NO MFW INITIATING EVENT OCCURS	4.81E-01	IEV-ATWS					
			REACTOR TRIP BREAKERS CCF	8.10E-06	RCX-RB-FA					
			EDS3 EA 1 DISTR. PNL FAILURE OR T&M	3.05E-04	ED3MOD07					
			CCF NON-SAFETY TRANSMITTERS INTERFACING SYSTEM PRESSURE	4.78E-04	CCX-TRNSM					
21	5.68E-13	0.01	ATWS PRECURSOR WITH NO MFW INITIATING EVENT OCCURS	4.81E-01	IEV-ATWS					
			REACTOR TRIP BREAKERS CCF	8.10E-06	RCX-RB-FA					
			EDS3 EA 1 DISTR. PNL FAILURE OR T&M	3.05E-04	ED3MOD07					
			CCF OF SAFETY PT LT CONTINUOUSLY INTERFACING HIGH PRESSURE	4.78E-04	CCX-XMTR					

**Revision 4** 

(----

			Table 43-6 (Sheet 8 of 69)		
			DOMINANT CET SEQUENCES CONTRIBUTING TO LRF		
Number	Cutset Prob.	Percent	Basic Event Name	Event Prob.	Identifier
22	5.25E-13	0.01	ATWS PRECURSOR WITH NO MFW INITIATING EVENT OCCURS	4.81E-01	IEV-ATWS
			CONTROL ROD MG SETS FAIL TO TRIP	1.75E-03	OTH-MGSET
			SOFTWARE CCF OF ALL CARDS	1.20E-06	CCX-SFTW
			OPERATOR FAILS TO MANUALLY TRIP REACTOR VIA PMS	5.20E-02	ATW-MAN03
			CONSEQUENTIAL SGTR OCCURS	1.00E-02	OTH-SGTR
23	5.25E-13	0.01	ATWS PRECURSOR WITH NO MFW INITIATING EVENT OCCURS	4.81E-01	IEV-ATWS
			CONTROL ROD MG SETS FAIL TO TRIP	1.75E-03	OTH-MGSET
			SOFTWARE CCF OF ALL CARDS	1.20E-06	CCX-SFTW
			OPERATOR FAILS TO MANUALLY TRIP REACTOR VIA PMS	5.20E-02	ATW-MAN03
			UNAVAILABILITY GOAL FOR DAS	1.00E-02	DAS
24	4.24E-13	0.01	ATWS PRECURSOR WITH MFW AVAILA. INITIATING EVENT OCCURS	1.17E+00	IEV-ATW-T
		н 	OPERATOR FAILS TO MANUALLY TRIP REACTOR VIA PMS	5.20E-03	ATW-MAN05
			CCF OF SAFETY PT LT CONTINUOUSLY INTERFACING HIGH PRESSURE	4.78E-04	CCX-XMTR
	•		COMMON CAUSE FAILURE OF PZR LEVEL SENSORS	4.78E-04	CCX-XMTR195
			EDS3 EA 1 DISTR. PNL FAILURE OR T&M	3.05E-04	ED3MOD07

. .

 $(e_1, \dots, e_n) \in (e_1, \dots, e_n)$ 

.

	Table 43-6 (Sheet 9 of 69)									
	DOMINANT CET SEQUENCES CONTRIBUTING TO LRF									
Number	Cutset Prob.	Percent	Basic Event Name	Event Prob.	Identifier					
25	3.08E-13	0.01	ATWS PRECURSOR WITH SI SIGNAL INITIATING EVENT OCCURS	1.48E-02	IEV-ATW-S					
			CONTROL ROD MG SETS FAIL TO TRIP	1.75E-03	OTH-MGSET					
			OPERATOR FAILS TO MANUALLY TRIP REACTOR VIA PMS	5.20E-02	ATW-MAN03					
			CCF OF SAFETY PT LT CONTINUOUSLY INTERFACING HIGH PRESSURE	4.78E-04	CCX-XMTR					
			COMMON CAUSE FAILURE OF PZR LEVEL SENSORS	4.78E-04	CCX-XMTR195					
26	2.88E-13	0.01	ATWS PRECURSOR WITH NO MFW INITIATING EVENT OCCURS	4.81E-01	IEV-ATWS					
	2		PMS REACTOR TRIP SYSTEM HARDWARE CCF	7.89E-05	CCX-PMS-HARDWARE					
			OPERATOR FAILS TO MANUALLY TRIP REACTOR VIA PMS	5.20E-02	ATW-MAN03					
			EDS3 EA 1 DISTR. PNL FAILURE OR T&M	3.05E-04	ED3MOD07					
			CCF NON-SAFETY TRANSMITTERS INTERFACING SYSTEM PRESSURE	4.78E-04	CCX-TRNSM					
27	2.88E-13	0.01	ATWS PRECURSOR WITH NO MFW INITIATING EVENT OCCURS	4.81E-01	IEV-ATWS					
			PMS REACTOR TRIP SYSTEM HARDWARE CCF	7.89E-05	CCX-PMS-HARDWARE					
			OPERATOR FAILS TO MANUALLY TRIP REACTOR VIA PMS	5.20E-02	ATW-MAN03					
			EDS3 EA 1 DISTR. PNL FAILURE OR T&M	3.05E-04	ED3MOD07					
			CCF OF SAFETY PT LT CONTINUOUSLY INTERFACING HIGH PRESSURE	4.78E-04	CCX-XMTR					

É----

#### AP1000 Probabilistic Risk Assessment

	·······		Table 43-6 (Sheet 10 of 69)		
	· · ·		DOMINANT CET SEQUENCES CONTRIBUTING TO LRF		
Number	Cutset Prob.	Percent	Basic Event Name	Event Prob.	Identifier
28	2.82E-13	0.01	ATWS PRECURSOR WITH SI SIGNAL INITIATING EVENT OCCURS	1.48E-02	IEV-ATW-S
			SOFTWARE CCF OF ALL CARDS	1.20E-06	CCX-SFTW
			OPERATOR FAILS TO MANUALLY TRIP REACTOR VIA PMS	5.20E-02	ATW-MAN03
a de la			EDS3 EA 1 DISTR. PNL FAILURE OR T&M	3.05E-04	ED3MOD07
-29	2.62E-13	0.01	ATWS PRECURSOR WITH NO MFW INITIATING EVENT OCCURS	4.81E-01	IEV-ATWS
			PMS REACTOR TRIP SYSTEM HARDWARE CCF	7.89E-05	CCX-PMS-HARDWARE
			OPERATOR FAILS TO MANUALLY TRIP REACTOR VIA PMS	5.20E-02	ATW-MAN03
			UNAVAILABILITY GOAL FOR DAS	1.00E-02	DAS
			COND. PROB. OF ATW-MAN04 (OPER. FAILS TO TRIP REACTOR)	5.26E-01	ATW-MAN04C
	 1	·	FAILURE OF INPUT GROUP # (P##MOD3#)	5.02E-03	PMAMOD31
			FAILURE OF INPUT GROUP # (P##MOD3#)	5.02E-03	PMBMOD32
30	2.08E-13	0.01	PRZ SV FAILURE FOR LOSS OF MFW ATWS, NO UET	2.00E-03	OTH-PRES
			ATWS PRECURSOR WITH NO MFW INITIATING EVENT OCCURS	4.81E-01	IEV-ATWS
			PMS REACTOR TRIP SYSTEM HARDWARE CCF	7.89E-05	CCX-PMS-HARDWARE
		en anter en el	OPERATOR FAILS TO MANUALLY TRIP REACTOR VIA PMS	5.20E-02	ATW-MAN03
			UNAVAILABILITY GOAL FOR DAS	1.00E-02	DAS
		н. 	COND. PROB. OF ATW-MAN04 (OPER. FAILS TO TRIP REACTOR)	5.26E-01	ATW-MAN04C
			CONSEQUENTIAL SGTR OCCURS	1.00E-02	OTH-SGTR

(_____

	Table 43-6 (Sheet 11 of 69)									
	DOMINANT CET SEQUENCES CONTRIBUTING TO LRF									
Number	Cutset Prob.	Percent	Basic Event Name	Event Prob.	Identifier					
31	1.86E-13	0	ATWS PRECURSOR WITH NO MFW INITIATING EVENT OCCURS	4.81E-01	IEV-ATWS					
		i .	REACTOR TRIP BREAKERS CCF	8.10E-06	RCX-RB-FA					
			UNAVAILABILITY GOAL FOR DAS	1.00E-02	DAS					
			FAILURE OF MANUAL DAS REACTOR TRIP HARDWARE	1.00E-02	MDAS					
			CCF NON-SAFETY TRANSMITTERS INTERFACING SYSTEM PRESSURE	4.78E-04	CCX-TRNSM					
32	1.86E-13	0	ATWS PRECURSOR WITH NO MFW INITIATING EVENT OCCURS	4.81E-01	IEV-ATWS					
			REACTOR TRIP BREAKERS CCF	8.10E-06	RCX-RB-FA					
			UNAVAILABILITY GOAL FOR DAS	1.00E-02	DAS					
			FAILURE OF MANUAL DAS REACTOR TRIP HARDWARE	1.00E-02	MDAS					
			CCF OF SAFETY PT LT CONTINUOUSLY INTERFACING HIGH PRESSURE	4.78E-04	CCX-XMTR					
33	1.53E-13	0	ATWS PRECURSOR WITH SI SIGNAL INITIATING EVENT OCCURS	1.48E-02	IEV-ATW-S					
			PMS REACTOR TRIP SYSTEM HARDWARE CCF	7.89E-05	CCX-PMS-HARDWARE					
			OPERATOR FAILS TO MANUALLY TRIP REACTOR VIA PMS	5.20E-02	ATW-MAN03					
			UNAVAILABILITY GOAL FOR DAS	1.00E-02	DAS					
			COND. PROB. OF ATW-MAN04 (OPER. FAILS TO TRIP REACTOR)	5.26E-01	ATW-MAN04C					
			CCF NON-SAFETY TRANSMITTERS INTERFACING SYSTEM PRESSURE	4.78E-04	CCX-TRNSM					

6

### AP1000 Probabilistic Risk Assessment

			Table 43-6 (Sheet 12 of 69)		
			DOMINANT CET SEQUENCES CONTRIBUTING TO LRF		
Number	Cutset Prob.	Percent	Basic Event Name	Event Prob.	Identifier
34	1.53E-13	0	ATWS PRECURSOR WITH SI SIGNAL INITIATING EVENT OCCURS	1.48E-02	IEV-ATW-S
			PMS REACTOR TRIP SYSTEM HARDWARE CCF	7.89E-05	CCX-PMS-HARDWARE
			OPERATOR FAILS TO MANUALLY TRIP REACTOR VIA PMS	5.20E-02	ATW-MAN03
			UNAVAILABILITY GOAL FOR DAS	1.00E-02	DAS
			COND. PROB. OF ATW-MAN04 (OPER. FAILS TO TRIP REACTOR)	5.26E-01	ATW-MAN04C
			CCF OF SAFETY PT LT CONTINUOUSLY INTERFACING HIGH PRESSURE	4.78E-04	CCX-XMTR
35	1.36E-13	0	PRZ SV FAILURE FOR LOSS OF MFW ATWS, NO UET	2.00E-03	OTH-PRES
			ATWS PRECURSOR WITH NO MFW INITIATING EVENT OCCURS	4.81E-01	IEV-ATWS
			CONTROL ROD MG SETS FAIL TO TRIP	1.75E-03	OTH-MGSET
			REACTOR TRIP BREAKERS CCF	8.10E-06	RCX-RB-FA
			CONSEQUENTIAL SGTR OCCURS	1.00E-02	OTH-SGTR
36	1.34E-13	0	ATWS PRECURSOR WITH SI SIGNAL INITIATING EVENT OCCURS	1.48E-02	IEV-ATW-S
			PMS REACTOR TRIP SYSTEM HARDWARE CCF	7.89E-05	CCX-PMS-HARDWARE
			OPERATOR FAILS TO MANUALLY TRIP REACTOR VIA PMS	5.20E-02	ATW-MAN03
			UNAVAILABILITY GOAL FOR DAS	1.00E-02	DAS
		ļ	COND. PROB. OF ATW-MAN04 (OPER. FAILS TO TRIP REACTOR)	5.26E-01	ATW-MAN04C
			COMMON CAUSE FAILURE TO OPEN OF 4.16 KVAC CIRCUIT BREAK	4.20E-04	RPX-CB-GO

1

		_	Table 43-6 (Sheet 13 of 69)							
	DOMINANT CET SEQUENCES CONTRIBUTING TO LRF									
Number	Cutset Prob.	Percent	Basic Event Name	Event Prob.	Identifier					
37	1.09E-13	0	PRZ SV FAILURE FOR LOSS OF MFW ATWS, NO UET	2.00E-03	OTH-PRES					
		1	ATWS PRECURSOR WITH NO MFW INITIATING EVENT OCCURS	4.81E-01	IEV-ATWS					
			PMS REACTOR TRIP SYSTEM HARDWARE CCF	7.89E-05	CCX-PMS-HARDWARE					
		ł	OPERATOR FAILS TO MANUALLY TRIP REACTOR VIA PMS	5.20E-02	ATW-MAN03					
		1	TURBINE IMPULSE CHAMBER PRESSURE TRANSMITTER 002 FAILURE	5.23E-03	MSHTP002RI					
		1	COND. PROB. OF ATW-MAN04 (OPER. FAILS TO TRIP REACTOR)	5.26E-01	ATW-MAN04C					
			CONSEQUENTIAL SGTR OCCURS	1.00E-02	OTH-SGTR					
38	1.09E-13	0	PRZ SV FAILURE FOR LOSS OF MFW ATWS, NO UET	2.00E-03	OTH-PRES					
		ĺ	ATWS PRECURSOR WITH NO MFW INITIATING EVENT OCCURS	4.81E-01	IEV-ATWS					
		1	PMS REACTOR TRIP SYSTEM HARDWARE CCF	7.89E-05	CCX-PMS-HARDWARE					
		1	OPERATOR FAILS TO MANUALLY TRIP REACTOR VIA PMS	5.20E-02	ATW-MAN03					
			TURBINE IMPULSE CHAMBER PRESSURE TRANSMITTER 001 FAILURE	5.23E-03	MSHTP001RI					
			COND. PROB. OF ATW-MAN04 (OPER. FAILS TO TRIP REACTOR)	5.26E-01	ATW-MAN04C					
		ĺ	CONSEQUENTIAL SGTR OCCURS	1.00E-02	OTH-SGTR					

**AP1000 Probabilistic Risk Assessment** 

			Table 43-6 (Sheet 14 of 69)			
			DOMINANT CET SEQUENCES CONTRIBUTING TO LRF			
Number	Cutset Prob.	Percent	Basic Event Name	Event Prob.	Identifier	
39	1.07E-13	0	INADEQUATE PRS RELIEF FOR LOSS OF MFW ATWS, WITH UET	2.00E-03	OTH-PRESU	1
			ATWS PRECURSOR WITH NO MFW INITIATING EVENT OCCURS	4.81E-01	IEV-ATWS	
			PMS REACTOR TRIP SYSTEM HARDWARE CCF	7.89E-05	CCX-PMS-HARDWARE	
			OPERATOR FAILS TO MANUALLY TRIP REACTOR VIA PMS	5.20E-02	ATW-MAN03	
			UNAVAILABILITY GOAL FOR DAS	1.00E-02	DAS	
			COND. PROB. OF ATW-MAN04 (OPER. FAILS TO TRIP REACTOR)	5.26E-01	ATW-MAN04C	
•			COND. PROB. OF ATW-MAN01 (OPER. FAILS TO STEP-IN CONTROL ROD)	5.17E-01	ATW-MAN01C	1
н			CONSEQUENTIAL SGTR OCCURS	1.00E-02	OTH-SGTR	
40	9.43E-14	0	ATWS PRECURSOR WITH NO MFW INITIATING EVENT OCCURS	4.81E-01	IEV-ATWS	
	· · · ·		PMS REACTOR TRIP SYSTEM HARDWARE CCF	7.89E-05	CCX-PMS-HARDWARE	
			OPERATOR FAILS TO MANUALLY TRIP REACTOR VIA PMS	5.20E-02	ATW-MAN03	
	-		UNAVAILABILITY GOAL FOR DAS	1.00E-02	DAS	1
			FAILURE OF MANUAL DAS REACTOR TRIP HARDWARE	1.00E-02	MDAS	
			CCF NON-SAFETY TRANSMITTERS INTERFACING SYSTEM PRESSURE	4.78E-04	CCX-TRNSM	

**Revision 4** 

É

	Table 43-6 (Sheet 15 of 69)					
L			DOMINANT CET SEQUENCES CONTRIBUTING TO LRF			
Number	Cutset Prob.	Percent	Basic Event Name	Event Prob.	Identifier	
41	9.43E-14	0	ATWS PRECURSOR WITH NO MFW INITIATING EVENT OCCURS	4.81E-01	IEV-ATWS	
			PMS REACTOR TRIP SYSTEM HARDWARE CCF	7.89E-05	CCX-PMS-HARDWARE	
			OPERATOR FAILS TO MANUALLY TRIP REACTOR VIA PMS	5.20E-02	ATW-MAN03	
			UNAVAILABILITY GOAL FOR DAS	1.00E-02	DAS	
		1	FAILURE OF MANUAL DAS REACTOR TRIP HARDWARE	1.00E-02	MDAS	
			CCF OF SAFETY PT LT CONTINUOUSLY INTERFACING HIGH PRESSURE	4.78E-04	CCX-XMTR	
42	9.24E-14	0	ATWS PRECURSOR WITH SI SIGNAL INITIATING EVENT OCCURS	1.48E-02	IEV-ATW-S	
			SOFTWARE CCF OF ALL CARDS	1.20E-06	CCX-SFTW	
		1	OPERATOR FAILS TO MANUALLY TRIP REACTOR VIA PMS	5.20E-02	ATW-MAN03	
			UNAVAILABILITY GOAL FOR DAS	1.00E-02	DAS	
			FAILURE OF MANUAL DAS REACTOR TRIP HARDWARE	1.00E-02	MDAS	
43	8.81E-14	0	ATWS PRECURSOR WITH SI SIGNAL INITIATING EVENT OCCURS	1.48E-02	IEV-ATW-S	
			CONTROL ROD MG SETS FAIL TO TRIP	1.75E-03	OTH-MGSET	
		1	REACTOR TRIP BREAKERS CCF	8.10E-06	RCX-RB-FA	
	1 !		COMMON CAUSE FAILURE TO OPEN OF 4.16 KVAC CIRCUIT BREAK	4.20E-04	RPX-CB-GO	

Ė

-

	· · · · ·		Table 43-6 (Sheet 16 of 69)		
			DOMINANT CET SEQUENCES CONTRIBUTING TO LRF		
Number	Cutset Prob.	Percent	Basic Event Name	Event Prob.	Identifier
44	7.55E-14	0	ATWS PRECURSOR WITH NO MFW INITIATING EVENT OCCURS	4.81E-01	IEV-ATWS
			SOFTWARE CCF OF ALL CARDS	1.20E-06	CCX-SFTW
			OPERATOR FAILS TO MANUALLY TRIP REACTOR VIA PMS	5.20E-02	ATW-MAN03
			CCF OF SAFETY PT LT CONTINUOUSLY INTERFACING HIGH PRESSURE	4.78E-04	CCX-XMTR
			COND. PROB. OF ATW-MAN04 (OPER. FAILS TO TRIP REACTOR)	5.26E-01	ATW-MAN04C
			CONSEQUENTIAL SGTR OCCURS	1.00E-02	OTH-SGTR
45	7.55E-14	0	ATWS PRECURSOR WITH NO MFW INITIATING EVENT OCCURS	4.81E-01	IEV-ATWS
			SOFTWARE CCF OF ALL CARDS	1.20E-06	CCX-SFTW
			OPERATOR FAILS TO MANUALLY TRIP REACTOR VIA PMS	5.20E-02	ATW-MAN03
	:		CCF NON-SAFETY TRANSMITTERS INTERFACING SYSTEM PRESSURE	4.78E-04	CCX-TRNSM
			COND. PROB, OF ATW-MAN04 (OPER. FAILS TO TRIP REACTOR)	5.26E-01	ATW-MAN04C
			CONSEQUENTIAL SGTR OCCURS	1.00E-02	OTH-SGTR
46	6.91E-14	0	PRZ SV FAILURE FOR LOSS OF MFW ATWS, NO UET	2.00E-03	OTH-PRES
			ATWS PRECURSOR WITH NO MFW INITIATING EVENT OCCURS	4.81E-01	IEV-ATWS
			CONTROL ROD MG SETS FAIL TO TRIP	1.75E-03	OTH-MGSET
			PMS REACTOR TRIP SYSTEM HARDWARE CCF	7.89E-05	CCX-PMS-HARDWARE
			OPERATOR FAILS TO MANUALLY TRIP REACTOR VIA PMS	5.20E-02	ATW-MAN03
			CONSEQUENTIAL SGTR OCCURS	1.00E-02	OTH-SGTR

1

Λ.

 $\mathbf{T}$ 

(-----

			Table 43-6 (Sheet 17 of 69)		
			DOMINANT CET SEQUENCES CONTRIBUTING TO LRF		
Number	Cutset Prob.	Percent	Basic Event Name	Event Prob.	Identifier
47	6.31E-14	0	ATWS PRECURSOR WITH NO MFW INITIATING EVENT OCCURS	4.81E-01	IEV-ATWS
			OPERATOR FAILS TO MANUALLY TRIP REACTOR VIA PMS	5.20E-02	ATW-MAN03
			CCF OF SAFETY PT LT CONTINUOUSLY INTERFACING HIGH PRESSURE	4.78E-04	CCX-XMTR
			COMMON CAUSE FAILURE OF PZR LEVEL SENSORS	4.78E-04	CCX-XMTR195
			FIXED COMPONENT FAILS: CKT BKR, INVERTER, OR STATIC XFER	5.04E-04	ED3MOD01
			STATIC TRANSFER SWITCH FAILS TO TRANSFER OR BKR FAILS OPEN	2.19E-02	ED3MOD04
48	5.61E-14	0	INADEQUATE PRS RELIEF FOR LOSS OF MFW ATWS, WITH UET	2.00E-03	OTH-PRESU
			ATWS PRECURSOR WITH NO MFW INITIATING EVENT OCCURS	4.81E-01	IEV-ATWS
	!		PMS REACTOR TRIP SYSTEM HARDWARE CCF	7.89E-05	CCX-PMS-HARDWARE
			OPERATOR FAILS TO MANUALLY TRIP REACTOR VIA PMS	5.20E-02	ATW-MAN03
			TURBINE IMPULSE CHAMBER PRESSURE TRANSMITTER 002 FAILURE	5.23E-03	MSHTP002RI
			COND. PROB. OF ATW-MAN04 (OPER. FAILS TO TRIP REACTOR)	5.26E-01	ATW-MAN04C
			COND. PROB. OF ATW-MAN01 (OPER. FAILS TO STEP-IN CONTROL ROD)	5.17E-01	ATW-MAN01C
			CONSEQUENTIAL SGTR OCCURS	1.00E-02	OTH-SGTR

43-38

É-

. .. . . .

### **AP1000 Probabilistic Risk Assessment**

	Table 43-6 (Sheet 18 of 69)						
DOMINANT CET SEQUENCES CONTRIBUTING TO LRF							
Number	Cutset Prob.	Percent	Basic Event Name	Event Prob.	Identifier		
49	5.61E-14	0	INADEQUATE PRS RELIEF FOR LOSS OF MFW ATWS, WITH UET	2.00E-03	OTH-PRESU		
			ATWS PRECURSOR WITH NO MFW INITIATING EVENT OCCURS	4.81E-01	IEV-ATWS		
	· ·		PMS REACTOR TRIP SYSTEM HARDWARE CCF	7.89E-05	CCX-PMS-HARDWARE		
			OPERATOR FAILS TO MANUALLY TRIP REACTOR VIA PMS	5.20E-02	ATW-MAN03		
			TURBINE IMPULSE CHAMBER PRESSURE TRANSMITTER 001 FAILURE	5.23E-03	MSHTP001RI		
	$\int_{-\infty}^{\infty} d^2 - d^2$		COND. PROB. OF ATW-MAN04 (OPER. FAILS TO TRIP REACTOR)	5.26E-01	ATW-MAN04C		
		· · .	COND. PROB. OF ATW-MAN01 (OPER. FAILS TO STEP-IN CONTROL ROD)	5.17E-01	ATW-MAN01C		
		· ·	CONSEQUENTIAL SGTR OCCURS	1.00E-02	OTH-SGTR		
50	5.36E-14	0	ATWS PRECURSOR WITH SI SIGNAL INITIATING EVENT OCCURS	1.48E-02	IEV-ATW-S		
•			OPERATOR FAILS TO MANUALLY TRIP REACTOR VIA PMS	5.20E-02	ATW-MAN03		
			CCF OF SAFETY PT LT CONTINUOUSLY INTERFACING HIGH PRESSURE	4.78E-04	CCX-XMTR		
··· ·			COMMON CAUSE FAILURE OF PZR LEVEL SENSORS	4.78E-04	CCX-XMTR195		
,		ļ	EDS3 EA 1 DISTR. PNL FAILURE OR T&M	3.05E-04	ED3MOD07		

**Revision 4** 

			Table 43-6 (Sheet 19 of 69)		
			DOMINANT CET SEQUENCES CONTRIBUTING TO LRF		
Title: LR	F Cutsets fo	or 23BP6		·····	
Reduced	Sum of Cuts	ets: 3.773(	)E-09		
Cutset Number Prob Percent Basic Event Name					Identifier
1	7.59E-11	2.01	STEAM GENERATOR TUBE RUPTURE INITIATING EVENT OCCURS	3.88E-03	IEV-SGTR
		1	COGNITIVE OPERATOR ERROR	1.84E-03	CIB-MAN00
		ļ	COMMON CAUSE FAILURE TO OPEN OF 4.16 KVAC CIRCUIT BREAK	4.20E-04	RPX-CB-GO
			COND. PROB. OF REC-MANDAS (FAILURE OF MANUAL DAS ACTUATION)	5.06E-01	REC-MANDASC
		ļ	OPER. FAILS TO RECOG. THE NEED FOR RCS DEPRESS. DURING SLOCA	5.00E-01	LPM-MAN01C
			OPERATOR FAILS TO ACTUATE ADS AFTER CORE DAMAGE	1.00E-01	PDS6-MANADS
2	7.59E-11	2.01	STEAM GENERATOR TUBE RUPTURE INITIATING EVENT OCCURS	3.88E-03	IEV-SGTR
			COGNITIVE OPERATOR ERROR	1.84E-03	Bb.Identifier3-03IEV-SGTR3-03CIB-MAN003-04RPX-CB-GO3-01REC-MANDASC3-01LPM-MAN01C3-01PDS6-MANADS3-03IEV-SGTR3-03CIB-MAN003-04RPX-CB-GO3-01REC-MANDASC
			COMMON CAUSE FAILURE TO OPEN OF 4.16 KVAC CIRCUIT BREAK	4.20E-04	
			COND. PROB. OF REC-MANDAS (FAILURE OF MANUAL DAS ACTUATION)	5.06E-01	REC-MANDASC
			COND. PROB. OF ADN-MAN01(OPER. FAILS TO ACT. ADS)	5.00E-01	ADN-MAN01C
			OPERATOR FAILS TO ACTUATE ADS AFTER CORE DAMAGE	1.00E-01	PDS6-MANADS

#### **AP1000 Probabilistic Risk Assessment**

Table 43-6 (Sheet 20 of 69)							
DOMINANT CET SEQUENCES CONTRIBUTING TO LRF							
Number	Cutset Prob	Percent	Basic Event Name	Event Prob.	Identifier		
3	6.39E-11	1.69	STEAM GENERATOR TUBE RUPTURE INITIATING EVENT OCCURS	3.88E-03	IEV-SGTR		
			FAILURE TO ALIGN CVCS IN AUX. SPRAY MODE	3.10E-03	CVN-MAN00		
			OPERATOR FAILS TO FULFILL MANUAL ACTUATION OF ADS	5.00E-01	ADF-MAN01		
			COMMON CAUSE FAILURE TO OPEN OF 4.16 KVAC CIRCUIT BREAK	4.20E-04	RPX-CB-GO		
			COND. PROB. OF REC-MANDAS (FAILURE OF MANUAL DAS ACTUATION)	5.06E-01	REC-MANDASC		
			COND. PROB. OF ADN-MAN01(OPER. FAILS TO ACT. ADS)	5.00E-01	ADN-MAN01C		
	• 1		OPERATOR FAILS TO ACTUATE ADS AFTER CORE DAMAGE	1.00E-01	PDS6-MANADS		
4	5.52E-11	1.46	STEAM GENERATOR TUBE RUPTURE INITIATING EVENT OCCURS	3.88E-03	IEV-SGTR		
	E		OPERATOR ERROR TO CLOSE VALVES ON RUPTURED SG	1.34E-03	CIB-MAN01		
			COMMON CAUSE FAILURE TO OPEN OF 4.16 KVAC CIRCUIT BREAK	4.20E-04	RPX-CB-GO		
		н. н. н. Н	COND. PROB. OF REC-MANDAS (FAILURE OF MANUAL DAS ACTUATION)	5.06E-01	REC-MANDASC		
			OPER. FAILS TO RECOG. THE NEED FOR RCS DEPRESS. DURING SLOCA	5.00E-01	LPM-MAN01C		
			OPERATOR FAILS TO ACTUATE ADS AFTER CORE DAMAGE	1.00E-01	PDS6-MANADS		
5	4.95E-10	13.12	STEAM GENERATOR TUBE RUPTURE INITIATING EVENT OCCURS	3.88E-03	IEV-SGTR		
	,		CCF OF PMS ESF OUTPUT LOGIC SOFTWARE	1.10E-05	CCX-PMXMOD1-SW		
			FAILURE OF MANUAL DAS ACTUATION	1.16E-02	REC-MANDAS		

(-----

	Table 43-6 (Sheet 21 of 69)					
			DOMINANT CET SEQUENCES CONTRIBUTING TO LRF			
Number	Cutset Prob	Percent	Basic Event Name	Event Prob.	Identifier	
6	4.27E-10	11.32	STEAM GENERATOR TUBE RUPTURE INITIATING EVENT OCCURS	3.88E-03	IEV-SGTR	
			CCF OF PMS ESF OUTPUT LOGIC SOFTWARE	1.10E-05	CCX-PMXMOD1-SW	
			FAILURE OF MANUAL DAS REACTOR TRIP HARDWARE	1.00E-02	MDAS	
7	3.88E-10	10.28	STEAM GENERATOR TUBE RUPTURE INITIATING EVENT OCCURS	3.88E-03	IEV-SGTR	
			CCF OF EPO BOARDS IN PMS	8.62E-06	CCX-EP-SAM	
			FAILURE OF MANUAL DAS ACTUATION	1.16E-02	REC-MANDAS	
8	3.34E-10	8.85	STEAM GENERATOR TUBE RUPTURE INITIATING EVENT OCCURS	3.88E-03	IEV-SGTR	
			CCF OF EPO BOARDS IN PMS	8.62E-06	CCX-EP-SAM	
			FAILURE OF MANUAL DAS REACTOR TRIP HARDWARE	1.00E-02	MDAS	
9	1.86E-11	0.49	STEAM GENERATOR TUBE RUPTURE INITIATING EVENT OCCURS	3.88E-03	IEV-SGTR	
		-	COGNITIVE OPERATOR ERROR	1.84E-03	CIB-MAN00	
			COND. PROB. OF REC-MANDAS (FAILURE OF MANUAL DAS ACTUATION)	5.06E-01	REC-MANDASC	
			CCF OF ESF INPUT LOGIC (HARDWARE)	1.03E-04	CCX-INPUT-LOGIC	
			COND. PROB. OF ADN-MAN01(OPER. FAILS TO ACT. ADS)	5.00E-01	ADN-MAN01C	
			OPERATOR FAILS TO ACTUATE ADS AFTER CORE DAMAGE	1.00E-01	PDS6-MANADS	

<u>(</u>_____

### AP1000 Probabilistic Risk Assessment

		· · ·	Table 43-6 (Sheet 22 of 69)	······	
	к.*		DOMINANT CET SEQUENCES CONTRIBUTING TO LRF		
Number	Cutset Prob	Percent	Basic Event Name	Event Prob.	Identifier
10	1.86E-11	0.49	STEAM GENERATOR TUBE RUPTURE INITIATING EVENT OCCURS	3.88E-03	IEV-SGTR
			COGNITIVE OPERATOR ERROR	1.84E-03	CIB-MAN00
			COND. PROB. OF REC-MANDAS (FAILURE OF MANUAL DAS ACTUATION)	5.06E-01	REC-MANDASC
			CCF OF ESF INPUT LOGIC (HARDWARE)	1.03E-04	CCX-INPUT-LOGIC
		:	OPER. FAILS TO RECOG. THE NEED FOR RCS DEPRESS. DURING SLOCA	5.00E-01	LPM-MAN01C
			OPERATOR FAILS TO ACTUATE ADS AFTER CORE DAMAGE	1.00E-01	PDS6-MANADS
11	1.12E-11	0.3	STEAM GENERATOR TUBE RUPTURE INITIATING EVENT OCCURS	3.88E-03	IEV-SGTR
			COGNITIVE OPERATOR ERROR	1.84E-03	CIB-MAN00
			COMMON CAUSE FAILURE OF 4 AOVS TO OPEN	6.20E-05	CCX-AV-LA
			COND. PROB. OF REC-MANDAS (FAILURE OF MANUAL DAS ACTUATION)	5.06E-01	REC-MANDASC
			COND. PROB. OF ADN-MAN01(OPER. FAILS TO ACT. ADS)	5.00E-01	ADN-MAN01C
			OPERATOR FAILS TO ACTUATE ADS AFTER CORE DAMAGE	1.00E-01	PDS6-MANADS
12	9.43E-12	0.25	STEAM GENERATOR TUBE RUPTURE INITIATING EVENT OCCURS	3.88E-03	IEV-SGTR
			FAILURE TO ALIGN CVCS IN AUX. SPRAY MODE	3.10E-03	CVN-MAN00
	$(\mathcal{A}_{ij})_{i \in \mathbb{N}} = (\mathcal{A}_{ij})_{i \in \mathbb{N}}$		OPERATOR FAILS TO FULFILL MANUAL ACTUATION OF ADS	5.00E-01	ADF-MAN01
			COMMON CAUSE FAILURE OF 4 AOVS TO OPEN	6.20E-05	CCX-AV-LA
			COND. PROB. OF REC-MANDAS (FAILURE OF MANUAL DAS ACTUATION)	5.06E-01	REC-MANDASC
			COND. PROB. OF ADN-MAN01(OPER. FAILS TO ACT. ADS)	5.00E-01	ADN-MAN01C
			OPERATOR FAILS TO ACTUATE ADS AFTER CORE DAMAGE	1.00E-01	PDS6-MANADS

43-43
{_____

	Table 43-6 (Sheet 23 of 69)									
	DOMINANT CET SEQUENCES CONTRIBUTING TO LRF									
Number	Cutset Prob	Percent	Basic Event Name	Event Prob.	Identifier					
13	9.21E-12	0.24	STEAM GENERATOR TUBE RUPTURE INITIATING EVENT OCCURS	3.88E-03	IEV-SGTR					
			COGNITIVE OPERATOR ERROR	1.84E-03	CIB-MAN00					
			COMMON CAUSE FAILURE OF 4 CHECK VALVES TO OPEN	5.10E-05	CMX-CV-GO					
			COND. PROB. OF REC-MANDAS (FAILURE OF MANUAL DAS ACTUATION)	5.06E-01	REC-MANDASC					
	l	1	COND. PROB. OF ADN-MAN01(OPER. FAILS TO ACT. ADS)	5.00E-01	ADN-MAN01C					
			OPERATOR FAILS TO ACTUATE ADS AFTER CORE DAMAGE	1.00E-01	PDS6-MANADS					
14	7.76E-12	0.21	STEAM GENERATOR TUBE RUPTURE INITIATING EVENT OCCURS	3.88E-03	IEV-SGTR					
			FAILURE TO ALIGN CVCS IN AUX. SPRAY MODE	3.10E-03	CVN-MAN00					
	l I		OPERATOR FAILS TO FULFILL MANUAL ACTUATION OF ADS	5.00E-01	ADF-MAN01					
			COMMON CAUSE FAILURE OF 4 CHECK VALVES TO OPEN	5.10E-05	CMX-CV-GO					
			COND. PROB. OF REC-MANDAS (FAILURE OF MANUAL DAS ACTUATION)	5.06E-01	REC-MANDASC					
			COND. PROB. OF ADN-MAN01(OPER. FAILS TO ACT. ADS)	5.00E-01	ADN-MAN01C					
_ /			OPERATOR FAILS TO ACTUATE ADS AFTER CORE DAMAGE	1.00E-01	PDS6-MANADS					
15	7.12E-11	1.89	STEAM GENERATOR TUBE RUPTURE INITIATING EVENT OCCURS	3.88E-03	IEV-SGTR					
'			CCF OF SAFETY PT LT CONTINUOUSLY INTERFACING HIGH PRESSURE	4.78E-04	CCX-XMTR					
			CCF OF RTD LEVEL TRANSMITTERS	3.84E-05	CMX-VS-FA					

**Revision 4** 

.

## AP1000 Probabilistic Risk Assessment

			Table 43-6 (Sheet 24 of 69)	· · · · · ·		
	•		DOMINANT CET SEQUENCES CONTRIBUTING TO LRF	· · · · ·		
Number	Cutset Prob	Percent	Basic Event Name	Event Prob.	Identifier	
_16	5.40E-11	1.43	STEAM GENERATOR TUBE RUPTURE INITIATING EVENT OCCURS	3.88E-03	IEV-SGTR	
			SOFTWARE CCF OF ALL CARDS	1.20E-06	CCX-SFTW	
			FAILURE OF MANUAL DAS ACTUATION	1.16E-02	REC-MANDAS	
17	4.66E-11	1.24	STEAM GENERATOR TUBE RUPTURE INITIATING EVENT OCCURS	3.88E-03	IEV-SGTR	
. •			SOFTWARE CCF OF ALL CARDS	1.20E-06	CCX-SFTW	
			FAILURE OF MANUAL DAS REACTOR TRIP HARDWARE	1.00E-02	MDAS	
18	3.59E-12	0.1	STEAM GENERATOR TUBE RUPTURE INITIATING EVENT OCCURS	3.88E-03	IEV-SGTR	
			MECHANICAL FAILURE OF AOV V084 AND CV V085 TO OPEN	2.88E-02	CVMOD05	
			OPERATOR FAILS TO FULFILL MANUAL ACTUATION OF ADS	5.00E-01	ADF-MAN01	
	:		COMMON CAUSE FAILURE TO OPEN OF 4.16 KVAC CIRCUIT BREAK	4.20E-04	RPX-CB-GO	
			COND. PROB. OF REC-MANDAS (FAILURE OF MANUAL DAS ACTUATION)	5.06E-01	REC-MANDASC	
			OPER. FAILS TO FULFILL MANUAL ACTUATION OF ADS	3.02E-03	ADN-MAN01	
d.			OPERATOR FAILS TO ACTUATE ADS AFTER CORE DAMAGE	1.00E-01	PDS6-MANADS	

43-45

**Revision** 4

(____

	Table 43-6 (Sheet 25 of 69)									
	DOMINANT CET SEQUENCES CONTRIBUTING TO LRF									
Number	Cutset Prob	Percent	Basic Event Name	Event Prob.	Identifier					
19	3.37E-12	0.09	STEAM GENERATOR TUBE RUPTURE INITIATING EVENT OCCURS	3.88E-03	IEV-SGTR					
			MECHANICAL FAILURE OF AOV V081 FAILS TO CLOSE	2.71E-02	CVMOD07					
			OPERATOR FAILS TO FULFILL MANUAL ACTUATION OF ADS	5.00E-01	ADF-MAN01					
			COMMON CAUSE FAILURE TO OPEN OF 4.16 KVAC CIRCUIT BREAK	4.20E-04	RPX-CB-GO					
			COND. PROB. OF REC-MANDAS (FAILURE OF MANUAL DAS ACTUATION)	5.06E-01	REC-MANDASC					
	:		OPER. FAILS TO FULFILL MANUAL ACTUATION OF ADS	3.02E-03	ADN-MAN01					
			OPERATOR FAILS TO ACTUATE ADS AFTER CORE DAMAGE	1.00E-01	PDS6-MANADS					
20	2.45E-11	0.65	CONSEQUENTIAL SGTR OCCURS	1.00E-02	OTH-SGTR					
			TRANSIENT WITH MFW INITIATING EVENT OCCURS	1.40E+00	IEV-TRANS					
			ANY SECOND. SIDE RELIEF VALVE FAILS TO RECLOSE (1 SV + PORV)	1.10E-02	OTH-SLSOV					
			UNAVAILABILITY OF BUS ECS ES 1 DUE TO UNSCHEDULED MAINTENANCE	2.70E-03	EC1BS001TM					
			CCF OF 2 SQUIB VALVES TO OPERATE	5.90E-05	ADX-EV-SA2					
21	2.45E-11	0.65	CONSEQUENTIAL SGTR OCCURS	1.00E-02	OTH-SGTR					
			TRANSIENT WITH MFW INITIATING EVENT OCCURS	1.40E+00	IEV-TRANS					
			ANY SECOND. SIDE RELIEF VALVE FAILS TO RECLOSE (1 SV + PORV)	1.10E-02	OTH-SLSOV					
			BUS UNAVAILABLE DUE TO UNSCHEDULED MAINTENANCE	2.70E-03	EC1BS012TM					
			CCF OF 2 SQUIB VALVES TO OPERATE	5.90E-05	ADX-EV-SA2					

Ć

## AP1000 Probabilistic Risk Assessment

	Table 43-6 (Sheet 26 of 69)							
DOMINANT CET SEQUENCES CONTRIBUTING TO LRF								
Number	Cutset Prob	Percent	Basic Event Name	Event Prob.	Identifier			
22	1.96E-11	0.52	CONSEQUENTIAL SGTR OCCURS	1.00E-02	OTH-SGTR			
			LOSS OF CONDENSER INITIATING EVENT OCCURS	1.12E-01	IEV-LCOND			
			ANY SECOND. SIDE RELIEF VALVE FAILS TO CLOSE (2 SV + PORV)	2.10E-02	OTH-SLSOV1			
			CCF OF 2 SQUIB VALVES TO OPERATE	5.90E-05	ADX-EV-SA2			
			MECHANICAL FAILURE OF RNS MOV V055	1.41E-02	RN55MOD1			
23	1.96E-11	0.52	CONSEQUENTIAL SGTR OCCURS	1.00E-02	OTH-SGTR			
			LOSS OF CONDENSER INITIATING EVENT OCCURS	1.12E-01	IEV-LCOND			
		4 1	ANY SECOND. SIDE RELIEF VALVE FAILS TO CLOSE (2 SV + PORV)	2.10E-02	OTH-SLSOV1			
			CCF OF 2 SQUIB VALVES TO OPERATE	5.90E-05	ADX-EV-SA2			
			HARDWARE FAILURE OF ISOLATION MOV 011	1.41E-02	RN11MOD3			
24	1.96E-11	0.52	CONSEQUENTIAL SGTR OCCURS	1.00E-02	OTH-SGTR			
-			LOSS OF CONDENSER INITIATING EVENT OCCURS	1.12E-01	IEV-LCOND			
			ANY SECOND. SIDE RELIEF VALVE FAILS TO CLOSE (2 SV + PORV)	2.10E-02	OTH-SLSOV1			
			CCF OF 2 SQUIB VALVES TO OPERATE	5.90E-05	ADX-EV-SA2			
			HARDWARE FAILS TO OPEN MOV V022/CB FTC/RELAY FTC	1.41E-02	RN22MOD4			

**Revision 4** 

¢

	Table 43-6 (Sheet 27 of 69)									
	DOMINANT CET SEQUENCES CONTRIBUTING TO LRF									
Number	Cutset Prob	Percent	Basic Event Name	Event Prob.	Identifier					
25	1.96E-11	0.52	CONSEQUENTIAL SGTR OCCURS	1.00E-02	OTH-SGTR					
			LOSS OF CONDENSER INITIATING EVENT OCCURS	1.12E-01	IEV-LCOND					
			ANY SECOND. SIDE RELIEF VALVE FAILS TO CLOSE (2 SV + PORV)	2.10E-02	OTH-SLSOV1					
			CCF OF 2 SQUIB VALVES TO OPERATE	5.90E-05	ADX-EV-SA2					
			HARDWARE FAILS TO OPEN MOV V023/CB FTC/RELAY FTC	1.41E-02	RN23MOD5					
26	1.95E-11	0.52	CONSEQUENTIAL SGTR OCCURS	1.00E-02	OTH-SGTR					
			TRANSIENT WITH MFW INITIATING EVENT OCCURS	1.40E+00	IEV-TRANS					
			ANY SECOND. SIDE RELIEF VALVE FAILS TO RECLOSE (1 SV + PORV)	1.10E-02	OTH-SLSOV					
			UNAVAILABILITY OF BUS ECS ES 1 DUE TO UNSCHEDULED MAINTENANCE	2.70E-03	EC1BS001TM					
			COMMON CAUSE FAILURE OF THE BATTERIES IDSA-DB-1A/1B	4.70E-05	CCX-BY-PN					
27	1.95E-11	0.52	CONSEQUENTIAL SGTR OCCURS	1.00E-02	OTH-SGTR					
			TRANSIENT WITH MFW INITIATING EVENT OCCURS	1.40E+00	IEV-TRANS					
			ANY SECOND. SIDE RELIEF VALVE FAILS TO RECLOSE (1 SV + PORV)	1.10E-02	OTH-SLSOV					
			BUS UNAVAILABLE DUE TO UNSCHEDULED MAINTENANCE	2.70E-03	EC1BS012TM					
			COMMON CAUSE FAILURE OF THE BATTERIES IDSA-DB-1A/1B	4.70E-05	CCX-BY-PN					

AP1000 Probabilistic Risk Assessment

	Table 43-6 (Sheet 28 of 69)									
DOMINANT CET SEQUENCES CONTRIBUTING TO LRF										
Number	Cutset Prob	Percent	Basic Event Name	Event Prob.	Identifier					
28	1.95E-11	0.52	CONSEQUENTIAL SGTR OCCURS	1.00E-02	OTH-SGTR					
			TRANSIENT WITH MFW INITIATING EVENT OCCURS	1.40E+00	IEV-TRANS					
		{	ANY SECOND. SIDE RELIEF VALVE FAILS TO RECLOSE (1 SV + PORV)	1.10E-02	OTH-SLSOV					
			COMMON CAUSE FAILURE OF THE BATTERIES IDSA-DB-1A/1B	4.70E-05	CCX-BY-PN					
	- - -		UNAVAILABILITY OF BUS ECS ES 2 DUE TO UNSCHEDULED MAINTENANCE	2.70E-03	EC2BS002TM					
29	1.95E-11	0.52	CONSEQUENTIAL SGTR OCCURS	1.00E-02	OTH-SGTR					
			TRANSIENT WITH MFW INITIATING EVENT OCCURS	1.40E+00	IEV-TRANS					
			ANY SECOND. SIDE RELIEF VALVE FAILS TO RECLOSE (1 SV + PORV)	1.10E-02	OTH-SLSOV					
			COMMON CAUSE FAILURE OF THE BATTERIES IDSA-DB-1A/1B	4.70E-05	CCX-BY-PN					
			BUS UNAVAILABLE DUE TO UNSCHEDULED MAINTENANCE	2.70E-03	EC2BS022TM					
30	1.95E-11	0.52	CONSEQUENTIAL SGTR OCCURS	1.00E-02	OTH-SGTR					
			TRANSIENT WITH MFW INITIATING EVENT OCCURS	1.40E+00	IEV-TRANS					
			ANY SECOND. SIDE RELIEF VALVE FAILS TO RECLOSE (1 SV + PORV)	1.10E-02	OTH-SLSOV					
			COMMON CAUSE FAILURE OF THE BATTERIES IDSA-DB-1A/1B	4.70E-05	CCX-BY-PN					
		· ·	BUS UNAVAILABLE DUE TO UNSCHEDULED MAINTENANCE	2.70E-03	EC2BS221TM					

**Revision 4** 

Ŧ.

 $\in$ 

	Table 43-6 (Sheet 29 of 69)									
	DOMINANT CET SEQUENCES CONTRIBUTING TO LRF									
Number	Cutset Prob	Percent	Basic Event Name	Event Prob.	Identifier					
31	1.59E-12	0.04	STEAM GENERATOR TUBE RUPTURE INITIATING EVENT OCCURS	3.88E-03	IEV-SGTR					
			MECHANICAL FAILURE OF AOV V084 AND CV V085 TO OPEN	2.88E-02	CVMOD05					
			OPERATOR FAILS TO FULFILL MANUAL ACTUATION OF ADS	5.00E-01	ADF-MAN01					
		ļ	COMMON CAUSE FAILURE TO OPEN OF 4.16 KVAC CIRCUIT BREAK	4.20E-04	RPX-CB-GO					
			COND. PROB. OF REC-MANDAS (FAILURE OF MANUAL DAS ACTUATION)	5.06E-01	REC-MANDASC					
			OPER. FAILS TO RECOG. THE NEED FOR RCS DEPRESS. DURING SLOCA	1.34E-03	LPM-MAN01					
			OPERATOR FAILS TO ACTUATE ADS AFTER CORE DAMAGE	1.00E-01	PDS6-MANADS					
32	1.51E-12	0.04	CONSEQUENTIAL SGTR OCCURS	1.00E-02	OTH-SGTR					
			LOSS OF CONDENSER INITIATING EVENT OCCURS	1.12E-01	IEV-LCOND					
			ANY SECOND. SIDE RELIEF VALVE FAILS TO CLOSE (2 SV + PORV)	2.10E-02	OTH-SLSOV1					
			COMMON CAUSE FAILURE TO OPEN OF 4.16 KVAC CIRCUIT BREAK	4.20E-04	RPX-CB-GO					
			COND. PROB. OF REC-MANDAS (FAILURE OF MANUAL DAS ACTUATION)	5.06E-01	REC-MANDASC					
			OPER. FAILS TO FULFILL MANUAL ACTUATION OF ADS	3.02E-03	ADN-MAN01					
			OPERATOR FAILS TO ACTUATE ADS AFTER CORE DAMAGE	1.00E-01	PDS6-MANADS					

(

#### AP1000 Probabilistic Risk Assessment

			Table 43-6 (Sheet 30 of 69)	and a second s	
:			DOMINANT CET SEQUENCES CONTRIBUTING TO LRF	· · ·	
Number	Cutset Prob	Percent	Basic Event Name	Event Prob.	Identifier
33	1.50E-12	0.04	STEAM GENERATOR TUBE RUPTURE INITIATING EVENT OCCURS	3.88E-03	IEV-SGTR
			COGNITIVE OPERATOR ERROR	1.84E-03	CIB-MAN00
n An Anna Anna Anna An	ana ang san an San ang san ang		COMMON CAUSE FAILURE TO OPEN OF 4.16 KVAC CIRCUIT BREAK	4.20E-04	RPX-CB-GO
			FAILURE OF MANUAL DAS REACTOR TRIP HARDWARE	1.00E-02	MDAS
			COND. PROB. OF ADN-MAN01(OPER. FAILS TO ACT. ADS)	5.00E-01	ADN-MAN01C
•	1. 1		OPERATOR FAILS TO ACTUATE ADS AFTER CORE DAMAGE	1.00E-01	PDS6-MANADS
34	1.50E-12	0.04	STEAM GENERATOR TUBE RUPTURE INITIATING EVENT OCCURS	3.88E-03	IEV-SGTR
			COGNITIVE OPERATOR ERROR	1.84E-03	CIB-MAN00
		• • • • • •	COMMON CAUSE FAILURE TO OPEN OF 4.16 KVAC CIRCUIT BREAK	4.20E-04	RPX-CB-GO
			FAILURE OF MANUAL DAS REACTOR TRIP HARDWARE	1.00E-02	MDAS
			OPER. FAILS TO RECOG. THE NEED FOR RCS DEPRESS. DURING SLOCA	5.00E-01	LPM-MAN01C
			OPERATOR FAILS TO ACTUATE ADS AFTER CORE DAMAGE	1.00E-01	PDS6-MANADS
35	1.50E-12	0.04	STEAM GENERATOR TUBE RUPTURE INITIATING EVENT OCCURS	3.88E-03	IEV-SGTR
			MECHANICAL FAILURE OF AOV V081 FAILS TO CLOSE	2.71E-02	CVMOD07
	· · ·		OPERATOR FAILS TO FULFILL MANUAL ACTUATION OF ADS	5.00E-01	ADF-MAN01
			COMMON CAUSE FAILURE TO OPEN OF 4.16 KVAC CIRCUIT BREAK	4.20E-04	RPX-CB-GO
			COND. PROB. OF REC-MANDAS (FAILURE OF MANUAL DAS ACTUATION)	5.06E-01	REC-MANDASC
			OPER. FAILS TO RECOG. THE NEED FOR RCS DEPRESS. DURING SLOCA	1.34E-03	LPM-MAN01
			OPERATOR FAILS TO ACTUATE ADS AFTER CORE DAMAGE	1.00E-01	PDS6-MANADS

(_____

	Table 43-6 (Sheet 31 of 69)								
	DOMINANT CET SEQUENCES CONTRIBUTING TO LRF								
Number	Cutset Prob	Percent	Basic Event Name	Event Prob.	Identifier				
36	1.47E-11	0.39	CONSEQUENTIAL SGTR OCCURS	1.00E-02	OTH-SGTR				
			LOSS OF OFFSITE POWER INITIATING EVENT OCCURS	1.20E-01	IEV-LOSP				
			FAILURE TO RECOVER OFFSITE AC POWER IN 30 MINUTES	7.00E-01	OTH-R05				
			ANY SECOND. SIDE RELIEF VALVE FAILS TO CLOSE (2 SV + PORV)	2.10E-02	OTH-SLSOV1				
	ĺ		CCF OF 2 SQUIB VALVES TO OPERATE	5.90E-05	ADX-EV-SA2				
			MECHANICAL FAILURE OF RNS MOV V055	1.41E-02	RN55MOD1				
37	1.47E-11	0.39	CONSEQUENTIAL SGTR OCCURS	1.00E-02	OTH-SGTR				
			LOSS OF OFFSITE POWER INITIATING EVENT OCCURS	1.20E-01	IEV-LOSP				
			FAILURE TO RECOVER OFFSITE AC POWER IN 30 MINUTES	7.00E-01	OTH-R05				
			ANY SECOND. SIDE RELIEF VALVE FAILS TO CLOSE (2 SV + PORV)	2.10E-02	OTH-SLSOV1				
			CCF OF 2 SQUIB VALVES TO OPERATE	5.90E-05	ADX-EV-SA2				
			HARDWARE FAILURE OF ISOLATION MOV 011	1.41E-02	RN11MOD3				
38	1.47E-11	0.39	CONSEQUENTIAL SGTR OCCURS	1.00E-02	OTH-SGTR				
			LOSS OF OFFSITE POWER INITIATING EVENT OCCURS	1.20E-01	IEV-LOSP				
			FAILURE TO RECOVER OFFSITE AC POWER IN 30 MINUTES	7.00E-01	OTH-R05				
			ANY SECOND. SIDE RELIEF VALVE FAILS TO CLOSE (2 SV + PORV)	2.10E-02	OTH-SLSOV1				
			CCF OF 2 SQUIB VALVES TO OPERATE	5.90E-05	ADX-EV-SA2				
			HARDWARE FAILS TO OPEN MOV V022/CB FTC/RELAY FTC	1.41E-02	RN22MOD4				

.

f---

	Table 43-6 (Sheet 32 of 69) DOMINANT CET SEQUENCES CONTRIBUTING TO LRF									
Number	Cutset Prob	Percent	Basic Event Name	Event Prob.	Identifier					
39	1.47E-11	0.39	CONSEQUENTIAL SGTR OCCURS	1.00E-02	OTH-SGTR					
	:		LOSS OF OFFSITE POWER INITIATING EVENT OCCURS	1.20E-01	IEV-LOSP					
	-		FAILURE TO RECOVER OFFSITE AC POWER IN 30 MINUTES	7.00E-01	OTH-R05					
a an	an dia		ANY SECOND. SIDE RELIEF VALVE FAILS TO CLOSE (2 SV + PORV)	2.10E-02	OTH-SLSOV1					
			CCF OF 2 SQUIB VALVES TO OPERATE	5.90E-05	ADX-EV-SA2					
			HARDWARE FAILS TO OPEN MOV V023/CB FTC/RELAY FTC	1.41E-02	RN23MOD5					
40	1.39E-11	0.37	CONSEQUENTIAL SGTR OCCURS	1.00E-02	OTH-SGTR					
			LOSS OF CONDENSER INITIATING EVENT OCCURS	1.12E-01	IEV-LCOND					
		· · · ·	ANY SECOND. SIDE RELIEF VALVE FAILS TO CLOSE (2 SV + PORV)	2.10E-02	OTH-SLSOV1					
			CCF OF 2 SQUIB VALVES TO OPERATE	5.90E-05	ADX-EV-SA2					
			CASK LOADING PIT UNAVAILABLE DUE TO FUEL UNLOADING OPERATIONS	1.00E-02	CLP-UNAVAILABLE					
41	1.39E-11	0.37	CONSEQUENTIAL SGTR OCCURS	1.00E-02	OTH-SGTR					
			TRANSIENT WITH MFW INITIATING EVENT OCCURS	1.40E+00	IEV-TRANS					
			ANY SECOND. SIDE RELIEF VALVE FAILS TO RECLOSE (1 SV + PORV)	1.10E-02	OTH-SLSOV					
			BUS UNAVAILABLE DUE TO TEST OR CORRECTIVE MAINTENANCE	3.00E-04	IDDBSDS1TM					
			BUS UNAVAILABLE DUE TO TEST OR CORRECTIVE MAINTENANCE	3.00E-04	IDBBSDS1TM					

**Revision 4** 

ىتەتلەت يىلىغ

(----

	Table 43-6 (Sheet 33 of 69)								
	DOMINANT CET SEQUENCES CONTRIBUTING TO LRF								
Number	Cutset Prob	Percent	Basic Event Name	Event Prob.	Identifier				
42	1.39E-11	0.37	CONSEQUENTIAL SGTR OCCURS	1.00E-02	OTH-SGTR				
			TRANSIENT WITH MFW INITIATING EVENT OCCURS	1.40E+00	IEV-TRANS				
			ANY SECOND. SIDE RELIEF VALVE FAILS TO RECLOSE (1 SV + PORV)	1.10E-02	OTH-SLSOV				
			BUS UNAVAILABLE DUE TO TEST OR CORRECTIVE MAINTENANCE	3.00E-04	IDDBSDS1TM				
			BUS UNAVAILABLE DUE TO TEST OR CORRECTIVE MAINTENANCE	3.00E-04	IDBBSDD1TM				
43	1.39E-11	0.37	CONSEQUENTIAL SGTR OCCURS	1.00E-02	OTH-SGTR				
			TRANSIENT WITH MFW INITIATING EVENT OCCURS	1.40E+00	IEV-TRANS				
			ANY SECOND. SIDE RELIEF VALVE FAILS TO RECLOSE (1 SV + PORV)	1.10E-02	OTH-SLSOV				
			BUS UNAVAILABLE DUE TO TEST OR CORRECTIVE MAINTENANCE	3.00E-04	IDDBSDD1TM				
			BUS UNAVAILABLE DUE TO TEST OR CORRECTIVE MAINTENANCE	3.00E-04	IDBBSDS1TM				
44	1.39E-11	0.37	CONSEQUENTIAL SGTR OCCURS	1.00E-02	OTH-SGTR				
			TRANSIENT WITH MFW INITIATING EVENT OCCURS	1.40E+00	IEV-TRANS				
			ANY SECOND. SIDE RELIEF VALVE FAILS TO RECLOSE (1 SV + PORV)	1.10E-02	OTH-SLSOV				
1			BUS UNAVAILABLE DUE TO TEST OR CORRECTIVE MAINTENANCE	3.00E-04	IDDBSDD1TM				
			BUS UNAVAILABLE DUE TO TEST OR CORRECTIVE MAINTENANCE	3.00E-04	IDBBSDD1TM				

**Revision 4** 

----

#### AP1000 Probabilistic Risk Assessment

			Table 43-6 (Sheet 34 of 69) DOMINANT CET SEQUENCES CONTRIBUTING TO LRF		
Number	Cutset Prob	Percent	Basic Event Name	Event Prob.	Identifier
45	1.30E-12	0.03	STEAM GENERATOR TUBE RUPTURE INITIATING EVENT OCCURS	3.88E-03	IEV-SGTR
			FAILURE OF AIR COMPRESSOR TRANSMITTER	5.23E-03	CANTP011RI
r			COMMON CAUSE FAILURE TO OPEN OF 4.16 KVAC CIRCUIT BREAK	4.20E-04	RPX-CB-GO
-			COND. PROB. OF REC-MANDAS (FAILURE OF MANUAL DAS ACTUATION)	5.06E-01	REC-MANDASC
· . · ·			OPER. FAILS TO FULFILL MANUAL ACTUATION OF ADS	3.02E-03	ADN-MAN01
	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		OPERATOR FAILS TO ACTUATE ADS AFTER CORE DAMAGE	1.00E-01	PDS6-MANADS
46	1.27E-12	0.03	STEAM GENERATOR TUBE RUPTURE INITIATING EVENT OCCURS	3.88E-03	IEV-SGTR
			MAIN GEN. BKR ES 01 FAILS TO OPEN	5.08E-03	EC0MOD01
		1. A 19	COMMON CAUSE FAILURE TO OPEN OF 4.16 KVAC CIRCUIT BREAK	4.20E-04	RPX-CB-GO
	an de la cara de la c		COND. PROB. OF REC-MANDAS (FAILURE OF MANUAL DAS ACTUATION)	5.06E-01	REC-MANDASC
•			OPER. FAILS TO FULFILL MANUAL ACTUATION OF ADS	3.02E-03	ADN-MAN01
			OPERATOR FAILS TO ACTUATE ADS AFTER CORE DAMAGE	1.00E-01	PDS6-MANADS
47	1.26E-12	0.03	STEAM GENERATOR TUBE RUPTURE INITIATING EVENT OCCURS	3.88E-03	IEV-SGTR
			FAILURE TO ALIGN CVCS IN AUX. SPRAY MODE	3.10E-03	CVN-MAN00
;			OPERATOR FAILS TO FULFILL MANUAL ACTUATION OF ADS	5.00E-01	ADF-MAN01
	a second	na na seconda de la composición de la c Composición de la composición de la comp	COMMON CAUSE FAILURE TO OPEN OF 4.16 KVAC CIRCUIT BREAK	4.20E-04	RPX-CB-GO
			FAILURE OF MANUAL DAS REACTOR TRIP HARDWARE	1.00E-02	MDAS
			COND. PROB. OF ADN-MAN01(OPER. FAILS TO ACT. ADS)	5.00E-01	ADN-MAN01C
			OPERATOR FAILS TO ACTUATE ADS AFTER CORE DAMAGE	1.00E-01	PDS6-MANADS

**Revision 4** 

 $\left( \begin{array}{c} \\ \\ \end{array} \right)$ 

	Table 43-6 (Sheet 35 of 69)							
	DOMINANT CET SEQUENCES CONTRIBUTING TO LRF							
Number	Cutset Prob	Percent	Basic Event Name	Event Prob.	Identifier			
48	1.25E-11	0.33	CONSEQUENTIAL SGTR OCCURS	1.00E-02	OTH-SGTR			
			TRANSIENT WITH MFW INITIATING EVENT OCCURS	1.40E+00	IEV-TRANS			
			ANY SECOND. SIDE RELIEF VALVE FAILS TO RECLOSE (1 SV + PORV)	1.10E-02	OTH-SLSOV			
			UNAVAILABILITY OF BUS ECS ES 1 DUE TO UNSCHEDULED MAINTENANCE	2.70E-03	EC1BS001TM			
			DUE TO CCF OF 4TH STAGE ADS SQUIB VALVES TO OPERATE	3.00E-05	ADX-EV-SA			
49	1.25E-11	0.33	CONSEQUENTIAL SGTR OCCURS	1.00E-02	OTH-SGTR			
			TRANSIENT WITH MFW INITIATING EVENT OCCURS	1.40E+00	IEV-TRANS			
			ANY SECOND. SIDE RELIEF VALVE FAILS TO RECLOSE (1 SV + PORV)	1.10E-02	OTH-SLSOV			
			BUS UNAVAILABLE DUE TO UNSCHEDULED MAINTENANCE	2.70E-03	EC1BS012TM			
			DUE TO CCF OF 4TH STAGE ADS SQUIB VALVES TO OPERATE	3.00E-05	ADX-EV-SA			
50	1.13E-12	0.03	CONSEQUENTIAL SGTR OCCURS	1.00E-02	OTH-SGTR			
			LOSS OF OFFSITE POWER INITIATING EVENT OCCURS	1.20E-01	IEV-LOSP			
			FAILURE TO RECOVER OFFSITE AC POWER IN 30 MINUTES	7.00E-01	OTH-R05			
			ANY SECOND. SIDE RELIEF VALVE FAILS TO CLOSE (2 SV + PORV)	2.10E-02	OTH-SLSOV1			
Į			COMMON CAUSE FAILURE TO OPEN OF 4.16 KVAC CIRCUIT BREAK	4.20E-04	RPX-CB-GO			
			COND. PROB. OF REC-MANDAS (FAILURE OF MANUAL DAS ACTUATION)	5.06E-01	REC-MANDASC			
			OPER. FAILS TO FULFILL MANUAL ACTUATION OF ADS	3.02E-03	ADN-MAN01			
			OPERATOR FAILS TO ACTUATE ADS AFTER CORE DAMAGE	1.00E-01	PDS6-MANADS			

<u>(</u>_____

## Table 43-6 (Sheet 36 of 69)

# DOMINANT CET SEQUENCES CONTRIBUTING TO LRF

Title: LRF Cutsets for 21CFE2E

Reduced Sum of Cutsets: 2.6710E-09

Number	Cutset Prob.	Percent	Basic Event Name	Event Prob.	Identifier			
1	6.48E-10	24.26	SPURIOUS ADS INITIATING EVENT OCCURS	5.40E-05	IEV-SPADS			
			CCF OF STRAINERS IN IRWST TANK	1.20E-05	IWX-FL-GP			
2	2.24E-10	8.39	SAFETY INJECTION LINE BREAK INITIATING EVENT OCCURS	2.12E-04	IEV-SI-LB			
	,		IWRST DISCHARGE LINE "A" STRAINER PLUGGED	2.40E-04	IWA-PLUG			
			CCF OF RECIRC MOVS TO OPEN	4.40E-03	IWX-MV-GO			
3	1.73E-10	1.73E-10	1.73E-10	1.73E-10	6.48	SAFETY INJECTION LINE BREAK INITIATING EVENT OCCURS	2.12E-04	IEV-SI-LB
		IWRST I	IWRST DISCHARGE LINE "A" STRAINER PLUGGED	2.40E-04	IWA-PLUG			
			FAILURE TO OPEN RECIRC MOVs	3.40E-03	REN-MAN03			
4 · ·	8.46E-11	8.46E-11 3.17 SMALL MECH	SMALL LOCA INITIATING EVENT OCCURS	5.00E-04	IEV-SLOCA			
			MECHANICAL FAILURE OF RNS MOV V055	1.41E-02	RN55MOD1			
				CCF OF STRAINERS IN IRWST TANK	1.20E-05	IWX-FL-GP		
5	8.46E-11	8.46E-11	8.46E-11	3.17	SMALL LOCA INITIATING EVENT OCCURS	5.00E-04	IEV-SLOCA	
			HARDWARE FAILURE OF ISOLATION MOV 011	1.41E-02	RN11MOD3			
						CCF OF STRAINERS IN IRWST TANK	1.20E-05	IWX-FL-GP

(----

	Table 43-6 (Sheet 37 of 69)							
	DOMINANT CET SEQUENCES CONTRIBUTING TO LRF							
Number	Cutset Prob.	Percent	Basic Event Name	Event Prob.	Identifier			
6	8.46E-11	3.17	SMALL LOCA INITIATING EVENT OCCURS	5.00E-04	IEV-SLOCA			
			HARDWARE FAILS TO OPEN MOV V022/CB FTC/RELAY FTC	1.41E-02	RN22MOD4			
			CCF OF STRAINERS IN IRWST TANK	1.20E-05	IWX-FL-GP			
7	8.46E-11	3.17	SMALL LOCA INITIATING EVENT OCCURS	5.00E-04	IEV-SLOCA			
			HARDWARE FAILS TO OPEN MOV V023/CB FTC/RELAY FTC	1.41E-02	RN23MOD5			
			CCF OF STRAINERS IN IRWST TANK	1.20E-05	IWX-FL-GP			
8	7.38E-11	2.76	MEDIUM LOCA INITIATING EVENT OCCURS	4.36E-04	IEV-MLOCA			
			MECHANICAL FAILURE OF RNS MOV V055	1.41E-02	RN55MOD1			
			CCF OF STRAINERS IN IRWST TANK	1.20E-05	IWX-FL-GP			
9	7.38E-11	2.76	MEDIUM LOCA INITIATING EVENT OCCURS	4.36E-04	IEV-MLOCA			
			HARDWARE FAILURE OF ISOLATION MOV 011	1.41E-02	RN11MOD3			
			CCF OF STRAINERS IN IRWST TANK	1.20E-05	IWX-FL-GP			
10	7.38E-11	2.76	MEDIUM LOCA INITIATING EVENT OCCURS	4.36E-04	IEV-MLOCA			
			HARDWARE FAILS TO OPEN MOV V022/CB FTC/RELAY FTC	1.41E-02	RN22MOD4			
			CCF OF STRAINERS IN IRWST TANK	1.20E-05	IWX-FL-GP			
11	7.38E-11	2.76	MEDIUM LOCA INITIATING EVENT OCCURS	4.36E-04	IEV-MLOCA			
			HARDWARE FAILS TO OPEN MOV V023/CB FTC/RELAY FTC	1.41E-02	RN23MOD5			
			CCF OF STRAINERS IN IRWST TANK	1.20E-05	IWX-FL-GP			

Ċ

**AP1000 Probabilistic Risk Assessment** 

			Table 43-6 (Sheet 38 of 69)		
	e e e e e e e e e e e e e e e e e e e		DOMINANT CET SEQUENCES CONTRIBUTING TO LRF		
Number	Cutset Prob.	Percent	Basic Event Name	Event Prob.	Identifier
12	6.00E-11	2.25	LARGE LOCA INITIATING EVENT OCCURS	5.00E-06	IEV-LLOCA
			CCF OF STRAINERS IN IRWST TANK	1.20E-05	IWX-FL-GP
13	6.00E-11	2.25	SMALL LOCA INITIATING EVENT OCCURS	5.00E-04	IEV-SLOCA
			CASK LOADING PIT UNAVAILABLE DUE TO FUEL UNLOADING OPERATIONS	1.00E-02	CLP-UNAVAILABLE
		t an	CCF OF STRAINERS IN IRWST TANK	1.20E-05	IWX-FL-GP
14	5.23E-11	1.96	MEDIUM LOCA INITIATING EVENT OCCURS	4.36E-04	IEV-MLOCA
			CASK LOADING PIT UNAVAILABLE DUE TO FUEL UNLOADING OPERATIONS	1.00E-02	CLP-UNAVAILABLE
			CCF OF STRAINERS IN IRWST TANK	1.20E-05	IWX-FL-GP
15	2.94E-11	1.1	SMALL LOCA INITIATING EVENT OCCURS	5.00E-04	IEV-SLOCA
3		· · ·	CCF OF STOP CHECK VALVES V015A/B TO OPEN	4.90E-03	RNX-KV1-GO
			CCF OF STRAINERS IN IRWST TANK	1.20E-05	IWX-FL-GP
16	2.80E-11	1.05	SAFETY INJECTION LINE BREAK INITIATING EVENT OCCURS	2.12E-04	IEV-SI-LB
			CCF OF 4 GRAVITY INJECTION CVs	3.00E-05	IWX-CV-AO
		in the second	CCF OF RECIRC MOVS TO OPEN	4.40E-03	IWX-MV-GO
. 17	2.56E-11	0.96	MEDIUM LOCA INITIATING EVENT OCCURS	4.36E-04	IEV-MLOCA
			CCF OF STOP CHECK VALVES V015A/B TO OPEN	4.90E-03	RNX-KV1-GO
			CCF OF STRAINERS IN IRWST TANK	1.20E-05	IWX-FL-GP
		A contraction of the second se		the second se	

43-59

**Revision** 4

-985.4 -986.4

í_

	Table 43-6 (Sheet 39 of 69)							
	DOMINANT CET SEQUENCES CONTRIBUTING TO LRF							
Number	Cutset Prob.	Percent	Basic Event Name	Event Prob.	Identifier			
18	2.43E-11	0.91	SAFETY INJECTION LINE BREAK INITIATING EVENT OCCURS	2.12E-04	IEV-SI-LB			
			CCF OF 4 GRAVITY INJECTION & 2 RECIRCULATION SQUIB VALVES	2.60E-05	IWX-EV-SA			
			CCF OF RECIRC MOVS TO OPEN	4.40E-03	IWX-MV-GO			
19	2.16E-11	0.81	SAFETY INJECTION LINE BREAK INITIATING EVENT OCCURS	2.12E-04	IEV-SI-LB			
			CCF OF 4 GRAVITY INJECTION CVs	3.00E-05	IWX-CV-AO			
			FAILURE TO OPEN RECIRC MOVs	3.40E-03	REN-MAN03			
20	1.87E-11	0.7	SAFETY INJECTION LINE BREAK INITIATING EVENT OCCURS	2.12E-04	IEV-SI-LB			
			CCF OF 4 GRAVITY INJECTION & 2 RECIRCULATION SQUIB VALVES	2.60E-05	IWX-EV-SA			
			FAILURE TO OPEN RECIRC MOVs	3.40E-03	REN-MAN03			
21	1.74E-11	0.65	SMALL LOCA INITIATING EVENT OCCURS	5.00E-04	IEV-SLOCA			
			OPERATOR FAILS TO ALIGN AND ACTUATE THE RNS	2.90E-03	RHN-MAN01			
			CCF OF STRAINERS IN IRWST TANK	1.20E-05	IWX-FL-GP			
22	1.62E-11	0.61	SMALL LOCA INITIATING EVENT OCCURS	5.00E-04	IEV-SLOCA			
			UNAVAILABILITY OF BUS ECS ES 1 DUE TO UNSCHEDULED MAINTENANCE	2.70E-03	EC1BS001TM			
			CCF OF STRAINERS IN IRWST TANK	1.20E-05	IWX-FL-GP			
23	1.62E-11	0.61	SMALL LOCA INITIATING EVENT OCCURS	5.00E-04	IEV-SLOCA			
			BUS UNAVAILABLE DUE TO UNSCHEDULED MAINTENANCE	2.70E-03	EC1BS012TM			
			CCF OF STRAINERS IN IRWST TANK	1.20E-05	IWX-FL-GP			

	1	Table 43-6 (Sheet 40 of 69)		
		DOMINANT CET SEQUENCES CONTRIBUTING TO LRF	•	
Cutset Prob.	Percent	Basic Event Name	Event Prob.	Identifier
1.62E-11	0.61	SMALL LOCA INITIATING EVENT OCCURS	5.00E-04	IEV-SLOCA
		BUS UNAVAILABLE DUE TO UNSCHEDULED MAINTENANCE	2.70E-03	EC1BS122TM
		CCF OF STRAINERS IN IRWST TANK	1.20E-05	IWX-FL-GP
1.58E-11	0.59	CMT LINE BREAK INITIATING EVENT OCCURS	9.31E-05	IEV-CMTLB
n da se a se		MECHANICAL FAILURE OF RNS MOV V055	1.41E-02	RN55MOD1
•		CCF OF STRAINERS IN IRWST TANK	1.20E-05	IWX-FL-GP
1.58E-11	0.59	CMT LINE BREAK INITIATING EVENT OCCURS	9.31E-05	IEV-CMTLB
		HARDWARE FAILURE OF ISOLATION MOV 011	1.41E-02	RN11MOD3
1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 19		CCF OF STRAINERS IN IRWST TANK	1.20E-05	IWX-FL-GP
1.58E-11	0.59	CMT LINE BREAK INITIATING EVENT OCCURS	9.31E-05	IEV-CMTLB
		HARDWARE FAILS TO OPEN MOV V022/CB FTC/RELAY FTC	1.41E-02	RN22MOD4
		CCF OF STRAINERS IN IRWST TANK	1.20E-05	IWX-FL-GP
1.58E-11	0.59	CMT LINE BREAK INITIATING EVENT OCCURS	9.31E-05	IEV-CMTLB
		HARDWARE FAILS TO OPEN MOV V023/CB FTC/RELAY FTC	1.41E-02	RN23MOD5
		CCF OF STRAINERS IN IRWST TANK	1.20E-05	IWX-FL-GP
1.54E-11	0.58	SMALL LOCA INITIATING EVENT OCCURS	5.00E-04	IEV-SLOCA
		HARDWARE FAILURE OF VALVES ON DVI LINE A (V 015A & 017A)	5.07E-02	RNAMOD09
		HARDWARE FAILURE OF VALVES ON DVI LINE B (V 015B & 017B)	5.07E-02	RNBMOD10
		CCF OF STRAINERS IN IRWST TANK	1.20E-05	IWX-FL-GP
	Cutset Prob. 1.62E-11 1.58E-11 1.58E-11 1.58E-11 1.58E-11 1.58E-11	Cutset Prob. Percent   1.62E-11 0.61   1.58E-11 0.59   1.58E-11 0.59	Table 43-6 (Sheet 40 of 69)   DOMINANT CET SEQUENCES CONTRIBUTING TO LRF   Cutset Prob. Percent Basic Event Name   1.62E-11 0.61 SMALL LOCA INITIATING EVENT OCCURS   BUS UNAVAILABLE DUE TO UNSCHEDULED MAINTENANCE CCF OF STRAINERS IN IRWST TANK   1.58E-11 0.59 CMT LINE BREAK INITIATING EVENT OCCURS   MECHANICAL FAILURE OF RNS MOV V055 CCF OF STRAINERS IN IRWST TANK   1.58E-11 0.59 CMT LINE BREAK INITIATING EVENT OCCURS   HARDWARE FAILURE OF ISOLATION MOV 0011 CCF OF STRAINERS IN IRWST TANK   1.58E-11 0.59 CMT LINE BREAK INITIATING EVENT OCCURS   HARDWARE FAILS TO OPEN MOV V022/CB FTC/RELAY FTC CCF OF STRAINERS IN IRWST TANK   1.58E-11 0.59 CMT LINE BREAK INITIATING EVENT OCCURS   HARDWARE FAILS TO OPEN MOV V022/CB FTC/RELAY FTC CCF OF STRAINERS IN IRWST TANK   1.58E-11 0.59 CMT LINE BREAK INITIATING EVENT OCCURS   HARDWARE FAILS TO OPEN MOV V023/CB FTC/RELAY FTC CCF OF STRAINERS IN IRWST TANK   1.54E-11 0.58 SMALL LOCA INITIATING EVENT OCCURS   HARDWARE FAILS TO OPEN MOV V023/CB FTC/RELAY FTC CCF OF STRAINERS IN IRWST TANK   1.54E-11 0.58 SMALL LOCA INITIAT	Table 43-6 (Sheet 40 of 69)     DOMINANT CET SEQUENCES CONTRIBUTING TO LRF     Cutset Prob.   Percent   Event Prob.     1.62E-11   0.61   SMALL LOCA INITIATING EVENT OCCURS   5.00E-04     BUS UNAVAILABLE DUE TO UNSCHEDULED MAINTENANCE   2.70E-03     CCP OF STRAINERS IN IRWST TANK   1.20E-05     1.58E-11   0.59   CMT LINE BREAK INITIATING EVENT OCCURS   9.31E-05     MECHANICAL FAILURE OF RNS MOV V055   1.41E-02   1.20E-05     1.58E-11   0.59   CMT LINE BREAK INITIATING EVENT OCCURS   9.31E-05     1.58E-11   0.59   CMT LINE BREAK INITIATING EVENT OCCURS   9.31E-05     1.58E-11   0.59   CMT LINE BREAK INITIATING EVENT OCCURS   9.31E-05     1.58E-11   0.59   CMT LINE BREAK INITIATING EVENT OCCURS   9.31E-05     1.58E-11   0.59   CMT LINE BREAK INITIATING EVENT OCCURS   9.31E-05     1.58E-11   0.59   CMT LINE BREAK INITIATING EVENT OCCURS   9.31E-05     1.58E-11   0.59   CMT LINE BREAK INITIATING EVENT OCCURS   9.31E-05     1.58E-11   0.59   CMT LINE BREAK INITIATING EVENT OCCURS

10.1

	Table 43-6 (Sheet 41 of 69)						
			DOMINANT CET SEQUENCES CONTRIBUTING TO LRF				
Number	Cutset Prob.	Percent	Basic Event Name	Event Prob.	Identifier		
30	1.52E-11	0.57	MEDIUM LOCA INITIATING EVENT OCCURS	4.36E-04	IEV-MLOCA		
			OPERATOR FAILS TO ALIGN AND ACTUATE THE RNS	2.90E-03	RHN-MAN01		
			CCF OF STRAINERS IN IRWST TANK	1.20E-05	IWX-FL-GP		
31	1.41E-11	0.53	MEDIUM LOCA INITIATING EVENT OCCURS	4.36E-04	IEV-MLOCA		
			UNAVAILABILITY OF BUS ECS ES 1 DUE TO UNSCHEDULED MAINTENANCE	2.70E-03	EC1BS001TM		
			CCF OF STRAINERS IN IRWST TANK	1.20E-05	IWX-FL-GP		
32	1.41E-11	0.53	MEDIUM LOCA INITIATING EVENT OCCURS	4.36E-04	IEV-MLOCA		
			BUS UNAVAILABLE DUE TO UNSCHEDULED MAINTENANCE	2.70E-03	EC1BS012TM		
			CCF OF STRAINERS IN IRWST TANK	1.20E-05	IWX-FL-GP		
33	1.41E-11	0.53	MEDIUM LOCA INITIATING EVENT OCCURS	4.36E-04	IEV-MLOCA		
			BUS UNAVAILABLE DUE TO UNSCHEDULED MAINTENANCE	2.70E-03	EC1BS122TM		
			CCF OF STRAINERS IN IRWST TANK	1.20E-05	IWX-FL-GP		
34	1.34E-11	0.5	MEDIUM LOCA INITIATING EVENT OCCURS	4.36E-04	IEV-MLOCA		
			HARDWARE FAILURE OF VALVES ON DVI LINE A (V 015A & 017A)	5.07E-02	RNAMOD09		
			HARDWARE FAILURE OF VALVES ON DVI LINE B (V 015B & 017B)	5.07E-02	RNBMOD10		
			CCF OF STRAINERS IN IRWST TANK	1.20E-05	IWX-FL-GP		
35	1.12E-11	0.42	CMT LINE BREAK INITIATING EVENT OCCURS	9.31E-05	IEV-CMTLB		
			CASK LOADING PIT UNAVAILABLE DUE TO FUEL UNLOADING OPERATIONS	1.00E-02	CLP-UNAVAILABLE		
			CCF OF STRAINERS IN IRWST TANK	1.20E-05	IWX-FL-GP		

 $\in$ 

**Revision 4** 

#### **AP1000 Probabilistic Risk Assessment**

	· .		Table 43-6 (Sheet 42 of 69)		
	· · ·	۱ ۰	DOMINANT CET SEQUENCES CONTRIBUTING TO LI	RF	
Number	Cutset Prob.	Percent	Basic Event Name	Event Prob.	Identifier
36	1.05E-11	0.39	SMALL LOCA INITIATING EVENT OCCURS	5.00E-04	IEV-SLOCA
			CHECK VALVE V013 FAILURE TO OPEN	1.75E-03	RNNCV013GO
	· · · · ·		CCF OF STRAINERS IN IRWST TANK	1.20E-05	IWX-FL-GP
37	9.16E-12	0.34	MEDIUM LOCA INITIATING EVENT OCCURS	4.36E-04	IEV-MLOCA
			CHECK VALVE V013 FAILURE TO OPEN	1.75E-03	RNNCV013GO
art Ara Arthur Da	landar an an an an An an		CCF OF STRAINERS IN IRWST TANK	1.20E-05	IWX-FL-GP
38	7.61E-12	0.28	CORE POWER EXCURSION INITIATING EVENT OCCURS	4.50E-03	IEV-POWEX
		1. ¹ .	EITHER PRZR SV FAILS TO RECLOSE	1.00E-02	OTH-PRSOV
			MECHANICAL FAILURE OF RNS MOV V055	1.41E-02	RN55MOD1
			CCF OF STRAINERS IN IRWST TANK	1.20E-05	IWX-FL-GP
39	7.61E-12	0.28	CORE POWER EXCURSION INITIATING EVENT OCCURS	4.50E-03	IEV-POWEX
	· ·		EITHER PRZR SV FAILS TO RECLOSE	1.00E-02	OTH-PRSOV
			HARDWARE FAILURE OF ISOLATION MOV 011	1.41E-02	RN11MOD3
	· · ·		CCF OF STRAINERS IN IRWST TANK	1.20E-05	IWX-FL-GP
40	7.61E-12	0.28	CORE POWER EXCURSION INITIATING EVENT OCCURS	4.50E-03	IEV-POWEX
			EITHER PRZR SV FAILS TO RECLOSE	1.00E-02	OTH-PRSOV
			HARDWARE FAILS TO OPEN MOV V022/CB FTC/RELAY FTC	1.41E-02	RN22MOD4
		[	CCF OF STRAINERS IN IRWST TANK	1.20E-05	IWX-FL-GP

43-63

**Revision** 4

(-----

.

	Table 43-6 (Sheet 43 of 69)						
			DOMINANT CET SEQUENCES CONTRIBUTING TO LRF				
Number	Cutset Prob.	Percent	Basic Event Name	Event Prob.	Identifier		
41	7.61E-12	0.28	CORE POWER EXCURSION INITIATING EVENT OCCURS	4.50E-03	IEV-POWEX		
			EITHER PRZR SV FAILS TO RECLOSE	1.00E-02	OTH-PRSOV		
			HARDWARE FAILS TO OPEN MOV V023/CB FTC/RELAY FTC	1.41E-02	RN23MOD5		
			CCF OF STRAINERS IN IRWST TANK	1.20E-05	IWX-FL-GP		
42	7.13E-12	0.27	SPURIOUS ADS INITIATING EVENT OCCURS	5.40E-05	IEV-SPADS		
	1 '		CCF OF 4 GRAVITY INJECTION CVs	3.00E-05	IWX-CV-AO		
	<u> </u>		CCF OF RECIRC MOVS TO OPEN	4.40E-03	IWX-MV-GO		
43	6.94E-12	0.26	SMALL LOCA INITIATING EVENT OCCURS	5.00E-04	IEV-SLOCA		
	/		PUMP 01A FAILS & ST CK V007A &C B FTC & RE FTC & CB ECS131 SP	3.40E-02	RNAMOD06		
	'		PUMP 01B FAILS & ST CK V007B & C B FTC & RE FTC & CB ECS231 SP	3.40E-02	RNBMOD07		
			CCF OF STRAINERS IN IRWST TANK	1.20E-05	IWX-FL-GP		
44	6.18E-12	0.23	SPURIOUS ADS INITIATING EVENT OCCURS	5.40E-05	IEV-SPADS		
	'		CCF OF 4 GRAVITY INJECTION & 2 RECIRCULATION SQUIB VALVES	2.60E-05	IWX-EV-SA		
 	<u> </u>		CCF OF RECIRC MOVS TO OPEN	4.40E-03	IWX-MV-GO		
45	6.05E-12	0.23	MEDIUM LOCA INITIATING EVENT OCCURS	4.36E-04	IEV-MLOCA		
	1 '		PUMP 01A FAILS & ST CK V007A &C B FTC & RE FTC & CB ECS131 SP	3.40E-02	RNAMOD06		
	'		PUMP 01B FAILS & ST CK V007B & C B FTC & RE FTC & CB ECS231 SP	3.40E-02	RNBMOD07		
			CCF OF STRAINERS IN IRWST TANK	1.20E-05	IWX-FL-GP		

#### **AP1000 Probabilistic Risk Assessment**

			Table 43-6 (Sheet 44 of 69)		
	··· ·		DOMINANT CET SEQUENCES CONTRIBUTING TO LRF		
Number	Cutset Prob.	Percent	Basic Event Name	Event Prob.	Identifier
46	5.51E-12	0.21	SPURIOUS ADS INITIATING EVENT OCCURS	5.40E-05	IEV-SPADS
			CCF OF 4 GRAVITY INJECTION CVs	3.00E-05	IWX-CV-AO
	a se a	· · · ·	FAILURE TO OPEN RECIRC MOVs	3.40E-03	REN-MAN03
47	5.47E-12	0.2	CMT LINE BREAK INITIATING EVENT OCCURS	9.31E-05	IEV-CMTLB
			CCF OF STOP CHECK VALVES V015A/B TO OPEN	4.90E-03	RNX-KV1-GO
	gen de la sec		CCF OF STRAINERS IN IRWST TANK	1.20E-05	IWX-FL-GP
48	5.41E-12	0.2	SAFETY INJECTION LINE BREAK INITIATING EVENT OCCURS	2.12E-04	IEV-SI-LB
		n An an	CCF OF 2 GRAVITY INJECTION SQUIB VALVES IN 1/1 LINES TO OPEN	5.80E-06	IWX-EV1-SA
			CCF OF RECIRC MOVS TO OPEN	4.40E-03	IWX-MV-GO
49	5.40E-12	0.2	CORE POWER EXCURSION INITIATING EVENT OCCURS	4.50E-03	IEV-POWEX
			EITHER PRZR SV FAILS TO RECLOSE	1.00E-02	OTH-PRSOV
· • • • • • • • • • • • • • • • • • • •			CASK LOADING PIT UNAVAILABLE DUE TO FUEL UNLOADING OPERATIONS	1.00E-02	CLP-UNAVAILABLE
· .			CCF OF STRAINERS IN IRWST TANK	1.20E-05	IWX-FL-GP
50	4.77E-12	0.18	SPURIOUS ADS INITIATING EVENT OCCURS	5.40E-05	IEV-SPADS
•		at in a	CCF OF 4 GRAVITY INJECTION & 2 RECIRCULATION SQUIB VALVES	2.60E-05	IWX-EV-SA
			FAILURE TO OPEN RECIRC MOVs	3.40E-03	REN-MAN03

.

43-65

**Revision 4** 

## Table 43-6 (Sheet 45 of 69)

## DOMINANT CET SEQUENCES CONTRIBUTING TO LRF

Title: LRF Cutsets for 21CFE3D

Reduced Sum of Cutsets: 2.059.00E-08

Number	Cutset Prob.	Percent	Basic Event Name	Event Prob.	Identifier
1	5.94E-10	28.85	SPURIOUS ADS INITIATING EVENT OCCURS	5.40E-05	IEV-SPADS
			CCF OF PMS ESF OUTPUT LOGIC SOFTWARE	1.10E-05	CCX-PMXMOD1-SW
2	4.65E-10	22.58	SPURIOUS ADS INITIATING EVENT OCCURS	5.40E-05	IEV-SPADS
			CCF OF EPO BOARDS IN PMS	8.62E-06	CCX-EP-SAM
3	6.48E-11	3.15	SPURIOUS ADS INITIATING EVENT OCCURS	5.40E-05	IEV-SPADS
			SOFTWARE CCF OF ALL CARDS	1.20E-06	CCX-SFTW
4	5.56E-11	2.7	MEDIUM LOCA INITIATING EVENT OCCURS	4.36E-04	IEV-MLOCA
			FAILURE OF MANUAL DAS ACTUATION	1.16E-02	REC-MANDAS
			CCF OF PMS ESF OUTPUT LOGIC SOFTWARE	1.10E-05	CCX-PMXMOD1-SW
5	5.50E-11	2.67	SAFETY INJECTION LINE BREAK INITIATING EVENT OCCURS	2.12E-04	IEV-SI-LB
			CCF OF 2 SQUIB VALVES TO OPERATE	5.90E-05	ADX-EV-SA2
			CCF OF RECIRC MOVs TO OPEN	4.40E-03	IWX-MV-GO
6	5.50E-11	2.67	LARGE LOCA INITIATING EVENT OCCURS	5.00E-06	IEV-LLOCA
			CCF OF PMS ESF OUTPUT LOGIC SOFTWARE	1.10E-05	CCX-PMXMOD1-SW

AP1000 Probabilistic Risk Assessment

· · · ·			Table 43-6 (Sheet 46 of 69)	· · · · · · · · · · · · · · · · · · ·	
		•.	DOMINANT CET SEQUENCES CONTRIBUTING TO LRF	n sa na sa	
Number	Cutset Prob.	Percent	Basic Event Name	Event Prob.	Identifier
7	4.80E-11	2.33	MEDIUM LOCA INITIATING EVENT OCCURS	4.36E-04	IEV-MLOCA
	e a constante de la constante d La constante de la constante de		FAILURE OF MANUAL DAS REACTOR TRIP HARDWARE	1.00E-02	MDAS
			CCF OF PMS ESF OUTPUT LOGIC SOFTWARE	1.10E-05	CCX-PMXMOD1-SW
8	4.36E-11	2.12	MEDIUM LOCA INITIATING EVENT OCCURS	4.36E-04	IEV-MLOCA
			FAILURE OF MANUAL DAS ACTUATION	1.16E-02	REC-MANDAS
			CCF OF EPO BOARDS IN PMS	8.62E-06	CCX-EP-SAM
9	4.31E-11	2.09	LARGE LOCA INITIATING EVENT OCCURS	5.00E-06	IEV-LLOCA
			CCF OF EPO BOARDS IN PMS	8.62E-06	CCX-EP-SAM
10	4.25E-11	2.06	SAFETY INJECTION LINE BREAK INITIATING EVENT OCCURS	2.12E-04	IEV-SI-LB
			CCF OF 2 SQUIB VALVES TO OPERATE	5.90E-05	ADX-EV-SA2
	a Alan ar an	at a second	FAILURE TO OPEN RECIRC MOVs	3.40E-03	REN-MAN03
11	3.76E-11	1.83	MEDIUM LOCA INITIATING EVENT OCCURS	4.36E-04	IEV-MLOCA
		1 A.	FAILURE OF MANUAL DAS REACTOR TRIP HARDWARE	1.00E-02	MDAS
			CCF OF EPO BOARDS IN PMS	8.62E-06	CCX-EP-SAM
12	2.80E-11	1.36	SAFETY INJECTION LINE BREAK INITIATING EVENT OCCURS	2.12E-04	IEV-SI-LB
			DUE TO CCF OF 4TH STAGE ADS SQUIB VALVES TO OPERATE	3.00E-05	ADX-EV-SA
			CCF OF RECIRC MOVS TO OPEN	4.40E-03	IWX-MV-GO

.

**Revision 4** 

100

	Table 43-6 (Sheet 47 of 69)								
	DOMINANT CET SEQUENCES CONTRIBUTING TO LRF								
Number	Cutset Prob.	Percent	Basic Event Name	Event Prob.	Identifier				
13	2.71E-11	1.32	SAFETY INJECTION LINE BREAK INITIATING EVENT OCCURS	2.12E-04	IEV-SI-LB				
	1		FAILURE OF MANUAL DAS ACTUATION	1.16E-02	REC-MANDAS				
			CCF OF PMS ESF OUTPUT LOGIC SOFTWARE	1.10E-05	CCX-PMXMOD1-SW				
14	2.45E-11	1.19	SPURIOUS ADS INITIATING EVENT OCCURS	5.40E-05	IEV-SPADS				
			CCF OF ESF INPUT LOGIC (HARDWARE)	1.03E-04	CCX-INPUT-LOGIC				
			CCF OF RECIRC MOVS TO OPEN	4.40E-03	IWX-MV-GO				
15	2.33E-11	1.13	SAFETY INJECTION LINE BREAK INITIATING EVENT OCCURS	2.12E-04	IEV-SI-LB				
			FAILURE OF MANUAL DAS REACTOR TRIP HARDWARE	1.00E-02	MDAS				
			CCF OF PMS ESF OUTPUT LOGIC SOFTWARE	1.10E-05	CCX-PMXMOD1-SW				
16	2.16E-11	1.05	SAFETY INJECTION LINE BREAK INITIATING EVENT OCCURS	2.12E-04	IEV-SI-LB				
	1		DUE TO CCF OF 4TH STAGE ADS SQUIB VALVES TO OPERATE	3.00E-05	ADX-EV-SA				
			FAILURE TO OPEN RECIRC MOVs	3.40E-03	REN-MAN03				
17	2.12E-11	1.03	SAFETY INJECTION LINE BREAK INITIATING EVENT OCCURS	2.12E-04	IEV-SI-LB				
	l '	ĺ	FAILURE OF MANUAL DAS ACTUATION	1.16E-02	REC-MANDAS				
	'	l	CCF OF EPO BOARDS IN PMS	8.62E-06	CCX-EP-SAM				
18	1.89E-11	0.92	SPURIOUS ADS INITIATING EVENT OCCURS	5.40E-05	IEV-SPADS				
	'		CCF OF ESF INPUT LOGIC (HARDWARE)	1.03E-04	CCX-INPUT-LOGIC				
	1		FAILURE TO OPEN RECIRC MOVs	3.40E-03	REN-MAN03				

### **AP1000 Probabilistic Risk Assessment**

			Table 43-6 (Sheet 48 of 69)		Hall Hand and Anna ann an A
			DOMINANT CET SEQUENCES CONTRIBUTING TO LRF	·	
Number	Cutset Prob.	Percent	Basic Event Name	Event Prob.	Identifier
19	1.83E-11	0.89	SAFETY INJECTION LINE BREAK INITIATING EVENT OCCURS	2.12E-04	IEV-SI-LB
		· · · ·	FAILURE OF MANUAL DAS REACTOR TRIP HARDWARE	1.00E-02	MDAS
			CCF OF EPO BOARDS IN PMS	8.62E-06	CCX-EP-SAM
20	1.47E-11	0.71	SPURIOUS ADS INITIATING EVENT OCCURS	5.40E-05	IEV-SPADS
			COMMON CAUSE FAILURE OF 4 AOVS TO OPEN	6.20E-05	CCX-AV-LA
			CCF OF RECIRC MOVS TO OPEN	4.40E-03	IWX-MV-GO
21	1.40E-11	0.68	SPURIOUS ADS INITIATING EVENT OCCURS	5.40E-05	IEV-SPADS
		and the	CCF OF 2 SQUIB VALVES TO OPERATE	5.90E-05	ADX-EV-SA2
er i se el compositor el co			CCF OF RECIRC MOVs TO OPEN	4.40E-03	IWX-MV-GO
22	1.21E-11	0.59	SPURIOUS ADS INITIATING EVENT OCCURS	5.40E-05	IEV-SPADS
			COMMON CAUSE FAILURE OF 4 CHECK VALVES TO OPEN	5.10E-05	CMX-CV-GO
			CCF OF RECIRC MOVs TO OPEN	4.40E-03	IWX-MV-GO
23	1.19E-11	0.58	CMT LINE BREAK INITIATING EVENT OCCURS	9.31E-05	IEV-CMTLB
			FAILURE OF MANUAL DAS ACTUATION	1.16E-02	REC-MANDAS
			CCF OF PMS ESF OUTPUT LOGIC SOFTWARE	1.10E-05	CCX-PMXMOD1-SW
24	1.14E-11	0.55	SPURIOUS ADS INITIATING EVENT OCCURS	5.40E-05	IEV-SPADS
			COMMON CAUSE FAILURE OF 4 AOVS TO OPEN	6.20E-05	CCX-AV-LA
			FAILURE TO OPEN RECIRC MOVs	3.40E-03	REN-MAN03

(-----

	Table 43-6 (Sheet 49 of 69)						
			DOMINANT CET SEQUENCES CONTRIBUTING TO LRF				
Number	Cutset Prob.	Percent	Basic Event Name	Event Prob.	Identifier		
25	1.08E-11	0.52	SPURIOUS ADS INITIATING EVENT OCCURS	5.40E-05	IEV-SPADS		
			CCF OF 2 SQUIB VALVES TO OPERATE	5.90E-05	ADX-EV-SA2		
			FAILURE TO OPEN RECIRC MOVs	3.40E-03	REN-MAN03		
26	1.02E-11	0.5	CMT LINE BREAK INITIATING EVENT OCCURS	9.31E-05	IEV-CMTLB		
			FAILURE OF MANUAL DAS REACTOR TRIP HARDWARE	1.00E-02	MDAS		
			CCF OF PMS ESF OUTPUT LOGIC SOFTWARE	1.10E-05	CCX-PMXMOD1-SW		
27	9.36E-12	0.45	SPURIOUS ADS INITIATING EVENT OCCURS	5.40E-05	IEV-SPADS		
			COMMON CAUSE FAILURE OF 4 CHECK VALVES TO OPEN	5.10E-05	CMX-CV-GO		
			FAILURE TO OPEN RECIRC MOVs	3.40E-03	REN-MAN03		
28	9.31E-12	0.45	CMT LINE BREAK INITIATING EVENT OCCURS	9.31E-05	IEV-CMTLB		
			FAILURE OF MANUAL DAS ACTUATION	1.16E-02	REC-MANDAS		
			CCF OF EPO BOARDS IN PMS	8.62E-06	CCX-EP-SAM		
29	9.12E-12	0.44	SPURIOUS ADS INITIATING EVENT OCCURS	5.40E-05	IEV-SPADS		
			CCF OF RTD LEVEL TRANSMITTERS	3.84E-05	CMX-VS-FA		
			CCF OF RECIRC MOVS TO OPEN	4.40E-03	IWX-MV-GO		
30	8.03E-12	0.39	CMT LINE BREAK INITIATING EVENT OCCURS	9.31E-05	IEV-CMTLB		
	l		FAILURE OF MANUAL DAS REACTOR TRIP HARDWARE	1.00E-02	MDAS		
			CCF OF EPO BOARDS IN PMS	8.62E-06	CCX-EP-SAM		

(---

.

			Table 43-6 (Sheet 50 of 69)		······································				
	DOMINANT CET SEQUENCES CONTRIBUTING TO LRF								
Number	Cutset Prob.	Percent	Basic Event Name	Event Prob.	Identifier				
31	7.13E-12	0.35	SPURIOUS ADS INITIATING EVENT OCCURS	5.40E-05	IEV-SPADS				
			DUE TO CCF OF 4TH STAGE ADS SQUIB VALVES TO OPERATE	3.00E-05	ADX-EV-SA				
		a de la composición de	CCF OF RECIRC MOVS TO OPEN	4.40E-03	IWX-MV-GO				
32	7.05E-12	0.34	SPURIOUS ADS INITIATING EVENT OCCURS	5.40E-05	IEV-SPADS				
			CCF OF RTD LEVEL TRANSMITTERS	3.84E-05	CMX-VS-FA				
			FAILURE TO OPEN RECIRC MOVs	3.40E-03	REN-MAN03				
33	6.07E-12	0.29	MEDIUM LOCA INITIATING EVENT OCCURS	4.36E-04	IEV-MLOCA				
			SOFTWARE CCF OF ALL CARDS	1.20E-06	CCX-SFTW				
			FAILURE OF MANUAL DAS ACTUATION	1.16E-02	REC-MANDAS				
34	6.00E-12	0.29	LARGE LOCA INITIATING EVENT OCCURS	5.00E-06	IEV-LLOCA				
	<i>i</i>		SOFTWARE CCF OF ALL CARDS	1.20E-06	CCX-SFTW				
35	5.74E-12	0.28	CORE POWER EXCURSION INITIATING EVENT OCCURS	4.50E-03	IEV-POWEX				
			EITHER PRZR SV FAILS TO RECLOSE	1.00E-02	OTH-PRSOV				
			FAILURE OF MANUAL DAS ACTUATION	1.16E-02	REC-MANDAS				
	· · ·		CCF OF PMS ESF OUTPUT LOGIC SOFTWARE	1.10E-05	CCX-PMXMOD1-SW				
.36	5.51E-12	0.27	SPURIOUS ADS INITIATING EVENT OCCURS	5.40E-05	IEV-SPADS				
			DUE TO CCF OF 4TH STAGE ADS SQUIB VALVES TO OPERATE	3.00E-05	ADX-EV-SA				
			FAILURE TO OPEN RECIRC MOVs	3.40E-03	REN-MAN03				

	Table 43-6 (Sheet 51 of 69)							
	DOMINANT CET SEQUENCES CONTRIBUTING TO LRF							
Number	Cutset Prob.	Percent	Basic Event Name	Event Prob.	Identifier			
37	5.23E-12	0.25	MEDIUM LOCA INITIATING EVENT OCCURS	4.36E-04	IEV-MLOCA			
			SOFTWARE CCF OF ALL CARDS	1.20E-06	CCX-SFTW			
			FAILURE OF MANUAL DAS REACTOR TRIP HARDWARE	1.00E-02	MDAS			
38	4.95E-12	0.24	CORE POWER EXCURSION INITIATING EVENT OCCURS	4.50E-03	IEV-POWEX			
			EITHER PRZR SV FAILS TO RECLOSE	1.00E-02	OTH-PRSOV			
			FAILURE OF MANUAL DAS REACTOR TRIP HARDWARE	1.00E-02	MDAS			
			CCF OF PMS ESF OUTPUT LOGIC SOFTWARE	1.10E-05	CCX-PMXMOD1-SW			
39	4.50E-12	0.22	CORE POWER EXCURSION INITIATING EVENT OCCURS	4.50E-03	IEV-POWEX			
			EITHER PRZR SV FAILS TO RECLOSE	1.00E-02	OTH-PRSOV			
			FAILURE OF MANUAL DAS ACTUATION	1.16E-02	REC-MANDAS			
			CCF OF EPO BOARDS IN PMS	8.62E-06	CCX-EP-SAM			
40	3.88E-12	0.19	CORE POWER EXCURSION INITIATING EVENT OCCURS	4.50E-03	IEV-POWEX			
			EITHER PRZR SV FAILS TO RECLOSE	1.00E-02	OTH-PRSOV			
			FAILURE OF MANUAL DAS REACTOR TRIP HARDWARE	1.00E-02	MDAS			
			CCF OF EPO BOARDS IN PMS	8.62E-06	CCX-EP-SAM			
41	2.95E-12	0.14	SAFETY INJECTION LINE BREAK INITIATING EVENT OCCURS	2.12E-04	IEV-SI-LB			
			SOFTWARE CCF OF ALL CARDS	1.20E-06	CCX-SFTW			
			FAILURE OF MANUAL DAS ACTUATION	1.16E-02	REC-MANDAS			

## AP1000 Probabilistic Risk Assessment

			Table 43-6 (Sheet 52 of 69)	<u>anan an an</u>				
DOMINANT CET SEQUENCES CONTRIBUTING TO LRF								
Number	Cutset Prob.	Percent	Basic Event Name	Event Prob.	Identifier			
42	2.61E-12	0.13	SPURIOUS ADS INITIATING EVENT OCCURS	5.40E-05	IEV-SPADS			
			CCF OF ESF INPUT LOGIC SOFTWARE	1.10E-05	CCX-IN-LOGIC-SW			
			CCF OF RECIRC MOVS TO OPEN	4.40E-03	IWX-MV-GO			
43	2.61E-12	0.13	SPURIOUS ADS INITIATING EVENT OCCURS	5.40E-05	IEV-SPADS			
			CCF OF PMS ESF ACTUATION LOGIC SOFTWARE	1.10E-05	CCX-PMXMOD2-SW			
n gantan Ang ayan ayan			CCF OF RECIRC MOVS TO OPEN	4.40E-03	IWX-MV-GO			
44	2.54E-12	0.12	SAFETY INJECTION LINE BREAK INITIATING EVENT OCCURS	2.12E-04	IEV-SI-LB			
			SOFTWARE CCF OF ALL CARDS	1.20E-06	CCX-SFTW			
			FAILURE OF MANUAL DAS REACTOR TRIP HARDWARE	1.00E-02	MDAS			
45	2.27E-12	0.11	LARGE LOCA INITIATING EVENT OCCURS	5.00E-06	IEV-LLOCA			
			CCF OF ESF INPUT LOGIC (HARDWARE)	1.03E-04	CCX-INPUT-LOGIC			
		:	CCF OF RECIRC MOVS TO OPEN	4.40E-03	IWX-MV-GO			
46	2.02E-12	0.1	SPURIOUS ADS INITIATING EVENT OCCURS	5.40E-05	IEV-SPADS			
			CCF OF ESF INPUT LOGIC SOFTWARE	1.10E-05	CCX-IN-LOGIC-SW			
			FAILURE TO OPEN RECIRC MOVs	3.40E-03	REN-MAN03			
47	2.02E-12	0.1	SPURIOUS ADS INITIATING EVENT OCCURS	5.40E-05	IEV-SPADS			
			CCF OF PMS ESF ACTUATION LOGIC SOFTWARE	1.10E-05	CCX-PMXMOD2-SW			
			FAILURE TO OPEN RECIRC MOVs	3.40E-03	REN-MAN03			

	Table 43-6 (Sheet 53 of 69)								
	DOMINANT CET SEQUENCES CONTRIBUTING TO LRF								
Number	Cutset Prob.	Percent	Basic Event Name	Event Prob.	Identifier				
48	1.83E-12	0.09	SMALL LOCA INITIATING EVENT OCCURS	5.00E-04	IEV-SLOCA				
			CCF OF 2 SQUIB VALVES TO OPERATE	5.90E-05	ADX-EV-SA2				
			MECHANICAL FAILURE OF RNS MOV V055	1.41E-02	RN55MOD1				
[!			CCF OF RECIRC MOVS TO OPEN	4.40E-03	IWX-MV-GO				
49	1.83E-12	0.09	SMALL LOCA INITIATING EVENT OCCURS	5.00E-04	IEV-SLOCA				
			CCF OF 2 SQUIB VALVES TO OPERATE	5.90E-05	ADX-EV-SA2				
!			HARDWARE FAILURE OF ISOLATION MOV 011	1.41E-02	RN11MOD3				
			CCF OF RECIRC MOVS TO OPEN	4.40E-03	IWX-MV-GO				
50	1.83E-12	0.09	SMALL LOCA INITIATING EVENT OCCURS	5.00E-04	IEV-SLOCA				
<b>{</b>			CCF OF 2 SQUIB VALVES TO OPERATE	5.90E-05	ADX-EV-SA2				
	1		HARDWARE FAILS TO OPEN MOV V022/CB FTC/RELAY FTC	1.41E-02	RN22MOD4				
	'		CCF OF RECIRC MOVS TO OPEN	4.40E-03	IWX-MV-GO				

43-74

E

.

1. 1.1 1. 1. 1. 1. 1. 1. 1.		• •	Table 43-6 (Sheet 54 of 69)		
			DOMINANT CET SEQUENCES CONTRIBUTING TO LRF	н П. П. П. П. М.	•
Itle: LR Reduced f	F Cutsets fo Sum of Cuts	r 23BP1A ets: 2.0420	Ъ-09		· · · · · · · · · · · · · · · · · · ·
Number	Cutset Prob.	Percent	Basic Event Name	Event Prob.	Identifier
1	5.12E-10	25.07	TRANSIENT WITH MFW INITIATING EVENT OCCURS	1.40E+00	IEV-TRANS
			SOFTWARE CCF OF ALL CARDS	1.20E-06	CCX-SFTW
	er en de la companya		EDS3 EA 1 DISTR. PNL FAILURE OR T&M	3.05E-04	ED3MOD07
2	1.95E-10	9.55	TRANSIENT WITH MFW INITIATING EVENT OCCURS	1.40E+00	IEV-TRANS
			SOFTWARE CCF OF ALL CARDS	1.20E-06	CCX-SFTW
			UNAVAILABILITY GOAL FOR DAS	1.00E-02	DAS
			FAILURE OF MANUAL DAS ACTUATION	1.16E-02	REC-MANDAS
3	1.68E-10	8.23	TRANSIENT WITH MFW INITIATING EVENT OCCURS	1.40E+00	IEV-TRANS
1 			SOFTWARE CCF OF ALL CARDS	1.20E-06	CCX-SFTW
۰			UNAVAILABILITY GOAL FOR DAS	1.00E-02	DAS
			FAILURE OF MANUAL DAS REACTOR TRIP HARDWARE	1.00E-02	MDAS
4	1.23E-10	6.02	LOSS OF MAIN FEEDWATER INITIATING EVENT OCCURS	3.35E-01	IEV-LMFW
			SOFTWARE CCF OF ALL CARDS	1.20E-06	CCX-SFTW
			EDS3 EA 1 DISTR. PNL FAILURE OR T&M	3.05E-04	ED3MOD07

43-75

4

	Table 43-6 (Sheet 55 of 69)								
	DOMINANT CET SEQUENCES CONTRIBUTING TO LRF								
Number	Cutset Prob.	Percent	Basic Event Name	Event Prob.	Identifier				
5	7.03E-11	3.44	LOSS OF MFW TO ONE SG INITIATING EVENT OCCURS	1.92E-01	IEV-LMFW1				
		1	SOFTWARE CCF OF ALL CARDS	1.20E-06	CCX-SFTW				
		1	EDS3 EA 1 DISTR. PNL FAILURE OR T&M	3.05E-04	ED3MOD07				
6	5.50E-11	2.69	TRANSIENT WITH MFW INITIATING EVENT OCCURS	1.40E+00	IEV-TRANS				
			CCF NON-SAFETY TRANSMITTERS INTERFACING SYSTEM PRESSURE	4.78E-04	CCX-TRNSM				
			UNAVAILABILITY GOAL FOR DAS	1.00E-02	DAS				
			COND. PROB. OF REC-MANDAS (FAILURE OF MANUAL DAS ACTUATION)	5.06E-01	REC-MANDASC				
		1	CCF OF 4 COMBINATIONS OF 3 STAGES #2 AND #3 MOVS	3.24E-04	ADX-MV3-GO				
			OPERATOR FAILS TO ACTUATE ADS AFTER CORE DAMAGE	5.00E-02	ADN-REC01				
7	5.50E-11	2.69	TRANSIENT WITH MFW INITIATING EVENT OCCURS	1.40E+00	IEV-TRANS				
			CCF NON-SAFETY TRANSMITTERS INTERFACING SYSTEM PRESSURE	4.78E-04	CCX-TRNSM				
			UNAVAILABILITY GOAL FOR DAS	1.00E-02	DAS				
			COND. PROB. OF REC-MANDAS (FAILURE OF MANUAL DAS ACTUATION)	5.06E-01	REC-MANDASC				
			CCF OF 4 COMBINATIONS OF 3 STAGES #2 AND #3 MOVS	3.24E-04	ADX-MV3-GO				
			OPERATOR FAILS TO ACTUATE ADS AFTER CORE DAMAGE	5.00E-02	LPM-REC01				
8	5.27E-11	2.58	LOSS OF CCW/SW INITIATING EVENT OCCURS	1.44E-01	IEV-LCCW				
			SOFTWARE CCF OF ALL CARDS	1.20E-06	CCX-SFTW				
			EDS3 EA 1 DISTR. PNL FAILURE OR T&M	3.05E-04	ED3MOD07				

#### AP1000 Probabilistic Risk Assessment

	Table 43-6 (Sheet 56 of 69)							
		-	DOMINANT CET SEQUENCES CONTRIBUTING TO LRF	• •				
Number	Cutset Prob.	Percent	Basic Event Name	Event Prob.	Identifier			
9	4.66E-11	2.28	LOSS OF MAIN FEEDWATER INITIATING EVENT OCCURS	3.35E-01	IEV-LMFW			
			SOFTWARE CCF OF ALL CARDS	1.20E-06	CCX-SFTW			
			UNAVAILABILITY GOAL FOR DAS	1.00E-02	DAS			
			FAILURE OF MANUAL DAS ACTUATION	1.16E-02	REC-MANDAS			
10	4.10E-11	2.01	LOSS OF CONDENSER INITIATING EVENT OCCURS	1.12E-01	IEV-LCOND			
÷	н. <u>1</u> . т		SOFTWARE CCF OF ALL CARDS	1.20E-06	CCX-SFTW			
			EDS3 EA 1 DISTR. PNL FAILURE OR T&M	3.05E-04	ED3MOD07			
11	4.02E-11	1.97	LOSS OF MAIN FEEDWATER INITIATING EVENT OCCURS	3.35E-01	IEV-LMFW			
			SOFTWARE CCF OF ALL CARDS	1.20E-06	CCX-SFTW			
	the second		UNAVAILABILITY GOAL FOR DAS	1.00E-02	DAS			
	ан сан сан сан сан сан сан сан сан сан с		FAILURE OF MANUAL DAS REACTOR TRIP HARDWARE	1.00E-02	MDAS			
12	3.07E-11	1.5	LOSS OF OFFSITE POWER INITIATING EVENT OCCURS	1.20E-01	IEV-LOSP			
- 			FAILURE TO RECOVER OFFSITE AC POWER IN 30 MINUTES	7.00E-01	OTH-R05			
			SOFTWARE CCF OF ALL CARDS	1.20E-06	CCX-SFTW			
			EDS3 EA 1 DISTR. PNL FAILURE OR T&M	3.05E-04	ED3MOD07			
13	2.67E-11	1.31	LOSS OF MFW TO ONE SG INITIATING EVENT OCCURS	1.92E-01	IEV-LMFW1			
			SOFTWARE CCF OF ALL CARDS	1.20E-06	CCX-SFTW			
			UNAVAILABILITY GOAL FOR DAS	1.00E-02	DAS			
		ļ	FAILURE OF MANUAL DAS ACTUATION	1.16E-02	REC-MANDAS			

**Revision 4** 

	Table 43-6 (Sheet 57 of 69)								
	DOMINANT CET SEQUENCES CONTRIBUTING TO LRF								
Number	Cutset Prob.	Percent	Basic Event Name	Event Prob.	Identifier				
14	2.30E-11	1.13	LOSS OF MFW TO ONE SG INITIATING EVENT OCCURS	1.92E-01	IEV-LMFW1				
			SOFTWARE CCF OF ALL CARDS	1.20E-06	CCX-SFTW				
			UNAVAILABILITY GOAL FOR DAS	1.00E-02	DAS				
			FAILURE OF MANUAL DAS REACTOR TRIP HARDWARE	1.00E-02	MDAS				
15	2.00E-11	0.98	LOSS OF CCW/SW INITIATING EVENT OCCURS	1.44E-01	IEV-LCCW				
			SOFTWARE CCF OF ALL CARDS	1.20E-06	CCX-SFTW				
			UNAVAILABILITY GOAL FOR DAS	1.00E-02	DAS				
			FAILURE OF MANUAL DAS ACTUATION	1.16E-02	REC-MANDAS				
16	1.73E-11	0.85	LOSS OF CCW/SW INITIATING EVENT OCCURS	1.44E-01	IEV-LCCW				
			SOFTWARE CCF OF ALL CARDS	1.20E-06	CCX-SFTW				
'			UNAVAILABILITY GOAL FOR DAS	1.00E-02	DAS				
			FAILURE OF MANUAL DAS REACTOR TRIP HARDWARE	1.00E-02	MDAS				
17	1.56E-11	0.76	LOSS OF CONDENSER INITIATING EVENT OCCURS	1.12E-01	IEV-LCOND				
( '			SOFTWARE CCF OF ALL CARDS	1.20E-06	CCX-SFTW				
'			UNAVAILABILITY GOAL FOR DAS	1.00E-02	DAS				
			FAILURE OF MANUAL DAS ACTUATION	1.16E-02	REC-MANDAS				

 $\leftarrow$ 

#### **AP1000 Probabilistic Risk Assessment**

			Table 43-6 (Sheet 58 of 69)	· · · ·	· .
	· · ·	•	DOMINANT CET SEQUENCES CONTRIBUTING TO LRF		
Number	Cutset Prob.	Percent	Basic Event Name	Event Prob.	Identifier
18	1.34E-11	0.66	LOSS OF CONDENSER INITIATING EVENT OCCURS	1.12E-01	IEV-LCOND
	Д		SOFTWARE CCF OF ALL CARDS	1.20E-06	CCX-SFTW
			UNAVAILABILITY GOAL FOR DAS	1.00E-02	DAS
			FAILURE OF MANUAL DAS REACTOR TRIP HARDWARE	1.00E-02	MDAS
19	1.31E-11	0.64	LOSS OF MAIN FEEDWATER INITIATING EVENT OCCURS	3.35E-01	IEV-LMFW
			CCF NON-SAFETY TRANSMITTERS INTERFACING SYSTEM PRESSURE	4.78E-04	CCX-TRNSM
			UNAVAILABILITY GOAL FOR DAS	1.00E-02	DAS
	a ay an ar		COND. PROB. OF REC-MANDAS (FAILURE OF MANUAL DAS ACTUATION)	5.06E-01	REC-MANDASC
			CCF OF 4 COMBINATIONS OF 3 STAGES #2 AND #3 MOVS	3.24E-04	ADX-MV3-GO
			OPERATOR FAILS TO ACTUATE ADS AFTER CORE DAMAGE	5.00E-02	ADN-REC01
20	1.31E-11	0.64	LOSS OF MAIN FEEDWATER INITIATING EVENT OCCURS	3.35E-01	IEV-LMFW
			CCF NON-SAFETY TRANSMITTERS INTERFACING SYSTEM PRESSURE	4.78E-04	CCX-TRNSM
· .			UNAVAILABILITY GOAL FOR DAS	1.00E-02	DAS
			COND. PROB. OF REC-MANDAS (FAILURE OF MANUAL DAS ACTUATION)	5.06E-01	REC-MANDASC
			CCF OF 4 COMBINATIONS OF 3 STAGES #2 AND #3 MOVS	3.24E-04	ADX-MV3-GO
			OPERATOR FAILS TO ACTUATE ADS AFTER CORE DAMAGE	5.00E-02	LPM-REC01

43-79

**Revision** 4

20
{-----

	Table 43-6 (Sheet 59 of 69)								
	DOMINANT CET SEQUENCES CONTRIBUTING TO LRF								
Number	Cutset Prob.	Percent	Basic Event Name	Event Prob.	Identifier				
21	1.31E-11	0.64	LOSS OF MAIN FEEDWATER INITIATING EVENT OCCURS	3.35E-01	IEV-LMFW				
	i I		CCF OF SAFETY PT LT CONTINUOUSLY INTERFACING HIGH PRESSURE	4.78E-04	CCX-XMTR				
	1	'	UNAVAILABILITY GOAL FOR DAS	1.00E-02	DAS				
			COND. PROB. OF REC-MANDAS (FAILURE OF MANUAL DAS ACTUATION)	5.06E-01	REC-MANDASC				
	Í		CCF OF 4 COMBINATIONS OF 3 STAGES #2 AND #3 MOVS	3.24E-04	ADX-MV3-GO				
			OPERATOR FAILS TO ACTUATE ADS AFTER CORE DAMAGE	5.00E-02	ADN-REC01				
22	1.31E-11	0.64	LOSS OF MAIN FEEDWATER INITIATING EVENT OCCURS	3.35E-01	IEV-LMFW				
			CCF OF SAFETY PT LT CONTINUOUSLY INTERFACING HIGH PRESSURE	4.78E-04	CCX-XMTR				
			UNAVAILABILITY GOAL FOR DAS	1.00E-02	DAS				
			COND. PROB. OF REC-MANDAS (FAILURE OF MANUAL DAS ACTUATION)	5.06E-01	REC-MANDASC				
	ł I	1	CCF OF 4 COMBINATIONS OF 3 STAGES #2 AND #3 MOVS	3.24E-04	ADX-MV3-GO				
			OPERATOR FAILS TO ACTUATE ADS AFTER CORE DAMAGE	5.00E-02	LPM-REC01				
23	1.30E-11	0.64	LOSS OF OFFSITE POWER INITIATING EVENT OCCURS	1.20E-01	IEV-LOSP				
	1		FAILURE TO RECOVER OFFSITE AC POWER IN 30 MINUTES	7.00E-01	OTH-R05				
	1		EDS3 EA 1 DISTR. PNL FAILURE OR T&M	3.05E-04	ED3MOD07				
			STANDBY DG UNAVAILABLE DUE TO TEST AND MAINTENANCE	4.60E-02	ZO1DG001TM				
			CCF OF PMS ESF OUTPUT LOGIC SOFTWARE	1.10E-05	CCX-PMXMOD1-SW				

#### AP1000 Probabilistic Risk Assessment

1., I		1 - F - F - F	Table 43-6 (Sheet 60 of 69)		· · · ·				
DOMINANT CET SEQUENCES CONTRIBUTING TO LRF									
Number	Cutset Prob.	Percent	Basic Event Name	Event Prob.	Identifier				
24	1.17E-11	0.57	LOSS OF OFFSITE POWER INITIATING EVENT OCCURS	1.20E-01	IEV-LOSP				
			FAILURE TO RECOVER OFFSITE AC POWER IN 30 MINUTES	7.00E-01	OTH-R05				
			SOFTWARE CCF OF ALL CARDS	1.20E-06	CCX-SFTW				
			UNAVAILABILITY GOAL FOR DAS	1.00E-02	DAS				
			FAILURE OF MANUAL DAS ACTUATION	1.16E-02	REC-MANDAS				
25	1.13E-11	0.55	LOSS OF OFFSITE POWER INITIATING EVENT OCCURS	1.20E-01	IEV-LOSP				
			FAILURE TO RECOVER OFFSITE AC POWER IN 30 MINUTES	7.00E-01	OTH-R05				
· · ·	ي. مولو		DUE TO FAILURE OF OPERATOR TO REFILL BASIN	4.00E-02	SWN-MAN03				
		· · ·	CCF OF PMS ESF OUTPUT LOGIC SOFTWARE	1.10E-05	CCX-PMXMOD1-SW				
• •			EDS3 EA 1 DISTR. PNL FAILURE OR T&M	3.05E-04	ED3MOD07				
26	1.02E-11	0.5	LOSS OF OFFSITE POWER INITIATING EVENT OCCURS	1.20E-01	IEV-LOSP				
			FAILURE TO RECOVER OFFSITE AC POWER IN 30 MINUTES	7.00E-01	OTH-R05				
		,	EDS3 EA 1 DISTR. PNL FAILURE OR T&M	3.05E-04	ED3MOD07				
			STANDBY DG UNAVAILABLE DUE TO TEST AND MAINTENANCE	4.60E-02	ZO1DG001TM				
			CCF OF EPO BOARDS IN PMS	8.62E-06	CCX-EP-SAM				

{----

	Table 43-6 (Sheet 61 of 69)								
	DOMINANT CET SEQUENCES CONTRIBUTING TO LRF								
Number	Cutset Prob.	Percent	Basic Event Name	Event Prob.	Identifier				
27	1.01E-11	0.49	LOSS OF OFFSITE POWER INITIATING EVENT OCCURS	1.20E-01	IEV-LOSP				
			FAILURE TO RECOVER OFFSITE AC POWER IN 30 MINUTES	7.00E-01	OTH-R05				
			SOFTWARE CCF OF ALL CARDS	CCX-SFTW					
	'	ĺ	UNAVAILABILITY GOAL FOR DAS	1.00E-02	DAS				
			FAILURE OF MANUAL DAS REACTOR TRIP HARDWARE	1.00E-02	MDAS				
28	8.83E-12	0.43	LOSS OF OFFSITE POWER INITIATING EVENT OCCURS	1.20E-01	IEV-LOSP				
			FAILURE TO RECOVER OFFSITE AC POWER IN 30 MINUTES	7.00E-01	OTH-R05				
	'		DUE TO FAILURE OF OPERATOR TO REFILL BASIN	4.00E-02	SWN-MAN03				
			CCF OF EPO BOARDS IN PMS	8.62E-06	CCX-EP-SAM				
			EDS3 EA 1 DISTR. PNL FAILURE OR T&M	3.05E-04	ED3MOD07				
29	8.02E-12	0.39	MAIN STEAM LINE STUCK-OPEN SV INITIATING EVENT OCCURS	2.39E-03	IEV-SLB-V				
			CCF OF PMS ESF OUTPUT LOGIC SOFTWARE	1.10E-05	CCX-PMXMOD1-SW				
			EDS3 EA 1 DISTR. PNL FAILURE OR T&M	3.05E-04	ED3MOD07				
30	7.89E-12	0.39	LOSS OF CONDENSER INITIATING EVENT OCCURS	1.12E-01	IEV-LCOND				
			ANY SECOND. SIDE RELIEF VALVE FAILS TO CLOSE (2 SV + PORV)	2.10E-02	OTH-SLSOV1				
			CCF OF PMS ESF OUTPUT LOGIC SOFTWARE	1.10E-05	CCX-PMXMOD1-SW				
			EDS3 EA 1 DISTR. PNL FAILURE OR T&M	3.05E-04	ED3MOD07				

	Table 43-6 (Sheet 62 of 69)								
	DOMINANT CET SEQUENCES CONTRIBUTING TO LRF								
Number	Cutset Prob.	Percent	Basic Event Name	Event Prob.	Identifier				
31	7.50E-12	0.37	LOSS OF MFW TO ONE SG INITIATING EVENT OCCURS	1.92E-01	IEV-LMFW1				
			CCF NON-SAFETY TRANSMITTERS INTERFACING SYSTEM PRESSURE	4.78E-04	CCX-TRNSM				
			UNAVAILABILITY GOAL FOR DAS	1.00E-02	DAS				
			COND. PROB. OF REC-MANDAS (FAILURE OF MANUAL DAS ACTUATION)	5.06E-01	REC-MANDASC				
			CCF OF 4 COMBINATIONS OF 3 STAGES #2 AND #3 MOVS	3.24E-04	ADX-MV3-GO				
			OPERATOR FAILS TO ACTUATE ADS AFTER CORE DAMAGE	5.00E-02	ADN-REC01				
32	7.50E-12	0.37	LOSS OF MFW TO ONE SG INITIATING EVENT OCCURS	1.92E-01	IEV-LMFW1				
			CCF NON-SAFETY TRANSMITTERS INTERFACING SYSTEM PRESSURE	4.78E-04	CCX-TRNSM				
		4	UNAVAILABILITY GOAL FOR DAS	1.00E-02	DAS				
		1. 	COND. PROB. OF REC-MANDAS (FAILURE OF MANUAL DAS ACTUATION)	5.06E-01	REC-MANDASC				
			CCF OF 4 COMBINATIONS OF 3 STAGES #2 AND #3 MOVS	3.24E-04	ADX-MV3-GO				
1			OPERATOR FAILS TO ACTUATE ADS AFTER CORE DAMAGE	5.00E-02	LPM-REC01				
33	6.59E-12	0.32	LOSS OF RSC FLOW INITIATING EVENT OCCURS	1.80E-02	IEV-LRCS				
	- -	· ·	SOFTWARE CCF OF ALL CARDS	1.20E-06	CCX-SFTW				
			EDS3 EA 1 DISTR. PNL FAILURE OR T&M	3.05E-04	ED3MOD07				
34	6.28E-12	0.31	MAIN STEAM LINE STUCK-OPEN SV INITIATING EVENT OCCURS	2.39E-03	IEV-SLB-V				
			CCF OF EPO BOARDS IN PMS	8.62E-06	CCX-EP-SAM				
	{		EDS3 EA 1 DISTR. PNL FAILURE OR T&M	3.05E-04	ED3MOD07				

**Revision 4** 

(-----

	Table 43-6 (Sheet 63 of 69)								
	DOMINANT CET SEQUENCES CONTRIBUTING TO LRF								
Number	Cutset Prob.	Identifier							
35	6.18E-12	0.3	LOSS OF CONDENSER INITIATING EVENT OCCURS	1.12E-01	IEV-LCOND				
			ANY SECOND. SIDE RELIEF VALVE FAILS TO CLOSE (2 SV + PORV)	2.10E-02	OTH-SLSOV1				
		l	CCF OF EPO BOARDS IN PMS	8.62E-06	CCX-EP-SAM				
			EDS3 EA 1 DISTR. PNL FAILURE OR T&M	3.05E-04	ED3MOD07				
36	5.92E-12	0.29	LOSS OF OFFSITE POWER INITIATING EVENT OCCURS	1.20E-01	IEV-LOSP				
			FAILURE TO RECOVER OFFSITE AC POWER IN 30 MINUTES	7.00E-01	OTH-R05				
			ANY SECOND. SIDE RELIEF VALVE FAILS TO CLOSE (2 SV + PORV)	2.10E-02	OTH-SLSOV1				
			CCF OF PMS ESF OUTPUT LOGIC SOFTWARE	1.10E-05	CCX-PMXMOD1-SW				
			EDS3 EA 1 DISTR. PNL FAILURE OR T&M	3.05E-04	ED3MOD07				
37	5.76E-12	0.28	TRANSIENT WITH MFW INITIATING EVENT OCCURS	1.40E+00	IEV-TRANS				
			FAILURE OF AIR COMPRESSOR TRANSMITTER	5.23E-03	CANTP011RI				
			FAILURE OF IRWST GUTTER DUE TO COMMON CAUSE OF AOVs	9.60E-05	PXX-AV-LA1				
			CCF OF 4 COMBINATIONS OF 3 STAGES #2 AND #3 MOVS	3.24E-04	ADX-MV3-GO				
			COND. PROB. OF REC-MANDAS (FAILURE OF MANUAL DAS ACTUATION)	5.06E-01	REC-MANDASC				
'			OPERATOR FAILS TO ACTUATE ADS AFTER CORE DAMAGE	5.00E-02	ADN-REC01				

(

			Table 43-6 (Sheet 64 of 69)			
	•		DOMINANT CET SEQUENCES CONTRIBUTING TO LRF			
Number	Cutset Prob.	Percent	Basic Event Name	Event Prob.	Identifier	
38	5.76E-12	0.28	TRANSIENT WITH MFW INITIATING EVENT OCCURS	1.40E+00	IEV-TRANS	
			FAILURE OF AIR COMPRESSOR TRANSMITTER	5.23E-03	CANTP011RI	
			FAILURE OF IRWST GUTTER DUE TO COMMON CAUSE OF AOVs	9.60E-05	PXX-AV-LA1	
			CCF OF 4 COMBINATIONS OF 3 STAGES #2 AND #3 MOVS	3.24E-04	ADX-MV3-GO	
			COND. PROB. OF REC-MANDAS (FAILURE OF MANUAL DAS ACTUATION)	5.06E-01	REC-MANDASC	
			OPERATOR FAILS TO ACTUATE ADS AFTER CORE DAMAGE	5.00E-02	LPM-REC01	
39	5.76E-12	0.28	TRANSIENT WITH MFW INITIATING EVENT OCCURS	1.40E+00	IEV-TRANS	
			FAILURE OF AIR COMPRESSOR TRANSMITTER	5.23E-03	CANTP011RI	
			FAILURE OF PRHR DUE TO COMMON CAUSE OF AOVs	9.60E-05	PXX-AV-LA	
			CCF OF 4 COMBINATIONS OF 3 STAGES #2 AND #3 MOVS	3.24E-04	ADX-MV3-GO	
			COND. PROB. OF REC-MANDAS (FAILURE OF MANUAL DAS ACTUATION)	5.06E-01	REC-MANDASC	
			OPERATOR FAILS TO ACTUATE ADS AFTER CORE DAMAGE	5.00E-02	ADN-REC01	
40	5.76E-12	0.28	TRANSIENT WITH MFW INITIATING EVENT OCCURS	1.40E+00	IEV-TRANS	
e e			FAILURE OF AIR COMPRESSOR TRANSMITTER	5.23E-03	CANTP011RI	
		· · · ·	FAILURE OF PRHR DUE TO COMMON CAUSE OF AOVs	9.60E-05	PXX-AV-LA	
			CCF OF 4 COMBINATIONS OF 3 STAGES #2 AND #3 MOVS	3.24E-04	ADX-MV3-GO	
	l l	Ì	COND. PROB. OF REC-MANDAS (FAILURE OF MANUAL DAS ACTUATION)	5.06E-01	REC-MANDASC	
			OPERATOR FAILS TO ACTUATE ADS AFTER CORE DAMAGE	5.00E-02	LPM-REC01	

	Table 43-6 (Sheet 65 of 69)								
	DOMINANT CET SEQUENCES CONTRIBUTING TO LRF								
Number	Cutset Prob.	Percent	Basic Event Name	Event Prob.	Identifier				
41	5.69E-12	0.28	LOSS OF OFFSITE POWER INITIATING EVENT OCCURS	1.20E-01	IEV-LOSP				
			FAILURE TO RECOVER OFFSITE AC POWER IN 30 MINUTES	7.00E-01	OTH-R05				
			EDS3 EA 1 DISTR. PNL FAILURE OR T&M	3.05E-04	ED3MOD07				
			D/G FAILS TO START & RUN OR BKR 102 FAILS TO CLOSE	2.02E-02	ZO1MOD01				
			CCF OF PMS ESF OUTPUT LOGIC SOFTWARE	1.10E-05	CCX-PMXMOD1-SW				
42	5.63E-12	0.28	LOSS OF CCW/SW INITIATING EVENT OCCURS	1.44E-01	IEV-LCCW				
			CCF NON-SAFETY TRANSMITTERS INTERFACING SYSTEM PRESSURE	4.78E-04	CCX-TRNSM				
			UNAVAILABILITY GOAL FOR DAS	1.00E-02	DAS				
			COND. PROB. OF REC-MANDAS (FAILURE OF MANUAL DAS ACTUATION)	5.06E-01	REC-MANDASC				
			CCF OF 4 COMBINATIONS OF 3 STAGES #2 AND #3 MOVS	3.24E-04	ADX-MV3-GO				
			OPERATOR FAILS TO ACTUATE ADS AFTER CORE DAMAGE	5.00E-02	ADN-REC01				
43	5.63E-12	0.28	LOSS OF CCW/SW INITIATING EVENT OCCURS	1.44E-01	IEV-LCCW				
			CCF NON-SAFETY TRANSMITTERS INTERFACING SYSTEM PRESSURE	4.78E-04	CCX-TRNSM				
			UNAVAILABILITY GOAL FOR DAS	1.00E-02	DAS				
			COND. PROB. OF REC-MANDAS (FAILURE OF MANUAL DAS ACTUATION)	5.06E-01	REC-MANDASC				
			CCF OF 4 COMBINATIONS OF 3 STAGES #2 AND #3 MOVS	3.24E-04	ADX-MV3-GO				
			OPERATOR FAILS TO ACTUATE ADS AFTER CORE DAMAGE	5.00E-02	LPM-REC01				

#### AP1000 Probabilistic Risk Assessment

		· · · · ·	Table 43-6 (Sheet 66 of 69)		······				
	DOMINANT CET SEQUENCES CONTRIBUTING TO LRF								
Number	Cutset Prob.	Percent	Basic Event Name	Event Prob.	Identifier				
44	5.58E-12	0.27	LOSS OF COMPRESSED AIR INITIATING EVENT OCCURS	3.48E-02	IEV-LCAS				
· · · ·	4.4.4	· ·	MANUALLY REGULATE FLOW TO SG "A"	2.04E-01	REG-MAN00				
	:		FAILURE OF IRWST GUTTER DUE TO COMMON CAUSE OF AOVs	9.60E-05	PXX-AV-LA1				
			CCF OF 4 COMBINATIONS OF 3 STAGES #2 AND #3 MOVS	3.24E-04	ADX-MV3-GO				
			COND. PROB. OF REC-MANDAS (FAILURE OF MANUAL DAS ACTUATION)	5.06E-01	REC-MANDASC				
			OPERATOR FAILS TO ACTUATE ADS AFTER CORE DAMAGE	5.00E-02	ADN-REC01				
45	5.58E-12	0.27	LOSS OF COMPRESSED AIR INITIATING EVENT OCCURS	3.48E-02	IEV-LCAS				
			MANUALLY REGULATE FLOW TO SG "A"	2.04E-01	REG-MAN00				
			FAILURE OF IRWST GUTTER DUE TO COMMON CAUSE OF AOVs	9.60E-05	PXX-AV-LA1				
			CCF OF 4 COMBINATIONS OF 3 STAGES #2 AND #3 MOVS	3.24E-04	ADX-MV3-GO				
			COND. PROB. OF REC-MANDAS (FAILURE OF MANUAL DAS ACTUATION)	5.06E-01	REC-MANDASC				
			OPERATOR FAILS TO ACTUATE ADS AFTER CORE DAMAGE	5.00E-02	LPM-REC01				

43-87

**Revision 4** 

í----

	Table 43-6 (Sheet 67 of 69)								
	DOMINANT CET SEQUENCES CONTRIBUTING TO LRF								
Number	Cutset Prob.	Percent	Basic Event Name	Event Prob.	Identifier				
46	5.58E-12	0.27	LOSS OF COMPRESSED AIR INITIATING EVENT OCCURS	3.48E-02	IEV-LCAS				
	l		MANUALLY REGULATE FLOW TO SG "A"	2.04E-01	REG-MAN00				
			FAILURE OF PRHR DUE TO COMMON CAUSE FAILURE OF AOVs	PXX-AV-LA					
			CCF OF 4 COMBINATIONS OF 3 STAGES #2 AND #3 MOVS	3.24E-04	ADX-MV3-GO				
			5.06E-01	REC-MANDASC					
			OPERATOR FAILS TO ACTUATE ADS AFTER CORE DAMAGE	5.00E-02	ADN-REC01				
47	5.58E-12	0.27	LOSS OF COMPRESSED AIR INITIATING EVENT OCCURS	3.48E-02	IEV-LCAS				
			MANUALLY REGULATE FLOW TO SG "A"	2.04E-01	REG-MAN00				
			FAILURE OF PRHR DUE TO COMMON CAUSE OF AOVs	9.60E-05	PXX-AV-LA				
		1	CCF OF 4 COMBINATIONS OF 3 STAGES #2 AND #3 MOVS	3.24E-04	ADX-MV3-GO				
			COND. PROB. OF REC-MANDAS (FAILURE OF MANUAL DAS ACTUATION)	5.06E-01	REC-MANDASC				
		L	OPERATOR FAILS TO ACTUATE ADS AFTER CORE DAMAGE	5.00E-02	LPM-REC01				
48	4.64E-12	0.23	LOSS OF OFFSITE POWER INITIATING EVENT OCCURS	1.20E-01	IEV-LOSP				
			FAILURE TO RECOVER OFFSITE AC POWER IN 30 MINUTES	7.00E-01	OTH-R05				
	1		ANY SECOND. SIDE RELIEF VALVE FAILS TO CLOSE (2 SV + PORV)	2.10E-02	OTH-SLSOV1				
		1	CCF OF EPO BOARDS IN PMS	8.62E-06	CCX-EP-SAM				
			EDS3 EA 1 DISTR. PNL FAILURE OR T&M	3.05E-04	ED3MOD07				

 $\leftarrow$ 

1 ...

### AP1000 Probabilistic Risk Assessment

	Table 43-6 (Sheet 68 of 69)									
	DOMINANT CET SEQUENCES CONTRIBUTING TO LRF									
Number	Cutset Prob.	Percent	Basic Event Name	Event Prob.	Identifier					
49	4.46E-12	0.22	LOSS OF OFFSITE POWER INITIATING EVENT OCCURS	1.20E-01	IEV-LOSP					
			FAILURE TO RECOVER OFFSITE AC POWER IN 30 MINUTES	7.00E-01	OTH-R05					
			EDS3 EA 1 DISTR. PNL FAILURE OR T&M	3.05E-04	ED3MOD07					
			D/G FAILS TO START & RUN OR BKR 102 FAILS TO CLOSE	2.02E-02	ZO1MOD01					
н. 1			CCF OF EPO BOARDS IN PMS	8.62E-06	CCX-EP-SAM					
50	4.41E-12	0.22	LOSS OF CONDENSER INITIATING EVENT OCCURS	1.12E-01	IEV-LCOND					
. :		:	CCF NON-SAFETY TRANSMITTERS INTERFACING SYSTEM PRESSURE	4.78E-04	CCX-TRNSM					
			UNAVAILABILITY GOAL FOR DAS	1.00E-02	DAS					
			COND. PROB. OF REC-MANDAS (FAILURE OF MANUAL DAS ACTUATION)	5.06E-01	REC-MANDASC					
			CCF OF 4 COMBINATIONS OF 3 STAGES #2 AND #3 MOVS	3.24E-04	ADX-MV3-GO					
			OPERATOR FAILS TO ACTUATE ADS AFTER CORE DAMAGE	5.00E-02	ADN-REC01					

43-89

**Revision 4** 

٠,

•

	Table 43-6 (Sheet 69 of 69)							
	DOMINANT CET SEQUENCES CONTRIBUTING TO LRF							
Title: LR	Itle: LRF Cutsets for 10CFE3C							
Reduced	Sum of Cuts	ets: 1.0000	DE-09					
Number	Cutset Prob.	Percent	Basic Event Name	Event Prob.	Identifier			
1	1.00E-09	100	REACTOR VESSEL RUPTURE INITIATING EVENT OCCURS	1.00E-08	IEV-RV-RP			
			CFE - OCCURS	1.00E-01	CFE-OCCURS			

**Revision 4** 

<u>(___</u>

Table 43-7 (Sheet 1 of 2)											
	SUMMARY OF RELEASE FREQUENCY CALCULATIONS										
		2E	2L	2R	<b>1</b> A	1P	3A.	3C	3D	6	
	IC	7.70E-08	2.34E-08	4.62E-08	2.96E-09	8.55E-10	3.44E-10	8.97E-09	5.63E-08	5.41E-09	
	CFE	3.22E-09	1.83E-13	1.00E-11	0.00E+00	1.48E-11	0.00E+00	9.99E-10	3.03E-09	1.86E-10	
	CFI	1.82E-10	4.72E-14	5.55E-12	0.00E+00	1.15E-13	0.00E+00	1.08E-12	1.70E-13	1.09E-14	
	CFV	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
	CFL	1.34E-13	2.35E-14	5.20E-14	9.71E-15	0.00E+00	2.42E-14	1.04E-14	8.60E-14	5.44E-15	
n Martin an an an	СІ	1.32E-10	5.83E-10	7.67E-11	4.60E-12	1.32E-12	6.33E-12	2.66E-11	3.62E-10	1.40E-10	
	BP	0.00E+00	0.00E+00	0.00E+00	2.04E-09	6.05E-10	4.08E-09	0.00E+00	0.00E+00	3.78E-09	
	Total	8.06E-08	2.40E-08	4.63E-08	5.01E-09	1.48E-09	4.43E-09	1.00E-08	5.97E-08	9.52E-09	
	an a	2E	2L	2R	1A	1P	3A	3C	3D	6	
1	IC	5.51E-08	0.000E+00	4.619E-08	2.941E-09	8.538E-10	3.364E-10	8.966E-09	0.000E+00	0.000E+00	
2	CFE	0.00E+00	0.000E+00	0.000E+00	0.000E+00	1.477E-11	0.000E+00	0.000E+00	0.000E+00	0.000E+00	
3	IC	1.28E-09	0.000E+00	3.718E-11	1.921E-11	7.704E-13	7.209E-12	7.249E-12	0.000E+00	0.000E+00	
4	CFI	1.82E-10	0.000E+00	5.555E-12	0.000E+00	1.151E-13	0.000E+00	1.083E-12	0.000E+00	0.000E+00	
5	CFI	0.00E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	
6	CFE	4.75E-10	0.000E+00	1.002E-11	0.000E+00	5.055E-14	0.000E+00	1.954E-12	0.000E+00	0.000E+00	
7	CFV	0.00E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	
8	CFI	0.00E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	
9	CFL	9.80E-14	0.000E+00	5.200E-14	9.712E-15	0.000E+00	2.419E-14	1.037E-14	0.000E+00	0.000E+00	

**Revision 4** 

Table 43-7 (Sheet 2 of 2)											
	SUMMARY OF RELEASE FREQUENCY CALCULATIONS										
	2E 2L 2R 1A 1P 3A 3C 3D 6										
10	CFE	0.00E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	9.973E-10	0.000E+00	0.000E+00	
11	IC	2.01E-08	2.333E-08	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	5.612E-08	5.407E-09	
12	CFE	0.00E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	9.706E-10	0.000E+00	
13	IC	6.23E-10	3.630E-11	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	1.309E-10	8.411E-12	
14	CFI	8.11E-13	4.725E-14	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	1.705E-13	1.095E-14	
15	CFI	0.00E+00	0.000E+00								
16	CFE	8.27E-11	1.826E-13	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	1.704E-11	4.232E-14	
17	CFV	0.00E+00	0.000E+00								
18	CFI	0.00E+00	0.000E+00								
19	CFL	3.57E-14	2.349E-14	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	8.602E-14	5.443E-15	
20	CFE	0.00E+00	0.000E+00								
21	CFE	2.67E-09	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	2.046E-09	1.860E-10	
22	CI	1.32E-10	5.826E-10	7.669E-11	4.602E-12	1.324E-12	6.328E-12	2.658E-11	3.622E-10	1.396E-10	
23	BP	0.00E+00	0.000E+00	0.000E+00	2.042E-09	6.052E-10	4.077E-09	0.000E+00	0.000E+00	3.783E-09	
	Total	8.06E-08	2.395E-08	4.632E-08	5.007E-09	1.476E-09	4.427E-09	1.000E-08	5.965E-08	9.524E-09	

AP1000 Probabilistic Risk Assessment

						Table 43-8	- ·					
LRF AND CONTAINMENT EFFECTIVENESS BY ACCIDENT CLASS												
	2E	2L	2R	1A	1P	3A	3C	3D	6		TOTAL	%
CDF	8.06E-08	2.40E-08	4.63E-08	5.01E-09	1.48E-09	4.43E-09	1.00E-08	5.97E-08	9.52E-09		2.41E-07	100.0%
CFE	3.22E-09	1.83E-13	1.00E-11	0.00E+00	1.48E-11	0.00E+00	9.99E-10	3.03E-09	1.86E-10		7.47E-09	38.3%
CFI	1.82E-10	4.72E-14	5.55E-12	0.00E+00	1.15E-13	0.00E+00	1.08E-12	1.70E-13	1.09E-14		1.89E-10	1.0%
CFV	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00		0.00E+00	0.0%
CFL	1.34E-13	2.35E-14	5.20E-14	9.71E-15	0.00E+00	2.42E-14	1.04E-14	8.60E-14	5.44E-15		3.45E-13	0.0%
CI	1.32E-10	5.83E-10	7.67E-11	4.60E-12	1.32E-12	6.33E-12	2.66E-11	3.62E-10	1.40E-10		1.33E-09	6.8%
BP	0.00E+00	0.00E+00	0.00E+00	2.04E-09	6.05E-10	4.08E-09	0.00E+00	0.00E+00	3.78E-09		1.05E-08	53.9%
LRF	3.54E-09	5.83E-10	9.23E-11	2.05E-09	6.21E-10	4.08E-09	1.03E-09	3.40E-09	4.11E-09		1.95E-08	100.0%
	18.2%	3.0%	0.5%	10.5%	3.2%	20.9%	5.3%	17.4%	21.1%		· ·	
CNTM-EFF	95.6%	97.6%	99.8%	59.1%	57.9%	7.8%	89.7%	94.3%	56.9%		91.9%	

**Revision** 4

- 16

AP1000 Probabilistic Risk Assessment

	Table 43-9							
SUMMARY	OF AP1000 LH	RF QUANTIFIC	CATION FOR INTERNAL EVENTS AT-POWER					
CDF			2.41E-07/year					
LRF			1.95E-08/year					
Containment Effectiveness			91.9%					
Dominant Accident Classes								
6	4.11E-09	21.1%	Containment Bypass by SGTR or ISLOCA					
3A	4.08E-09	20.9%	High RCS Pressure and ATWS					
2E	3.54E-09	18.2%	RCS Depressurized					
3D	3.40E-09	17.4%	Partial RCS Depressurization					
1A	2.05E-09	10.5%	High RCS Pressure (Transient or SLOCA)					
3C	1.03E-09	5.3%	Vessel Failure					
1P	6.21E-10	3.2%	High RCS Pressure (PRHR operating)					
2L	5.83E-10	3.0%	RCS Depres.(Gravity Injection succ.; Sump Recirc. fails)					
2R	9.23E-11	0.5%	RCS Depressurized (CMT and ACC fail)					
Total	1.95E-08	100%						
Dominant Relea	ase Categories							
BP	1.05E-08	53.9%	Containment Bypass					
CFE	7.47E-09	38.3%	Early Containment Failure					
CI	1.33E-09	6.8%	Containment Isolation Failure					
Total	1.93E-08	99.0%						

# AP1000 Probabilistic Risk Assessment

Table 43-10							
	CET EVEN	TT TREE NODE	IMPORTANCE	S			
CET NODE	LRF (per year)	Containment Failure Prob	Containment Effectiveness	Node Failed in Following PDS			
BASE LRF	1.95E-08	8.1%	91.9%	N/A			
DP RCS Depressurization	2.91E-08	12.1%	87.9%	1A, 1AP, 3A, and 6 set to 1.0.			
IS Containment Isolation	2.41E-07	100.0%	0.0%	all PDS set to 1.0			
IR Cavity Flooding	1.58E-07	65.6%	34.4%	3BE, 3D, 6 set to 1.0			
RFL Core Reflooding	1.91E-08	7.9%	92.1%	3BE set to 1.0			
VF Vessel Failure	2.85E-08	11.8%	88.2%	3C set to 1.0			
PC PCS Failure	2.41E-07	100.0%	0.0%	all PDS set to 1.0			
IG Hydrogen Igniter Failure	6.28E-08	26.0%	74.0%	all PDS set to 1.0			
DF Diffusion Flame	1.41E-07	58.3%	41.7%	3D and 1AP set to 1.0; 3BE set to 0.8535 (85% of 3BE are SI-LB events where DF may exist. Diffusion flame does not apply to other PDS.			
DTE Early DDT	2.16E-08	9.0%	91.0%	all PDS set to 1.0			
DFG Hydrogen Deflagration	2.17E-08	9.0%	91.0%	all PDS set to 1.0			
DTI Intermediate DDT	2.17E-08	9.0%	91.0%	all PDS set to 1.0			

1

AP1000 Probabilistic Risk Assessment

Table 43-11									
CONTRIBUTION OF INITIATING EVENTS TO LARGE RELEASE									
	Initiating Event Category	Percentage Contribution to LRF	LRF Contribution	Initiating Event Frequency					
1	IEV-ATWS	17.11	3.27E-09	4.81E-01					
2	IEV-SGTR	15.87	3.04E-09	3.88E-03					
3	IEV-SPADS	13.14	2.51E-09	5.40E-05					
4	IEV-SI-LB	9.82	1.88E-09	2.12E-04					
5	IEV-TRANS	7.49	1.43E-09	1.40E+00					
6	IEV-SLOCA	5.94	1.14E-09	5.00E-04					
7	IEV-RV-RP	5.37	1.03E-09	1.00E-08					
8	IEV-MLOCA	4.71	9.02E-10	4.36E-04					
9	IEV-ATW-T	3.72	7.12E-10	1.17E+00					
10	IEV-LCOND	2.73	5.22E-10	1.12E-01					
11	IEV-LOSP	2.46	4.70E-10	1.20E-01					
12	IEV-LMFW	1.98	3.80E-10	3.35E-01					
13	IEV-LLOCA	1.65	3.16E-10	5.00E-06					
14	IEV-RCSLK	1.53	2.93E-10	6.20E-03					
15	IEV-SLB-V	1.22	2.33E-10	2.39E-03					
16	IEV-LMFW1	1.11	2.12E-10	1.92E-01					
17	IEV-CMTLB	1.03	1.98E-10	9.31E-05					
18	IEV-LCCW	0.72	1.37E-10	1.44E-01					
19	IEV-ATW-S	0.53	1.01E-10	1.48E-02					
20	IEV-LCAS	0.52	1.00E-10	3.48E-02					
21	IEV-POWEX	0.50	9.49E-11	4.50E-03					
22	IEV-PRSTR	0.45	8.64E-11	1.34E-04					
23	IEV-SLB-U	0.26	4.97E-11	3.72E-04					
24	IEV-LRCS	0.08	1.58E-11	1.80E-02					
25	IEV-SLB-D	0.05	9.07E-12	5.96E-04					
26	IEV-ISLOC	0.00	4.74E-13	5.00E-11					
	Totals	100.00	1.91E-08	2.38E+00					

	Table 43-12 (Sheet 1 of 9)							
	LRF SENSITIVITY CASE - NON CREDIT FOR STANDBY NON-SAFETY SYSTEMS							
Number	Cutset Prob.	Percent	Basic Event Name	Event Prob.	Basic Event Identifier			
1	1.68E-06	32.33	TRANSIENT WITH MFW INITIATING EVENT OCCURS	1.40E+00	IEV-TRANS			
A			SOFTWARE CCF OF ALL CARDS	1.20E-06	CCX-SFTW			
2	9.24E-07	17.78	LOSS OF OFFSITE POWER INITIATING EVENT OCCURS	1.20E-01	IEV-LOSP			
			FAILURE TO RECOVER OFFSITE AC POWER IN 30 MINUTES	7.00E-01	OTH-R05			
			CCF OF PMS ESF OUTPUT LOGIC SOFTWARE	1.10E-05	CCX-PMXMOD1-SW			
3	7.24E-07	13.93	LOSS OF OFFSITE POWER INITIATING EVENT OCCURS	1.20E-01	IEV-LOSP			
			FAILURE TO RECOVER OFFSITE AC POWER IN 30 MINUTES	7.00E-01	OTH-R05			
		-	CCF OF EPO BOARDS IN PMS	8.62E-06	CCX-EP-SAM			
4	4.02E-07	7.74	LOSS OF MAIN FEEDWATER INITIATING EVENT OCCURS	3.35E-01	IEV-LMFW			
			SOFTWARE CCF OF ALL CARDS	1.20E-06	CCX-SFTW			
5	2.30E-07	4.43	LOSS OF MFW TO ONE SG INITIATING EVENT OCCURS	1.92E-01	IEV-LMFW1			
			SOFTWARE CCF OF ALL CARDS	1.20E-06	CCX-SFTW			
6	1.73E-07	3.33	LOSS OF CCW/SW INITIATING EVENT OCCURS	1.44E-01	IEV-LCCW			
		]	SOFTWARE CCF OF ALL CARDS	1.20E-06	CCX-SFTW			
7	1.34E-07	2.58	LOSS OF CONDENSER INITIATING EVENT OCCURS	1.12E-01	IEV-LCOND			
			SOFTWARE CCF OF ALL CARDS	1.20E-06	CCX-SFTW			

	Table 43-12 (Sheet 2 of 9)							
LRF SENSITIVITY CASE – NON CREDIT FOR STANDBY NON-SAFETY SYSTEMS								
Number	Cutset Prob.	Percent	Basic Event Name	Event Prob.	Basic Event Identifier			
8	1.01E-07	1.94	LOSS OF OFFSITE POWER INITIATING EVENT OCCURS	1.20E-01	IEV-LOSP			
			FAILURE TO RECOVER OFFSITE AC POWER IN 30 MINUTES	7.00E-01	OTH-R05			
			SOFTWARE CCF OF ALL CARDS	1.20E-06	CCX-SFTW			
9	7.44E-08	1.43	RCS LEAK INITIATING EVENT OCCURS	6.20E-03	IEV-RCSLK			
			CCF OF STRAINERS IN IRWST TANK	1.20E-05	IWX-FL-GP			
10	6.82E-08	1.31	RCS LEAK INITIATING EVENT OCCURS	6.20E-03	IEV-RCSLK			
			CCF OF PMS ESF OUTPUT LOGIC SOFTWARE	1.10E-05	CCX-PMXMOD1-SW			
11	6.01E-08	1.16	STEAM GENERATOR TUBE RUPTURE INITIATING EVENT OCCURS	3.88E-03	IEV-SGTR			
			OPERATOR FAILS TO FULFIL MANUAL ACTUATION OF ADS	5.00E-01	ADF-MAN01			
			COMMON CAUSE FAILURE OF 4 AOVS TO OPEN	6.20E-05	CCX-AV-LA			
			COND. PROB. OF ADN-MAN01(OPER. FAILS TO ACT. ADS)	5.00E-01	ADN-MAN01C			
12	5.34E-08	1.03	RCS LEAK INITIATING EVENT OCCURS	6.20E-03	IEV-RCSLK			
			CCF OF EPO BOARDS IN PMS	8.62E-06	CCX-EP-SAM			
13	4.27E-08	0.82	STEAM GENERATOR TUBE RUPTURE INITIATING EVENT OCCURS	3.88E-03	IEV-SGTR			
			CCF OF PMS ESF OUTPUT LOGIC SOFTWARE	1.10E-05	CCX-PMXMOD1-SW			

(—

### AP1000 Probabilistic Risk Assessment

		<u></u>	Table 43-12 (Sheet 3 of 9)		
		LRF SEN	SITIVITY CASE – NON CREDIT FOR STANDBY NON-SAFET	TY SYSTEMS	ан ал 1
Number	Cutset Prob.	Percent	Basic Event Name	Event Prob.	Basic Event Identifier
14	4.07E-08	0.78	STEAM GENERATOR TUBE RUPTURE INITIATING EVENT OCCURS	3.88E-03	IEV-SGIR
			OPERATOR FAILS TO FULFIL MANUAL ACTUATION OF ADS	5.00E-01	ADF-MAN01
			COMMON CAUSE FAILURE TO OPEN OF 4.16 KVAC CIRCUIT BREAK	4.20E-04	RPX-CB-GO
			COND. PROB. OF AND-MAN01(OPER. FAILS TO ACT. ADS)	5.00E-01	AND-MAN01C
			LATE ADS RECOVERY BY OPERATOR ACTION	1.00E-01	PDS6-MANADS
15	3.34E-08	0.64	STEAM GENERATOR TUBE RUPTURE INITIATING EVENT OCCURS	3.88E-03	IEV-SGTR
			CCF OF EPO BOARDS IN PMS	8.62E-06	CCX-EP-SAM
16	3.00E-08	0.58	ATWS PRECURSOR WITH NO MFW INITIATING EVENT OCCURS	4.81E-01	IEV-ATWS
			SOFTWARE CCF OF ALL CARDS	1.20E-06	CCX-SFTW
			OPERATOR FAILS TO MANUALLY TRIP REACTOR VIA PMS	5.20E-02	ATW-MAN03
17	2.63E-08	0.51	MAIN STEAM LINE STUCK-OPEN SV INITIATING EVENT OCCURS	2.39E-03	IEV-SLB-V
	· · · · · ·		CCF OF PMS ESF OUTPUT LOGIC SOFTWARE	1.10E-05	CCX-PMXMOD1-SW
18	2.59E-08	0.5	LOSS OF CONDENSER INITIATING EVENT OCCURS	1.12E-01	IEV-LCOND
			ANY SECOND. SIDE RELIEF VALVE FAILS TO CLOSE (2 SV + PORV)	2.10E-02	OTH-SLSOV1
			CCF OF PMS ESF OUTPUT LOGIC SOFTWARE	1.10E-05	CCX-PMXMOD1-SW
19	2.16E-08	0.42	LOSS OF RSC FLOW INITIATING EVENT OCCURS	1.80E-02	IEV-LRCS
	}		SOFTWARE CCF OF ALL CARDS	1.20E-06	CCX-SFTW

**Revision 4** 

 $\leftarrow$ 

	Table 43-12 (Sheet 4 of 9)							
	LRF SENSITIVITY CASE – NON CREDIT FOR STANDBY NON-SAFETY SYSTEMS							
Number	Cutset Prob.	Percent	Basic Event Name	Event Prob.	Basic Event Identifier			
20	2.06E-08	0.4	MAIN STEAM LINE STUCK-OPEN SV INITIATING EVENT OCCURS	2.39E-03	IEV-SLB-V			
			CCF OF EPO BOARDS IN PMS	8.62E-06	CCX-EP-SAM			
21	2.03E-08	0.39	LOSS OF CONDENSER INITIATING EVENT OCCURS	1.12E-01	IEV-LCOND			
			ANY SECOND. SIDE RELIEF VALVE FAILS TO CLOSE (2 SV + PORV)	2.10E-02	OTH-SLSOV1			
			CCF OF EPO BOARDS IN PMS	8.62E-06	CCX-EP-SAM			
22	1.08E-08	0.21	TRANSIENT WITH MFW INITIATING EVENT OCCURS	1.40E+00	IEV-TRANS			
			CCF NON-SAFETY TRANSMITTERS INTERFACING SYSTEM PRESSU	4.78E-04	CCX-TRNSM			
			CCF OF 4 COMBINATIONS OF 3 STAGES #2 AND #3 MOVS	3.24E-04	ADX-MV3-GO			
			LATE ADS ACTUATION BY OPERATOR ACTION	5.00E-02	AND-REC01			
23	1.08E-08	0.21	TRANSIENT WITH MFW INITIATING EVENT OCCURS	1.40E+00	IEV-TRANS			
			CCF NON-SAFETY TRANSMITTERS INTERFACING SYSTEM PRESSU	4.78E-04	CCX-TRNSM			
	ĺ	1	CCF OF 4 COMBINATIONS OF 3 STAGES #2 AND #3 MOVS	3.24E-04	ADX-MV3-GO			
			OPERATOR FAILS TO RECOGNIZE NEED FOR RCS DEPR. AFTER CORE DAMAGE	5.00E-02	LPM-REC01			
24	9.14E-09	0.18	CORE REFLOODING IS SUCCESSFUL	7.33E-01	SUC-RFL			
			CONTAINMENT FAILS DUE HYDROGEN DETONATION	2.45E-01	OTH-DTE			
			SAFETY INJECTION LINE BREAK INITIATING EVENT OCCURS	2.12E-04	IEV-SI-LB			
			IWRST DISCHARGE LINE "A" STRAINER PLUGGED	2.40E-04	IWA-PLUG			

AP1000 Probabilistic Risk Assessment

			Table 43-12 (Sheet 5 of 9)					
LRF SENSITIVITY CASE – NON CREDIT FOR STANDBY NON-SAFETY SYSTEMS								
Number	Cutset Prob,	Percent	Basic Event Name	Event Prob.	Basic Event Identifier			
25	7.44E-09	0.14	RCS LEAK INITIATING EVENT OCCURS	6.20E-03	IEV-RCSLK			
			SOFTWARE CCF OF ALL CARDS	1.20E-06	CCX-SFTW			
26	7.36E-09	0.14	TRANSIENT WITH MFW INITIATING EVENT OCCURS	1.40E+00	IEV-TRANS			
	1.		CCF NON-SAFETY TRANSMITTERS INTERFACING SYSTEM PRESSU	4.78E-04	CCX-TRNSM			
			CCF OF PMS ESF OUTPUT LOGIC SOFTWARE	1.10E-05	CCX-PMXMOD1-SW			
27	6.56E-09	0.13	STEAM LINE BREAK DOWNSTREAM OF MSIV INITIATING EVENT OCCURS	5.96E-04	IEV-SLB-D			
			CCF OF PMS ESF OUTPUT LOGIC SOFTWARE	1.10E-05	CCX-PMXMOD1-SW			
28	6.22E-09	0.12	CONTAINMENT FAILURE DUE TO DIFFUSION FLAME	1.70E-02	OTH-DF			
			RCS LEAK INITIATING EVENT OCCURS	6.20E-03	IEV-RCSLK			
			CCF OF 2 SQUIB VALVES TO OPERATE	5.90E-05	ADX-EV-SA2			
29	6.15E-09	0.12	LOSS OF MAIN FEEDWATER INITIATING EVENT OCCURS	3.35E-01	IEV-LMFW			
		• •	CCF OF SAFETY PT LT CONTINUOUSLY INTERFACING HIGH PRESSURE	4.78E-04	CCX-XMTR			
			CCF OF RTD LEVEL TRANSMITTERS	3.84E-05	CMX-VS-FA			
30	6.00E-09	0.12	SMALL LOCA INITIATING EVENT OCCURS	5.00E-04	IEV-SLOCA			
		н н н н	CCF OF STRAINERS IN IRWST TANK	1.20E-05	IWX-FL-GP			

.

	Table 43-12 (Sheet 6 of 9)							
	LRF SENSITIVITY CASE – NON CREDIT FOR STANDBY NON-SAFETY SYSTEMS							
Number	Cutset Prob.	Percent	Basic Event Name	Event Prob.	Basic Event Identifier			
31	5.77E-09	0.11	TRANSIENT WITH MFW INITIATING EVENT OCCURS	1.40E+00	IEV-TRANS			
			CCF NON-SAFETY TRANSMITTERS INTERFACING SYSTEM PRESSU	4.78E-04	CCX-TRNSM			
			CCF OF EPO BOARDS IN PMS	8.62E-06	CCX-EP-SAM			
32	5.71E-09	0.11	ATWS PRECURSOR WITH NO MFW INITIATING EVENT OCCURS	4.81E-01	IEV-ATWS			
			OPERATOR FAILS TO MANUALLY TRIP REACTOR VIA PMS	5.20E-02	ATW-MAN03			
			CCF OF SAFETY PT LT CONTINUOUSLY INTERFACING HIGH PRESSURE	4.78E-04	CCX-XMTR			
			COMMON CAUSE FAILURE OF PZR LEVEL SENSORS	4.78E-04	CCX-XMTR195			
33	5.50E-09	0.11	SMALL LOCA INITIATING EVENT OCCURS	5.00E-04	IEV-SLOCA			
			CCF OF PMS ESF OUTPUT LOGIC SOFTWARE	1.10E-05	CCX-PMXMOD1-SW			
34	5.40E-09	0.1	CORE POWER EXCURSION INITIATING EVENT OCCURS	4.50E-03	IEV-POWEX			
			SOFTWARE CCF OF ALL CARDS	1.20E-06	CCX-SFTW			
35	5.23E-09	0.1	MEDIUM LOCA INITIATING EVENT OCCURS	4.36E-04	IEV-MLOCA			
			CCF OF STRAINERS IN IRWST TANK	1.20E-05	IWX-FL-GP			
36	5.14E-09	0.1	STEAM LINE BREAK DOWNSTREAM OF MSIV INITIATING EVENT OCCURS	5.96E-04	IEV-SLB-D			
			CCF OF EPO BOARDS IN PMS	8.62E-06	CCX-EP-SAM			

( -

### AP1000 Probabilistic Risk Assessment

			Table 43-12 (Sheet 7 of 9)					
	LRF SENSITIVITY CASE - NON CREDIT FOR STANDBY NON-SAFETY SYSTEMS							
Number	Cutset Prob.	Percent	Basic Event Name	Event Prob.	Basic Event Identifier			
- 37	4.95E-09	0.1	STEAM GENERATOR TUBE RUPTURE INITIATING EVENT OCCURS	3.88E-03	IEV-SGTR			
			OPERATOR FAILS TO FULFIL MANUAL ACTUATION OF ADS	5.00E-01	ADF-MAN01			
		• •	COMMON CAUSE FAILURE OF 4 CHECK VALVES TO OPEN	5.10E-05	CMX-CV-GO			
			COND. PROB. OF AND-MAN01(OPER. FAILS TO ACT. ADS)	5.00E-01	AND-MAN01C			
			LATE ADS RECOVERY BY OPERATOR ACTION	1.00E-01	PDS6-MANADS			
38	4.92E-09	0.09	STEAM GENERATOR TUBE RUPTURE INITIATING EVENT OCCURS	3.88E-03	IEV-SGTR			
	р. т. с. т. с. т. с. т. с	· · ·	COMMON CAUSE FAILURE TO OPEN OF 4.16 KVAC CIRCUIT BREAK	4.20E-04	RPX-CB-GO			
			OPER. FAILS TO FULFIL MANUAL ACTUATION OF ADS	3.02E-03	AND-MAN01			
39	4.80E-09	0.09	MEDIUM LOCA INITIATING EVENT OCCURS	4.36E-04	IEV-MLOCA			
			CCF OF PMS ESF OUTPUT LOGIC SOFTWARE	1.10E-05	CCX-PMXMOD1-SW			
40	4.66E-09	0.09	STEAM GENERATOR TUBE RUPTURE INITIATING EVENT OCCURS	3.88E-03	IEV-SGTR			
			SOFTWARE CCF OF ALL CARDS	1.20E-06	CCX-SFTW			
41	4.31E-09	0.08	SMALL LOCA INITIATING EVENT OCCURS	5.00E-04	IEV-SLOCA			
			CCF OF EPO BOARDS IN PMS	8.62E-06	CCX-EP-SAM			
42	3.83E-09	0.07	LOSS OF COMPRESSED AIR INITIATING EVENT OCCURS	3.48E-02	IEV-LCAS			
			ANY SECOND. SIDE RELIEF VALVE FAILS TO CLOSE (1 SV)	1.00E-02	OTH-SLSOV2			
			CCF OF PMS ESF OUTPUT LOGIC SOFTWARE	1.10E-05	CCX-PMXMOD1-SW			

í___

	Table 43-12 (Sheet 8 of 9)							
LRF SENSITIVITY CASE - NON CREDIT FOR STANDBY NON-SAFETY SYSTEMS								
Number	Cutset Prob.	Percent	Basic Event Name	Event Prob.	Basic Event Identifier			
43	3.76E-09	0.07	MEDIUM LOCA INITIATING EVENT OCCURS	4.36E-04	IEV-MLOCA			
			CCF OF EPO BOARDS IN PMS	8.62E-06	CCX-EP-SAM			
44	3.49E-09	0.07	SUCCESS OF CORE REFLOODING	7.33E-01	SUC-RFL			
			NO CONTAINMENT FAILURE FROM HYDROGEN DETONATION	7.55E-01	SUC-DTE			
			CONTAINMENT FAILURE DUE TO HYDROGEN DEFLAGTO-DETON. TRANSITION	1.24E-01	OTH-DTI-1			
			SAFETY INJECTION LINE BREAK INITIATING EVENT OCCURS	2.12E-04	IEV-SI-LB			
			IWRST DISCHARGE LINE "A" STRAINER PLUGGED	2.40E-04	IWA-PLUG			
45	3.39E-09	0.07	CONTAINMENT FAILS DUE HYDROGEN DETONATION	1.15E-01	OTH-DTE-3D			
			SMALL LOCA INITIATING EVENT OCCURS	5.00E-04	IEV-SLOCA			
			CCF OF 2 SQUIB VALVES TO OPERATE	5.90E-05	ADX-EV-SA2			
46	3.16E-09	0.06	CONTAINMENT FAILURE FROM DIFFUSION FLAME	1.70E-02	OTH-DF			
			RCS LEAK INITIATING EVENT OCCURS	6.20E-03	IEV-RCSLK			
			DUE TO CCF OF 4TH STAGE ADS SQUIB VALVES TO OPERATE	3.00E-05	ADX-EV-SA			
47	3.00E-09	0.06	LOSS OF COMPRESSED AIR INITIATING EVENT OCCURS	3.48E-02	IEV-LCAS			
			ANY SECOND. SIDE RELIEF VALVE FAILS TO CLOSE (1 SV)	1.00E-02	OTH-SLSOV2			
			CCF OF EPO BOARDS IN PMS	8.62E-06	CCX-EP-SAM			

Table 43-12 (Sheet 9 of 9)									
Cutset         Event         Basic Event Name           Number         Prob.         Percent         Basic Event Name									
48	2.96E-09	0.06	CONTAINMENT FAILS DUE HYDROGEN DETONATION	1.15E-01	OTH-DTE-3D				
			MEDIUM LOCA INITIATING EVENT OCCURS	4.36E-04	IEV-MLOCA				
			CCF OF 2 SQUIB VALVES TO OPERATE	5.90E-05	ADX-EV-SA2				
49	2.87E-09	0.06	MAIN STEAM LINE STUCK-OPEN SV INITIATING EVENT OCCURS	2.39E-03	IEV-SLB-V				
			SOFTWARE CCF OF ALL CARDS	1.20E-06	CCX-SPTW				
50	2.69E-09	0.05	SUCCESS OF CORE REFLOODING	7.33E-01	SUC-RFL				
			CONTAINMENT FAILS DUE HYDROGEN DETONATION	2.45E-01	OTH-DIE				
	, ,		SMALL LOCA INITIATING EVENT OCCURS	5.00E-04	IEV-SLOCA				
			CCF OF 4 GRAVITY INJECTION CVs	3.00E-05	IWX-CV-AO				

43-105

	Table 43-13 (Sheet 1 of 13)							
LRF CUTSETS FOR THE CASE – SENSITIVITY TO STANDBY SYSTEMS WITH CREDIT FOR MANUAL DAS								
Number	Cutset Prob.	Percent	Basic Event Name	Event Prob.	Identifier			
1	7.44E-08	19.12	RCS LEAK INITIATING EVENT OCCURS	6.20E-03	IEV-RCSLK			
			CCF OF STRAINERS IN IRWST TANK	1.20E-05	IWX-FL-GP			
2	2.06E-08	5.29	STEAM GENERATOR TUBE RUPTURE INITIATING EVENT OCCURS	3.88E-03	IEV-SGTR			
			OPERATOR FAILS TO FULFILL MANUAL ACTUATION OF ADS	5.00E-01	ADF-MAN01			
			COMMON CAUSE FAILURE TO OPEN OF 4.16 KVAC CIRCUIT BREAKERS	4.20E-04	RPX-CB-GO			
			COND. PROB. OF REC-MANDAS (FAILURE OF MANUAL DAS ACT.)	5.06E-01	REC-MANDASC			
			COND. PROB. OF AND-MAN01(OPER. FAILS TO ACT. ADS)	5.00E-01	AND-MAN01C			
			LATE ADS RECOVERY BY OPERATOR ACTION	1.00E-01	PDS6-MANADS			
3	1.95E-08	5.01	TRANSIENT WITH MFW INITIATING EVENT OCCURS	1.40E+00	IEV-TRANS			
			SOFTWARE CCF OF ALL CARDS	1.20E-06	CCX-SFTW			
			FAILURE OF MANUAL DAS ACT.	1.16E-02	REC-MANDAS			
4	1.68E-08	4.32	TRANSIENT WITH MFW INITIATING EVENT OCCURS	1.40E+00	IEV-TRANS			
			SOFTWARE CCF OF ALL CARDS	1.20E-06	CCX-SFTW			
			FAILURE OF MANUAL DAS REACTOR TRIP HARDWARE	1.00E-02	MDAS			

LRF CUTSETS FOR THE CASE – SENSITIVITY TO STANDBY SYSTEMS WITH CREDIT FOR MANUAL DAS								
Number	Cutset Prob.	Percent	Basic Event Name	Event Prob.	Identifier			
5	1.58E-08	4.06	ATWS PRECURSOR WITH NO MFW INITIATING EVENT OCCURS	4.81E-01	IEV-ATWS			
		·	SOFTWARE CCF OF ALL CARDS	1.20E-06	CCX-SFTW			
n ar An Anna an Anna			OPERATOR FAILS TO MANUALLY TRIP REACTOR VIA PMS	5.20E-02	ATW-MAN03			
			COND. PROB. OF ATW-MAN04 (OPER. FAILS TO TRIP REACTOR)	5.26E-01	ATW-MAN04C			
6	1.07E-08	2.75	LOSS OF OFFSITE POWER INITIATING EVENT OCCURS	1.20E-01	IEV-LOSP			
		a da da seria da ser Esta da seria	FAILURE TO RECOVER OFFSITE AC POWER IN 30 MINUTES	7.00E-01	OTH-R05			
			FAILURE OF MANUAL DAS ACT.	1.16E-02	REC-MANDAS			
			CCF OF PMS ESF OUTPUT LOGIC SOFTWARE	1.10E-05	CCX-PMXMOD1-SV			
7	9.24E-09	2.37	LOSS OF OFFSITE POWER INITIATING EVENT OCCURS	1.20E-01	IEV-LOSP			
		e a care e	FAILURE TO RECOVER OFFSITE AC POWER IN 30 MINUTES	7.00E-01	OTH-R05			
· .			FAILURE OF MANUAL DAS REACTOR TRIP HARDWARE	1.00E-02	MDAS			
			CCF OF PMS ESF OUTPUT LOGIC SOFTWARE	1.10E-05	CCX-PMXMOD1-SV			
8	9.14E-09	2.35	CORE REFLOODING IS SUCCESSFUL	7.33E-01	SUC-RFL			
		н н н	CONTAINMENT FAILS DUE HYDROGEN DETONATION	2.45E-01	OTH-DTE			
		4	SAFETY INJECTION LINE BREAK INITIATING EVENT OCCURS	2.12E-04	IEV-SI-LB			
			IWRST DISCHARGE LINE "A" STRAINER PLUGGED	2.40E-04	IWA-PLUG			

**Revision 4** 

(----

	Table 43-13 (Sheet 3 of 13)								
	LRF CUTSETS FOR THE CASE – SENSITIVITY TO STANDBY SYSTEMS WITH CREDIT FOR MANUAL DAS								
Number	Cutset Prob.	Percent	Basic Event Name	Event Prob.	Identifier				
9	8.40E-09	2.16	LOSS OF OFFSITE POWER INITIATING EVENT OCCURS	1.20E-01	IEV-LOSP				
			FAILURE TO RECOVER OFFSITE AC POWER IN 30 MINUTES	7.00E-01	OTH-R05				
			FAILURE OF MANUAL DAS ACT.	1.16E-02	REC-MANDAS				
	L		CCF OF EPO BOARDS IN PMS	8.62E-06	CCX-EP-SAM				
10	7.24E-09	1.86	LOSS OF OFFSITE POWER INITIATING EVENT OCCURS	1.20E-01	IEV-LOSP				
			FAILURE TO RECOVER OFFSITE AC POWER IN 30 MINUTES	7.00E-01	OTH-R05				
			FAILURE OF MANUAL DAS REACTOR TRIP HARDWARE	1.00E-02	MDAS				
			CCF OF EPO BOARDS IN PMS	8.62E-06	CCX-EP-SAM				
11	6.22E-09	1.6	CONTAINMENT FAILURE DUE TO DIFFUSION FLAME	1.70E-02	OTH-DF				
			RCS LEAK INITIATING EVENT OCCURS	6.20E-03	IEV-RCSLK				
			CCF OF 2 SQUIB VALVES TO OPERATE	5.90E-05	ADX-EV-SA2				
12	6.00E-09	1.54	SMALL LOCA INITIATING EVENT OCCURS	5.00E-04	IEV-SLOCA				
	-		CCF OF STRAINERS IN IRWST TANK	1.20E-05	IWX-FL-GP				

## _____

• • • •

#### AP1000 Probabilistic Risk Assessment

			Table 43-13 (Sheet 4 of 13)	· · ·				
LRF CUTSETS FOR THE CASE – SENSITIVITY TO STANDBY SYSTEMS WITH CREDIT FOR MANUAL DAS								
Number	Cutset Prob.	Percent	Basic Event Name	Event Prob.	Identifier			
13	5.49E-09	1.41	TRANSIENT WITH MFW INITIATING EVENT OCCURS	1.40E+00	IEV-TRANS			
			CCF NON-SAFETY TRANSMITTERS INTERFACING SYSTEM PRESSURE	4.78E-04	CCX-TRNSM			
a		·	COND. PROB. OF REC-MANDAS (FAILURE OF MANUAL DAS ACT.)	5.06B-01	REC-MANDASC			
			CCF OF 4 COMBINATIONS OF 3 STAGES #2 AND #3 MOVS	3.24E-04	ADX-MV3-GO			
. *			OPERATOR FAILS TO ACTUATE ADS AFTER CORE DAMAGE	5.00E-02	LPM-REC01			
14	5.49E-09	1.41	TRANSIENT WITH MFW INITIATING EVENT OCCURS	1.40E+00	IEV-TRANS			
			CCF NON-SAFETY TRANSMITTERS INTERFACING SYSTEM PRESSURE	4.78E-04	CCX-TRNSM			
			COND. PROB. OF REC-MANDAS (FAILURE OF MANUAL DAS ACT.)	5.06E-01	REC-MANDASC			
· · · ·			CCF OF 4 COMBINATIONS OF 3 STAGES #2 AND #3 MOVS	3.24E-04	ADX-MV3-GO			
			OPERATOR FAILS TO ACTUATE ADS AFTER CORE DAMAGE	5.00E-02	ADN-REC01			
15	5.23E-09	1.34	MEDIUM LOCA INITIATING EVENT OCCURS	4.36E-04	IEV-MLOCA			
			CCF OF STRAINERS IN IRWST TANK	1.20E-05	IWX-FL-GP			
16	4.66E-09	1.2	LOSS OF MAIN FEEDWATER INITIATING EVENT OCCURS	3.35E-01	IEV-LMFW			
			SOFTWARE CCF OF ALL CARDS	1.20E-06	CCX-SFTW			
	· ·	· · .	FAILURE OF MANUAL DAS ACT.	1.16E-02	REC-MANDAS			

43-109

**Revision 4** 

20

(-----

	Table 43-13 (Sheet 5 of 13)								
	LRF CUTSETS FOR THE CASE – SENSITIVITY TO STANDBY SYSTEMS WITH CREDIT FOR MANUAL DAS								
Number	Cutset Prob.	Percent	Basic Event Name	Event Prob.	Identifier				
17	4.02E-09	1.03	LOSS OF MAIN FEEDWATER INITIATING EVENT OCCURS	3.35E-01	IEV-LMFW				
			SOFTWARE CCF OF ALL CARDS	1.20E-06	CCX-SFTW				
			FAILURE OF MANUAL DAS REACTOR TRIP HARDWARE	1.00E-02	MDAS				
18	3.49E-09	0.9 0.9	CORE REFLOODING IS SUCCESSFUL	7.33E-01	SUC-RFL				
			NO CONTAINMENT FAILURE FROM HYDROGEN DETONATION	7.55E-01	SUC-DTE				
	1		OTH-DTI-1	1.24E-01	OTH-DTI-1				
			SAFETY INJECTION LINE BREAK INITIATING EVENT OCCURS	2.12E-04	IEV-SI-LB				
			IWRST DISCHARGE LINE "A" STRAINER PLUGGED	2.40E-04	IWA-PLUG				
19	3.39E-09	0.87	CONTAINMENT FAILS DUE HYDROGEN DETONATION	1.15E-01	OTH-DTE-3D				
			SMALL LOCA INITIATING EVENT OCCURS	5.00E-04	IEV-SLOCA				
			CCF OF 2 SQUIB VALVES TO OPERATE	5.90E-05	ADX-EV-SA2				
20	3.16E-09	0.81	CONTAINMENT FAILURE DUE TO DIFFUSION FLAME	1.70E-02	OTH-DF				
			RCS LEAK INITIATING EVENT OCCURS	6.20E-03	IEV-RCSLK				
			DUE TO CCF OF 4TH STAGE ADS SQUIB VALVES TO OPERATE	3.00E-05	ADX-EV-SA				

### **Revision 4**

					IVAL DAS
Number	Cutset Prob.	Percent	Basic Event Name	- Event Prob.	Identifier
21	3.04E-09	0.78	STEAM GENERATOR TUBE RUPTURE INITIATING EVENT OCCURS	3.88E-03	IEV-SGTR
			OPERATOR FAILS TO FULFIL MANUAL ACTUATION OF ADS	5.00E-01	ADF-MAN01
			COMMON CAUSE FAILURE OF 4 AOVS TO OPEN	6.20E-05	CCX-AV-LA
			COND. PROB. OF REC-MANDAS (FAILURE OF MANUAL DAS ACT.)	5.06E-01	REC-MANDASC
			COND. PROB. OF ADN-MAN01(OPER. FAILS TO ACT. ADS)	5.00E-01	ADN-MAN01C
			PDS6-MANADS	1.00E-01	PDS6-MANADS
22	3.01E-09	0.77	ATWS PRECURSOR WITH NO MFW INITIATING EVENT OCCURS	4.81E-01	IEV-ATWS
an taon an Ar			OPERATOR FAILS TO MANUALLY TRIP REACTOR VIA PMS	5.20E-02	ATW-MAN03
			CCF OF SAFETY PT LT CONTINUOUSLY INTERFACING HIGH PRESSURE	4.78E-04	CCX-XMTR
			COMMON CAUSE FAILURE OF PZR LEVEL SENSORS	4.78E-04	CCX-XMTR195
			COND. PROB. OF ATW-MAN04 (OPER. FAILS TO TRIP REACTOR)	5.26E-01	ATW-MAN04C
23	2.96E-09	0.76	CONTAINMENT FAILS DUE HYDROGEN DETONATION	1.15E-01	OTH-DTE-3D
198 1		· · · · ·	MEDIUM LOCA INITIATING EVENT OCCURS	4.36E-04	IEV-MLOCA
. *	ta to a Alexandria		CCF OF 2 SQUIB VALVES TO OPERATE	5.90E-05	ADX-EV-SA2

43-111

**Revision 4** 

	Table 43-13 (Sheet 7 of 13)						
-	LRF CUTSE	TS FOR T	HE CASE – SENSITIVITY TO STANDBY SYSTEMS WITH CI	REDIT FOR MAN	UAL DAS		
Number	Cutset Prob.	Percent	Basic Event Name	Event Prob.	Identifier		
24	2.69E-09	0.69	CORE REFLOODING IS SUCCESSFUL	7.33E-01	SUC-RFL		
			CONTAINMENT FAILS DUE HYDROGEN DETONATION	2.45E-01	OTH-DTE		
			SMALL LOCA INITIATING EVENT OCCURS	5.00E-04	IEV-SLOCA		
			CCF OF 4 GRAVITY INJECTION CV8	3.00E-05	IWX-CV-AO		
25	2.67E-09	0.69	LOSS OF MFW TO ONE SG INITIATING EVENT OCCURS	1.92E-01	IEV-LMFW1		
			SOFTWARE CCF OF ALL CARDS	1.20E-06	CCX-SFTW		
			FAILURE OF MANUAL DAS ACT.	1.16E-02	REC-MANDAS		
26	2.50E-09	0.64	STEAM GENERATOR TUBE RUPTURE INITIATING EVENT OCCURS	3.88E-03	IEV-SGTR		
			OPERATOR FAILS TO FULFIL MANUAL ACTUATION OF ADS	5.00E-01	ADF-MAN01		
			COMMON CAUSE FAILURE OF 4 CHECK VALVES TO OPEN	5.10E-05	CMX-CV-GO		
			COND. PROB. OF REC-MANDAS (FAILURE OF MANUAL DAS ACT.)	5.06E-01	REC-MANDASC		
			COND. PROB. OF ADN-MAN01(OPER. FAILS TO ACT. ADS)	5.00E-01	ADN-MAN01C		
			LATE ADS RECOVERY BY OPERATOR ACTION	1.00E-01	PDS6-MANADS		
27	2.49E-09	0.64	STEAM GENERATOR TUBE RUPTURE INITIATING EVENT OCCURS	3.88E-03	IEV-SGTR		
			COMMON CAUSE FAILURE TO OPEN OF 4.16 KVAC CIRCUIT BREAKERS	4.20E-04	RPX-CB-GO		
			COND. PROB. OF REC-MANDAS (FAILURE OF MANUAL DAS ACT.)	5.06E-01	REC-MANDASC		
			OPER. FAILS TO FULFIL MANUAL ACTUATION OF ADS	3.02E-03	ADN-MAN01		

Revision 4

# AP1000 Probabilistic Risk Assessment

the second s			Table 43-13 (Sheet 8 of 13)					
LRF CUTSETS FOR THE CASE – SENSITIVITY TO STANDBY SYSTEMS WITH CREDIT FOR MANUAL DAS								
Number	Cutset Prob.	Percent	Basic Event Name	Event Prob.	Identifier			
28	2.35E-09	0.6	CORE REFLOODING IS SUCCESSFUL	7.33E-01	SUC-RFL			
1997) 1997)			CONTAINMENT FAILS DUE HYDROGEN DETONATION	2.45E-01	OTH-DTE			
			MEDIUM LOCA INITIATING EVENT OCCURS	4.36E-04	IEV-MLOCA			
			CCF OF 4 GRAVITY INJECTION CV8	3.00E-05	IWX-CV-AO			
29	2.33E-09	0.6	CORE REFLOODING IS SUCCESSFUL	7.33E-01	SUC-RFL			
			CONTAINMENT FAILS DUE HYDROGEN DETONATION	2.45E-01	OTH-DTE			
	an An an ang san		SMALL LOCA INITIATING EVENT OCCURS	5.00E-04	IEV-SLOCA			
: .			CCF OF 4 GRAVITY INJECTION & 2 RECIRCULATION SQUIB VALVES	2.60E-05	IWX-EV-SA			
30	2.30E-09	0.59	LOSS OF MFW TO ONE SG INITIATING EVENT OCCURS	1.92E-01	IEV-LMFW1			
			SOFTWARE CCF OF ALL CARDS	1.20E-06	CCX-SFTW			
	1 · · ·		FAILURE OF MANUAL DAS REACTOR TRIP HARDWARE	1.00E-02	MDAS			
31	2.04E-09	0.52	CORE REFLOODING IS SUCCESSFUL	7.33E-01	SUC-RFL			
· .			CONTAINMENT FAILS DUE HYDROGEN DETONATION	2.45E-01	OTH-DTE			
an a			MEDIUM LOCA INITIATING EVENT OCCURS	4.36E-04	IEV-MLOCA			
	e a ta		CCF OF 4 GRAVITY INJECTION & 2 RECIRCULATION SQUIB VALVES	2.60E-05	IWX-EV-SA			

**Revision 4** 

.

	Table 43-13 (Sheet 9 of 13)								
	LRF CUTSETS FOR THE CASE – SENSITIVITY TO STANDBY SYSTEMS WITH CREDIT FOR MANUAL DAS								
Number	Cutset Prob.	Percent	Basic Event Name	Event Prob.	Identifier				
32	2.00E-09	0.51	LOSS OF CCW/SW INITIATING EVENT OCCURS	1.44E-01	IEV-LCCW				
			SOFTWARE CCF OF ALL CARDS	1.20E-06	CCX-SFTW				
			FAILURE OF MANUAL DAS ACT.	1.16E-02	REC-MANDAS				
33	1.73E-09	0.44	LOSS OF CCW/SW INITIATING EVENT OCCURS	1.44E-01	IEV-LCCW				
			SOFTWARE CCF OF ALL CARDS	1.20E-06	CCX-SFTW				
			FAILURE OF MANUAL DAS REACTOR TRIP HARDWARE	1.00E-02	MDAS				
34	1.73E-09	0.44	CONTAINMENT FAILS DUE HYDROGEN DETONATION	1.15E-01	OTH-DTE-3D				
			SMALL LOCA INITIATING EVENT OCCURS	5.00E-04	IEV-SLOCA				
			DUE TO CCF OF 4TH STAGE ADS SQUIB VALVES TO OPERATE	3.00E-05	ADX-EV-SA				
35	1.71E-09	0.44	SUC-CFE	9.00E-01	SUC-CFE				
1			CONTAINMENT FAILS DUE HYDROGEN DETONATION	1.90E-01	OTH-DTE-2R				
			REACTOR VESSEL RUPTURE INITIATING EVENT OCCURS	1.00E-08	IEV-RV-RP				
36	1.66E-09	0.43	CONTAINMENT FAILS DUE HYDROGEN DETONATION	1.90E-01	OTH-DTE-2R				
			LARGE LOCA INITIATING EVENT OCCURS	5.00E-06	IEV-LLOCA				
			CHECK VALVE 028A FAILS TO OPEN	1.75E-03	ACACV028GO				

			Table 43-13 (Sheet 10 of 13)		· · · · · · · · · · · · · · · · · · ·	
	LRF CUTSE	TS FOR TI	HE CASE - SENSITIVITY TO STANDBY SYSTEMS WITH CR	EDIT FOR MAI	NUAL DAS	
Number	Cutset Prob	Percent	Basic Event Name	Event Prob.	Identifier	
37	1.66E-09	0.43	CONTAINMENT FAILS DUE HYDROGEN DETONATION	1.90E-01	OTH-DTE-2R	
			LARGE LOCA INITIATING EVENT OCCURS	5.00E-06	IEV-LLOCA	
			CHECK VALVE 029B FAILS TO OPEN	1.75E-03	ACBCV029GO	
38	1.66E-09 0.	1.66E-09	0.43	CONTAINMENT FAILS DUE HYDROGEN DETONATION	1.90E-01	OTH-DTE-2R
				LARGE LOCA INITIATING EVENT OCCURS	5.00E-06	IEV-LLOCA
			CHECK VALVE 028B FAILS TO OPEN	1.75E-03	ACBCV028GO	
39	1.66E-09	0.43	CONTAINMENT FAILS DUE HYDROGEN DETONATION	1.90E-01	OTH-DTE-2R	
			LARGE LOCA INITIATING EVENT OCCURS	5.00E-06	IEV-LLOCA	
			CHECK VALVE 029A FAILS TO OPEN	1.75E-03	ACACV029GO	
40	1.61E-09	0.41	RCS LEAK INITIATING EVENT OCCURS	6.20E-03	IEV-RCSLK	
	* . <del>.</del>		CCF OF 2 SQUIB VALVES TO OPERATE	5.90E-05	ADX-EV-SA2	
			CCF OF RECIRC MOVS TO OPEN	4.40E-03	IWX-MV-GO	
41	1.59E-09	0.41	CORE REFLOODING FAILS	2.67E-01	OTH-RFL	
	,		CONTAINMENT FAILS DUE HYDROGEN DETONATION	1.17E-01	OTH-DIE-4	
			SAFETY INJECTION LINE BREAK INITIATING EVENT OCCURS	2.12E-04	IEV-SI-LB	
			IWRST DISCHARGE LINE "A" STRAINER PLUGGED	2.40E-04	IWA-PLUG	

**Revision 4**
(----

	Table 43-13 (Sheet 11 of 13)										
	LRF CUTSETS FOR THE CASE – SENSITIVITY TO STANDBY SYSTEMS WITH CREDIT FOR MANUAL DAS										
Number	Cuiset Prob.	Percent	Basic Event Name	Identifier							
42	1.56E-09	0.4	LOSS OF CONDENSER INITIATING EVENT OCCURS	1.12E-01	IEV-LCOND						
			SOFTWARE CCF OF ALL CARDS	1.20E-06	CCX-SFTW						
			FAILURE OF MANUAL DAS ACT.	1.16E-02	REC-MANDAS						
43	1.50E-09	0.39	CONTAINMENT FAILS DUE HYDROGEN DETONATION	1.15E-01	OTH-DTE-3D						
			MEDIUM LOCA INITIATING EVENT OCCURS	4.36E-04	IEV-MLOCA						
			DUE TO CCF OF 4TH STAGE ADS SQUIB VALVES TO OPERATE	3.00E-05	ADX-EV-SA						
44	1.48E-09	0.38	RCS LEAK INITIATING EVENT OCCURS	6.20E-03	IEV-RCSLK						
			MAIN GEN. BKR ES 01 FAILS TO OPEN [# 12]	5.08E-03	EC0MOD01						
			COMMON CAUSE FAILURE OF THE BATTERIES IDSA-DB-1A/1B	4.70E-05	CCX-BY-PN						
45	1.44E-09	0.37	CONTAINMENT FAILS DUE HYDROGEN DETONATION	1.15E-01	OTH-DTE-3D						
			SAFETY INJECTION LINE BREAK INITIATING EVENT OCCURS	2.12E-04	IEV-SI-LB						
			CCF OF 2 SQUIB VALVES TO OPERATE	5.90E-05	ADX-EV-SA2						
46	1.41E-09	0.36	MAIN STEAM LINE STUCK-OPEN SV INITIATING EVENT OCCURS	2.39E-03	IEV-SLB-V						
			CONSEQUENTIAL SGTR OCCURS	1.00E-02	OTH-SGTR						
	_		CCF OF 2 SQUIB VALVES TO OPERATE	5.90E-05	ADX-EV-SA2						

 $\leftarrow$ 

# **AP1000 Probabilistic Risk Assessment**

	· <u>· · _</u>		Table 43-13 (Sheet 12 of 13)						
LRF CUTSETS FOR THE CASE – SENSITIVITY TO STANDBY SYSTEMS WITH CREDIT FOR MANUAL DAS									
Number	Cutset Prob.	Event Prob.	Identifier						
47	1.39E-09	0.36	CONSEQUENTIAL SGTR OCCURS	1.00E-02	OTH-SGTR				
			LOSS OF CONDENSER INITIATING EVENT OCCURS	1.12E-01	IEV-LCOND				
			ANY SECOND. SIDE RELIEF VALVE FAILS TO CLOSE (2 SV + PORV)	2.10E-02	OTH-SLSOV1				
			CCF OF 2 SQUIB VALVES TO OPERATE	5.90E-05	ADX-EV-SA2				
48	1.34E-09	0.34	LOSS OF CONDENSER INITIATING EVENT OCCURS	1.12E-01	IEV-LCOND				
			SOFTWARE CCF OF ALL CARDS	1.20E-06	CCX-SFTW				
	· · ·		FAILURE OF MANUAL DAS REACTOR TRIP HARDWARE	1.00E-02	MDAS				
49	1.31E-09	0.34	LOSS OF MAIN FEEDWATER INITIATING EVENT OCCURS	3.35E-01	IEV-LMFW				
			CCF OF SAFETY PT LT CONTINUOUSLY INTERFACING HIGH PRESSURE	4.78E-04	CCX-XMTR				
			COND. PROB. OF REC-MANDAS (FAILURE OF MANUAL DAS ACT.)	5.06E-01	REC-MANDASC				
		1	CCF OF 4 COMBINATIONS OF 3 STAGES #2 AND #3 MOVS	3.24E-04	ADX-MV3-GO				
			OPERATOR FAILS TO ACTUATE ADS AFTER CORE DAMAGE	5.00E-02	ADN-REC01				

**Revision 4** 

43-117

(-

Table 43-13 (Sheet 13 of 13)										
	LRF CUTSETS FOR THE CASE – SENSITIVITY TO STANDBY SYSTEMS WITH CREDIT FOR MANUAL DAS									
Number	Cutset Prob.EventNumberPercentBasic Event NameProb.Percent									
50	50 1.31E-09 0.34		LOSS OF MAIN FEEDWATER INITIATING EVENT OCCURS	3.35E-01	IEV-LMFW					
			CCF OF SAFETY PT LT CONTINUOUSLY INTERFACING HIGH PRESSURE	4.78E-04	CCX-XMTR					
			COND. PROB. OF REC-MANDAS (FAILURE OF MANUAL DAS ACT.)	5.06E-01	REC-MANDASC					
			CCF OF 4 COMBINATIONS OF 3 STAGES #2 AND #3 MOVS	3.24E-04	ADX-MV3-GO					
			OPERATOR FAILS TO ACTUATE ADS AFTER CORE DAMAGE	5.00E-02	LPM-REC01					

**Revision** 4

4----



Figure 43-1

Plant Damage State Contributions to CDF







CET sequences 10 and 20 not shown above contain success of IS, and IR nodes, but do not involve the PC and IG nodes.

Figure 43-2 (Sheet 3 of 3)

**Containment Event Tree – CET** 

#### **AP1000 Probabilistic Risk Assessment**



43-123



Figure 43-3 (Sheet 2 of 3)

**3BE CET** 

.

# AP1000 Probabilistic Risk Assessment



	2E		2E												
Fafl	Success		Rel. Cat.	Freq.	%										
8.055E-08		AC	IC	7.701E-08	95.61%										
0.000E+00	1.000E+00	DP	CFE	3.225E-09	4.00%										
1.635E-03	9.984E-01	IS	CFI	1.824E-10	0.23%				1 P					1 . P	
3.316E-02	9.668E-01	IR	CFV	0.000E+00	0.00%					•					•
2.670E-01	7.330E-01	RFL	CFL	1.337E-13	0.00%		,								
0.000E+00	1.000E+00	VF	CI	1.317E-10	0.16%										
1.720E-06	1.000E+00	PC	BP	0.000E+00	0.00%										
1.000E+00	0.000E+00	VT													
1.000E+00	0.000E+00	IF	Total	8.055E-08	100.00%										 - 0
3.403E-02	9.660E-01	IG													
0.000E+00	1.000E+00	DF				-				· • • •	- 				
2.450E-01	7.550E-01	DTE						1.1					 a - 1		
0.000E+00	1,000E+00	DFG													
1.240E-01	8.760E-01	DTI						. 4							
1.300E-03	9.987E-01	DTI-2										,			
1.170E-01	8.830E-01	DTE-2													

Figure 43-3 (Sheet 3 of 3)

**3BE CET** 

(----



Figure 43-4 (Sheet 1 of 3)

**3BL CET** 

# **AP1000 Probabilistic Risk Assessment**



**3BL CET** 

**Revision** 4

43-127



Total 2.395E-08

	2L		2L		
Fail	Success		Rel. Cat.	Freq.	%
2.395E-08		AC	IC	2.337E-08	97.57%
0.000E+00	1.000E+00	DP	CFE	1.826E-13	0.00%
2.433E-02	9.757E-01	IS	CFI	4.725E-14	0.00%
0.000E+00	1.000E+00	IR	CFV	0.000E+00	0.00%
1.000E+00	0.000E+00	RFL	CFL	2.349E-14	0.00%
0.000E+00	1.000E+00	VF	CI	5.826E-10	2.43%
1.005E-06	1.000E+00	PC	BP	0.000E+00	0.00%
1.000E+00	0.000E+00	VT			
1.000E+00	0.000E+00	IF	Total	2.395E-08	100.00%
1.563E-03	9.984E-01	IG			
0.000E+00	1.000E+00	DF			
5.000E-03	9.950E-01	DTE			
0.000E+00	1.000E+00	DFG			
1.300E-03	9.987E-01	DTI			

 $\leftarrow$ 

Figure 43-4 (Sheet 3 of 3)

**3BL CET** 

### **AP1000 Probabilistic Risk Assessment**





L____

#### **AP1000 Probabilistic Risk Assessment**



**3BR CET** 



Figure 43-6 (Sheet 1 of 3)

**1A CET** 

#### **AP1000 Probabilistic Risk Assessment**





eg dire.



**1A CET** 

### **AP1000 Probabilistic Risk Assessment**





Figure 43-7 (Sheet 2 of 3)

**1AP CET** 

( -

#### **AP1000 Probabilistic Risk Assessment**



43-137



# **Revision 4**

 $\leftarrow$ 

#### **AP1000 Probabilistic Risk Assessment**





Fail	Success		Rel. Cat.	Freq.	%
4.427E-09		AC	IC	3.436E-10	7.76%
9.209E-01	7.906E-02	DP	CFE	0.000E+00	0.00%
1.808E-02	9.819E-01	IS	CFI	0.000E+00	0.00%
0.000E+00	1.000E+00	IR	CFV	0.000E+00	0.00%
0.000E+00	1.000E+00	RFL	CFL	2.419E-14	0.00%
0.000E+00	1.000E+00	VF	CI	6.328E-12	0.14%
7.040E-05	9.999E-01	PC	BP	4.077E-09	92.09%
1.000E+00	0.000E+00	VT			
1.000E+00	0.000E+00	IF	Total	4.427E-09	100.00%
2.098E-02	9.790E-01	IG			
0.000E+00	1.000E+00	DF			
0.000E+00	1.000E+00	DTE			
0.000E+00	1.000E+00	DFG			

0.000E+00 1.000E+00 DTI

· .

Figure 43-8 (Sheet 3 of 3)

**3A CET** 

# **Revision 4**

۱

### **AP1000 Probabilistic Risk Assessment**





Figure 43-9 (Sheet 2 of 3)

**3C CET** 

# **AP1000 Probabilistic Risk Assessment**

1.000E-08		0.000E+0	00			21	CFE	0.000E+00
		2.658E-03				22	CI	2.658E-11
	0.000E+00		1.			23	BP	0.000E+00
	20		2 <b>0</b>				Total	1.000E-08
Fail	Success		Rel. Cat.	Freq. %				1.181 mm, 1
1.000E-08		AC	IC	8.973E-09 89.73%				
0.000E+00	) 1.000E+00	DP	CFE	9.993E-10 9.99%				
2.658E-03	9.973E-01	IS	CFI	1.083E-12 0.01%				· .
0.000E+00	0 1.000E+00	IR	CFV	0.000E+00 0.00%	an a			
0.000E+00	1.000E+00	RFL	CFL	1.037E-14 0.00%				
1.000E-01	9.000E-01	VF	CI	2.658E-11 0.27%				
1.155E-06	1.000E+00	PC	BP	0.000E+00 0.00%				
1.000E+00	0.000E+00	VT						
1.000E+00	0.000E+00	IF	Total	1.000E-08 100.00%				
1.146E-03	9.989E-01	IG						•
0.000E+00	) 1.000E+00	DF						
1.900E-01	8.100E-01	DIE						
0.000E+00	) 1.000E+00	DFG					;	
				·		Figure 43	-9 (Shee	et 3 of 3)
	5						~	COPT
							3	C CET

43-143

**Revision 4** 

....



Figure 43-10 (Sheet 1 of 3)

**3D CET** 

**AP1000 Probabilistic Risk Assessment** 





	3D		3D		
Fail	Success		Rel. Cat.	Freq.	%
5.965E-08		AC	IC	5.625E-08	94.31%
0.000E+00	1.000E+00	DP	CFE	3.034E-09	5.09%
6.072E-03	9.939E-01	IS	CFI	1.705E-13	0.00%
3.451E-02	9.655E-01	IR	CFV	0.000E+00	0.00%
1.000E+00	0.000E+00	RFL	CFL	8.602E-14	0.00%
0.000E+00	1.000E+00	VF	CI	3.622E-10	0.61%
1.503E-06	1.000E+00	PC	BP	0.000E+00	0.00%
1.000E+00	0.000E+00	VT			
1.000E+00	0.000E+00	IF	Total	5.965E-08	100.00%
2.588E-03	9.974E-01	IG			
1.700E-02	9.830E-01	DF			
1.150E-01	8.850E-01	DTE			
0.000E+00	1.000E+00	DFG			
1.300E-03	9.987E-01	DTI			

Figure 43-10 (Sheet 3 of 3)

**3D CET** 

(---

### **AP1000** Probabilistic Risk Assessment



Figure 43-11 (Sheet 1 of 3)

6 CET



Figure 43-11 (Sheet 2 of 3)

6 CET

# AP1000 Probabilistic Risk Assessment

Total

9.524E-09



6		6		
Success		Rel. Cat.	Freq.	%
	AC	IC	5.415E-09	56.86%
6.028E-01	DP	CFE	1.860E-10	1.95%
9.757E-01	IS .	CFI	1.095E-14	0.00%
9.668E-01	IR	CFV	0.000E+00	0.00%
0.000E+00	RFL	CFL	5.443E-15	0.00%
1.000E+00	VF	CI	1.396E-10	1.47%
1.000E+00	PC.	BP	3.783E-09	39.72%
0.000E+00	VT			
0.000E+00	IF	Total	9.524E-09	100.00%

9.984E-01 IG 1.000E+00 DF 9.950E-01 DTE 1.000E+00 DFG

9.987E-01 DTI

Figure 43-11 (Sheet 3 of 3)

6 CET



Figure 43-12

**Contribution of PDS to LRF** 

## AP1000 Probabilistic Risk Assessment



**Revision 4** 

i.


Figure 43-13 (Sheet 2 of 2)

**Summary of CET Quantification** 

(----

#### 43A. PDS Calculations

**Revision 4** 

## ATTACHMENT 43A

#### PDS CALCULATIONS

This attachment contains the results of the plant damage state frequency calculations for AP1000 PRA at-power events.

The 190 *.wlk files for the dominant accident sequences were generated when the CDF analysis of Chapter 33 was performed. These files are listed in Table 43A-1. Then, WLINK code is used to collect the CDF cutsets from accident sequences into PDS files. The input files for this purpose are named X.in, where X stands for the 2 or 1 character symbol for a PDS given above. The results of the PDS quantification are summarized in Table 43A-2.

43A-1

	Table 43A-1 (Sheet 1 of 6) AP1000 PRA DOMINANT CDF SEQUENCES FOR AT-POWER EVENTS											
	Frequency	Sequence ID	Cutoff Prob	Basic Ev.	Cutsets							
1	6.88E-08	2esil-07.wlk	1.00E-15	120	189							
2	4.26E-08	2rllo-09.wlk	1.00E-15	12	207							
3	2.13E-08	3dsad-08.wlk	1.00E-15	1280	222							
4	1.98E-08	3dsil-08.wlk	1.00E-15	208	189							
5	1.00E-08	3crvr-02.wlk	1.00E-14	1	1							
6	8.44E-09	2lslo-05.wlk	1.00E-15	38	314							
7	7.35E-09	2lmlo-05.wlk	1.00E-15	38	308							
8	5.11E-09	3dslo-12.wlk	1.00E-15	1487	314							
9	4.46E-09	3dmlo-12.wlk	1.00E-15	1340	308							
10	3.72E-09	2rsad-09.wlk	1.00E-15	23	222							
11	3.67E-09	2esad-07.wlk	1.00E-15	46	222							
12	3.57E-09	2lsil-03.wlk	1.00E-15	38	189							
13	3.56E-09	6esgt-41.wlk	1.00E-14	330	244							
14	3.31E-09	3aatw-23.wlk	1.00E-14	31	46							
15	3.30E-09	2eslo-09.wlk	1.00E-15	1099	314							
16	2.88E-09	2emlo-09.wlk	1.00E-15	1074	308							
17	2.19E-09	6esgt-13.wlk	1.00E-14	39	244							
18	1.97E-09	3dllo-08.wlk	1.00E-15	992	207							
19	1.57E-09	2lcmt-05.wlk	1.00E-15	38	278							
20	1.41E-09	1atra-17.wlk	2.13E-14	407	181							
21	1.29E-09	3dsil-16.wlk	1.00E-15	343	189							
22	1.13E-09	6lsgtc05.wlk	1.23E-13	140	153							
23	9.98E-10	3dsil-17.wlk	1.00E-15	279	189							
24	9.71E-10	6esgtc12.wlk	1.23E-13	498	153							
25	9.51E-10	3dcmt-12.wlk	1.00E-15	868	278							
26	9.45E-10	1pmlo-28.wlk	1.00E-15	299	308							
27	9.11E-10	2lsad-03.wlk	1.00E-15	35	222							
28	8.95E-10	1atra-32.wlk	2.13E-14	44	181							
29	7.60E-10	2lmloc05.wlk	1.00E-14	45	205							
30	7.45E-10	1pslo-39.wlk	1.00E-15	277	314							
31	7.13E-10	3drcs-12.wlk	1.00E-13	693	148							
32	7.10E-10	3aatt-26.wlk	1.00E-14	6	19							
33	6.15E-10	2ecmt-09.wlk	1.00E-15	595	278							
34	5.40E-10	2lsil-14.wlk	1.00E-15	692	189							
35	4.96E-10	6esgtc09.wlk	1.23E-13	361	153							
36	4.80E-10	1alca-16.wlk	1.18E-15	410	173							

## 43A. PDS Calculations

ş

AP1000 Probabilistic Risk Assessment

Table 43A-1 (Sheet 2 of 6)										
	AP1000 PRA E	OMINANT CDF SE	QUENCES FOR A	T-POWER EVE	NTS					
	Frequency	Sequence ID	Cutoff Prob	Basic Ev.	Cutsets					
37	4.61E-10	3dmloc12.wlk	1.00E-14	376	205					
38	4.60E-10	1pmlo-13.wik	1.00E-15	30	308					
39	4.48E-10	lalmf-16.wlk	4.72E-15	632	206					
40	4.45E-10	1pslo-13.wlk	1.00E-15	30	314					
41	4.37E-10	1pcmt-28.wlk	1.00E-15	207	278					
42	4.31E-10	6lsgt-05.wlk	1.00E-14	156	244					
43	4.23E-10	2lrcs-05.wlk	1.00E-13	263	148					
44	3.79E-10	2ercs-09.wlk	1.00E-13	527	148					
45	3.40E-10	2ello-07.wlk	1.00E-15	20	207					
46	3.40E-10	laslvc30.wlk	1.00E-13	114	69					
47	2.97E-10	2emloc09.wlk	1.00E-14	223	205					
48	2.75E-10	6esgt-12.wlk	1.00E-14	948	244					
49	2.67E-10	3dprss12.wlk	1.00E-13	146	101					
50	2.16E-10	1almf-31.wlk	4.72E-15	51	206					
51	1.95E-10	1alm1-17.wlk	1.00E-15	484	203					
52	1.87E-10	3aatw-49.wlk	1.00E-14	41	46					
53	1.67E-10	1prcs-13.wlk	1.00E-13	21	148					
54	1.59E-10	1aslv-30.wik	1.00E-15	87	108					
55	1.58E-10	6esgt-09.wlk	1.00E-14	725	244					
56	1.48E-10	1alsp-32.wlk	9.31E-14	95	72					
57	1.47E-10	1alco-16.wlk	7.66E-15	466	163					
58	1.43E-10	1alcc-13.wlk	1.00E-14	277	122					
59	1.41E-10	1dtra-16.wlk	2.13E-14	283	181					
60	1.24E-10	2etra-13.wlk	2.13E-14	282	181					
61	1.23E-10	1alm1-32.wlk	1.00E-15	67	203					
62	1.00E-10	3aats-38.wlk	1.00E-14	14	27					
63	9.82E-11	1pcmt-13.wlk	1.00E-15	30	278					
64	9.60E-11	6esgt-39.wlk	1.00E-14	306	244					
65	9.25E-11	2eprss09.wlk	1.00E-13	101	101					
66	9.19E-11	1alcc-23.wlk	1.00E-14	15	122					
67	8.90E-11	1pmloc28.wlk	1.00E-14	38	205					
68	8.43E-11	2lllo-03.wlk	1.00E-15	17 -	207					
69	8.14E-11	2lprss05.wlk	1.00E-13	62	101					
70	8.02E-11	Jaatw-24.wlk	1.00E-14	38	46					
71	7.20E-11	lalco-31.wlk	7.66E-15	21	163					
72	7.02E-11	laslyc45.wlk	1.00E-13	63	69					

43A-3

	Table 43A-1 (Sheet 3 of 6) AP1000 PRA DOMINANT CDF SEQUENCES FOR AT-POWER EVENTS											
	Frequency	Sequence ID	Cutoff Prob	Basic Ev.	Cutsets							
73	6.91E-11	2ltra-09.wlk	2.13E-14	148	181							
74	6.03E-11	1pprss13.wlk	1.00E-13	6	101							
75	5.00E-11	6eisl-02.wlk	1.00E-14	1	1							
76	4.75E-11	1pmloc13.wlk	1.00E-14	31	205							
77	4.17E-11	6esgtc41.wlk	1.23E-13	8	153							
78	4.09E-11	6esgtc13.wlk	1.23E-13	54	153							
79	3.50E-11	ldlmf-15.wlk	4.72E-15	372	206							
80	3.29E-11	1pslo-26.wlk	1.00E-15	16	314							
81	3.12E-11	3aatw-48.wlk	1.00E-14	14	46							
82	3.09E-11	2elmf-12.wlk	4.72E-15	414	206							
83	2.84E-11	2elcc-11.wlk	1.00E-14	167	122							
84	2.71E-11	6esgt-56.wlk	1.00E-14	8	244							
85	2.62E-11	laslv-45.wlk	1.00E-15	10	108							
86	2.46E-11	2llca-08.wlk	1.18E-15	98	173							
87	2.45E-11	1aslu-30.wlk	1.00E-15	22	67							
88	2.14E-11	2llmf-08.wlk	4.72E-15	240	206							
89	2.11E-11	1dlcc-12.wlk	1.00E-14	126	122							
90	2.03E-11	6lsgt-08.wlk	1.00E-14	62	244							
91	1.98E-11	2rmlo-23.wlk	1.00E-15	276	308							
92	1.97E-11	1prcs-39.wlk	1.00E-13	11	148							
93	1.96E-11	1dlm1-16.wlk	1.00E-15	456	203							
94	1.92E-11	2elsp-13.wlk	9.31E-14	88	72							
95	1.81E-11	1airc-17.wlk	1.00E-15	290	132							
96	1.73E-11	2elm1-13.wlk	1.00E-15	492	203							
97	1.70E-11	2ltra-25.wlk	2.13E-14	58	181							
98	1.59E-11	6esgt-26.wlk	1.00E-14	118	244							
99	1.56E-11	2llsp-09.wlk	9.31E-14	31	72							
100	1.44E-11	2lslvc22.wlk	1.00E-13	12	69							
101	1.43E-11	lalca-31.wlk	1.18E-15	30	173							
102	1.40E-11	1bsbo-44.wlk	9.31E-14	52	72							
103	1.14E-11	6esgt-36.wlk	1.00E-14	192	244							
104	1.14E-11	1alrc-32.wlk	1.00E-15	10	132							
105	1.08E-11	1dlco-15.wlk	7.66E-15	104	163							
106	9.70E-12	2llm1-09.wlk	1.00E-15	272	203							
107	9.38E-12	2elco-12.wlk	7.66E-15	90	163							
108	9.33E-12	2elca-12.wlk	1.18E-15	392	173							

43A. PDS Calculations

AP1000 Probabilistic Risk Assessment

÷.

Ę,

		Table 43A-	1 (Sheet 4 of 6)		
	AP1000 PRA D	OMINANT CDF SE	QUENCES FOR	AT-POWER EVE	NTS
	Frequency	Sequence ID	Cutoff Prob	Basic Ev.	Cutsets
109	9.16E-12	2rcmt-23.wlk	1.00E-15	159	278
110	9.15E-12	1dlsp-16.wlk	9.31E-14	-38	72
111	8.16E-12	2lslv-22.wlk	1.00E-15	44	108
112	7.52E-12	2lslo-08.wlk	1.00E-15	380	314
113	7.47E-12	4esbo-43.wlk	9.31E-14	30	72
114	6.73E-12	2llcc-07.wlk	1.00E-14	62	122
115	6.68E-12	2llco-08.wlk	7.66E-15	100	163
116	6.55E-12	2lmlo-08.wlk	1.00E-15	366	308
117	6.54E-12	ldsld-46.wlk	1.00E-15	10	17
118	6.50E-12	1dlca-15.wlk	1.18E-15	310	173
119	5.68E-12	3aats-52.wlk	1.00E-14	10	27
120	4.37E-12	1apow-17.wlk	1.00E-15	125	86
121	4.14E-12	6esgt-35.wlk	1.00E-14	77	244
122	4.08E-12	5eslu-91.wlk	1.00E-15	10	67
123	4.08E-12	2llmf-24.wlk	4.72E-15	62	206
124	3.49E-12	1pslo-54.wlk	1.00E-15	8	314
125	3.42E-12	1dslvc29.wlk	1.00E-13	22	69
126	3.31E-12	6esgtc26.wlk	1.23E-13	6	153
127	3.12E-12	2lsil-06.wlk	1.00E-15	276	189
128	3.01E-12	2eslv-26.wlk	1.00E-15	198	108
129	2.87E-12	1apow-32.wlk	1.00E-15	15	86
130	2.52E-12	6lsgt-31.wlk	1.00E-14	68	244
131	2.52E-12	2llm1-25.wlk	1.00E-15	166	203
132	2.44E-12	3aatt-14.wlk	1.00E-14	2	19
133	2.27E-12	1prcs-54.wlk	1.00E-13	1	148
134	2.08E-12	3aats-13.wlk	1.00E-14	6	27
135	2.06E-12	1dslv-29.wlk	1.00E-15	160	108
136	1.95E-12	1alsp-17.wik	9.31E-14	12	72
137	1.73E-12	3aats-39.wlk	1.00E-14	12	27
138	1.73E-12	1dlrc-16.wlk	1.00E-15	120	132
139	1.71E-12	2rmloc23.wlk	1.00E-14	15	205
140	1.50E-12	2elrc-13.wlk	1.00E-15	92	132
141	1.49E-12	2lrcs-08.wlk	1.00E-13	6	148
142	1.30E-12	2lcmt-08.wlk	1.00E-15	174	278
143	1.26E-12	2lslu-22.wlk	1.00E-15	20	67
144	1 17E-12	211co-24 wilk	7 66F-15	18	163

43A-5

	Table 43A-1 (Sheet 5 of 6)										
	AP1000 PRA D	OMINANT CDF SE	QUENCES FOR A	T-POWER EVE	INTS						
145	Frequency	Sequence ID		Basic Ev.	Luisets						
145	1.14E-12	Oesgic 30. wik	1.23E-13	3	153						
140	1.05E-12	211ca-24.wik	1.18E-15		173						
147	8.96E-13	2esivc26.wik	1.00E-13	8	69						
148	8.49E-13	2lirc-09.wik	1.00E-15	///	132						
149	8.02E-13	Ipprss54.wik	1.00E-13	2	101						
150	7.98E-13	4lsbo-39.wlk	9.31E-14	4	72						
151	6.33E-13	3aats-14.wlk	1.00E-14	2	27						
152	5.80E-13	1prcs-26.wlk	1.00E-13	4	148						
153	<u>5.78E-13</u>	6esgt-25.wlk	1.00E-14	16	244						
154	5.11E-13	6lsgt-18.wlk	1.00E-14	18	244						
155	4.79E-13	1dlcc-22.wlk	1.00E-14	3	122						
156	4.48E-13	2lsad-06.wlk	1.00E-15	95	222						
157	4.29E-13	2eslu-26.wlk	1.00E-15	78	67						
158	3.87E-13	1dpow-16.wlk	1.00E-15	20	86						
159	3.48E-13	3dats-37.wlk	1.00E-14	9	27						
160	3.36E-13	2epow-13.wlk	1.00E-15	22	86						
161	3.01E-13	2lmloc08.wlk	1.00E-14	18	205						
162	2.94E-13	1dslu-29.wlk	1.00E-15	54	67						
163	2.74E-13	6esgt-22.wlk	1.00E-14	12	244						
164	2.48E-13	2ltra-22.wlk	2.13E-14	3	181						
165	2.08E-13	3aatt-25.wlk	1.00E-14	4	19						
166	2.03E-13	3dlccm12.wlk	1.00E-14	12	10						
167	1.94E-13	2lpow-09.wlk	1.00E-15	30	86						
168	1.77E-13	lasld-31.wlk	1.00E-15	18	17						
169	1.20E-13	3aatw-22.wlk	1.00E-14	6	46						
170	1.08E-13	2llspm05.wlk	1.00E-14	4	9						
171	8.17E-14	3datw-11.wlk	1.00E-14	4	46						
172	5.94E-14	2llmf-21.wlk	4.72E-15	3	206						
173	4.86E-14	5eslu-76.wlk	1.00E-15	12	67						
174	4.52E-14	6esgt-51.wlk	1.00E-14	1	244						
175	4.49E-14	2elccm09.wlk	1.00E-14	4	10						
176	4.32E-14	3datw-12.wlk	1.00E-14	2	46						
177	4.09E-14	2lpow-25.wlk	1.00E-15	3	86						
178	3.71E-14	2rlca-26.wlk	1.18E-15	6	173						
179	3.40E-14	2llm1-22.wlk	1.00E-15	3	203						
180	1.77E-14	21110-06.wlk	1.00E-15	10	207						

# 43A. PDS Calculations

	Table 43A-1 (Sheet 6 of 6)											
	AP1000 PRA DOMINANT CDF SEQUENCES FOR AT-POWER EVENTS											
	Frequency	Sequence ID	Cutoff Prob	Basic Ev.	Cutsets							
181	1.67E-14	3aatt-13.wlk	1.00E-14	1	19							
182	1.64E-14	2llca-21.wlk	1.18E-15	6	173							
183	1.63E-14	3dcmt-26.wlk	1.00E-15	1	278							
184	1.38E-14	3aats-26.wlk	1.00E-14	1	27							
185	1.24E-14	3dats-12.wlk	1.00E-14	1	27							
186	1.22E-14	2rlm1-27.wlk	1.00E-15	9	203							
187	9.77E-15	2lslv-40.wlk	1.00E-15	2	108							
188	9.10E-15	1dlm1-30.wlk	1.00E-15	7	203							
189	7.88E-15	2rslo-49.wlk	1.00E-15	3	314							
190	1.11E-15	laslv-17.wlk	1.00E-15	1	108							
			*	. v								
	2.41E-07	Sum	· ·		30337							

÷.

**Revision 4** 

43A-7

		Table 43A-2									
AJ	AP1000 PRA PDS FREQUENCIES FOR AT-POWER EVENTS										
Frequency	Sequence ID	Cutoff Prob	Basic Ev.	Cutsets							
5.01E-09	la.wlk	1.00E-14	2749	193							
1.48E-09	1p.wlk	1.00E-14	270	86							
8.06E-08	2e.wlk	1.00E-14	3294	262							
2.40E-08	21.wlk	1.00E-14	2066	241							
4.63E-08	2r.wlk	1.00E-14	180	51							
4.43E-09	3a.wlk	1.00E-14	188	52							
1.00E-08	3c.wlk	1.00E-14	1	1							
5.97E-08	3d.wlk	1.00E-14	6448	393							
9.52E-09	6.wlk	1.00E-14	4147	278							
2.41E-07	Sum		<u>.                                    </u>	1557							

Note: The four 1p sequences for MLO and CMT-LB events are grouped with 3d since RCS is expected to be at least partially depressurized by the nature of the initiating event.

43B. DP Node Probability for PDS

## **ATTACHMENT 43B**

#### **DP NODE PROBABILITY FOR PDS**

An examination of PDS 6 core damage cutsets show that passive residual heat removal (PRHR) is available in most of the dominant cutsets. In these event sequences (cutsets), the RCS pressure will drop and the RCS loss through the break will diminish, such that operators will have a long time period (on the order of hours) to actuate the ADS, if they failed to actuate it initially. In that case, even if core damage were postulated very conservatively, the fission product release would be mostly contained, or attenuated in the water inventory of the faulted steam generator.

The following process is performed to calculate the failure of the DP node in the CET event tree for PDS 6:

- 1. The 6L accident sequences are removed from the calculation since ADS is successful in these sequences. What is left is labeled as 6e.* (such as 6e.in, 6e.wlk files)
- 2. SGTR event tree sequences 9, 35, and 36 that show up in the PDS 6 event sequence list are removed since ADS is successful. The ISLOCA contribution is also removed. The remaining sequences are subject to DP node failure. They are stored in file 6f.in and quantified to calculate their failure frequency.
- 3. The sequences where PRHR failed are removed from the list, leaving the following sequences in file 6sprhr.in. The removed sequences are stored in 6fprhr.in.

6ESGT-12 6ESGT-13 6ESGT-39 6ESGT-41 6ESGTC12 6ESGTC13 6ESGTC36 6ESGTC41

4. The 6sprhr sequences are quantified. The dominant cutsets are examined. Those cutsets where ADS failed due to operator action failure human error probability are deemed to be recoverable due to availability of long time periods; a screening human error probability (HEP) of 0.1 is used (1-HEP = 0.90). The calculations are shown in Table 44B-1. The cutsets are shown in their standard output format, with the first column added to collect "recoverable" frequencies.

Recoverable frequency = (1-HEP) * failure frequency = 0.90 * failure frequency.

#### Result

The failure probability of the DP node is calculated to be 0.397 for PDS 6 (see Table 43B-1).

				-	Table 43B-1 (Shee	et 1 of 7)			
		C	CALCULA	ATION OF F	AILURE PROP	BABILITY OF D	P FOR PDS 6		
6spds.wlk		Calculation	of Failure	Probability of	DP for PDS 6				
	6.wlk	278	4147	9.52E-09					
	6e.wlk	240	3703	7.94E-09					
	6f.wlk	222	2345	7.22E-09					
	6fprhr.wlk	89	161	4.72E-11					
	6sprhr.wlk	199	2186	7.18E-09		1			
	Failure Probability of DP for PDS 6 =				CDF(6f.wlk)-Re	coverable Sum)/CD	F(6.wlk)		
				=	3.97E-01				
Recov	rable								
6.82E-10	1	7.58E-10	5	IEV-SGTR	CIB-MAN00	RPX-CB-GO	REC-MANDASC	LPM-MAN01C	
6.82E-10	2	7.58E-10	5	IEV-SGTR	CIB-MAN00	RPX-CB-GO	REC-MANDASC	ADN-MAN01C	
5.75E-10	3	6.39E-10	6	IEV-SGTR	CVN-MAN00	ADF-MAN01	RPX-CB-GO	<b>REC-MANDASC</b>	ADN-MAN01C
4.97E-10	4	5.52E-10	5	IEV-SGTR	CIB-MAN01	RPX-CB-GO	REC-MANDASC	LPM-MAN01C	
	5	4.95E-10	3	IEV-SGTR	CCX- PMXMOD1-SW	REC-MANDAS			
	6	4.27E-10	3	IEV-SGTR	CCX- PMXMOD1-SW	MDAS			
	7	3.88E-10	3	IEV-SGTR	CCX-EP-SAM	REC-MANDAS			
	8	3.34E-10	3	IEV-SGTR	CCX-EP-SAM	MDAS			
1.67E-10	9	1.86E-10	5	IEV-SGTR	CIB-MAN00	REC-MANDASC	CCX-INPUT- LOGIC	ADN-MAN01C	

## 43B. DP Node Probability for PDS

				· · · · · · · · · · · · · · · · · · ·	Table 43B-1 (She	et 2 of 7)			
	•	18	CALCULA	TION OF FA	AILURE PROI	BABILITY OF D	P FOR PDS 6		
1.67E-10	10	1.86E-10	5	IEV-SGTR	CIB-MAN00	REC-MANDASC	CCX-INPUT- LOGIC	LPM-MAN01C	
1.01E-10	11	1.12E-10	5	IEV-SGTR	CIB-MAN00	CCX-AV-LA	REC-MANDASC	ADN-MAN01C	
8.51E-11	12	9.46E-11	6	IEV-SGTR	CVN-MAN00	ADF-MAN01	CCX-AV-LA	REC-MANDASC	ADN-MAN01C
8.32E-11	13	9.24E-11	5	IEV-SGTR	CIB-MAN00	CMX-CV-GO	REC-MANDASC	ADN-MAN01C	
6.96E-11	14	7.73E-11	6	IEV-SGTR	CVN-MAN00	ADF-MAN01	CMX-CV-GO	REC-MANDASC	ADN-MAN01C
	15	7.12E-11	.3	IEV-SGTR	CCX-XMTR	CMX-VS-FA			
	16	5.40E-11	3	IEV-SGIR	CCX-SFTW	REC-MANDAS			
	17	4.66E-11	. 3	IEV-SGTR	CCX-SFTW	MDAS			
3.23E-11	18	3.59E-11	6	IEV-SGTR	CVMOD05	ADF-MAN01	RPX-CB-GO	REC-MANDASC	ADN-MAN01
3.04E-11	19	3.38E-11	6	IEV-SGIR	CVMOD07	ADF-MAN01	RPX-CB-GO	REC-MANDASC	ADN-MAN01
je dog na store osta	20	2.45E-11	5	OTH-SGTR	IEV-TRANS	OTH-SLSOV	EC1BS001TM	ADX-EV-SA2	
an a		2.45E-11		OTH-SGTR	IEV-TRANS	OTH-SLSOV	EC1BS012TM	ADX-EV-SA2	
	22	1.96E-11	5	OTH-SGTR	IEV-LCOND	OTH-SLSOV1	ADX-EV-SA2	RN55MOD1	
	23	1.96E-11	5	OTH-SGTR	IEV-LCOND	OTH-SLSOV1	ADX-EV-SA2	RN11MOD3	
		1.96E-11	5	OTH-SGTR	IEV-LCOND	OTH-SLSOV1	ADX-EV-SA2	RN22MOD4	
	25	1.96E-11	. 5	OTH-SGTR	IEV-LCOND	OTH-SLSOV1	ADX-EV-SA2	RN23MOD5	
	26	1.95E-11	5	OTH-SGTR	IEV-TRANS	OTH-SLSOV	EC1BS001TM	CCX-BY-PN	
a na din gi a a	27	1.95E-11	5	OTH-SGTR	IEV-TRANS	OTH-SLSOV	EC1BS012TM	CCX-BY-PN	
н. 1. с. е. е. е.	28	1.95E-11	. 5	OTH-SGTR	IEV-TRANS	OTH-SLSOV	CCX-BY-PN	EC2BS002TM	
	29	1.95E-11	. 5 .	OTH-SGTR	IEV-TRANS	OTH-SLSOV	CCX-BY-PN	EC2BS022TM	
	30	1.95E-11	5	OTH-SGTR	IEV-TRANS	OTH-SLSOV	CCX-BY-PN	EC2BS221TM	
1.43E-11	31	1.59E-11	6	IEV-SGTR	CVMOD05	ADF-MAN01	RPX-CB-GO	REC-MANDASC	LPM-MAN01
1.36E-11	32	1.51E-11	6	OTH-SGTR	IEV-LCOND	OTH-SLSOV1	RPX-CB-GO	REC-MANDASC	ADN-MAN01
1.35E-11	33	1.50E-11	5	IEV-SGTR	CIB-MAN00	RPX-CB-GO	MDAS	ADN-MAN01C	
1.35E-11	34	1.50E-11	5	IEV-SGTR	CIB-MAN00	RPX-CB-GO	MDAS	LPM-MAN01C	

**Revision 4** 

يوني. جوني

in the second

43B-3

1

	Table 43B-1 (Sheet 3 of 7)											
	CALCULATION OF FAILURE PROBABILITY OF DP FOR PDS 6											
1.35E-11	35	1.50E-11	6	IEV-SGTR	CVMOD07	ADF-MAN01	RPX-CB-GO	REC-MANDASC	LPM-MAN01			
	36	1.47E-11	6	OTH-SGTR	IEV-LOSP	OTH-R05	OTH-SLSOV1	ADX-EV-SA2	RN55MOD1			
	37	1.47E-11	6	OTH-SGTR	IEV-LOSP	OTH-R05	OTH-SLSOV1	ADX-EV-SA2	RN11MOD3			
	38	1.47E-11	6	OTH-SGTR	IEV-LOSP	OTH-R05	OTH-SLSOV1	ADX-EV-SA2	RN22MOD4			
	39	1.47E-11	6	OTH-SGTR	IEV-LOSP	OTH-R05	OTH-SLSOV1	ADX-EV-SA2	RN23MOD5			
	40	1.39E-11	5	OTH-SGTR	IEV-LCOND	OTH-SLSOV1	ADX-EV-SA2	CLP-UNAVAILAE	LE			
	41	1.39E-11	5	OTH-SGTR	IEV-TRANS	OTH-SLSOV	IDDBSDS1TM	IDBBSDS1TM				
	42	1.39E-11	5	OTH-SGTR	IEV-TRANS	OTH-SLSOV	IDDBSDS1TM	IDBBSDD1TM				
	43	1.39E-11	5	OTH-SGTR	IEV-TRANS	OTH-SLSOV	IDDBSDD1TM	IDBBSDS1TM				
	44	1.39E-11	5	OTH-SGTR	IEV-TRANS	OTH-SLSOV	IDDBSDD1TM	IDBBSDD1TM				
1.17E-11	45	1.30E-11	5	IEV-SGTR	CANTP011RI	RPX-CB-GO	REC-MANDASC	ADN-MAN01				
1.14E-11	46	1.27E-11	5	IEV-SGTR	EC0MOD01	RPX-CB-GO	REC-MANDASC	ADN-MAN01				
1.13E-11	47	1.26E-11	6	IEV-SGTR	CVN-MAN00	ADF-MAN01	RPX-CB-GO	MDAS	ADN-MAN01C			
	48	1.25E-11	5	OTH-SGTR	IEV-TRANS	OTH-SLSOV	EC1BS001TM	ADX-EV-SA				
	49	1.25E-11	5	OTH-SGTR	IEV-TRANS	OTH-SLSOV	EC1BS012TM	ADX-EV-SA				
1.02E-11	50	1.13E-11	7	OTH-SGTR	IEV-LOSP	OTH-R05	OTH-SLSOV1	RPX-CB-GO	REC-MANDASC			
									ADN-MAN01			
	51	1.12E-11	5	OTH-SGTR	IEV-LMFW	OTH-SLSOV1	EC1BS001TM	ADX-EV-SA2				
	52	1.12E-11	5	OTH-SGTR	IEV-LMFW	OTH-SLSOV1	EC1BS012TM	ADX-EV-SA2				
9.81E-12	53	1.09E-11	5	IEV-SGTR	CIB-MAN01	RPX-CB-GO	MDAS	LPM-MAN01C				
	54	1.04E-11	6	OTH-SGTR	IEV-LOSP	OTH-R05	OTH-SLSOV1	ADX-EV-SA2	CLP-			
									UNAVAILABLE			
	<u> </u>	1.01E-11	4	IEV-SLB-V	UIH-SGIR	ADX-EV-SA2	KN55MODI					
	56	1.01E-11	4	IEV-SLB-V	UTH-SGTR	ADX-EV-SA2	KN11MOD3					
	57	1.01E-11	4	IEV-SLB-V	OTH-SGTR	ADX-EV-SA2	IRN22MOD4					
	58	1.01E-11	4	IEV-SLB-V	OTH-SGTR	ADX-EV-SA2	RN23MOD5	L				

43B-4

# 43B. DP Node Probability for PDS

AP1000 Probabilistic Risk Assessment

					Table 43B-1 (Shee	zt 4 of 7)							
	CALCULATION OF FAILURE PROBABILITY OF DP FOR PDS 6												
	59	9.95E-12	5	OTH-SGTR	IEV-LCOND	OTH-SLSOV1	ADX-EV-SA	RN55MOD1					
	60	9.95E-12	5	OTH-SGTR	IEV-LCOND	OTH-SLSOV1	ADX-EV-SA	RN11MOD3					
	61	9.95E-12	5	OTH-SGTR	IEV-LCOND	OTH-SLSOV1	ADX-EV-SA	RN22MOD4					
	62	9.95E-12	5	OTH-SGTR	IEV-LCOND	OTH-SLSOV1	ADX-EV-SA	RN23MOD5					
	63	8.93E-12	5	OTH-SGTR	IEV-LMFW	OTH-SLSOV1	EC1BS001TM	CCX-BY-PN					
· .	64	8.93E-12	5	OTH-SGTR	IEV-LMFW	OTH-SLSOV1	EC1BS012TM	CCX-BY-PN					
6.98E-12	65	7.76E-12	5	IEV-SLB-V	OTH-SGTR	RPX-CB-GO	REC-MANDASC	ADN-MAN01					
6.71E-12	66	7.46E-12	5	IEV-SGTR	IDBBSDS1TM	RC1CB063GO	REC-MANDASC	ADN-MAN01					
6.71E-12	67	7.46E-12	5	IEV-SGTR	IDBBSDS1TM	RC1CB061GO	REC-MANDASC	ADN-MAN01					
6.71E-12	68	7.46E-12	5	IEV-SGTR	IDBBSDS1TM	RC1CB053GO	REC-MANDASC	ADN-MAN01					
6.71E-12	69	7.46E-12	5	IEV-SGTR	IDBBSDS1TM	RC1CB051GO	REC-MANDASC	ADN-MAN01					
6.71E-12	70	7.46E-12	5	IEV-SGTR	IDBBSDD1TM	RC1CB063GO	REC-MANDASC	ADN-MAN01					
6.71E-12		7.46E-12	. 5	IEV-SGTR	IDBBSDD1TM	RC1CB061GO	REC-MANDASC	ADN-MAN01					
6.71E-12	72	7.46E-12	5	IEV-SGTR	IDBBSDD1TM	RC1CB053GO	REC-MANDASC	ADN-MAN01					
6.71E-12	73	7.46E-12	. 5 .	IEV-SGTR	IDBBSDD1TM	RC1CB051GO	REC-MANDASC	ADN-MAN01					
an an an Arrana Arrange an Arrana	.74	7.46E-12	· 6 ·	OTH-SGTR	IEV-LOSP	OTH-R05	OTH-SLSOV1	ADX-EV-SA	RN55MOD1				
	. 75	7.46E-12	. 6	OTH-SGTR	IEV-LOSP	OTH-R05	OTH-SLSOV1	ADX-EV-SA	RN11MOD3				
	. 76	7.46E-12	6	OTH-SGTR	IEV-LOSP	OTH-R05	OTH-SLSOV1	ADX-EV-SA	RN22MOD4				
×	. 77	7.46E-12	6	OTH-SGTR	IEV-LOSP	OTH-R05	OTH-SLSOV1	ADX-EV-SA	RN23MOD5				
	78	7.14E-12	4	IEV-SLB-V	OTH-SGTR	ADX-EV-SA2	CLP-UNAVAILAB	LE					
	79	7.06E-12	5	OTH-SGTR	IEV-LCOND	OTH-SLSOV1	ADX-EV-SA	CLP-UNAVAILAF	LE				
	80	6.80E-12	5	OTH-SGTR	IEV-LCOND	OTH-SLSOV1	ADX-EV-SA2	RNX-KV1-GO					
6.05E-12	81	6.72E-12	5	IEV-SGTR	EC1BS001TM	RPX-CB-GO	REC-MANDASC	ADN-MAN01					
6.05E-12	82	6.72E-12	5	IEV-SGTR	EC1BS012TM	RPX-CB-GO	REC-MANDASC	ADN-MAN01					

March 1997

 $(1 + 1)^{-1} = (1 + 1)^{-1} = (1 + 1)^{-1} = (1 + 1)^{-1} = (1 + 1)^{-1} = (1 + 1)^{-1} = (1 + 1)^{-1} = (1 + 1)^{-1} = (1 + 1)^{-1} = (1 + 1)^{-1} = (1 + 1)^{-1} = (1 + 1)^{-1} = (1 + 1)^{-1} = (1 + 1)^{-1} = (1 + 1)^{-1} = (1 + 1)^{-1} = (1 + 1)^{-1} = (1 + 1)^{-1} = (1 + 1)^{-1} = (1 + 1)^{-1} = (1 + 1)^{-1} = (1 + 1)^{-1} = (1 + 1)^{-1} = (1 + 1)^{-1} = (1 + 1)^{-1} = (1 + 1)^{-1} = (1 + 1)^{-1} = (1 + 1)^{-1} = (1 + 1)^{-1} = (1 + 1)^{-1} = (1 + 1)^{-1} = (1 + 1)^{-1} = (1 + 1)^{-1} = (1 + 1)^{-1} = (1 + 1)^{-1} = (1 + 1)^{-1} = (1 + 1)^{-1} = (1 + 1)^{-1} = (1 + 1)^{-1} = (1 + 1)^{-1} = (1 + 1)^{-1} = (1 + 1)^{-1} = (1 + 1)^{-1} = (1 + 1)^{-1} = (1 + 1)^{-1} = (1 + 1)^{-1} = (1 + 1)^{-1} = (1 + 1)^{-1} = (1 + 1)^{-1} = (1 + 1)^{-1} = (1 + 1)^{-1} = (1 + 1)^{-1} = (1 + 1)^{-1} = (1 + 1)^{-1} = (1 + 1)^{-1} = (1 + 1)^{-1} = (1 + 1)^{-1} = (1 + 1)^{-1} = (1 + 1)^{-1} = (1 + 1)^{-1} = (1 + 1)^{-1} = (1 + 1)^{-1} = (1 + 1)^{-1} = (1 + 1)^{-1} = (1 + 1)^{-1} = (1 + 1)^{-1} = (1 + 1)^{-1} = (1 + 1)^{-1} = (1 + 1)^{-1} = (1 + 1)^{-1} = (1 + 1)^{-1} = (1 + 1)^{-1} = (1 + 1)^{-1} = (1 + 1)^{-1} = (1 + 1)^{-1} = (1 + 1)^{-1} = (1 + 1)^{-1} = (1 + 1)^{-1} = (1 + 1)^{-1} = (1 + 1)^{-1} = (1 + 1)^{-1} = (1 + 1)^{-1} = (1 + 1)^{-1} = (1 + 1)^{-1} = (1 + 1)^{-1} = (1 + 1)^{-1} = (1 + 1)^{-1} = (1 + 1)^{-1} = (1 + 1)^{-1} = (1 + 1)^{-1} = (1 + 1)^{-1} = (1 + 1)^{-1} = (1 + 1)^{-1} = (1 + 1)^{-1} = (1 + 1)^{-1} = (1 + 1)^{-1} = (1 + 1)^{-1} = (1 + 1)^{-1} = (1 + 1)^{-1} = (1 + 1)^{-1} = (1 + 1)^{-1} = (1 + 1)^{-1} = (1 + 1)^{-1} = (1 + 1)^{-1} = (1 + 1)^{-1} = (1 + 1)^{-1} = (1 + 1)^{-1} = (1 + 1)^{-1} = (1 + 1)^{-1} = (1 + 1)^{-1} = (1 + 1)^{-1} = (1 + 1)^{-1} = (1 + 1)^{-1} = (1 + 1)^{-1} = (1 + 1)^{-1} = (1 + 1)^{-1} = (1 + 1)^{-1} = (1 + 1)^{-1} = (1 + 1)^{-1} = (1 + 1)^{-1} = (1 + 1)^{-1} = (1 + 1)^{-1} = (1 + 1)^{-1} = (1 + 1)^{-1} = (1 + 1)^{-1} = (1 + 1)^{-1} = (1 + 1)^{-1} = (1 + 1)^{-1} = (1 + 1)^{-1} = (1 + 1)^{-1} = (1 + 1)^{-1} = (1 + 1)^{-1} = (1 + 1)^{-1} = (1 + 1)^{-1} = (1 + 1)^{-1} = (1 + 1)^{-1} = (1 +$ 

43B-5

**Revision 4** 

	Table 43B-1 (Sheet 5 of 7)											
	CALCULATION OF FAILURE PROBABILITY OF DP FOR PDS 6											
6.05E-12	83	6.72E-12	6	OTH-SGTR	IEV-LCOND	OTH-SLSOV1	RPX-CB-GO	REC-MANDASC	LPM-MAN01			
	84	6.42E-12	5	OTH-SGTR	IEV-LMFW1	OTH-SLSOV1	EC1BS001TM	ADX-EV-SA2	-			
	85	6.42E-12	5	OTH-SGTR	IEV-LMFW1	OTH-SLSOV1	EC1BS012TM	ADX-EV-SA2				
	86	5.94E-12	4	IEV-SGTR	CIB-MAN00	ADX-EV-SA2	RN55MOD1					
	87	5.94E-12	4	IEV-SGTR	CIB-MAN00	ADX-EV-SA2	RN11MOD3					
	88	5.94E-12	4	IEV-SGTR	CIB-MAN00	ADX-EV-SA2	RN22MOD4					
	89	5.94E-12	4	IEV-SGTR	CIB-MAN00	ADX-EV-SA2	RN23MOD5					
5.18E-12	90	5.76E-12	5	IEV-SGTR	CANTP011RI	RPX-CB-GO	REC-MANDASC	LPM-MAN01				
5.18E-12	91	5.76E-12	5	IEV-SGTR	MSX-AV2-FA	RPX-CB-GO	REC-MANDASC	ADN-MAN01				
	92	5.70E-12	5	OTH-SGTR	IEV-LMFW	OTH-SLSOV1	EC1BS001TM	ADX-EV-SA				
-	93	5.70E-12	5	OTH-SGTR	IEV-LMFW	OTH-SLSOV1	EC1BS012TM	ADX-EV-SA				
5.07E-12	94	5.63E-12	5	IEV-SGTR	EC0MOD01	RPX-CB-GO	REC-MANDASC	LPM-MAN01				
	95	5.29E-12	6	OTH-SGTR	IEV-LOSP	OTH-R05	OTH-SLSOV1	ADX-EV-SA	CLP- UNAVAILABLE			
4.75E-12	96	5.28E-12	6	IEV-SGTR	CVMOD05	ADF-MAN01	CCX-AV-LA	REC-MANDASC	ADN-MAN01			
	97	5.12E-12	4	IEV-SLB-V	OTH-SGTR	ADX-EV-SA	RN55MOD1					
	98	5.12E-12	4	IEV-SLB-V	OTH-SGTR	ADX-EV-SA	RN11MOD3					
	99	5.12E-12	4	IEV-SLB-V	OTH-SGTR	ADX-EV-SA	RN22MOD4					
	100	5.12E-12	4	IEV-SLB-V	OTH-SGTR	ADX-EV-SA	RN23MOD5					
	101	5.12E-12	5	OTH-SGTR	IEV-LMFW1	OTH-SLSOV1	EC1BS001TM	CCX-BY-PN				
	102	5.12E-12	5	OTH-SGTR	IEV-LMFW1	OTH-SLSOV1	EC1BS012TM	CCX-BY-PN				
	103	5.10E-12	6	OTH-SGTR	IEV-LOSP	OTH-R05	OTH-SLSOV1	ADX-EV-SA2	RNX-KV1-GO			
4.47E-12	104	4.97E-12	6	IEV-SGTR	CVMOD07	ADF-MAN01	CCX-AV-LA	REC-MANDASC	ADN-MAN01			

_____

## 43B. DP Node Probability for PDS

Table 43B-1 (Sheet 6 of 7)											
CALCULATION OF FAILURE PROBABILITY OF DP FOR PDS 6											
3.92E-12	105	4.35E-12	6	IEV-SGIR	CVMOD05	ADF-MAN01	CMX-CV-GO	REC-MANDASC	ADN-MAN01		
	106	4.33E-12	4	IEV-SGTR	CIB-MAN01	ADX-EV-SA2	RN55MOD1				
	107	4.33E-12	4	IEV-SGTR	CIB-MAN01	ADX-EV-SA2	RN11MOD3				
	108	4.33E-12	4	IEV-SGTR	CIB-MAN01	ADX-EV-SA2	RN22MOD4	•			
	109	4.33E-12	4	IEV-SGTR	CIB-MAN01	ADX-EV-SA2	RN23MOD5				
	110	4.21E-12	4	IEV-SGTR	CIB-MAN00	ADX-EV-SA2	CLP-UNAVAILA	BLE			
3.69E-12	111	4.10E-12	6	IEV-SGTR	CVMOD07	ADF-MAN01	CMX-CV-GO	REC-MANDASC	ADN-MAN01		
	112	4.02E-12	5	OTH-SGTR	IEV-LCOND	OTH-SLSOV1	ADX-EV-SA2	RHN-MAN01			
·	113	3.75E-12	5	OTH-SGTR	IEV-LCOND	OTH-SLSOV1	ADX-EV-SA2	EC1BS001TM			
	114	3.75E-12	. 5	OTH-SGTR	IEV-LCOND	OTH-SLSOV1	ADX-EV-SA2	EC1BS012TM			
к* I +	. 115	3.75E-12	5.	OTH-SGTR	IEV-LCOND	OTH-SLSOV1	ADX-EV-SA2	EC1BS122TM	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.		
3.31E-12	116	3.68E-12	5	IEV-SGTR	CIB-MAN00	MDAS	CCX-INPUT- LOGIC	ADN-MAN01C			
	117	3.63E-12	4	IEV-SLB-V	OTH-SGTR	ADX-EV-SA	CLP-UNAVAILA	BLE			
	118	3.63E-12	5	OTH-SGTR	IEV-LMFW1	OTH-SLSOV1	IDDBSDS1TM	IDBBSDS1TM			
!	119	3.63E-12	5	OTH-SGTR	IEV-LMFW1	OTH-SLSOV1	IDDBSDS1TM	IDBBSDD1TM			
	120	3.63E-12	5	OTH-SGTR	IEV-LMFW1	OTH-SLSOV1	IDDBSDD1TM	IDBBSDS1TM			
	121	3.63E-12	5	OIH-SGTR	IEV-LMFW1	OTH-SLSOV1	IDDBSDD1TM	IDBBSDD1TM			
	122	3.57E-12	6	OTH-SGTR	IEV-LCOND	OTH-SLSOV1	ADX-EV-SA2	RNAMOD09	RNBMOD10		
	123	3.52E-12	4	IEV-SGTR	SGBAV040LA	ADX-EV-SA2	RN55MOD1	the second second			
· · ·	124	3.52E-12	4	IEV-SGTR	SGBAV040LA	ADX-EV-SA2	RN11MOD3		<u> </u>		
	125	3.52E-12	4	IEV-SGTR	SGBAV040LA	ADX-EV-SA2	RN22MOD4				
	126	3.52E-12	4	IEV-SGTR	SGBAV040LA	ADX-EV-SA2	RN23MOD5				
	127	3.50E-12	4	IEV-SLB-V	OTH-SGTR	ADX-EV-SA2	RNX-KV1-GO		<u> </u>		
	128	3.46E-12	5	OTH-SGTR	IEV-LCOND	OTH-SLSOV1	ADX-EV-SA	RNX-KV1-GO			

**Revision 4** 

43B-7

	Table 43B-1 (Sheet 7 of 7)										
	CALCULATION OF FAILURE PROBABILITY OF DP FOR PDS 6										
	129	3.34E-12	4	IEV-SGTR	EC1BS001TM	OTH-SLSOV3	ADX-EV-SA2		\		
	130	3.34E-12	4	IEV-SGTR	EC1BS012TM	OTH-SLSOV3	ADX-EV-SA2				
3.01E-12	131	3.34E-12	5	IEV-SGTR	CIB-MAN01	RPX-CB-GO	<b>REC-MANDASC</b>	ADN-MAN01			
2.99E-12	132	3.32E-12	5	IEV-SGTR	IDBBSDS1TM	RC1CB063GO	REC-MANDASC	LPM-MAN01			
2.99E-12	133	3.32E-12	5	IEV-SGTR	IDBBSDS1TM	RC1CB061GO	REC-MANDASC	LPM-MAN01			
2.99E-12	134	3.32E-12	5	IEV-SGTR	IDBBSDS1TM	RC1CB053GO	REC-MANDASC	LPM-MAN01			
2.99E-12	135	3.32E-12	5	IEV-SGTR	IDBBSDS1TM	RC1CB051GO	REC-MANDASC	LPM-MAN01			
2.99E-12	136	3.32E-12	5	IEV-SGTR	<b>IDBBSDD1TM</b>	RC1CB063GO	REC-MANDASC	LPM-MAN01			
2.99E-12	137	3.32E-12	5	IEV-SGTR	IDBBSDD1TM	RC1CB061GO	REC-MANDASC	LPM-MAN01			
2.99E-12	138	3.32E-12	5	IEV-SGTR	IDBBSDD1TM	RC1CB053GO	REC-MANDASC	LPM-MAN01			
2.99E-12	139	3.32E-12	5	IEV-SGTR	IDBBSDD1TM	RC1CB051GO	REC-MANDASC	LPM-MAN01			
2.96E-12	140	3.29E-12	5	IEV-SGTR	DUMP-MAN01	RPX-CB-GO	REC-MANDASC	ADN-MAN01			
	141	3.27E-12	5	OTH-SGTR	IEV-LMFW1	OTH-SLSOV1	EC1BS001TM	ADX-EV-SA			
3.44E-09	Sum										

## **Revision 4**

____

43C. Evaluation of Operator Actions

## ATTACHMENT 43C

## **EVALUATION OF OPERATOR ACTIONS**

The operator actions pertinent to the CET event tree nodes are listed in Table 43C-1. A comparison with the operator actions modeled in the AP600 PRA indicates that all but one operator action still have the same performance shaping factors and time windows except one, REN-MAN03.

The REN-MAN03 time window is estimated to be shorter for the AP1000 design since higher water levels are needed in the reactor cavity, thus a longer flooding time. To compensate for the shorter time window, the action to open valves has been moved to the first step of Emergency Response Guideline (ERG) AFR.C-1. With this revision it is estimated that the A600 HEP of 3.4E-03 for this operator action is maintained for AP1000. However, two sensitivity analyses are made to study the effect of this operator action HEP being higher, namely 3.4E-02 or 0.1. The operator action affects the IWF fault tree cutsets, and thus the probabilities q2 and q20 calculated for use in the CET. The calculations are stored in sec-44iwf folder.

REN-MAN03 HEP =	3.4E-03	3.4E-02	0.1
- ;			
Q2	2.671E-09	5.088E-09	1.029E-08
Q20	2.059E-09	3.851E-09	7.712E-09
LRF	1.95E-08	2.62E-08	3.5E-08
Ceff	91.9%	89.1	85.5%

The results are summarized in the following table:

If the REN-MAN03 failure probability was two orders of magnitude higher than the base case, the plant LRF would have been doubled, which shows that the results are somewhat sensitive to this operator action.

	Table 43C-1											
	EVALUATION OF CET-RELATED OPERATOR ACTIONS											
	SUMMARY OF OPERATOR ACTIONS FOR CONTAINMENT EVENT TREE NODES											
Top Event	Description of Operator Error	Event ID	Cue(s)	Time Window	AP600 Tw/Ta/Stress	AP600 HEP/Cond HEP	AP1000 HEP	Comments				
DP	Failure to recognize need for post-core- uncovery RCS depress during small LOCA or transient with loss of PRHR	LPM-REC01	core-exit T/C > 1200°F (ERG AFR.C-1)	30 minutes	20/15/H	1.34E-03/ 5.0E-02	1.34E-03/ 5.0E-02					
	Failure to complete ADS as recovery from failure of automatic actuation or manual actuation after core damage	ADN-REC01	core-exit T/C > 1200°F (ERG AFR.C-1)	30 minutes	5/3/H	3.02E-03/ 5.0E-02	3.02E-03/ 5.0E-02					
IS	Failure to recognize need and failure to isolate the containment, given core damage following an accident	CIC-MAN01	high containment pressure, or temperature, or radiation (ERG E-0)	50 minutes	60/30/H	5.71E-03/ N/A	5.71E-03/ N/A					
IR	Failure to recognize need and failure to open recirculation valves to flood reactor cavity after core damage	REN-MAN03	core-exit temperature > 1200°F (ERG AFR.C-1)	5 minutes	20/10/H	3.4E-03/0.15	3.4E-03/0.15	See sensitivity analyses				
PC	Failure to recognize need and failure to open PCS water valves to drain cooling water on containment shell	PCN-MAN01	high containment pressure (ERG E-0)	18 hours	300/120/H	1.48E-04/ N/A	1.48E-04/ N/A					
VNT	Failure to recognize need and failure to open containment vent to reduce containment pressure	VNT-MAN01	high containment pressure (SAMG)	60 minutes	N/A		1.0	Not credited				
IG	Failure to recognize need and failure to actuate hydrogen control system, given core damage following an accident	VLN-MAN01	core-exit T/C > 1200°F (ERG AFR.C-1)	15 minutes	15/10/H	1.28E-03/0.5	1.28E-03/0.5					
DP	Failure to perform ADS as recovery from failure of automatic actuation or manual actuation in later phases of SGTR event	PDS6- MANADS	Late Recovery	Hours available	0.1		0.1	Screening valve				

 $\leftarrow$ 

43D. Effect of "Pre-Existing Containment Opening" on LRF

## ATTACHMENT 43D

#### EFFECT OF "PRE-EXISTING CONTAINMENT OPENING" ON LRF

This discussion is included in the AP1000 PRA documentation to include the effect of pre-existing containment opening on the plant LRF.

The contribution of containment isolation failure to AP1000 PRA base case LRF is captured under the accident class CI, as summarized in Table 43-8 of the AP1000 PRA. The frequency of the accident class CI is 1.33E-09/year.

Three fault trees, CIC, CID, and XCID are used in the modeling of containment failure. The system failure probabilities obtained from these fault trees are 1.77E-03, 1.77E-03, and 2.76E-03, respectively. These fault tree models do not account for the pre-existing containment opening with a failure probability of 1.2E-04. If these scenarios were to be included in the model, the system failure probability would increase by at most 7.3 percent (1.0 - (1.77E-03+1.2E-04)/1.77E-03). This increase will be used to estimate the corresponding increase in LRF.

A 7.3 percent increase in the CI accident class LRF of 1.33E-09 would raise it to 1.43E-09/year. The plant LRF would change from 1.95E-08/year to 1.96E-08/year. This change is small.

43E. Effect of Containment Air-Cooling Failure on Plant Risk

## ATTACHMENT 43E

### EFFECT OF CONTAINMENT AIR-COOLING FAILURE ON PLANT RISK

This attachment discusses the effect of containment air-cooling failure on plant risk given the success criteria that air cooling alone is sufficient to prevent containment failure for accidents studied in the base AP1000 PRA model.

When PCS is modeled by fault trees to be used in the at-power CDF event trees (under the event tree top event CHR), to identify and collect the late containment failure (LCF) end states for sequences, it includes only water cooling function. This function serves both as short-term and long-term (24-72 hours) cooling. The objective of introducing LCF end state was to collect those success sequences where only air cooling by PCS is sufficient to avoid core damage, and both the water cooling by PCS and normal RHR are unavailable. This collection is stored under the LCF end state with a frequency of 6.92E-08/year, which is not a CDF end state, but represents the uncertainty in the sufficiency of containment cooling solely by PCS air cooling.

Failure of air cooling is less likely than the mechanical and actuation failure modes already accounted for in the PCS water cooling fault tree models. Thus, this failure mode is not assigned a failure probability. Moreover, other supplies of water are expected to be available from the fire protection system, demineralized water system, ancillary water system, and temporary sources (fire trucks or water buffaloes) that can be brought online by the operators to avoid dependence on air only cooling.

In the context of AP1000 PRA Chapter 6, the following success criteria are in effect for containment cooling:

Containment cooling either by

1. "Water cooling mode" of PCS

or

2. Decay heat removal mode of normal RHR

or

3. "Air cooling mode" of PCS

is sufficient to prevent core damage during the mission time specified for CDF event trees. The probability of failure of all three of these functions for an otherwise "success" sequence is small. Thus, this containment cooling function is not queried in the CDF event trees for CDF.

If these LCF sequences were to lead to core damage, then the same sequences would also lead to a late LRF consequence. The frequency of additional late LRF (it is also CDF) introduced by failure of air cooling on top of failure of water cooling and normal RHR cooling (for otherwise success end states) is estimated below for different values of air-cooling reliability.

The table below shows the relation between assuming different values for air-cooling failure probability, and the resulting increase in plant CDF/LRF:

Air-Cooling Failure Probability	Current LCF with Air-Cooling Success	Increase in LRF (also CDF) if LCF and Failure of Air Cooling Occurs	Comparative Increase in Base LRF	Risk Significance	
0.0001	6.92E-08	6.92E-12	Very Small	Insignificant	
0.001	6.92E-08	6.92E-11	Very Small	Insignificant	
0.01	6.92E-08	6.92E-10	3.5%	Insignificant	

From this table, it is shown that with any reasonable value for the air-cooling failure probability, the increase in LRF is not risk significant, and the increase of CDF is even less significant.

## CHAPTER 45

#### FISSION-PRODUCT SOURCE TERMS

This chapter discusses the fission-product source terms that are used in the offsite dose analysis (Chapter 49) for each of the release categories, or end states, of the containment event tree, as discussed in Chapter 35. The source terms are taken from the MAAP4 analyses results presented in Chapter 34. They are used as the input to the offsite dose analysis presented in Chapter 49.

45.1

#### Summary of AP1000 Release Categories

The release categories group similar fission-product source terms from the Level 2 analysis to bound the offsite consequences and reduce the number of sequences to be analyzed. The AP1000 prevents large releases with design features of the containment that provide redundant, diverse mitigation of challenging phenomena in the unlikely event of a severe accident. These features include the reactor coolant automatic depressurization system (ADS), the ability to flood the reactor vessel cavity, hydrogen igniters in the large dry containment, and the passive containment cooling system (PCS). The design features act to maintain reactor coolant system (RCS) integrity, prevent containment overpressurization from hydrogen detonation or deflagration, and remove heat from the containment. The mitigation features maintain the potential for fission-product release from the AP1000 containment very low.

Given a severe accident, a release of fission products occurs through normal containment leakage, a breach of the containment or a bypass of the containment.

A large pre-existing opening, or containment isolation failure, produces containment leakage beyond the design basis. The failure of a large purge line isolation valve is assumed for containment isolation failure.

A breach of the containment shell is assumed to occur based on the containment pressure and the conditional containment failure probability discussed in Chapter 42. The containment is also assumed to fail if hydrogen detonation occurs.

Containment bypass in the AP1000 is typically caused by steam generator tube rupture initiated events that progress to severe accident or by steam generator tube ruptures induced by high pressure and temperature core damage events.

The containment release categories are described in Section 35.6. For each of these categories, the release fractions are determined over a 72-hour period following the onset of core damage. For all containment failure release categories, the release is assumed to be directly from the containment to the environment at ground level. For the intact containment (IC) category, a decontamination factor (DF) of three is applied (Reference 45-2) due to deposition in the auxiliary building.

For each of the release categories, a representative source term is used to complete the Level 3 analysis. This representative source term was identified as the bounding release for the accident sequences in the specific release category.

The release fractions at 24 and 72 hours for each fission-product group are presented in Tables 45-1 and 45-2, respectively.

## 45.2 Release Category Source Terms

### 45.2.1 Release Category IC

Release Category IC represents the release of fission products from an intact containment during a severe accident. Normal containment leakage accounts for the fission-product releases to the environment. The likely normal leakage release pathway is via containment penetration leakage into the auxiliary building.

The fission product release fractions from an accident class 3BE sequence with cavity flooding, hydrogen control, and passive containment cooling are used to represent the IC release. A decontamination factor of 3 is applied to the aerosol-release fractions to model deposition in the auxiliary building. A direct release sensitivity analysis to the decontamination factor is discussed in section 45.3.

The source term releases for Release Category IC are presented in Figures 45-1 through 45-12.

## 45.2.2 Release Category BP

Release category BP represents containment bypass releases to the environment. Fission products are released from the reactor coolant system via failed steam generator tubes to the secondary system and to the environment through a stuck-open safety valve. Release category BP contributes to the large, early release frequency (LERF) of the AP1000. The fission product release fractions from a steam generator tube initiated core damage sequence in accident class 1A are used to represent the BP release.

The source term releases for Release Category BP are presented in Figures 45-13 through 45-24.

## 45.2.3 Release Category CI

Release category CI represents fission product releases to the environment from an unisolated containment. Fission products are released from the reactor coolant system to the containment; however, the containment is not isolated from the environment from the beginning of the accident. Release category CI contributes to the LERF of the AP1000.

The fission product release fractions from an accident class 3C sequence with the failure of containment isolation are used to represent the CI release category.

The source term releases for Release Category CI are presented in Figures 45-25 through 45-36.

## 45.2.4 Release Category CFE

Release category CFE represents fission product releases to the environment from containment failure induced by severe accident phenomena that may occur during the core melting and

relocation phase of the accident sequence. Fission products are released from the reactor coolant system to the containment. Before significant deposition of the aerosol fission products, the containment fails due to a high-energy event (i.e. hydrogen combustion or steam explosion). Release category CFE contributes to the LERF of the AP1000.

1

The fission product release fractions from an accident class 3D sequence with early containment failure induced by hydrogen detonation were used to represent release category CFE.

The source term releases for Release Category CFE are presented in Figures 45-37 through 45-48.

#### 45.2.5 Release Category CFI

Release category CFI represents fission product releases to the environment from containment failure that may occur after the melting and relocation phenomena and within 24 hours after the onset of core damage. Fission products are released from the reactor coolant system to the containment. The containment atmosphere is well-mixed and significant aerosol deposition has begun when the containment fails due to severe accident phenomena (i.e. hydrogen combustion or long-term containment pressurization from decay heat). Release category CFI contributes to the large release frequency of the AP1000, but is not an early release contributing to LERF.

The fission product release fractions from an accident class 3BE sequence with intermediate containment failure induced by hydrogen detonation were used to represent release category CFI.

The source term releases for Release Category CFI are presented in Figures 45-49 through 45-60.

#### 45.2.6 Release Category CFL

Release category CFL represents fission product releases to the environment from containment failure that may occur after 24 hours. Fission products are released from the reactor coolant system to the containment. The containment atmosphere is pressurized with steam from decay heat. Significant aerosol deposition occurs over the long term of the accident. Containment fails from overpressure due to loss of containment cooling. Release category CFL contributes to large release frequency, but is not an early release contributing to LERF.

The fission product releases from an accident class 3BE sequence and containment failure induced by long-term containment pressurization is used to represent release category CFL.

The source term releases for Release Category CFL are presented in Figures 45-61 through 45-72.

#### 45.2.7 Release Category CFV

Release category CFV represents fission product releases to the environment from containment venting, which occurs after 24 hours. Fission products are released to the containment. The

45-3

containment atmosphere is pressurized with steam from decay heat. Significant aerosol deposition occurs over the long term of the accident. The operator vents the containment at a pressure well below the failure pressure of the containment. No filtering is assumed. Release category CFV contributes to large release frequency, but is not an early release contributing to LERF.

Release category CFV did not exist for the AP600 PRA (Reference 45-1). The failure frequency for successful operator venting in the containment event tree analysis is unity. Therefore, the frequency of CFV in the AP1000 PRA is zero occurrences per reactor year. No source term is calculated for this release category.

#### 45.3 Direct-Release Sensitivity Case

For release category IC, the leakage from the containment is assumed to pass through the middle annulus of the auxiliary building. This room has restricted leakage to the environment. Thus, the fission products have long residence times. Significant deposition occurs in the middle annulus, attenuating the release of fission products to the environment. A decontamination factor of three is credited for the aerosol fission products because of this deposition.

To account for uncertainty in the probability of the fission products bypassing the middle annulus decontamination effect, the release is assumed, in the IC direct-release sensitivity case, to be released directly to the environment at the design leak rate.

The source term releases for the Direct Release Sensitivity Case are presented in Figures 45-73 through 45-84.

#### 45.4 Summary

The AP1000 release categories and associated source terms over the first 24 and 72 hours after core damage are summarized in Tables 45-1 and 45-2, respectively.

A fission-product release source term (direct) is also developed to address the sensitivity assuming that the IC source term from the containment is released directly to the environment with no holdup or decontamination in the auxiliary building. The sensitivity release fractions also represent source terms for consequence analysis, as discussed in Chapter 49.

### 45.5 References

- 45-1 GW-GL-022, AP600 Probabilistic Risk Assessment, August 1998.
- 45-2 EPRI Letter to James Wilson, USNRC, dated April 30, 1993, attachment titled, "Passive ALWR Secondary Building Mixing and Leak Rate Monitoring."

## AP1000 Probabilistic Risk Assessment

						Table 45-1					•	
	ENVIRONMENTAL RELEASE FRACTIONS AT 24 HOURS AFTER CORE DAMAGE PER RELEASE CATEGORY											
Environmental Release Fractions at 24 Hours After Core Damage												
Cat.	Xe, Kr	CsI	TeO ₂	SrO	MoO ₂	CsOH	BaO	La ₂ O ₃	CeO ₂	Sb	Te ₂	UO ₂
IC	1.0E-3	1.2E-5	9.5E-6	1.1E-5	1.3E-5	1.1E-5	1.2E-5	1.3E-6	1.5E-6	1.3E-5	0.0E0	0.0E0
BP	1.0E-0	3.2E-1	2.5E-1	3.6E-3	4.5E-2	2.1E-1	8.9E-3	1.3E-4	8.0E-4	2.2E-1	0.0E0	0.0E0
CI	6.4E-1	4.6E-2	2.1E-2	2.0E-2	4.0E-2	1.8E-2	3.2E-2	2.4E-4	7.4E-4	2.7E-2	0.0E0	0.0E0
CFE	8.1E-1	5.7E-2	3.2E-2	3.5E-3	1.4E-2	5.5E-2	5.3E-3	6.5E-5	2.5E-4	2.3E-2	0.0E0	0.0E0
CFI	8.0E-1	3.3E-3	5.0E-3	2.2E-2	9.3E-3	3.3E-3	1.7E-2	8.3E-3	1.1E-2	7.2E-3	0.0E0	0.0E0
CFL	1.3E-3	1.2E-5	8.5E-6	1.7E-5	1.7E-5	1.1E-5	1.7E-5	8.5E-6	9.0E-6	1.7E-5	0.0E0	0.0E0
DIRECT	3.0E-3	3.6E-5	2.9E-5	3.3E-5	3.9E-5	3.3E-5	2.8E-5	3.9E-6	4.5E-6	3.9E-5	0.0E0	0.0E0

45-5

**Revision 4** 

É---

	Table 45-2											
	ENVIRONMENTAL RELEASE FRACTIONS AT 72 HOURS AFTER CORE DAMAGE PER RELEASE CATEGORY											
Release	Environmental Release Fractions at 72 Hours After Core Damage											
Cat.	Xe, Kr	CsI	TeO ₂	SrO	MoO ₂	СѕОН	BaO	La ₂ O ₃	CeO ₂	Sb	Te ₂	UO ₂
IC	2.6E-3	1.2E-5	9.5E-6	1.1E-5	1.3E-5	1.1E-5	1.2E-5	1.4E-6	1.5E-6	1.3E-5	0.0E0	0.0E0
BP	1.0E-0	4.5E-1	2.6E-1	3.6E-3	4.5E-2	2.5E-1	8.9E-3	1.3E-4	8.0E-4	2.7E-1	0.0E0	0.0E0
CI	7.8E-1	4.6E-2	2.1E-2	2.0E-2	4.0E-2	1.8E-2	2.2E-2	2.4E-4	7.4E-4	2.9E-2	0.0E0	0.0E0
CFE	9.6E-1	5.7E-2	3.2E-2	3.5E-3	1.4E-2	5.5E-2	5.3E-3	6.5E-5	2.5E-4	2.3E-2	0.0E0	0.0E0
CFI	9.2E-1	3.3E-3	5.0E-3	2.2E-2	9.3E-3	3.3E-3	1.7E-2	1.9E-2	2.1E-2	7.3E-3	0.0E0	0.0E0
CFL	9.8E-1	3.3E-5	8.6E-6	2.8E-3	1.4E-3	2.2E-5	2.6E-3	1.4E-1	1.3E-1	6.2E-4	0.0E0	0.0E0
DIRECT	7.8E-3	3.6E-5	2.9E-5	3.3E-5	3.9E-5	3.3E-5	3.6E-5	4.2E-6	4.5E-6	3.9E-5	0.0E0	0.0E0

**Revision 4** 

45. Fission-Product Source Terms



1

Release Category IC, Case 3BE-5 – SBLOCA with Failed Gravity Injection: Release Fraction of Noble Gases



Figure 45-2





Figure 45-3

Release Category IC, Case 3BE-5 – SBLOCA with Failed Gravity Injection: Release Fraction of Tellurium Dioxide





## 45. Fission-Product Source Terms



Release Category IC, Case 3BE-5 – SBLOCA with Failed Gravity Injection: Release Fraction of Molybdenum Dioxide







Figure 45-7

Release Category IC, Case 3BE-5 – SBLOCA with Failed Gravity Injection: Release Fraction of Barium Oxide







Figure 45-9

Release Category IC, Case 3BE-5 – SBLOCA with Failed Gravity Injection: Release Fraction of Cerium Dioxide





## 45. Fission-Product Source Terms





















Figure 45-15





Figure 45-16


## 45. Fission-Product Source Terms











Figure 45-19









Release Category BP, Case 6E-1 – SGTR with Stuck Open SG Safety Valve: Release Fraction of Cerium Dioxide



Figure 45-22

Release Category BP, Case 6E-1 – SGTR with Stuck Open SG Safety Valve: Release Fraction of Tin











AP1000 Probabilistic Risk Assessment



Figure 45-25

Release Category CI, Case 3C-2 – Vessel Rupture with Containment Failure: Release Fraction of Noble Gases







Figure 45-27

Release Category CI, Case 3C-2 – Vessel Rupture with Containment Failure: Release Fraction of Tellurium Dioxide





45. Fission-Product Source Terms



Figure 45-29

Release Category CI, Case 3C-2 – Vessel Rupture with Containment Failure: Release Fraction of Molybdenum Dioxide





45. Fission-Product Source Terms



Figure 45-31

Release Category CI, Case 3C-2 – Vessel Rupture with Containment Failure: Release Fraction of Barium Oxide



Figure 45-32

# Release Category CI, Case 3C-2 – Vessel Rupture with Containment Failure: Release Fraction of Dilanthanum Trioxide

45. Fission-Product Source Terms



















### 45. Fission-Product Source Terms



Release Category CFE, Case 3D-4 – Spurious ADS-2, Failed CMTs, Diffusion Flame: Release Fraction of Noble Gases



Figure 45-38

.....





Release Category CFE, Case 3D-4 – Spurious ADS-2, Failed CMTs, Diffusion Flame: Release Fraction of Tellurium Dioxide







Release Category CFE, Case 3D-4 – Spurious ADS-2, Failed CMTs, Diffusion Flame: Release Fraction of Molybdenum Dioxide





# 45. Fission-Product Source Terms



Release Category CFE, Case 3D-4 – Spurious ADS-2, Failed CMTs, Diffusion Flame: Release Fraction of Barium Oxide





45. Fission-Product Source Terms



Release Category CFE, Case 3D-4 – Spurious ADS-2, Failed CMTs, Diffusion Flame: Release Fraction of Cerium Dioxide





# 45. Fission-Product Source Terms



Figure 45-47







AP1000 Probabilistic Risk Assessment



Figure 45-49

Release Category CFI, Case 3BE-3 – DVI Line Break, Failed Gravity Injection, No PXS Flooding: Release Fraction of Noble Gases







Figure 45-51

Release Category CFI, Case 3BE-3 – DVI Line Break, Failed Gravity Injection, No PXS Flooding: Release Fraction of Tellurium Dioxide



Figure 45-52





Figure 45-53

Release Category CFI, Case 3BE-3 – DVI Line Break, Failed Gravity Injection, No PXS Flooding: Release Fraction of Molybdenum Dioxide





**AP1000 Probabilistic Risk Assessment** 



Figure 45-55

Release Category CFI, Case 3BE-3 – DVI Line Break, Failed Gravity Injection, No PXS Flooding: Release Fraction of Barium Oxide





**AP1000 Probabilistic Risk Assessment** 



Figure 45-57

Release Category CFI, Case 3BE-3 – DVI Line Break, Failed Gravity Injection, No PXS Flooding: Release Fraction of Cerium Dioxide







Figure 45-59









# Figure 45-61

Release Category CFL, Case 3BE-7 – SBLOCA with Failed Gravity Injection: Release Fraction of Noble Gases



Figure 45-62

-- 10



AP1000 Probabilistic Risk Assessment



Figure 45-63

Release Category CFL, Case 3BE-7 – SBLOCA with Failed Gravity Injection: Release Fraction of Tellurium Dioxide





AP1000 Probabilistic Risk Assessment



Release Category CFL, Case 3BE-7 – SBLOCA with Failed Gravity Injection: Release Fraction of Molybdenum Dioxide







Figure 45-67

Release Category CFL, Case 3BE-7 – SBLOCA with Failed Gravity Injection: Release Fraction of Barium Oxide



Figure 45-68

. .





Release Category CFL, Case 3BE-7 – SBLOCA with Failed Gravity Injection: Release Fraction of Cerium Dioxide









Release Category CFL, Case 3BE-7 – SBLOCA with Failed Gravity Injection: Release Fraction of Tellurium



Figure 45-72



45. Fission-Product Source Terms



Release Category IC, Case 3BE-5 – SBLOCA with Failed Gravity Injection Direct-Release Sensitivity: Release Fraction of Noble Gases







Release Category IC, Case 3BE-5 – SBLOCA with Failed Gravity Injection Direct-Release Sensitivity: Release Fraction of Tellurium Dioxide





45. Fission-Product Source Terms



Release Category IC, Case 3BE-5 – SBLOCA with Failed Gravity Injection Direct-Release Sensitivity: Release Fraction of Molybdenum Dioxide







Release Category IC, Case 3BE-5 – SBLOCA with Failed Gravity Injection Direct-Release Sensitivity: Release Fraction of Barium Oxide



Figure 45-80

Release Category IC, Case 3BE-5 – SBLOCA with Failed Gravity Injection Direct-Release Sensitivity: Release Fraction of Dilanthanum Trioxide



Release Category IC, Case 3BE-5 – SBLOCA with Failed Gravity Injection Direct-Release Sensitivity: Release Fraction of Cerium Dioxide







Figure 45-83

Release Category IC, Case 3BE-5 – SBLOCA with Failed Gravity Injection Direct-Release Sensitivity: Release Fraction of Tellurium








AP1000 Probabilistic Risk Assessment

# TABLE OF CONTENTS

# Section

# <u>Title</u>

	LIST O	F TABLES		
	LIST OF FIGURES			
	REVISI	ON 1 CHANGE ROADMAP	civ	
	REVISI	ON 2 CHANGE ROADMAP	cviii	
	REVISI	ON 3 CHANGE ROADMAP	cxi	
1	REVISI	ON 4 CHANGE ROADMAP	cxii	
•				
CHAPTER 1	INTRO	DUCTION		
1.1	Introduc	xtion	1-1	
	1.1.1	Background and Overview	1-1	
	1.1.2	Objectives	1-1	
	1.1.3	Technical Scope	1-2	
	1.1.4	Project Methodology Overview	1-3	
	1.1.5	Results	1-4	
	1.1.6	Plant Definition	1-6	
	1.1.7	References	1-6	
CHAPTER 2	INTERI	NAL INITIATING EVENTS		
2.1	Introduc	ction	2-1	
2.2	Internal	Initiating Event Identification and Categorization	2-1	
	2.2.1	Logic Diagram for Internal Initiating Events	2-2	
	2.2.2	Loss-of-Coolant Accidents	2-3	
	2.2.3	Transients	2-6	
	2.2.4	Anticipated Transient without Scram	2-8	
	2.2.5	AP1000 Specific Initiating Event Analysis	2-10	
	2.2.6	Consequential Events	2-19	
· _ ·	2.2.7	Summary of Internal Initiating Event Categories	2-19	
2.3	Internal	Initiating Event Frequency Quantification	2-20	
	2.3.1	Quantification of LOCA Initiating Event Frequencies	2-20	
	2.3.2	Quantification of Transient Initiating Event Frequencies	2-24	
	2.3.3	ATWS Precursor Initiating Event Frequency	2-27	
	2.3.4	Summary of Internal Initiating Event Frequencies	2-27	
2.4	Referen	Ces	2-27	
· · ·	-			
ATTACHMEN	JT 2A Q	UANTIFICATION OF LOCA INITIATING EVENT FREQUE	NCIES	
2A-1	Primary	System Pipe Break Frequencies	2A-1	
2A-2	Reactor	Cooling System Leakage Initiating Event Frequency	2A-1	
2A-3	Steam C	Generator Tube Rupture Initiating Event Frequency	2A-1	
2A-4	Quantifi	ication of Stuck-Open Pressurizer Safety Valve, Accumulator	<b>-</b> · · ·	
	Interfac	e Break, and IRWST Interface Break	2A-1	
2A-5	Initiatin	g Events Review Data Summary and INPO Data	2A-1	

**AP1000 Probabilistic Risk Assessment** 

ATTACHMENT 2B QUANTIFICATION OF TRANSIENT INITIATING EVENT FREQUENCIES 2B-1 Secondary Side Line Breaks & Stuck-open Main Steam Line Safety Valve Frequencies	Section		<u>Title</u>	Page
2B-1       Secondary Side Line Breaks & Stuck-open Main Steam Line Safety Valve Frequencies       2B-1         CHAPTER 3       MODELING OF SPECIAL INITIATORS       3.1         1.1       Introduction       3-1         3.2       Ground Rules for Special Initiating Event Analysis       3-1         3.3       Loss of Component Cooling Water System/Service Water System Initiating Event       3-1         3.4       Loss of Compressed and Instrument Air System Initiating Event       3-2         3.5       Sparious Actuation of Automatic Depressurization System       3-2         3.5.1       Evaluation of Automatic Depressurization System Spurious Actuation       3-3         CHAPTER 4       EVENT TREE MODELS       4-1         4.1       Introduction       4-1         4.2.1       Event Tree Model       4-1         4.2.2       Event Tree Model and its Nodes       4-2         4.2.3       Event Tree Model       4-4         4.3.1       Event Tree Model       4-4         4.3.2       Event Tree Model       4-4         4.3.3       Event Tree Model       4-4         4.3.4       Large Spurious ACtuans       4-4         4.3.2       Event Tree Model       4-4         4.3.3       Event Tree Model and its Nodes	ATTACHMEN	T 2B	QUANTIFICATION OF TRANSIENT INITIATING EVENT FREQUENCIES	
Valve Frequencies	2B-1	Secon	ndary Side Line Breaks & Stuck-open Main Steam Line Safety	
CHAPTER 3       MODELING OF SPECIAL INITIATORS         3.1       Introduction       3-1         3.2       Ground Rules for Special Initiating Event Analysis       3-1         3.3       Loss of Component Cooling Water System/Service Water System Initiating Event       3-2         3.4       Loss of Compressed and Instrument Air System Initiating Event       3-2         3.5       Spurious Actuation of Automatic Depressurization System       3-2         3.5.1       Evaluation of Automatic Depressurization System Spurious Actuation       3-3         CHAPTER 4       EVENT TREE MODELS       4-1         4.1       Introduction       4-1         4.2.1       Event Tree Model       4-1         4.2.2       Event Tree Model and its Nodes       4-2         4.2.3       Event Tree Success Criteria and Core Damage Categories       4-4         4.3.1       Event Tree Model       4-4         4.3.2       Event Tree Model       4-4         4.3.3       Event Tree Model and its Nodes       4-4         4.3.1       Event Tree Model and its Nodes       4-4         4.3.3       Event Tree Model and its Nodes       4-4         4.3.1       Event Tree Model and its Nodes       4-4         4.3.2       Event Tree Model and its Nodes		Valve	Frequencies	<b>2B-</b> 1
3.1       Introduction       3-1         3.2       Ground Rules for Special Initiating Event Analysis       3-1         3.3       Loss of Component Cooling Water System/Service Water System Initiating Event       3-1         3.4       Loss of Component Cooling Water System/Service Water System       3-2         3.5       Spurious Actuation of Automatic Depressurization System       3-2         3.5.1       Evaluation of Automatic Depressurization System Spurious Actuation       3-3         CHAPTER 4       EVENT TREE MODELS       4-1         4.1       Introduction       4-1         4.2       Event Tree Model       4-1         4.2.1       Event Tree Model and its Nodes       4-2         4.2.3       Event Tree Success Criteria and Core Damage Categories       4-4         4.2.4       Operator Actions       4-4         4.3       Large Spurious ADS Event Tree Model       4-4         4.3.1       Event Tree Success Criteria and Core Damage Categories       4-6         4.3.3       Event Tree Model and its Nodes       4-4         4.3.1       Event Tree Success Criteria and Core Damage Categories       4-6         4.3.4       Operator Actions       4-6         4.3.5       Transfers and Consequential Events       4-6	CHAPTER 3	MOD	ELING OF SPECIAL INITIATORS	
3.2       Ground Rules for Special Initiating Event Analysis       3-1         3.3       Loss of Component Cooling Water System/Service Water System Initiating Event       3-1         3.4       Loss of Compressed and Instrument Air System Initiating Event       3-2         3.5       Spurious Actuation of Automatic Depressurization System       3-2         3.5.1       Evaluation of Automatic Depressurization System Spurious Actuation       3-3         CHAPTER 4       EVENT TREE MODELS       4-1         4.1       Introduction       4-1         4.2       Large LOCA Event Tree Model       4-1         4.2.1       Event Description       4-1         4.2.2       Event Tree Model and its Nodes       4-4         4.2.3       Event Tree Model and its Nodes       4-4         4.2.4       Operator Actions       4-4         4.3.1       Event Tree Model and its Nodes       4-4         4.3.2       Event Tree Model and its Nodes       4-6         4.3.3       Event Tree Model and its Nodes       4-6         4.3.4       Operator Actions       4-6         4.3.5       Transfers and Consequential Events       4-6         4.3.4       Operator Actions       4-6         4.4.3       Large Spurious ADS Event Tree Model <td>3.1</td> <td>Introd</td> <td>luction</td> <td>3-1</td>	3.1	Introd	luction	3-1
3.3       Loss of Component Cooling Water System Nitiating Event       .3-1         3.4       Loss of Compressed and Instrument Air System Initiating Event       .3-2         3.5       Spurious Actuation of Automatic Depressurization System Spurious Actuation       .3-3         CHAPTER 4       EVENT TREE MODELS	3.2	Grour	nd Rules for Special Initiating Event Analysis	3-1
3.4       Loss of Compressed and Instrument Air System Initiating Event       3-2         3.5       Spurious Actuation of Automatic Depressurization System Spurious Actuation.       3-2         3.5.1       Evaluation of Automatic Depressurization System Spurious Actuation.       3-3         CHAPTER 4       EVENT TREE MODELS       4-1         4.1       Introduction       4-1         4.2       Large LOCA Event Tree Model       4-1         4.2.1       Event Description       4-1         4.2.2       Event Tree Model and its Nodes       4-2         4.2.3       Event Tree Success Criteria and Core Damage Categories       4-4         4.3       Large Spurious ADS Event Tree Model       4-4         4.3.1       Event Tree Model and its Nodes       4-4         4.3.2       Event Tree Model and its Nodes       4-4         4.3.1       Event Tree Model and its Nodes       4-4         4.3.2       Event Tree Model and its Nodes       4-6         4.3.3       Event Tree Model and its Nodes       4-6         4.3.4       Operator Actions       4-6         4.3.5       Transfers and Consequential Events       4-6         4.4       3.5       Transfers and Consequential Events       4-6         4.4       Deprat	3.3	Loss o	of Component Cooling Water System/Service Water System Initiating Ev	ent3-1
3.5       Spurious Actuation of Automatic Depressurization System Spurious Actuation.       3-2         3.5.1       Evaluation of Automatic Depressurization System Spurious Actuation.       3-3         CHAPTER 4       EVENT TREE MODELS       4.1         4.1       Introduction       4.1         4.2       Large LOCA Event Tree Model       4.1         4.2.1       Event Description       4.1         4.2.2       Event Tree Model and its Nodes       4.4         4.2.3       Event Tree Success Criteria and Core Damage Categories       4.4         4.2.5       Transfers and Consequential Events       4.4         4.3       Large Spurious ADS Event Tree Model       4.4         4.3.1       Event Description       4.4         4.3.2       Event Tree Model and its Nodes       4.4         4.3.3       Event Tree Model       4.4         4.3.4       Operator Actions       4.6         4.3.5       Transfers and Consequential Events       4.6         4.4.1       Event Tree Model       4.6         4.5       Transfers and Consequential Events       4.6         4.4.1       Event Tree Model and its Nodes       4.7         4.4.2       Event Tree Model and its Nodes       4.9         4.4.3	3.4	Loss o	of Compressed and Instrument Air System Initiating Event	3-2
3.5.1       Evaluation of Automatic Depressurization System Spurious Actuation       3-3         CHAPTER 4       EVENT TREE MODELS       4.1         4.1       Introduction       4.1         4.2       Large LOCA Event Tree Model       4.1         4.2.1       Event Description       4.1         4.2.2       Event Tree Model and its Nodes       4.2         4.2.3       Event Tree Success Criteria and Core Damage Categories       4.4         4.2.5       Transfers and Consequential Events       4.4         4.3.1       Event Description       4.4         4.3.2       Event Tree Model and its Nodes       4.4         4.3.1       Event Tree Model and its Nodes       4.4         4.3.2       Event Tree Model and its Nodes       4.4         4.3.3       Event Tree Model and its Nodes       4.4         4.3.1       Event Tree Model and its Nodes       4.6         4.3.2       Frent Tree Model       4.6         4.3.3       Event Tree Model and its Nodes       4.6         4.4       4.3.5       Transfers and Consequential Events       4.6         4.4       A.3.5       Transfers and Consequential Events       4.6         4.4.1       Event Tree Model and its Nodes       4.7       4.4	3.5	Spuri	ous Actuation of Automatic Depressurization System	3-2
CHAPTER 4       EVENT TREE MODELS         4.1       Introduction       4-1         4.2       Large LOCA Event Tree Model       4-1         4.2.1       Event Description       4-1         4.2.2       Event Tree Model and its Nodes       4-2         4.2.3       Event Tree Success Criteria and Core Damage Categories       4-4         4.2.4       Operator Actions       4-4         4.2.5       Transfers and Consequential Events       4-4         4.3.1       Event Tree Model and its Nodes       4-4         4.3.2       Event Tree Model and its Nodes       4-4         4.3.3       Event Tree Model and its Nodes       4-4         4.3.4       Operator Actions       4-4         4.3.5       Transfers and Consequential Events       4-6         4.3.4       Operator Actions       4-6         4.4       4.3.5       Transfers and Consequential Events       4-6         4.4       Depender Actions       4-6       4-6         4.4       Event Tree Model and its Nodes       4-7         4.4.5       Event Tree Model and its Nodes       4-7         4.4.1       Event Tree Model and its Nodes       4-7         4.4.2       Event Tree Model and its Nodes       4-10<		3.5.1	Evaluation of Automatic Depressurization System Spurious Actuation	»n3-3
4.1       Introduction       4-1         4.2       Large LOCA Event Tree Model       4-1         4.2.1       Event Description       4-1         4.2.2       Event Tree Model and its Nodes       4-2         4.2.3       Event Tree Success Criteria and Core Damage Categories       4-4         4.2.4       Operator Actions       4-4         4.2.5       Transfers and Consequential Events       4-4         4.3       Large Spurious ADS Event Tree Model       4-4         4.3.1       Event Tree Model and its Nodes       4-4         4.3.2       Event Tree Model and its Nodes       4-4         4.3.3       Event Tree Success Criteria and Core Damage Categories       4-6         4.4.4       4.3.3       Event Tree Model and its Nodes       4-6         4.4.4       4.3.4       Operator Actions       4-6         4.4.1       Event Tree Model and its Nodes       4-6         4.4.1       Event Tree Model and its Nodes       4-7         4.4.2       Event Tree Model and its Nodes       4-7         4.4.3       Event Tree Model and its Nodes       4-7         4.4.4       Operator Actions       4-9         4.5       Transfers and Consequential Events       4-10	CHAPTER 4	EVE	NT TREE MODELS	
4.2       Large LOCA Event Tree Model       4-1         4.2.1       Event Description       4-1         4.2.2       Event Tree Model and its Nodes       4-2         4.2.3       Event Tree Success Criteria and Core Damage Categories       4-4         4.2.4       Operator Actions       4-4         4.2.5       Transfers and Consequential Events       4-4         4.3       Large Spurious ADS Event Tree Model       4-4         4.3.1       Event Description       4-4         4.3.2       Event Tree Model and its Nodes       4-4         4.3.3       Event Tree Model and its Nodes       4-4         4.3.3       Event Tree Model and its Nodes       4-4         4.3.4       Operator Actions       4-6         4.3.5       Transfers and Consequential Events       4-6         4.4       Hedium LOCA Event Tree Model       4-6         4.4.1       Event Tree Model and its Nodes       4-7         4.4.3       Event Tree Model and its Nodes       4-7         4.4.4       Operator Actions       4-9         4.4.4       Operator Actions       4-9         4.4.4       Operator Actions       4-9         4.4.5       Transfers and Consequential Events       4-10	4.1	Introd	luction	4-1
4.2.1Event Description4-14.2.2Event Tree Model and its Nodes4-24.2.3Event Tree Success Criteria and Core Damage Categories4-44.2.4Operator Actions4-44.2.5Transfers and Consequential Events4-44.3Large Spurious ADS Event Tree Model4-44.3.1Event Description4-44.3.2Event Tree Model and its Nodes4-44.3.3Event Tree Model and its Nodes4-44.3.4Operator Actions4-64.3.5Transfers and Consequential Events4-64.3.6Operator Actions4-64.4Hedium LOCA Event Tree Model4-64.4.1Event Description4-64.4.2Event Tree Model and its Nodes4-74.4.3Event Tree Model and its Nodes4-74.4.3Event Tree Model and its Nodes4-74.4.4Operator Actions4-94.4.5Transfers and Consequential Events4-104.5.5Transfers and Consequential Events4-104.5.1Event Tree Model and its Nodes4-104.5.2Event Tree Model and its Nodes4-104.5.3Event Tree Model and its Nodes4-114.5.4Operator Actions4-134.5.5Transfers and Consequential Events4-134.5.4Operator Actions4-134.5.5Transfers and Consequential Events4-134.5.4Operator Actions4-134.5.5Transfers and Consequent	4.2	Large	LOCA Event Tree Model	4-1
4.2.2Event Tree Model and its Nodes4-24.2.3Event Tree Success Criteria and Core Damage Categories4-44.2.4Operator Actions4-44.2.5Transfers and Consequential Events4-44.3Large Spurious ADS Event Tree Model4-44.3.1Event Description4-44.3.2Event Tree Model and its Nodes4-44.3.3Event Tree Model and its Nodes4-44.3.4Operator Actions4-44.3.5Transfers and Consequential Events4-64.4.44.3.6Event Tree Model4-64.4.7Operator Actions4-64.4.8Operator Actions4-64.4.9Description4-64.4.1Event Tree Model4-64.4.2Event Tree Model4-64.4.3Event Tree Model and its Nodes4-74.4.3Event Tree Model and its Nodes4-74.4.3Event Tree Model and its Nodes4-74.4.4Operator Actions4-94.4.5Transfers and Consequential Events4-104.5Transfers and Consequential Events4-104.5.1Event Tree Model and its Nodes4-104.5.2Event Tree Model and its Nodes4-134.5.4Operator Actions4-134.5.5Transfers and Consequential Events4-134.5.4Operator Actions4-134.5.5Transfers and Consequential Events4-134.5.4Operator Actions4-13 <t< td=""><td></td><td>4.2.1</td><td>Event Description</td><td>4-1</td></t<>		4.2.1	Event Description	4-1
4.2.3       Event Tree Success Criteria and Core Damage Categories       4.4         4.2.4       Operator Actions       4.4         4.2.5       Transfers and Consequential Events       4.4         4.3       Large Spurious ADS Event Tree Model       4.4         4.3.1       Event Description       4.4         4.3.2       Event Tree Model and its Nodes       4.4         4.3.3       Event Tree Model and Core Damage Categories       4.6         4.3.4       Operator Actions       4.6         4.3.5       Transfers and Consequential Events       4.6         4.4.4       A.3.5       Transfers and Consequential Events       4.6         4.4.1       Event Tree Model       4.6       4.4         4.3.5       Transfers and Consequential Events       4.6         4.4.1       Event Tree Model and its Nodes       4.7         4.4.3       Event Tree Model and Core Damage Categories       4.9         4.4.4       Operator Actions       4.9         4.4.5       Transfers and Consequential Events       4.10         4.5       Transfers and Consequential Events       4.10         4.5.1       Event Tree Model and its Nodes       4.10         4.5.2       Event Tree Model and its Nodes       4.10		4.2.2	Event Tree Model and its Nodes	4-2
4.2.4Operator Actions4.44.2.5Transfers and Consequential Events4.44.3Large Spurious ADS Event Tree Model4.44.3.1Event Description4.44.3.2Event Tree Model and its Nodes4.44.3.3Event Tree Success Criteria and Core Damage Categories4.64.3.4Operator Actions4.64.3.5Transfers and Consequential Events4.64.4.1Event Tree Model4.64.4.2Event Tree Model4.64.4.3Event Tree Model and its Nodes4.74.4.3Event Tree Model and its Nodes4.74.4.3Event Tree Model and its Nodes4.74.4.3Event Tree Success Criteria and Core Damage Categories4.94.4.4Operator Actions4.94.4.5Transfers and Consequential Events4.104.5Core Makeup Tank Line Break Event Tree Model4.104.5.1Event Tree Model and its Nodes4.104.5.2Event Tree Model and its Nodes4.104.5.3Event Tree Model and its Nodes4.104.5.4Operator Actions4.134.5.5Transfers and Consequential Events4.134.6Safety Injection Line Break Event Tree Model4.134.6.1Event Tree Model and its Nodes4.134.6.2Event Tree Model and its Nodes4.134.6.1Event Tree Model and its Nodes4.134.6.2Event Tree Success Criteria and Core Damage Categories4.134.		4.2.3	Event Tree Success Criteria and Core Damage Categories	4-4
4.2.5Transfers and Consequential Events4-44.3Large Spurious ADS Event Tree Model4-44.3.1Event Description4-44.3.2Event Tree Model and its Nodes4-44.3.3Event Tree Model and its Nodes4-44.3.4Operator Actions4-64.3.5Transfers and Consequential Events4-64.4Medium LOCA Event Tree Model4-64.4.1Event Description4-64.4.2Event Tree Model and its Nodes4-74.4.3Event Tree Model and its Nodes4-74.4.3Event Tree Model and its Nodes4-74.4.3Event Tree Model and its Nodes4-94.4.4Operator Actions4-94.4.5Transfers and Consequential Events4-104.5.5Transfers and Consequential Events4-104.5.1Event Tree Model and its Nodes4-104.5.2Event Tree Model and its Nodes4-104.5.3Event Tree Model and its Nodes4-114.5.4Operator Actions4-104.5.5Transfers and Consequential Events4-134.5.4Operator Actions4-134.5.5Transfers and Consequential Events4-134.6.4Operator Actions4-134.6.5Event Tree Model and its Nodes4-134.6.6Event Tree Model and its Nodes4-134.6.1Event Tree Model and its Nodes4-134.6.2Event Tree Model and its Nodes4-134.6.3Eve		4.2.4	Operator Actions	4-4
4.3       Large Spurious ADS Event Tree Model       4-4         4.3.1       Event Description       4-4         4.3.2       Event Tree Model and its Nodes       4-4         4.3.3       Event Tree Model and its Nodes       4-4         4.3.3       Event Tree Success Criteria and Core Damage Categories       4-6         4.3.4       Operator Actions       4-6         4.3.5       Transfers and Consequential Events       4-6         4.4       Hedium LOCA Event Tree Model       4-6         4.4       Event Tree Model and its Nodes       4-7         4.4       Operator Actions       4-6         4.4.1       Event Tree Model and its Nodes       4-7         4.4.2       Event Tree Model and Core Damage Categories       4-9         4.4.4       Operator Actions       4-9         4.4.5       Transfers and Consequential Events       4-10         4.5       Transfers and Consequential Events       4-10         4.5.1       Event Tree Model and its Nodes       4-10         4.5.2       Event Tree Model and its Nodes       4-10         4.5.3       Event Tree Model and its Nodes       4-11         4.5.4       Operator Actions       4-13         4.5.5       Transfers and Conseq		4.2.5	Transfers and Consequential Events	4-4
4.3.1Event Description4-44.3.2Event Tree Model and its Nodes4-44.3.3Event Tree Success Criteria and Core Damage Categories4-64.3.4Operator Actions4-64.3.5Transfers and Consequential Events4-64.4Medium LOCA Event Tree Model4-64.4.1Event Description4-64.4.2Event Tree Model and its Nodes4-74.4.3Event Tree Model and its Nodes4-74.4.4Operator Actions4-94.4.5Transfers and Consequential Events4-104.5Transfers and Consequential Events4-104.5Transfers and Consequential Events4-104.5.1Event Tree Model and its Nodes4-104.5.2Event Tree Model and its Nodes4-104.5.3Event Tree Model and its Nodes4-104.5.4Operator Actions4-104.5.5Transfers and Consequential Events4-104.5.4Operator Actions4-134.5.5Transfers and Consequential Events4-134.6Safety Injection Line Break Event Tree Model4-134.6Safety Injection Line Break Event Tree Model4-134.6.1Event Description4-134.6.2Event Tree Model and its Nodes4-144.6.3Event Tree Model and its Nodes4-14	4.3	Large	Spurious ADS Event Tree Model	4-4
4.3.2Event Tree Model and its Nodes4-44.3.3Event Tree Success Criteria and Core Damage Categories4-64.3.4Operator Actions4-64.3.5Transfers and Consequential Events4-64.4Medium LOCA Event Tree Model4-64.4.1Event Description4-64.4.2Event Tree Model and its Nodes4-74.4.3Event Tree Model and its Nodes4-74.4.4Operator Actions4-94.4.5Transfers and Consequential Events4-94.4.4Operator Actions4-94.4.5Transfers and Consequential Events4-104.5Core Makeup Tank Line Break Event Tree Model4-104.5.2Event Tree Model and its Nodes4-104.5.3Event Tree Success Criteria and Core Damage Categories4-134.5.4Operator Actions4-134.5.5Transfers and Consequential Events4-104.5.3Event Tree Model and its Nodes4-134.5.4Operator Actions4-134.5.5Transfers and Consequential Events4-134.6Safety Injection Line Break Event Tree Model4-134.6.1Event Tree Model and its Nodes4-134.6.2Event Tree Model and its Nodes4-144.6.3Event Tree Model and its Nodes4-14		4.3.1	Event Description	4-4
4.3.3Event Tree Success Criteria and Core Damage Categories4-64.3.4Operator Actions4-64.3.5Transfers and Consequential Events4-64.4Medium LOCA Event Tree Model4-64.4Event Description4-64.4.1Event Description4-64.4.2Event Tree Model and its Nodes4-74.4.3Event Tree Success Criteria and Core Damage Categories4-94.4.4Operator Actions4-94.4.5Transfers and Consequential Events4-104.5Core Makeup Tank Line Break Event Tree Model4-104.5.1Event Tree Model and its Nodes4-104.5.2Event Tree Model and its Nodes4-104.5.3Event Tree Model and its Nodes4-134.5.4Operator Actions4-134.5.5Transfers and Consequential Events4-134.6Safety Injection Line Break Event Tree Model4-134.6Safety Injection Line Break Event Tree Model4-134.6.1Event Description4-134.6.2Event Tree Model and its Nodes4-144.6.3Event Tree Model and its Nodes4-14		4.3.2	Event Tree Model and its Nodes	4-4
4.3.4Operator Actions4-64.3.5Transfers and Consequential Events4-64.4Medium LOCA Event Tree Model4-64.4.1Event Description4-64.4.2Event Tree Model and its Nodes4-74.4.3Event Tree Success Criteria and Core Damage Categories4-94.4.4Operator Actions4-94.4.5Transfers and Consequential Events4-104.5Core Makeup Tank Line Break Event Tree Model4-104.5.1Event Tree Model and its Nodes4-104.5.2Event Tree Model and its Nodes4-104.5.3Event Tree Model and its Nodes4-134.5.4Operator Actions4-134.5.5Transfers and Consequential Events4-134.6Safety Injection Line Break Event Tree Model4-134.6.1Event Description4-134.6.2Event Tree Model and its Nodes4-144.6.3Event Tree Model and its Nodes4-14		4.3.3	Event Tree Success Criteria and Core Damage Categories	4-6
4.3.5Transfers and Consequential Events4-64.4Medium LOCA Event Tree Model4-64.4.1Event Description4-64.4.2Event Tree Model and its Nodes4-74.4.3Event Tree Success Criteria and Core Damage Categories4-94.4.4Operator Actions4-94.4.5Transfers and Consequential Events4-104.5Core Makeup Tank Line Break Event Tree Model4-104.5.1Event Tree Model and its Nodes4-104.5.2Event Tree Model and its Nodes4-104.5.3Event Tree Model and its Nodes4-134.5.4Operator Actions4-134.5.5Transfers and Consequential Events4-134.61Event Actions4-134.62Event Tree Model and its Nodes4-134.63Event Tree Model and its Nodes4-144.6.3Event Tree Model and its Nodes4-14		4.3.4	Operator Actions	4-6
4.4Medium LOCA Event Tree Model4-64.4.1Event Description4-64.4.2Event Tree Model and its Nodes4-74.4.3Event Tree Success Criteria and Core Damage Categories4-94.4.4Operator Actions4-94.4.5Transfers and Consequential Events4-104.5Core Makeup Tank Line Break Event Tree Model4-104.5.1Event Description4-104.5.2Event Tree Model and its Nodes4-104.5.3Event Tree Model and its Nodes4-134.5.4Operator Actions4-134.5.5Transfers and Consequential Events4-134.6Safety Injection Line Break Event Tree Model4-134.6.1Event Description4-134.6.2Event Tree Model and its Nodes4-144.6.3Event Tree Model and its Nodes4-16		4.3.5	Transfers and Consequential Events	4-6
4.4.1Event Description4-64.4.2Event Tree Model and its Nodes4-74.4.3Event Tree Success Criteria and Core Damage Categories4-94.4.4Operator Actions4-94.4.5Transfers and Consequential Events4-104.5Core Makeup Tank Line Break Event Tree Model4-104.5.1Event Tree Model and its Nodes4-104.5.2Event Tree Model and its Nodes4-104.5.3Event Tree Success Criteria and Core Damage Categories4-134.5.4Operator Actions4-134.5.5Transfers and Consequential Events4-134.6Safety Injection Line Break Event Tree Model4-134.6.1Event Tree Model and its Nodes4-134.6.2Event Tree Model and its Nodes4-144.6.3Event Tree Success Criteria and Core Damage Categories4-13	4.4	Mediu	um LOCA Event Tree Model	4-6
4.4.2Event Tree Model and its Nodes4-74.4.3Event Tree Success Criteria and Core Damage Categories4-94.4.4Operator Actions4-94.4.5Transfers and Consequential Events4-104.5Core Makeup Tank Line Break Event Tree Model4-104.5.1Event Description4-104.5.2Event Tree Model and its Nodes4-104.5.3Event Tree Model and its Nodes4-104.5.4Operator Actions4-134.5.5Transfers and Consequential Events4-134.6Safety Injection Line Break Event Tree Model4-134.6.1Event Description4-134.6.2Event Tree Model and its Nodes4-144.6.3Event Tree Success Criteria and Core Damage Categories4-13		4.4.1	Event Description	4-6
4.4.3Event Tree Success Criteria and Core Damage Categories4-94.4.4Operator Actions4-94.4.5Transfers and Consequential Events4-104.5Core Makeup Tank Line Break Event Tree Model4-104.5.1Event Description4-104.5.2Event Tree Model and its Nodes4-104.5.3Event Tree Success Criteria and Core Damage Categories4-134.5.4Operator Actions4-134.5.5Transfers and Consequential Events4-134.6Safety Injection Line Break Event Tree Model4-134.6.1Event Description4-134.6.2Event Tree Model and its Nodes4-144.6.3Event Tree Success Criteria and Core Damage Categories4-13		4.4.2	Event Tree Model and its Nodes	4-7
4.4.4Operator Actions4-94.4.5Transfers and Consequential Events4-104.5Core Makeup Tank Line Break Event Tree Model4-104.5.1Event Description4-104.5.2Event Tree Model and its Nodes4-104.5.3Event Tree Success Criteria and Core Damage Categories4-134.5.4Operator Actions4-134.5.5Transfers and Consequential Events4-134.6Safety Injection Line Break Event Tree Model4-134.6.1Event Description4-134.6.2Event Tree Model and its Nodes4-144.6.3Event Tree Success Criteria and Core Damage Categories4-14		4.4.3	Event Tree Success Criteria and Core Damage Categories	4-9
4.4.5Transfers and Consequential Events4-104.5Core Makeup Tank Line Break Event Tree Model4-104.5.1Event Description4-104.5.2Event Tree Model and its Nodes4-104.5.3Event Tree Success Criteria and Core Damage Categories4-134.5.4Operator Actions4-134.5.5Transfers and Consequential Events4-134.6Safety Injection Line Break Event Tree Model4-134.6.1Event Description4-134.6.2Event Tree Model and its Nodes4-144.6.3Event Tree Success Criteria and Core Damage Categories4-16		4.4.4	Operator Actions	4-9
4.5       Core Makeup Tank Line Break Event Tree Model		4.4.5	Transfers and Consequential Events	4-10
4.5.1Event Description4-104.5.2Event Tree Model and its Nodes4-104.5.3Event Tree Success Criteria and Core Damage Categories4-134.5.4Operator Actions4-134.5.5Transfers and Consequential Events4-134.6Safety Injection Line Break Event Tree Model4-134.6.1Event Description4-134.6.2Event Tree Model and its Nodes4-144.6.3Event Tree Success Criteria and Core Damage Categories4-16	4.5	Core ]	Makeup Tank Line Break Event Tree Model	4-10
4.5.2Event Tree Model and its Nodes4-104.5.3Event Tree Success Criteria and Core Damage Categories4-134.5.4Operator Actions4-134.5.5Transfers and Consequential Events4-134.6Safety Injection Line Break Event Tree Model4-134.6.1Event Description4-134.6.2Event Tree Model and its Nodes4-144.6.3Event Tree Success Criteria and Core Damage Categories4-16		4.5.1	Event Description	4-10
4.5.3Event Tree Success Criteria and Core Damage Categories4-134.5.4Operator Actions4-134.5.5Transfers and Consequential Events4-134.6Safety Injection Line Break Event Tree Model4-134.6.1Event Description4-134.6.2Event Tree Model and its Nodes4-144.6.3Event Tree Success Criteria and Core Damage Categories4-16		4.5.2	Event Tree Model and its Nodes	4-10
4.5.4Operator Actions4-134.5.5Transfers and Consequential Events4-134.6Safety Injection Line Break Event Tree Model4-134.6.1Event Description4-134.6.2Event Tree Model and its Nodes4-144.6.3Event Tree Success Criteria and Core Damage Categories4-16		4.5.3	Event Tree Success Criteria and Core Damage Categories	4-13
4.5.5Transfers and Consequential Events4-134.6Safety Injection Line Break Event Tree Model4-134.6.1Event Description4-134.6.2Event Tree Model and its Nodes4-144.6.3Event Tree Success Criteria and Core Damage Categories4-16		4.5.4	Operator Actions	
4.6Safety Injection Line Break Event Tree Model4-134.6.1Event Description4-134.6.2Event Tree Model and its Nodes4-144.6.3Event Tree Success Criteria and Core Damage Categories4-16		4.5.5	Transfers and Consequential Events	
<ul> <li>4.6.1 Event Description</li></ul>	4.6	Safety	V Injection Line Break Event Tree Model	4-13
<ul> <li>4.6.2 Event Tree Model and its Nodes</li></ul>		4.6.1	Event Description	
4.6.3 Event Tree Success Criteria and Core Damage Categories		4.6.2	Event Tree Model and its Nodes	
		4.6.3	Event Tree Success Criteria and Core Damage Categories	4-16

AP1000 Probabilistic Risk Assessment

# TABLE OF CONTENTS (Cont.)

### **Section**

# <u>Title</u>

	4.6.4	Operator Actions	4-16
	4.6.5	Transfers and Consequential Events	
4.7	Small L	OCA Event Tree Model	4-17
	4.7.1	Event Description	4-17
	4.7.2	Event Tree Model and its Nodes	4-17
	4.7.3	Event Tree Success Criteria and Core Damage Categories	4-20
	4.7.4	Operator Actions	4-20
	4.7.5	Transfers and Consequential Events	4-21
4.8	RCS Le	ak Event Tree Model	4-21
	4.8.1	Event Description	
	4.8.2	Event Tree Model and its Nodes	4-21
	4.8.3	Event Tree Success Criteria	4-22
	<b>4.8.4</b>	Operator Actions	4-22
	4.8.5	Transfers and Consequential Events	4-22
	4.8.6	Core Damage Categories	4-23
4.9	PRHR 1	Fube Rupture Event Tree Model	4-23
	4.9.1	Event Description	4-23
	4.9.2	Event Tree Model and its Nodes	4-23
	4.9.3	Event Tree Success Criteria	4-24
	4.9.4	Operator Actions	4-24
	4.9.5	Transfers and Consequential Events	4-24
	4.9.6	Core Damage Categories	4-24
4.10	Steam C	Generator Tube Rupture Event Tree Model	4-25
	4.10.1	Event Description	4-25
	4.10.2	Event Tree Model and its Nodes	4-27
	4.10.3	Event Tree Success Criteria and Core Damage Categories	4-33
	4.10.4	Operator Actions	4-33
· .	4.10.5	Transfers and Consequential Events	4-33
4.11	Reactor	Vessel Rupture Event Tree Model	4-34
	4.11.1	Event Description	4-34
	.4.11.2	Event Tree Model and its Nodes	4-34
	4.11.3	Event Tree Success Criteria	4-34
1 A	4.11.4	Operator Actions	4-34
	4.11.5	Transfers and Consequential Events	4-34
	4.11.6	Core Damage Categories	4-34
4.12	Interfaci	ing System LOCA Event Tree Model	
	4.12.1	Event Description	
	4.12.2	Event Tree Model and its Nodes	
	4.12.3	Event Tree Success Criteria	
	4.12.4	Operator Actions	4-35
	4.12.5	Transfers and Consequential Events	4-35
	4.12.6	Core Damage Categories	4-35

# Section

# <u>Title</u>

4.13	Transie	nts With MFW Event Tree Model	4-35
	4.13.1	Event Description	4-35
	4.13.2	Event Tree Model and its Nodes	4-37
	4.13.3	Event Tree Success Criteria and Core Damage Categories	4-41
	4.13.4	Operator Actions	4-41
	4.13.5	Transfers and Consequential Events	4-42
4.14	Transie	nts With Loss of RCS Flow Event Tree Model	4-42
	4.14.1	Event Description	4-42
	4.14.2	Event Tree Model and its Nodes	4-42
	4.14.3	Event Tree Success Criteria and Core Damage Categories	4-46
	4.14.4	Operator Actions	4-46
	4.14.5	Transfers and Consequential Events	4-46
4.15	Transie	nts With Loss of MFW to One Steam Generator Event Tree Model	4-46
	4.15.1	Event Description	4-46
	4.15.2	Event Tree Model and its Nodes	4-47
	4.15.3	Event Tree Success Criteria and Core Damage Categories	4-50
	4.15.4	Operator Actions	4-50
	4.15.5	Transfers and Consequential Events	4-51
4.16	Transie	nts With Core Power Excursion Event Tree Model	4-51
	4.16.1	Event Description	4-51
	4.16.2	Event Tree Model and its Nodes	4-51
	4.16.3	Event Tree Success Criteria and Core Damage Categories	4-55
	4.16.4	Operator Actions	4-55
	4.16.5	Transfers and Consequential Events	4-55
4.17	Transie	nts With Loss of CCW/SW Event Tree Model	4-56
	4.17.1	Event Description	4-56
	4.17.2	Event Tree Model and its Nodes	4-56
	4.17.3	Event Tree Success Criteria and Core Damage Categories	4-59
	4.17.4	Operator Actions	4-59
	4.17.5	Transfers and Consequential Events	4-60
4.18	Loss of	Main Feedwater Event Tree Model	4-60
	4.18.1	Event Description	4-60
	4.18.2	Event Tree Model and its Nodes	4-62
	4.18.3	Event Tree Success Criteria and Core Damage Categories	4-65
	4.18.4	Operator Actions	4-65
	4.18.5	Transfers and Consequential Events	
4.19	Loss of	Condenser Event Tree Model	4-66
	4.19.1	Event Description	4-66
	4.19.2	Event Tree Model and its Nodes	4-66
	4.19.3	Event Tree Success Criteria and Core Damage Categories	4-70
	4.19.4	Operator Actions	4-70
	4.19.5	Transfers and Consequential Events	4-70

1.1

### AP1000 Probabilistic Risk Assessment

# TABLE OF CONTENTS (Cont.)

### Section

# <u>Title</u>

	4.20	Loss of	Compressed Air Event Tree Model	4-70
		4.20.1	Event Description	4-70
		4.20.2	Event Tree Model and its Nodes	4-71
		4.20.3	Event Tree Success Criteria and Core Damage Categories	4-74
	an an an an	4.20.4	Operator Actions	4-74
		4.20.5	Transfers and Consequential Events	4-75
	4.21	Loss of	Offsite Power Event Tree Model	4-75
		4.21.1	Event Description	4-75
	1	4.21.2	Event Tree Model and its Nodes	4-75
		4.21.3	Event Tree Success Criteria and Core Damage Categories	
		4.21.4	Operator Actions	4-79
		4.21.5	Transfers and Consequential Events	4-80
	4.22	Main St	team Line Break Downstream of MSIVs Event Tree Model	4-80
		4.22.1	Event Description	4-80
		4.22.2	Event Tree Model and its Nodes	
•		4.22.3	Event Tree Success Criteria and Core Damage Categories	4-84
		4.22.4	Operator Actions	4-84
		4.22.5	Transfers and Consequential Events	4-85
	4.23	Main St	team Line Break Upstream of MSIVs Event Tree Model	4-85
÷	1 A	4.23.1	Event Description	4-85
		4.23.2	Event Tree Model and its Nodes	4-85
		4.23.3	Event Tree Success Criteria and Core Damage Categories	
		4.23.4	Operator Actions	4-89
		4.23.5	Transfers and Consequential Events	4-90
	4.24	Stuck-O	Open Secondary Side Safety Valve Event Tree Model	4-90
		4.24.1	Event Description	
		4.24.2	Event Tree Model and its Nodes	4-91
		4.24.3	Event Tree Success Criteria and Core Damage Categories	4-94
		4.24.4	Operator Actions	4-94
÷		4.24.5	Transfers and Consequential Events	4-94
	4.25	ATWS	Precursors Without MFW Event Tree Model	4-95
		4.25.1	Event Description	4-95
		4.25.2	Event Tree Model and its Nodes	<b>4-9</b> 6
		4.25.3	Event Tree Success Criteria and Core Damage Categories	4-101
		4.25.4	Operator Actions	4-101
		4.25.5	Transfers and Consequential Events	4-101
	4.26	ATWS	Precursor with SI Event Tree Model	4-101
		4.26.1	Event Description	4-101
		4.26.2	Event Tree Model and its Nodes	4-102
		4.26.3	Event Tree Success Criteria and Core Damage Categories	4-106
		4.26.4	Operator Actions	4-106
		4.26.5	Transfers and Consequential Events	4-106

Section	Title	Page
4.27	ATWS Precursor Transients with MFW Event Tree Model	4-106
	4.27.1 Event Description	
	4.27.2 Event Tree Model and its Nodes	
	4.27.3 Event Tree Success Criteria and Core Damage Categories	4-110
	4.27.4 Operator Actions	4-111
	4.27.5 Transfers and Consequential Events	4-111
ATTACHMEN	NT 4A EVENT TREE GUIDELINES	
<b>4A.1</b>	Event Tree Analysis Methodology	4A-1
4A.2	Event Tree Guidelines for Core Damage	4A-3
	4A.2.1 Event Trees	4A-3
	4A.2.2 Success Criteria	4A-6
	4A.2.3 Definition of End States	4A-7
	4A.2.4 Plant Response Functions	4A-9
	4A.2.5 Event Tree Node Notation	4A-13
	4A.2.6 Consequential Events	4A-13
	4A.2.7 Transient Template	4A-14
	4A.2.8 Small LOCA Template	4A-15
ATTACHMEN	NT 4B EVENT TREE PICTURES	4 <b>B</b> -1
CHAPTER 5	SUPPORT SYSTEMS	
5.1	Introduction	5-1
5.2	Support Systems and Their Interdependencies	5-1
5.3	Front Line Systems and Their Dependencies	5-1
CHAPTER 6	SUCCESS CRITERIA ANALYSIS	
6.1	Introduction	6-1
6.2	Acceptance Criteria and Critical Functions for Success Criteria	6-1
6.3	Event Sequences and Timing, Passive/Active System Interactions	6-3
	6.3.1 General Sequence Success Criteria	6-3
	6.3.2 Timing of Events and Key Operator Actions	6-9
	6.3.3 Passive/Active System Interactions	6-15
	6.3.4 Sequence Success Criteria Summary	6-18
6.4	Event Tree Top Events Success Criteria	6-18
6.5	References	6-19
CHAPTER 7	FAULT TREE GUIDELINES	
7.1	Purpose	
7.2	Fault Tree Development	
	7.2.1 Procedural Steps for Fault Tree Preparation	7-1
	7.2.2 Procedural Steps for Fault Tree Construction	

AP1000 Probabilistic Risk Assessment

# TABLE OF CONTENTS (Cont.)

<u>9</u>89

· • • • •

# Section

# <u>Title</u>

7.3	Primary Events to be Considered in Fault Trees	7-3
	7.3.1 Random Component Failure	7-3
	7.3.2 Outage for Maintenance and Testing	7-5
en e	7.3.3 Common Cause Failures	7-6
	7.3.4 Human Errors	7-6
	7.3.5 Power and Control Model	7-9
7.4	Data Base	7-10
7.5	Fault Tree Model: Identification Codes	7-10
	7.5.1 Identification Code for Fault Tree Names	7-10
er	7.5.2 Identification Code for Support Systems	7-10
•	7.5.3 Identification Code for Primary Event Names	7-11
	7.5.4 Identification Code for Common Cause Failures	7-11
	7.5.5 Identification Code for Undeveloped Events (Modules)	7-12
	7.5.6 Identification Code for Operator Errors	7-13
7.6	Fault Tree Quantification	7-13
7.7	References	7-14
CHAPTER 8	PASSIVE CORE COOLING SYSTEM – PASSIVE RESIDUAL HEAT REMOVAL	
8.1	System Function	8-1
8.2	System Description	8-1
	8.2.1 Support Systems	8-1
	8.2.2 Instrumentation and Control	8-2
	8.2.3 Test and Maintenance	8-2
8.3	System Operation	8-3
8.4	Performance During Accident Conditions	8-3
	8.4.1 Plant Shutdown	8-3
	8.4.2 Loss of Coolant Accidents	8-3
·	8.4.3 Passive Residual Heat Removal Heat Exchanger Tube Rupture	8-3
8.5	Initiating Events Review	8-4
	8.5.1 Initiating Events Impacting the PRHR System	8-4
	8.5.2 Initiating Events Caused by PRHR System Malfunction	8-4
8.6	System Logic Models	8-4
-	8.6.1 Assumptions and Boundary Conditions	8-5
	8.6.2 Fault Tree Models	8-6
÷	8.6.3 Human Interactions	8-6
· .	8.6.4 Common Cause Failures	8-6
8.7	Quantification and Results	8-6

Section		<u>Title</u>	<u>Page</u>
CHAPTER 9	PASSIV	/E CORE COOLING SYSTEM – CORE MAKEUP TANK	
9.1	System	Description	9-1
	9.1.1	Support Systems	9-1
	9.1.2	Instrumentation and Control	9-1
	9.1.3	Test and Maintenance Assumptions	9-2
9.2	System	Operation	9-2
9.3	Perform	nance During Accident Conditions	9-3
	9.3.1	Inadvertent Opening of a Steam Generator Relief or Safety Valve	9-3
	9.3.2	Steam Line Break	9-3
	9.3.3	Steam Generator Tube Rupture	9-3
	9.3.4	Reactor Coolant System Heatup Transients	9-4
	9.3.5	Loss-of-Coolant Accidents	9-4
	9.3.6	Loss of Offsite Power	9-4
	9.3.7	Anticipated Transient without Trip	9-4
9.4	Initiatin	g Event Review	94
	9.4.1	Initiating Events Impacting the Core Makeup Tank Subsystem	9-5
	9.4.2	Initiating Events Due to Loss of the Core Makeup Tank Subsystem	9-5
9.5	System 2	Logic Models	9-5
	9.5.1	Assumptions and Boundary Conditions	9-5
	9.5.2	Fault Tree Models	9-7
	9.5.3	Human Interactions	9-7
	9.5.4	Common Cause Failures	9-8
CHAPTER 10	PASSIV	/E CORE COOLING SYSTEM – ACCUMULATOR	
10.1	System 2	Description	10-1
	10.1.1	Support Systems	10-1
	10.1.2	Instrumentation and Control	10-1
	10.1.3	Test and Maintenance Assumptions	10-1
10.2	System	Operation	10-1
10.3	Perform	nance During Accident Conditions	10-2
	10.3.1	Steam Line Break	10-2
	10.3.2	Loss-of-Coolant Accidents or Non-Loss-of-Coolant Accidents	
		with Automatic Depressurization System	10-2
10.4	Initiatin	g Event Review	10-3
	10.4.1	Initiating Events Impacting the Accumulator Subsystem	10-3
	10.4.2	Initiating Events Due to Loss of the Accumulator Subsystem	10-3
10.5	System	Logic Models	10-3
	10.5.1	Assumptions and Boundary Conditions	10-3
	10.5.2	Fault Tree Models	10-4
	10.5.3	Human Interactions	10-4
	10.5.4	Common Cause Failures	10-4

AP1000 Probabilistic Risk Assessment

# TABLE OF CONTENTS (Cont.)

Т.

зŕ

Section	Title		
CHAPTER 11	PASSIVE COOLING SYSTEM - AUTOMATIC DEPRESSURIZATION		
11 1	SYSTEM System Eurotion	11_1	
11.1	System Description	11_1	
11.2	11.2.1 Sunnart Systems	11_1	
	11.2.1 Support Systems	11.2	
	11.2.2 Test and Maintenance	11-2	
11.2	System Operation	11-2	
11.5	Deformance During A acident Conditions	11.2	
11.4	11.4.1 Loss of Coolort Assidents	11.2	
	11.4.1 Loss of Coolant Accidents	11-J 11-2	
11.6	11,4.2 Transients	11-J	
11.5	Initiating Events Keview	11-3	
	11.5.1 Initiating Events Impacting the Automatic Depressurization System	11-J	
	11.5.2 Initiating Events Caused by the ADS Mairunction		
11.6	System Logic Model		
	11.6.1 Assumptions and Boundary Conditions	11-4	
	11.6.2 Fault Tree Models	11-5	
	11.6.3 Human Interactions	11-6	
	11.6.4 Common Cause Failures	11-7	
11.7	Quantification and Results	11-7	
CUADTED 12	DASSING CODE COOLING SYSTEM IN CONTAINMENT		
CHAFIER 12	DEFINIC WATED STODAGE TANK		
10.1	REFUELING WATER STURAGE TAINS	12.1	
12.1	System Function	12-1	
12.2	System Description	12-1	
	12.2.1 Support Systems		
	12.2.2 Instrumentation and Control	12-1	
· · · · · · · · · · · · · · · · · · ·	12.2.3 Test and Maintenance	12-2	
12.3	System Operation		
12.4	Performance During Accident Conditions		
	12.4.1 Transients		
	12.4.2 Loss of Coolant Accidents	12-4	
	12.4.3 In-Vessel Core Damage Mitigation	12-5	
	12.4.4 Containment Isolation System Failure	12-5	
· 12.5 · ·	Initiating Event	12-5	
•	12.5.1 Initiating Event Impacting IRWST/Gravity Injection Subsystem	12-5	
	12.5.2 Initiating Event due to Loss of IRWST/Gravity Injection Subsystem	12-5	
12.6	System Logic Models	12-6	
	12.6.1 Assumptions and Boundary Conditions	12-6	
	12.6.2 Fault Tree Models	12-8	
	12.6.3 Human Interactions	12-8	
	12.6.4 Common Cause Failures	12-8	
12.7	Quantification and Results	12-9	

ix

**AP1000 Probabilistic Risk Assessment** 

Section		Title	<u>Page</u>
CHAPTER 13	PASSIV	E CONTAINMENT COOLING SYSTEM	
13.1	System I	Description	13-1
	13.1.1	Support Systems	13-1
	13.1.2	Instrumentation and Control	13-1
	13.1.3	Test and Maintenance Assumptions	13-2
13.2	System (	Operation	13-2
13.3	Perform	ance During Accident Conditions	13-2
	13.3.1	Post-Reactor Trip with Loss of All ac Power	13-2
	13.3.2	Automatic Depressurization System Actuation	13-2
	13.3.3	Post-Loss-of-Coolant Accident	13-3
	13.3.4	Post-Main Steam Line Break	13-3
13.4	Initiating	g Event Review	13-3
	13.4.1	Initiating Events Impacting the Passive Containment Cooling System	13-3
	13.4.2	Initiating Events due to Loss of the Passive Containment Cooling	
		System	13-3
13.5	System I	Logic Model	13-3
	13.5.1	Assumptions and Boundary Conditions	13-4
	13.5.2	Fault Tree Model	13-5
	13.5.3	Human Interactions	13-6
	13.5.4	Common Cause Failures	13-6
CHAPTER 14	MAIN A	ND STARTUP FEEDWATER SYSTEM	
14.1	System I	Description	14-1
	14.1.1	Support Systems	14-1
	14.1.2	Instrumentation and Control	14-2
	14.1.3	Test and Maintenance	14-2
14.2	System (	Operation	14-2
14.3	Perform	ance During Accident Conditions	14-2
14.4	Initiating	g Event Review	14-4
	14.4.1	Initiating Event Impacting Main and Startup Feedwater/	
		Condensate System	14-4
	14.4.2	Initiating Event due to Loss of Main and Startup Feedwater/	
		Condensate System	14-4
14.5	System I	Logic Models	14-4
	14.5.1	Assumptions and Boundary Conditions	14-5
	14.5.2	Fault Tree Models	14-7
	14.5.3	Human Interactions	14-7
	14.5.4	Common Cause Failures	14-7
14.6	Quantifi	cation and Results	14-7

AP1000 Probabilistic Risk Assessment

# TABLE OF CONTENTS (Cont.)

Section	Title	Page
CHAPTER 15	CHEMICAL AND VOLUME CONTROL SYSTEM	
15.1	System Description	15-1
	15.1.1 Support Systems	15-1
. •	15.1.2 Instrumentation and Control Assumptions	15-1
·	15.1.3 Test and Maintenance Assumptions	15-2
15.2	System Operation	15-3
15.3	Performance During Accident Conditions	15-3
15.4	Initiating Event Review	15-4
	15.4.1 Initiating Events Impacting the Chemical and Volume Control System	15-5
	15.4.2 Initiating Events Due to Loss of the Chemical and Volume	
	Control System	15-5
15.5	System Logic Models	15-5
* <u>.</u> .	15.5.1 Assumptions and Boundary Conditions	15-5
x	15.5.2 Fault Tree Models	15-7
	15.5.3 Human Interactions	15-7
	15.5.4 Common Cause Failures	15-8
CHAPTER 16	CONTAINMENT HYDROGEN CONTROL SYSTEM	
16.1	System Description	16-1
	16.1.1 Support Systems	16-1
	16.1.2 Instrumentation and Control	16-1
	16.1.3 Test and Maintenance	16-1
16.2	System Operation	16-2
16.3	Performance During Accident Conditions	16-2
16.4	Initiating Event Review	16-2
16.5	System Logic Model	16-2
	16.5.1 Assumptions and Boundary Conditions	16-2
	16.5.2 Fault Tree Model	16-3
	16.5.3 Human Interactions	16-3
	16.5.4 Common Cause Failures	10-4
CHAPTER 17	NORMAL RESIDUAL HEAT REMOVAL SYSTEM	
17.1	System Description	17-1
	17.1.1 Support Systems	
	17.1.2 Instrumentation and Control	
	17.1.3 Test and Maintenance Assumptions	
17.2	System Operation	
17.3	Performance During Accident Conditions	17-2
17.4	Initiating Event Review	17-3
	17.4.1 Initiating Events Impacting the Normal Residual Heat Removal System	17-3
	17.4.2 Initiating Events Due to Loss of the Normal Residual Heat Removal	
	System	17-4
	-	

хi

# Section

# <u>Title</u>

17.5	System I	Logic Models	17-4
	17.5.1	Assumptions and Boundary Conditions	17-4
	17.5.2	Fault Tree Models	17-6
	17.5.3	Human Interactions	17-6
	17.5.4	Common Cause Failures	17-6
17.6	Reference	ces	17-6
CHAPTER 18	COMPO	NENT COOLING WATER SYSTEM	
18.1	System I	Description	18-1
	18.1.1	Support Systems	18-1
	18.1.2	Instrumentation and Control	18-1
	18.1.3	Test and Maintenance Assumptions	18-1
18.2	System (	Dperation	18-2
18.3	Performa	ance During Accident Conditions	18-2
18.4	Initiating	g Event Review	18-2
	18.4.1	Initiating Events Impacting the Component Cooling Water System	18-2
	18.4.2	Initiating Events Due to Loss of the Component Cooling Water System	18-3
18.5	System I	logic Models	18-3
	18.5.1	Assumptions and Boundary Conditions	18-3
	18.5.2	Fault Tree Models	18-4
	18.5.3	Human Interactions	18-4
	18.5.4	Common Cause Failures	18-5
CHAPTER 19	SERVIC	E WATER SYSTEM	
19.1	System I	Description	19-1
	19.1.1	Support Systems	19-1
	19.1.2	Instrumentation and Control	19-1
	19.1.3	Test and Maintenance Assumptions	19-1
19.2	System C	Dperation	19-2
19.3	Performa	ance During Accident Conditions	19-2
19.4	Initiating	g Event Review	19-2
	19.4.1	Initiating Events Impacting the Service Water System	19-2
	19.4.2	Initiating Events Due to Loss of the Service Water System	19-2
19.5	System I	.ogic Models	19-3
	19.5.1	Assumptions and Boundary Conditions	19-3
	19.5.2	Fault Tree Models	19-4
	19.5.3	Human Interactions	19-5
	19.5.4	Common Cause Failures	19-5

AP1000 Probabilistic Risk Assessment

Section	Title	Page
CHAPTER 20	CENTRAL CHILLED WATER SYSTEM	
20.1	System Description	20-1
	20.1.1 Support Systems	
- 	20.1.2 Instrumentation and Control.	
· · ·	20.1.3 Test and Maintenance Assumptions	20-1
20.2	System Operation	20-2
20.3	Performance During Accident Conditions	
20.4	Initiating Event Review	20-2
	20.4.1 Initiating Events Impacting the Central Chilled Water System	
· .	20.4.2 Initiating Events Due to Loss of the Central Chilled Water System	20-3
20.5	System Logic Model	20-3
-	20.5.1 Assumptions and Boundary Conditions	20-3
	20.5.2 Fault Tree Model	20-4
	20.5.3 Human Interactions	20-4
·	20.5.4 Common Cause Failures	20-4
	(a) A set of the se	
CHAPTER 21	AC POWER SYSTEM	
21.1	System Description	21-1
· ·	21.1.1 Support Systems	21-1
	21.1.2 Instrumentation and Control	21-2
	21.1.3 Test and Maintenance Assumptions	21-2
21.2	System Operation	21-2
21.3	Performance During Accident Conditions	21-3
	21.3.1 Automatic Load Shedding	21-3
·	21.3.2 Manual Transfer	21-3
	21.3.3 Electric Circuit Protection	21-3
21.4	Initiating Event Review	21-3
	21.4.1 Loss of the Main Generator	21-4
	21.4.2 Loss of Offsite Power	21-4
· · · ·	21.4.3 Loss of 6900-vac and 480-vac Busses	21-4
21.5	System Logic Models	21-4
e An an	21.5.1 Assumptions and Boundary Conditions	21-5
	21.5.2 Fault Tree Models	21-7
	21.5.3 Human Interactions	21-8
· · ·	21.5.4 Common Cause Failures	21-8
CHAPTER 22	CLASS 1E DC AND UNINTERRUPTIBLE POWER SUPPLY SYSTEM	
22.1	System Description	22-1
	22.1.1 Support Systems	22-1
	22.1.2 Instrumentation and Control	22-1
	22.1.3 Test and Maintenance Assumptions	<b>2</b> 2-1
22.2	System Operation	22-2
22.3	Performance During Accident Conditions	22-2

#### Section Title Page 1 22.4 22.4.1 22.4.2 22.5 22.5.1 22.5.2 22.5.3 22.5.4 22.6 CHAPTER 23 NON-CLASS 1E DC AND UPS SYSTEM 23.1 23.1.1 23.1.2 23.1.3 23.2 23.3 23.4 23.4.1 Initiating Events Impacting the Non-Class 1E dc and UPS System ......23-2 23.4.2 Initiating Events Due to Loss of the Non-Class 1E dc and UPS 23.5 23.5.1 Assumptions and Boundary Conditions ......23-3 23.5.2 23.5.3 23.5.4 23.6 **CHAPTER 24 CONTAINMENT ISOLATION** 24.1 24.1.1 24.1.2 24.1.3 24.2 24.3 24.4 24.4.1 24.4.2 24.5 24.5.1 24.5.2 24.5.3 24.5.4 24.6

AP1000 Probabilistic Risk Assessment

# TABLE OF CONTENTS (Cont.)

enë s

÷

Section	Title	Page
CHAPTER 25	COMPRESSED AND INSTRUMENT AIR SYSTEM	
25.1	System Description	25-1
	25.1.1 Support Systems	
	25.1.2 Instrumentation and Control	25-2
-	25.1.3 Test and Maintenance Assumptions	25-3
25.2	System Operation	25-3
25.3	Performance During Accident Conditions	25-3
25.4	Initiating Event Review	25-4
	25.4.1 Initiating Events Impacting the Instrument Air Subsystem	25-4
	25.4.2 Initiating Events Due to Loss of the Instrument Air Subsystem	25-4
25.5	System Logic Models	25-4
	25.5.1 Assumptions and Boundary Conditions	
· .	25.5.2 Fault Tree Models	25-6
	25.5.3 Human Interactions	25-7
	25.5.4 Common Cause Failures	
CHAPTER 26	PROTECTION AND SAFETY MONITORING SYSTEM	· ·
26.1	System Analysis Description	26-1
	26.1.1 Analysis of Support Systems	26-4
	26.1.2 Analysis of Instrumentation	26-5
	26.1.3 Test and Maintenance Assumptions	
26.2	Performance During Accident Conditions	
26.3	Initiating Event Review	26-7
	26.3.1 Initiating Event Impacting PMS	
	26.3.2 Initiating Event due to Loss of PMS	26-8
26.4	System Logic Model Development	
•	26.4.1 Assumptions and Boundary Conditions	26-8
	26.4.2 Fault Tree Models	
	26.4.3 Description of I&C Subtree Development	26-12
	26.4.4 Human Interactions	26-19
26.5	Discussion of Methodology	26-19
	26.5.1 Fault Tree Analysis	26-20
	26.5.2 Unavailability	26-20
	26.5.3 Spurious Failure Rate Per Year	
. *	26.5.4 Common Cause Failures	
-	26.5.5 Data Manipulation	
26.6	References	
CHAPTER 27	DIVERSE ACTUATION SYSTEM	
27.1	System Analysis Description	27-1
	27.1.1 Support Systems Analysis	27-2
	27.1.2 Analysis of Instrumentation and Control	
	27.1.3 Test and Maintenance	27-2

xv

Section	Title	<u>Page</u>
27.2	Analysis of System Operation	27-2
27.3	Performance During Accident Conditions	27-6
27.4	Initiating Event Review	
	27.4.1 Initiating Events Impacting the Diverse Actuation System	
	27.4.2 Initiating Events Due to Loss of the Diverse Actuation System.	
27.5	System Logic Model	
	27.5.1 Assumptions and Boundary Conditions	
	27.5.2 Fault Tree Model	
	27.5.3 Human Interactions	27-7
	27.5.4 Common Cause Failures	27-8
CHAPTER 28	PLANT CONTROL SYSTEM	
28.1	System Analysis Description	
	28.1.1 Analysis of Support Systems	
	28.1.2 Analysis of Instrumentation	
	28.1.3 Test and Maintenance Assumptions	
28.2	Performance During Accident Conditions	
28.3	Initiating Event Review	
	28.3.1 Initiating Events Impacting the Plant Control System	
	28.3.2 Initiating Event due to Loss of the Plant Control System	
28.4	System Logic Model Development	
	28.4.1 Assumptions and Boundary Conditions	
	28.4.2 Fault Tree Models	
	28.4.3 Description of I&C Subtree Development	
	28.4.4 Human Interactions	
28.5	Discussion of Methodology	
	28.5.1 Fault Tree Analysis	
	28.5.2 Unavailability	
	28.5.3 Common Cause Failures	
	28.5.4 Data Manipulation	28-18
CHAPTER 29	COMMON-CAUSE ANALYSIS	
29.1	Introduction	29-1
29.2	Dependent Failures	29-1
29.3	Common-Cause Analysis	29-4
	29.3.1 Assumptions	29-4
	29.3.2 Analysis of Potential Common-Cause Failures within the Syster	ns29-6
	29.3.3 Analysis of Potential Common-Cause Failures among Several S	ystems29-6
29.4	Calculations For Component Groups	29-6
	29.4.1 DC Batteries	29-7
	29.4.2 Reactor Trip Breakers	
	29.4.3 Automatic Depressurization System Explosive Valves	

AP1000 Probabilistic Risk Assessment

# TABLE OF CONTENTS (Cont.)

,∙£ ;

Section			Title	Page
	2	29.4.4	Air-Operated Valves in Core Makeup Tanks	
	- 2	29.4.5	Automatic Depressurization System Motor-Operated Valves	
	2	29.4.6	Common-Cause Failure for IRWST Valves	29-14
29.	5 F	Results		
29.0	6 H	Referenc	es	
АТТАСН	MENT	29A C	OMMON-CAUSE ANALYSIS GUIDELINES	
29/	A.1 I	ntroduct	ion	
29/	A.2 ]	Types of	Dependencies	
29/	A.3 (	Common	Cause Failures Definition	
29/	4.4 N	Methodo		
294	A.5 (	Common	Cause Failures Calculation Procedure	
271		99A 5 1	Procedure for Treatment of Common Cause Failures Within a Syste	m
	2	29A.5.2	Procedure for Treatment of Common Cause Failures Among	
			More Systems	
29 <i>A</i>	A.6 (	ີດຫຼາງດາ	Cause Failure Numerical Evaluation	
		29A 6 1	Evaluation through Beta Factor Method	
•••••••	2	QA 6 2	Evaluation through Multiple-Greek Letter (MGL) Method	29A-8
294	4.7 F	Referenc	es	29A-10
	D 20 T	TT TL # A L		
	К 30 Г 1 Т		KELIADILII I ANAL ISIS	20.1
30.	1 <u>1</u> 7 C		lollin Deculto	
30 20 /	2.0	Summary	/ 01 Kesults	
30	5 N		10gy	
30.4	4 r c 7	Major As	sumpuons	
. 30.	י כ	i ypes of	Human Interactions	
20		50.5.1 Deservices	Quantification Model	
. 30.0			ZON MANDI (Short the Oracite Step the Discel Conceptor)	
•	. 3		ZON-MANUI (Start the Onsite Standby Diesel Generator)	
	3	50.6.Z	LPM-MANUI (Recognize the Need for Reactor Coolant System	20.12
•			L Dig N ( A NOO (Deservice the Need for Deserve Costor Costor	
	3	50.0.3	LPM-MANU2 (Recognize the Need for Reactor Coolant System	20.15
			Depressurization)	
	3	50.6.4	LPM-MANUS (Recognize the Need for Reactor Coolant System	20.16
			Depressurization)	
	. 3	30.6.5	LPM-RECOI (Recognize the Need for Reactor Coolant System	00.15
	-		Depressurization)	
	3	30.6.6	ADN-MAN01 (Actuate the Automatic Depressurization System)	
	. 3	50.6.7	ADN-KEC01 (Actuate the Automatic Depressurization System)	
	3	80.6.8	CCB-MAN01 (Start the Standby Component Cooling Water Pump)	)
	3	30.6.9	CCN-MAN02 (Inadvertent Misalignment of Heat Exchanger)	
	3	80.6.10	CIB-MAN00 (Diagnose Steam Generator Tube Rupture)	
· .	3	30.6.11	DUMP-MAN01 (Operate Steam Dump Valves)	

### Section

# <u>Title</u>

30.6.12	CIC-MAN01 (Isolate Containment) 30-23
30 6 13	ADS-MANTEST (Recognize the Need and Reclose ADS Stage MOV) 30-24
30.6.14	CAN-MANOS (Locally Close Manual Valve CAS-V204 to Isolate
2010121	Containment)
30.6.15	CIT-MANOS (Isolate Containment)
30.6.16	CMN-MAN01 (Actuate Core Makeup Tank)
30.6.17	CMN-REC01 (Actuate the Core Makeup Tanks)
30.6.18	CVN-MAN00 (Align Chemical and Volume Control System)
30.6.19	CVN-MAN02 (Align Chemical and Volume Control System)
30.6.20	CVN-MAN03 (Start Chemical and Volume Control System Pump B)30-30
30.6.21	ADF-MAN01 (Depressurize the RCS to Refill the Pressurizer)
30.6.22	SGHL-MAN01 (Isolate Feedwater to Failed Steam Generator)
30.6.23	CAN-MAN01 (Start Standby Compressor)
30.6.24	REN-MAN02 (Initiate Recirculation)
30.6.25	REN-MAN03 (Initiate Recirculation)
30.6.26	IWN-MAN00 (Operate In-Containment Refueling Water Storage
	Tank Motor-Operated Valves)
30.6.27	RHN-MAN01 (Align Normal Residual Heat Removal System)
30.6.28	RHN-MANDIV (Align Normal Residual Heat Removal System)
30.6.29	RHN-MAN02/RHN-MAN03 (Align Normal Residual Heat
	Removal System)
30.6.30	PCN-MAN01 (Actuate Passive Containment Cooling System)
30.6.31	HPM-MAN01 (Diagnose Need for High Pressure Heat Removal)
30.6.32	PRN-MAN01 (Align Passive Residual Heat Removal System)
30.6.33	PRN-MAN02 (Align Passive Residual Heat Removal System)
30.6.34	PRN-MAN03 (Align Passive Residual Heat Removal System)
30.6.35	PRI-MAN01 (Isolate Failed Passive Residual Heat Removal
	Heat Exchanger)
30.6.36	REN-MAN04 (Initiate Recirculation)
30.6.37	RCN-MAN01 (Trip Reactor Coolant Pumps)
30.6.38	ATW-MAN01 (Manually Insert Control Rods)
30.6.39	ATW-MAN03 (Manually Trip the Reactor through Protection
	and Safety Monitoring System in One Minute)
30.6.40	ATW-MAN04 (Manually Trip the Reactor through Diverse
	Actuation System in One Minute)
30.6.41	ATW-MAN05 (Manually Trip the Reactor through Protection
	and Safety Monitoring System in Seven Minutes)
30.6.42	ATW-MAN06 (Manually Trip the Reactor through Diverse
	Actuation System In Seven Minutes)
30.6.43	RTN-MAN01 (Perform Controlled Reactor Shutdown)
30.6.44	FWN-MAN02 (Start the Startup Feedwater Pumps)
30.6.45	FWN-MAN03 (Start the Startup Feedwater Pumps)
30.6.46	REG-MAN00 (Regulate Startup Feedwater)

AP1000 Probabilistic Risk Assessment

# **TABLE OF CONTENTS (Cont.)**

1

 $\sim 10$ 

# Section

# <u>Title</u>

	30647	CIA-MAN01 (Isolate Failed Steam Generator)	30-55
	30648	CIB-MANO1 (Close Main Steam Isolation Valve)	30-55
	30 6 40	SGA-MANOI (Inservent Opening of Steam Generator	
·	00.0.47	Power-Operated Relief Valve)	30-57
	30.6.50	SWN-MAN01N (Open Air-Operated Valve on Motor Strainer Line)	30-58
	30.6.51	SWB-MAN(2) (Start Standby Service Water Pump)	30-58
-	30.6.52	SWB-MAN02N (Start Standby Service Water Pump)	30-50
	30.6.53	TCB-MAN01 (Start Standby Turbine Closed Cooling Water Pump)	30-60
	30.6.54	TCB-MAN02 (Locally Align Standby Turbine Closed Cooling	
	00.0.01	Water Heat Exchanger)	
·	30.6.55	VI.N-MAN01 (Actuate Hydrogen Control System)	30-62
	30.6.56	VWN-MAN01 (Align Standby Chiller)	30-63
	30.6.57	ATW-MAN11 (Recognize the Need for Manual Boration)	30-64
	30.6.58	REC-MANDAS (Diagnosis of an Event Through DAS Signals	
	20.0.00	or Perform an Activity by Operating DAS Controls)	
	30.6.59	RHN-MAN04 (Isolate the RNS During Shutdown Conditions)	
	30.6.60	RHN-MAN05 (Initiate Gravity Injection from IRWST via	
	2010100	RNS Suction Line)	
	30.6.61	RHN-MAN06 (Recognize the Need and Throttle RNS Valve V011).	
	30.6.62	RCS-MANODS1 (Close AOVs CVS-V045 or -V047, Given	
		Failure of HL Level Instruments)	
	30.6.63	RCS-MANODS2 (Close AOVs CVS-V045 or -V047, Given	
		Failure of Valves to Close Automatically)	
	30.6.64	SWN-MAN03 (Recognize the Need and Locally Refill Service	
		Water Basin)	30-70
30.7	Conditio	nal Probability Evaluation	
	30.7.1	Application	30-72
	30.7.2	Process Used to Determine Dependencies	30-72
	30.7.3	Calculation of Dependent Human Error Probabilities	30-72
30.8	Reference	æs	30-74
ATTACHME	INT 30A H	UMAN RELIABILITY ANALYSIS GUIDELINES	30A-1
30A.1	Introduc	tion	30A-1
30A.2	Schedule	e for Human Reliability Analysis	30A-1
30A.3	Methodo	ology	30A-1
30A.4	Respons	ibility	30A-2
30A.5	Procedu	re for Human Interaction Evaluation	30A-2
	30A.5.1	Туре А	30A-3
	30A.5.2	Туре В	30A-3
	30A.5.3	Туре С	30A-4
-	30A.5.4	Commission Errors That Have Detrimental Effects	30A-6

Section		<u>Title</u>	<u>Page</u>
30A.6	Procedur	e for Human Error Probabilities Quantification	30A-8
	30A.6.1	Basic Assumptions for Human Interaction Analysis	30A-8
30A.7	Referenc	ces	30A-9
CHAPTER 31	OTHER	EVENT TREE NODE PROBABILITIES	
31.1	Introduct	tion	
31.2	Identifica	ation of Cases Requiring Calculations	31-1
	31.2.1	BL - Main Steam Line Break Occurs Inside Containment	
	31.2.2	CNB – Containment Isolation Fails Due to Reactor Coolant System	21 1
	21 2 2	MCSET Control Pode Motor Concrete Set Trip	
	21.2.5	MOSEI - Control Rods Motor-Ochiciator Set The Punture	
	21.2.4	NSOIR - Consequential Stealin Generator Tube Rupture	
	21.2.5	PDFS Beaster Coolent System Pressure Policifying Pressuringer	
	51.2.0	Safatu Valuaa	21.2
	21 2 7	DDSOV Drocourizer Sofety Valves Declare	21.2
	21 2 9	PASO V - Flossellizer Salety Valves Acclose	21.2
	21 2 0	SI SOV Main Steem Line Polief Values Declose	21.2
21.2	Care-Sn	SLOOV - Main Steam Line Kener Varves Keelose	J1-2 31_3
51.5	21 2 1	BI – Main Steam Line Break Occurs Inside Containment	31_3
	31.3.1	CNR - Containment Isolation Fails Due to RCS Vessel Runture	31_3
	31 3 3	MGSET - Control Rods Motor-Generator Set Trin	31_3
	31 3 4	PO - Pre-existing Containment Opening Allowing Bypass	31_4
	31 3 5	PRES – Reactor Coolant System Pressure Relief via Pressurizer	
	51.5.5	Safety Valves	31-4
	3136	PRSOV – Pressurizer Safety Valves Reclose	31-5
	31 3 7	R05 – Offsite Power Recovered within One-Half Hour	31-6
	31 3 8	SGTR1 – Single Consequential Steam Generator Tube Rupture	31-6
	31.3.9	SGTR – Multiple Consequential Steam Generator Tube Rupture	31-8
	31 3 10	SI SOV – Main Steam Line Relief and Safety Valves Reclose	31-8
	31 3 11	SI SOV1 – Main Steam I ine Relief and Safety Valves Reclose	31-9
	31.3.12	SI SOV2 – Main Steam Line Safety Valves Reclose	31-10
	31.3.13	SLSOV2 – Main Steamline Relief and Safety Valves Reclose, SGT	R
31.4	Referenc		
CILADTED 22		NAT VOID AND MACTER DATA DANT	
CHAPIER 32	DATA A	INALISIS AND MASIEK DAIA BANK	20.1
32.1	Data Alla	Augusts	
	32.1.1 22.1.2	Test and Maintenance Unavailability	
	32.1.2	Common Cause Failure Date	
	52.1.5 20.1 4	Lommon Cause Failure Data	
	54.1.4 20.1.5	numan Kellaoliliy Data	
	52.1.5	initiating Event Frequency Data	

AP1000 Probabilistic Risk Assessment

# TABLE OF CONTENTS (Cont.)

- -

# Section

# <u>Title</u>

	Master Data Bank	
	32.2.1 Initiating Event Frequencies	32-3
·	32.2.2 Random Component Failures	32-3
	32.2.3 Common Cause Failure Probabilities	32-3
	32.2.4 Human Error Probabilities	32-3
· · · ·	32.2.5 System-Specific Calculations	
,	32.2.6 Other Event Tree Node Probabilities	32-3
	32.2.7 Master Data Bank	32-4
32.3	References	32-4
	EALIT TTERE AND CODE DANG CE OLLANTIFICATION	
CHAPTER 33	FAULT TREE AND CORE DAMAGE QUANTIFICATION	22.1
33.1		
33.2	Fault Tree Model Quantification	
33.3	Event Tree Model Calculation	
the second s	33.3.1 Core Damage Quantification Method	
	33.3.2 Core Damage Quantification Input Files and Data	
100 C	33.3.3 Definition of Consequential Event Categories	
•	33.3.4 Incorporate Operator Action Dependencies Into Plant Core Damage	<b>20</b> <i>C</i>
x	Frequency Quantification	
	33.3.5 Core Damage Frequency Results	
CHAPTER 34	SEVERE ACCIDENT PHENOMENA TREATMENT	
CHAPTER 34 34.1	SEVERE ACCIDENT PHENOMENA TREATMENT Introduction	34-1
CHAPTER 34 34.1 34.2	SEVERE ACCIDENT PHENOMENA TREATMENT Introduction Treatment of Physical Processes	34-1 34-1
CHAPTER 34 34.1 34.2	SEVERE ACCIDENT PHENOMENA TREATMENT Introduction Treatment of Physical Processes	34-1 34-1 34-1
CHAPTER 34 34.1 34.2	SEVERE ACCIDENT PHENOMENA TREATMENT Introduction Treatment of Physical Processes	34-1 34-1 34-1 34-2
CHAPTER 34 34.1 34.2	SEVERE ACCIDENT PHENOMENA TREATMENT Introduction Treatment of Physical Processes	34-1 34-1 34-1 34-2 34-4
CHAPTER 34 34.1 34.2	SEVERE ACCIDENT PHENOMENA TREATMENT         Introduction         Treatment of Physical Processes         34.2.1       In-Vessel Retention of Molten Core Debris         34.2.2       Fuel-Coolant Interaction (Steam Explosions)         34.2.3       Hydrogen Combustion and Detonation         34.2.4       High-Pressure Melt Ejection	34-1 34-1 34-2 34-4 34-5
CHAPTER 34 34.1 34.2	SEVERE ACCIDENT PHENOMENA TREATMENT         Introduction         Treatment of Physical Processes         34.2.1       In-Vessel Retention of Molten Core Debris         34.2.2       Fuel-Coolant Interaction (Steam Explosions)         34.2.3       Hydrogen Combustion and Detonation         34.2.4       High-Pressure Melt Ejection         34.2.5       Core Debris Coolability	
CHAPTER 34 34.1 34.2	SEVERE ACCIDENT PHENOMENA TREATMENT         Introduction         Treatment of Physical Processes         34.2.1       In-Vessel Retention of Molten Core Debris         34.2.2       Fuel-Coolant Interaction (Steam Explosions)         34.2.3       Hydrogen Combustion and Detonation         34.2.4       High-Pressure Melt Ejection         34.2.5       Core Debris Coolability         34.2.6       Containment Pressurization from Decay Heat	
CHAPTER 34 34.1 34.2	SEVERE ACCIDENT PHENOMENA TREATMENTIntroductionTreatment of Physical Processes34.2.1In-Vessel Retention of Molten Core Debris34.2.2Fuel-Coolant Interaction (Steam Explosions)34.2.3Hydrogen Combustion and Detonation34.2.4High-Pressure Melt Ejection34.2.5Core Debris Coolability34.2.6Containment Pressurization from Decay Heat34.2.7Elevated Temperature (Equipment Survivability)	
CHAPTER 34 34.1 34.2	SEVERE ACCIDENT PHENOMENA TREATMENT         Introduction         Treatment of Physical Processes         34.2.1       In-Vessel Retention of Molten Core Debris         34.2.2       Fuel-Coolant Interaction (Steam Explosions)         34.2.3       Hydrogen Combustion and Detonation         34.2.4       High-Pressure Melt Ejection         34.2.5       Core Debris Coolability.         34.2.6       Containment Pressurization from Decay Heat.         34.2.7       Elevated Temperature (Equipment Survivability)         34.2.8       Summary	
CHAPTER 34 34.1 34.2 34.3	SEVERE ACCIDENT PHENOMENA TREATMENT         Introduction         Treatment of Physical Processes         34.2.1       In-Vessel Retention of Molten Core Debris         34.2.2       Fuel-Coolant Interaction (Steam Explosions)         34.2.3       Hydrogen Combustion and Detonation         34.2.4       High-Pressure Melt Ejection         34.2.5       Core Debris Coolability         34.2.6       Containment Pressurization from Decay Heat         34.2.7       Elevated Temperature (Equipment Survivability)         34.2.8       Summary	
CHAPTER 34 34.1 34.2 34.3 34.3 34.4	SEVERE ACCIDENT PHENOMENA TREATMENT Introduction Treatment of Physical Processes	
CHAPTER 34 34.1 34.2 34.3 34.3 34.4	SEVERE ACCIDENT PHENOMENA TREATMENT         Introduction         Treatment of Physical Processes         34.2.1       In-Vessel Retention of Molten Core Debris         34.2.2       Fuel-Coolant Interaction (Steam Explosions)         34.2.3       Hydrogen Combustion and Detonation         34.2.4       High-Pressure Melt Ejection         34.2.5       Core Debris Coolability         34.2.6       Containment Pressurization from Decay Heat         34.2.7       Elevated Temperature (Equipment Survivability)         34.2.8       Summary         Analysis Method       Severe Accident Analyses         34.4.1       Accident Class 3BE – Intact Containment	
CHAPTER 34 34.1 34.2 34.3 34.4	SEVERE ACCIDENT PHENOMENA TREATMENT         Introduction         Treatment of Physical Processes         34.2.1       In-Vessel Retention of Molten Core Debris         34.2.2       Fuel-Coolant Interaction (Steam Explosions)         34.2.3       Hydrogen Combustion and Detonation         34.2.4       High-Pressure Melt Ejection         34.2.5       Core Debris Coolability.         34.2.6       Containment Pressurization from Decay Heat.         34.2.7       Elevated Temperature (Equipment Survivability)         34.2.8       Summary         Analysis Method.       Severe Accident Analyses         34.4.1       Accident Class 3BE – Intact Containment         34.4.2       Accident Class 3BE – Failed Containment	
CHAPTER 34 34.1 34.2 34.3 34.3 34.4	SEVERE ACCIDENT PHENOMENA TREATMENT         Introduction         Treatment of Physical Processes         34.2.1       In-Vessel Retention of Molten Core Debris         34.2.2       Fuel-Coolant Interaction (Steam Explosions)         34.2.3       Hydrogen Combustion and Detonation         34.2.4       High-Pressure Melt Ejection         34.2.5       Core Debris Coolability.         34.2.6       Containment Pressurization from Decay Heat.         34.2.7       Elevated Temperature (Equipment Survivability)         34.2.8       Summary         Analysis Method.       Severe Accident Analyses         34.4.1       Accident Class 3BE – Intact Containment         34.4.3       Accident Class 3BL – Intact Containment	
CHAPTER 34 34.1 34.2 34.3 34.4	SEVERE ACCIDENT PHENOMENA TREATMENT         Introduction         Treatment of Physical Processes         34.2.1       In-Vessel Retention of Molten Core Debris         34.2.2       Fuel-Coolant Interaction (Steam Explosions)         34.2.3       Hydrogen Combustion and Detonation         34.2.4       High-Pressure Melt Ejection         34.2.5       Core Debris Coolability         34.2.6       Containment Pressurization from Decay Heat         34.2.7       Elevated Temperature (Equipment Survivability)         34.2.8       Summary         Analysis Method       Severe Accident Analyses         34.4.1       Accident Class 3BE – Intact Containment         34.4.3       Accident Class 3BL – Intact Containment         34.4.4       Accident Class 3BR – Intact Containment	
CHAPTER 34 34.1 34.2 34.3 34.4	SEVERE ACCIDENT PHENOMENA TREATMENT         Introduction         Treatment of Physical Processes         34.2.1       In-Vessel Retention of Molten Core Debris         34.2.2       Fuel-Coolant Interaction (Steam Explosions)         34.2.3       Hydrogen Combustion and Detonation         34.2.4       High-Pressure Melt Ejection         34.2.5       Core Debris Coolability         34.2.6       Containment Pressurization from Decay Heat         34.2.7       Elevated Temperature (Equipment Survivability)         34.2.8       Summary         Analysis Method       Severe Accident Analyses         34.4.1       Accident Class 3BE – Intact Containment         34.4.3       Accident Class 3BL – Intact Containment         34.4.4       Accident Class 3BR – Intact Containment         34.4.5       Accident Class 3C – Intact Containment	
CHAPTER 34 34.1 34.2 34.3 34.4	SEVERE ACCIDENT PHENOMENA TREATMENT         Introduction         Treatment of Physical Processes         34.2.1       In-Vessel Retention of Molten Core Debris         34.2.2       Fuel-Coolant Interaction (Steam Explosions)         34.2.3       Hydrogen Combustion and Detonation         34.2.4       High-Pressure Melt Ejection         34.2.5       Core Debris Coolability         34.2.6       Containment Pressurization from Decay Heat         34.2.7       Elevated Temperature (Equipment Survivability)         34.2.8       Summary         Analysis Method       Severe Accident Analyses         34.4.1       Accident Class 3BE – Intact Containment         34.4.2       Accident Class 3BE – Failed Containment         34.4.3       Accident Class 3BE – Intact Containment         34.4.4       Accident Class 3BE – Intact Containment         34.4.5       Accident Class 3C – Intact Containment         34.4.6       Accident Class 3C – Failed Containment	
CHAPTER 34 34.1 34.2 34.3 34.4	SEVERE ACCIDENT PHENOMENA TREATMENT         Introduction         Treatment of Physical Processes         34.2.1       In-Vessel Retention of Molten Core Debris         34.2.2       Fuel-Coolant Interaction (Steam Explosions)         34.2.3       Hydrogen Combustion and Detonation         34.2.4       High-Pressure Melt Ejection         34.2.5       Core Debris Coolability         34.2.6       Containment Pressurization from Decay Heat         34.2.7       Elevated Temperature (Equipment Survivability)         34.2.8       Summary         Analysis Method       Severe Accident Analyses         34.4.1       Accident Class 3BE – Intact Containment         34.4.2       Accident Class 3BE – Failed Containment         34.4.3       Accident Class 3BE – Intact Containment         34.4.4       Accident Class 3BE – Intact Containment         34.4.5       Accident Class 3BE – Intact Containment         34.4.6       Accident Class 3C – Intact Containment         34.4.6       Accident Class 3C – Intact Containment         34.4.7       Accident Class 3D – Intact Containment	

### Section

1

# <u>Title</u>

	34.4.9	Accident Class 6E – Bypass Containment	
	34.4.10	Accident Class 6L – Bypass Containment	
	34.4.11	Accident Class 1AP	
	34.4.12	Accident Class 1A	
	34.4.13	Intermediate and Late Containment Failure Cases	
34.5	Insights a	and Conclusions	
34.6	Referenc	es	34-21
CHAPTER 35	CONTA	INMENT EVENT TREE ANALYSIS	
35.1	Introduct	ion	
35.2	Containn	nent Event Tree – General Discussion	
35.3	Event Tr	ee Construction	35-2
35.4	Level 1/I	Level 2 Interface	35-3
35.5	Containn	nent Event Tree Top Events	
	35.5.1	Severe Accident Phenomena Considerations	
	35.5.2	Operator Action and Systems Top-Event Considerations	
35.6	Release (	Category Definitions	
	35.6.1	Release Category BP – Containment Bypass	
	35.6.2	Release Category CI – Containment Isolation Failure	
	35.6.3	Release Category CFE – Early Containment Failure	
	35.6.4	Release Category CFI – Intermediate Containment Failure	
	35.6.5	Release Category CFL - Late Containment Failure	
	35.6.6	Release Category CFV - Containment Venting	
	35.6.7	Release Category IC - Intact Containment	
35.7	Top-Eve	nt Nodal Questions and Success Criteria	
	35.7.1	Top Event DP - RCS Depressurization After Core Uncovery	
	35.7.2	Top Event IS – Containment Isolation	
	35.7.3	Top Event IR – Reactor Cavity Flooding	
	35.7.4	Top Event RFL – Reflooding of a Degraded Core	
	35.7.5	Top Event VF – Debris Relocation to the Reactor Cavity	
	35.7.6	Top Event PC – Passive Containment Cooling	
	35.7.7	Top Event VNT – Containment Venting	
	35.7.8	Top Event IF – Intermediate Containment Failure	
	35.7.9	Top Event IG – Hydrogen Control System	
	35.7.10	Top Event DF – Diffusion Flame	
	35.7.11	Top Event DTE – Early Hydrogen Detonation	
	35.7.12	Top Event DFG – Hydrogen Deflagration	
	35.7.13	Top Event DTI – Intermediate Hydrogen Detonation	
35.8	Summary	 /	
35.9	Referenc	es	

**AP1000 Probabilistic Risk Assessment** 

1 1 V

# TABLE OF CONTENTS (Cont.)

• <

Section	Title	Page
CHAPTER 36	REACTOR COOLANT SYSTEM DEPRESSURIZATION	
36.1	Introduction	
36.2	Definition of High Pressure	
36.3	Node DP	
36.4	Success Criteria	
	36.4.1 Accident Classes 3BE, 3BL, 3BR, 3C	36-2
·	36.4.2 Accident Class 3D/1D	36-3
	36.4.3 Accident Classes 1A and 1AP	36-3
	36.4.4 Steam Generator Tube Rupture – Accident Class 6	36-4
	36.4.5 Anticipated Transient Without Scram – Accident Class 3A	
36.6	References	36-5
CHAPTER 37	CONTAINMENT ISOLATION	
37.1	Introduction	37-1
37.2	Definition of Containment Isolation	
37.3	Success Criteria	
·	37.3.1 Accident Classes 1A and 1AP	
	37.3.2 Accident Class 3A	37-2
	37.3.3 Accident Class 3BR	37-2
	37.3.4 Accident Class 3BE	
	37.3.5 Accident Class 3BL	37-2
	37.3.6 Accident Class 3C	
	37.3.7 Accident Class 3D/1D	
	37.3.8 Accident Class 6	
	Summary	
		. : :
CHAPTER 38	REACTOR VESSEL REFLOODING	
38.1	Introduction	
38.2	Definition of Reflooding Success	
38.3	Success Criteria	38-1
· · · ·	38.3.1 Accident Classes 1A and 1AP	
	38.3.2 Accident Class 3BR	
	38.3.3 Accident Class 3BE	38-2
	38.3.4 Accident Class 3BL	38-3
	38.3.5 Accident Class 3D/1D	38-3
	38.3.6 Accident Class 6	38-3
	38.3.7 Accident Class 3C	38-3
	38.3.8 Accident Class 3A	38-4
38.4	Summary	

xxiii

# Section

# <u>Title</u>

CHAPTER 39	IN-VESSEL RETENTION OF MOLTEN CORE DEBRIS	
39.1	Introduction	
39.2	Background on the Application of IVR to the Passive Plant	
39.3	Application of IVR to the AP1000 Passive Plant	
39.4	Reactor Vessel Failure Criteria	
39.5	In-Vessel Melt Progression and Relocation	
39.6	Application of Heat Transfer Correlations to the AP1000	
	39.6.1 Debris Pool to Vessel Wall Heat Transfer	
	39.6.2 Vessel Wall to External Cooling Water Heat Transfer	
39.7	Quantification of Margin to Failure of the Reactor Vessel Wall	
	39.7.1 Zirconium Oxidation Fraction Input Probability Distribution	
	39.7.2 Steel Mass Input Probability Distribution	
	39.7.3 Final Bounding State Timing Input Probability Distribution	
	39.7.4 Critical Heat Flux	
	39.7.5 Results and Conclusions of Heat Flux Quantification	
39.8	Reactor Coolant System Depressurization	
39.9	Reactor Cavity Flooding (Node IR)	
	39.9.1 Node IR Success Criteria	
	39.9.2 Cavity Flooding Scenario Dependencies	
39.10	Reactor Vessel Insulation Design Concept	
	39.10.1 Description of Reactor Vessel Insulation and Venting	
	39.10.2 Design Analysis of the Insulation and Support Frame	
39.11	Reactor Vessel External Surface Treatment	
39.12	Reactor Vessel Failure (Node VF)	
	39.12.1 Node VF Success Criteria	
39.13	Summary	
39.14	References	
ATTACHMEN	T 39A AP1000 IN-VESSEL CORE MELTING RELOCATION	
39A.1	Introduction	
39A.2	Phenomenological Issues	39A-1
	39A.2.1 Focusing Effect	39A-1
	39A.2.2 Material Interaction	
39A.3	AP1000 Reactor Vessel Lower Internals Geometry	<b>39A-</b> 1
39A.4	Modeling of Core and Reactor Vessel Lower Internals Heatup	
	39A.4.1 MAAP4 Model	
	39A.4.2 Finite Difference Modeling	
	39A.4.3 Relocation of In-Core Debris to Lower Plenum	39A-3
39A-5	Base Core Damage Sequence for In-Vessel Retention	
	39A.5.1 Core Heatup and Formation of In-Core Molten Debris Lavers	
	39A.5.2 Melting of Core Shroud and Core Barrel	
	39A.5.3 Initial Relocation of Molten Core Debris to Lower Plenum	
	39A.5.4 Lower Plenum Debris Pool Formation	39A-8

AP1000 Probabilistic Risk Assessment

# TABLE OF CONTENTS (Cont.)

1

Section	Title	Page
39A.6	Potential for Debris Interaction	39A-12
39A.7	Conclusions from Analysis of AP1000 In-Vessel Core Melting and	
	Relocation	39A-12
<b>39A.8</b>	References	39A-13
· .		
CHAPTER 40	PASSIVE CONTAINMENT COOLING, LONG TERM CONTAINMENT	
40.1	Passive Containment Cooling System	
40.2	Passive Containment Cooling Water – Node PC.	
	40.2.1 Node PC Success Criteria	
	40.2.2 Operator Action	
	40.2.3 Node PC Failure Probability	
40.3	Containment Venting – Node VT.	
-	40.3.1 Venting Success Criteria	
	40.3.2 Venting Failure Probability	
40.4	Intermediate Containment Failure – Node IF	
	40.4.1 Success Criterion	
	40.4.2 Intermediate Containment Failure Probability	
40.5	References	
CHAPTER 41	HYDROGEN MIXING AND COMBUSTION ANALYSIS	
41.1	Discussion of the Issue	41-1
41.2	Controlling Phenomena	41-2
41.3	Major Assumptions and Phenomenological Uncertainties	41-3
	41.3.1 Hydrogen Generation	41-3
	41.3.2 Containment Pressure	41-3
	41.3.3 Flammability Limits	41-3
	41.3.4 Detonation Limits and Loads	41-4
	41.3.5 Igniter System	41-4
	41.3.6 Other Ignition Sources	41-5
	41.3.7 Severe Accident Management Actions	41-5
41.4	Hydrogen Generation and Mixing	41-5
	41.4.1 Accident Class 3BE – Failure of Gravity Injection	41-6
	41.4.2 Accident Class 3BL – Failure of Gravity Recirculation	
	41.4.3 Accident Class 3BR – Large LOCA with Accumulator Failure	41-10
	41.4.4 Accident Class 3C	41-11
	41.4.5 Accident Classes 3D and 1D	41-12
	41.4.6 Accident Class 1AP	41-12
ł	41.4.7 Accident Class 1A	41-13
	41.4.8 Accident Class 3A	41-13
	41.4.9 Accident Class 6	41-13
	41.4.10 Overall Mixing Insights	41-14

# **Section**

# <u>Title</u>

41.5	Hydroge	n Burning at Igniters	
41.6	Early Hydrogen Combustion		
	41.6.1	Hydrogen Generation Rates	
	41.6.2	Hydrogen Release Locations	
	41.6.3	Early Hydrogen Combustion Ignition Sources	
41.7	Diffusion	n Flame Analysis – CET Node DF	
	41.7.1	AP1000 Diffusion Flame Mitigation Strategy.	
	41.7.2	Node DF Containment Failure Probability Assignment	
41.8	Early Hy	drogen Detonation - Containment Event Tree Node DTE	
	41.8.1	Containment Success Criteria at Node DTE	
	41.8.2	Early Hydrogen Detonation Decomposition Event Tree	
41.9	Deflagra	tion in Time Frame 3	
	41.9.1	Containment Success Criterion at Node DFL	
	41.9.2	AICC Peak Pressure	
	41.9.3	Conditional Containment Failure Probability from Deflagration	
41.10	Detonatio	on in Intermediate Time Frame	41-29
	41.10.1	Containment Success Criterion at Node DTI	
	41.10.2	Mixing and Stratification	41-29
	41.10.3	Quantification of DTI Failure Probabilities	41-30
41.11	Safety M	argin Basis Containment Performance Requirement	41-30
41.12	Summary	۰ ۲	41-31
41.13	Referenc	es	41-31
ATTACHMEN	T 41A A	P1000 SPECIFIC MAAP4.04 ANALYSES	41A-1
ATTACHMEN	T 41B A	NALYSIS OF HYDROGEN BURNING AT IGNITERS	41 <b>B</b> -1
CHAPTER 42	CONDI	TONAL CONTAINMENT FAILURE PROBABILITY DISTRIBU	JTION
42.1	Introduct	ion	42-1
42.2	Probabili	stic Model	42-1
42.3	Containn	nent Failure Characteristics	42-2
	42.3.1	Median Values for Containment Failure	42-2
	42.3.2	Uncertainties in Containment Failure	
42.4	Containn	nent Failure Predictions	42-4
	42.4.1	Containment Cylindrical Shell	42-4
	42.4.2	Ellipsoidal Upper Head	42-5
	42.4.3	Equipment Hatches	42-5
	42.4.4	Personnel Airlock	42-6
42.5	Overall Failure Distribution		
42.6	Summary	y and Conclusions	42-7
42.7	Referenc	es	42-7

AP1000 Probabilistic Risk Assessment

# TABLE OF CONTENTS (Cont.)

### Section

### <u>Title</u>

CHAPTER 43	RELEASE FREQUENCY QUANTIFICATION			
43.1	Introduction			
43.2	Plant Damage State Frequency Calculations	.43-2		
43.3	Containment Event Tree Node Frequencies	.43-2		
	43.3.1 CET Nodes	.43-2		
	43.3.2 CET Node Probabilities From Boolean Expressions	.43-3		
	43.3.3 Probabilities for Hydrogen-Related CET Nodes	.43-6		
	43.3.4 Other CET Node Probabilities	.43-6		
43.4	Containment Event Tree Quantification	.43-7		
	43.4.1 Containment Event Tree	.43-7		
	43.4.2 Dominant CET Sequences	.43-7		
	43.4.3 LRF Cutsets for Dominant Sequences	.43-7		
43.5	Summary of Results	.43-7		
43.6	Importance and Sensitivity Analyses	.43-8		
	43.6.1 CET Event Node Importance Analysis	.43-8		
	43.6.2 No Credit Taken for DP Node for PDS-6	.43-8		
	43.6.3 Lesser Reliability for Containment Isolation	.43-8		
	43.6.4 Lesser Reliability for Hydrogen Igniters	.43-8		
	43.6.5 Lesser Reliability for PCS	.43-9		
	43.6.6 No Credit for Depressurization for High Pressure PDS	.43-9		
	43.6.7 Set PDS-3C Vessel Failure Probability to 1.0	.43-9		
	43.6.8 Set 3D and 1AP Diffusion Flame and Detonation Failure			
	Probability to 1.0	.43-9		
43.7	Other Importance and Sensitivity Analyses	43-9		
	43.7.1 Initiating Event Importances	43-9		
	43.7.2 Sensitivity to Standby Systems	43-10		
· .	43.7.3 Sensitivity to Standby Systems With Credit for Manual DAS	43-10		
43.8	Conclusions and Insights	43-10		
,				
ATTACHMEN	TT 43A PDS CALCULATIONS4	3A-1		
		1 00		
ATTACHMEN	1 43B DP NODE PROBABILITY FOR PDS	3B-1		
ATTACHMEN	IT 43C EVALUATION OF OPERATOR ACTIONS4	3C-1		
ATTACHMEN	T 43D EFFECT OF "PRE-EXISTING CONTAINMENT OPENING" ON LRF4	3D-1		
ATTACHMEN	T 43E EFFECT OF CONTAINMENT AIR-COOLING FAILURE			
	ON PLANT RISK	3E-1		

Section		Title	
CHAPTER 44		MAAP4 CODE DESCRIPTION AND AP1000 MODELING	
	44.0	MAAP Background	44-1
	44.1	MAAP4	
	44.2	The AP1000 MAAP4 Modeling	44-3
	44.3	Benchmarking	44-5
	44.4	Summary and Conclusions	44-6
	44.5	References	44-7
	CHAPTER 45	FISSION-PRODUCT SOURCE TERMS	
	45.1	Summary of AP1000 Release Categories	45-1
	45.2	Release Category Source Terms	45-2
		45.2.1 Release Category IC	45-2
		45.2.2 Release Category BP	45-2
		45.2.3 Release Category CI	45-2
		45.2.4 Release Category CFE	45-2
		45.2.5 Release Category CFI	45-3
		45.2.6 Release Category CFL	45-3
		45.2.7 Release Category CFV	
	45.3	Direct-Release Sensitivity Case	45-4
	45.4	Summary	45-4
1	45.5	References	45-4
1	CHAPTERS 46	THROUGH 48 NOT USED	
	CHAPTER 49	OFFSITE DOSE RISK QUANTIFICATION	
49.1 49.2		Introduction	
		Conformance with Regulatory Requirements	
	49.3	Assumptions	
	49.4	Methodology.	
49.5 49.6		Dose Evaluation Results and Discussion	
		Quantification of Site Risk	
	49.7	Risk Quantification Results	
49.8 CHAPTER 50		References	
		IMPORTANCE AND SENSITIVITY ANALYSES	
	50.1	Introduction	50-1
	50.2	Importance Analyses for Core Damage	50-1
		50.2.1 Initiating Event Importances	50-2
		50.2.2 Accident Sequence Importances	50-3
		50.2.3 End State Importances	50-4
		50.2.4 Common Cause Failure Importances	50-4
		50.2.5 Human Error Importances	50-5
		50.2.6 Component Importances	50-6

**AP1000 Probabilistic Risk Assessment** 

50.3       System Importances for Core Damage       50-7         50.4       Human Error Sensitivity Analyses.       50-8         50.4.1       Set HEPs to 0.0 (Success) in Core Damage Output File       50-10         50.5       Other Sensitivity Analyses for Core Damage Output File       50-10         50.5       Other Sensitivity Analyses for Core Damage Output File       50-10         50.5.1       Impact of Pasive System Check Valves on Core Damage Frequency.       50-10         50.5.2       Sensitivity to Standby Systems.       50-11         50.5.3       Sensitivity to Standby Systems.       50-12         50.5.4       Sensitivity to Standby Systems.       50-12         50.5.5       Sensitivity to Standby Systems.       50-13         50.6       Results       50-15         CHAPTER 51       UNCERTAINTY ANALYSIS       51-1         51.1       Introduction       51-3         51.2       Input Data/Error Factors       51-3         51.3       Sensitivity to Simulation Parameters       51-3         51.4       Output Files       51-3         51.5.1       Sensitivity to Operator Actions       51-4         51.5.3       Sensitivity to Operator Actions       51-4         51.5.3       Sensitivity to Operator Ac	<b>Section</b>	Title	Page
50.4       Human Error Sensitivity Analyses.	50.3	System Importances for Core Damage	50-7
50.4.1       Set HEPs to 1.0 (Failure) in Core Damage Output File       .50-9         50.4.2       Set HEPs to 0.1 in Core Damage Output File       .50-10         50.5       Other Sensitivity Analyses for Core Damage Output File       .50-10         50.5       Other Sensitivity to 0.1 in Core Damage Output File       .50-10         50.5       Sensitivity to Squib Valve Failure Probability       .50-11         50.5.2       Sensitivity to Circuit Breaker Failure Probability       .50-11         50.5.3       Sensitivity to Standby Systems: Manual DAS Credited       .50-12         50.5       Sensitivity to Standby Systems: Manual DAS Credited       .50-15         51.1       Introduction       .51-1       .51-1         51.2       Input Files       .51-3       .51-3         51.1       Introduction       .51-1       .51-3         51.2       Input Files       .51-3       .51-3         51.3       Input Files       .51-3       .51-3         51.4       Output Files       .51-3       .51-3         51.5       Sensitivity to Simulation Parameters       .51-3         51.5       Sensitivity to Key Basic Events       .51-3         51.5.2       Sensitivity to Operator Actions       .51-4         51.6	50.4	Human Error Sensitivity Analyses	50-8
50.4.2       Set HEPs to 0.0 (Success) in Core Damage Output File       50-10         50.5       Other Sensitivity analyses for Core Damage       50-10         50.5.1       Impact of Passive System Check Valves on Core Damage Frequency		50.4.1 Set HEPs to 1.0 (Failure) in Core Damage Output File	50-9
504.3       Set HEPs to 0.1 in Core Damage Output File       50-10         50.5       Other Sensitivity Analyses for Core Damage       50-10         50.5.1       Impact of Passive System Check Valves on Core Damage Frequency		50.4.2 Set HEPs to 0.0 (Success) in Core Damage Output File	50-10
50.5       Other Sensitivity Analyses for Core Damage		50.4.3 Set HEPs to 0.1 in Core Damage Output File	50-10
50.5.1       Impact of Passive System Check Valves on Core Damage Frequency	50.5	Other Sensitivity Analyses for Core Damage	50-10
50.5.2       Sensitivity to Squib Valve Failure Probability	· .	50.5.1 Impact of Passive System Check Valves on Core Damage Frequency	50-10
50.5.3       Sensitivity to Circuit Breaker Failure Probability		50.5.2 Sensitivity to Squib Valve Failure Probability	50-11
50.5.4       Sensitivity to Standby Systems; Manual DAS Credited       .50-12         50.5.5       Sensitivity to Standby Systems; Manual DAS Credited       .50-14         50.6       Results       .50-15         CHAPTER 51       UNCERTAINTY ANALYSIS       .51-1         51.1       Introduction       .51-1         51.2       Input Files       .51-2         51.3       Input Files       .51-3         51.4       Output Files       .51-3         51.5       Sensitivity to Simulation Parameters       .51-3         51.5       Sensitivity to Stende Events       .51-3         51.5.1       Sensitivity to Operator Actions       .51-4         51.6       Summary of Results       .51-6         51.7       References       .51-8         ATTACHMENT 51A       ASSIGNMENT OF ERROR FACTORS TO BASIC         EVENT PROBABILITIES       .51A-1         ATTACHMENT 51B       @RISK UNCERTAINTY ANALYSIS RESULTS       .51B-1         CHAPTER 54       LOW-POWER AND SHUTDOWN RISK ASSESSMENT       .54-2         54.1       Introduction       .54-3         54.2       Data Analysis       .54-3         54.4       Event Tree/Mitigation System Evaluation       .54-3         54.4	•	50.5.3 Sensitivity to Circuit Breaker Failure Probability	50-11
50.5.5       Sensitivity to Standby Systems; Manual DAS Credited       .50-14         50.6       Results       .50-15         CHAPTER 51       UNCERTAINTY ANALYSIS       .51-1         51.1       Introduction       .51-1         51.2       Input Data/Error Factors       .51-2         51.3       Input Files       .51-3         51.4       Output Files       .51-3         51.5       Sensitivity Analyses       .51-3         51.5       Sensitivity to Simulation Parameters       .51-3         51.5.1       Sensitivity to Key Basic Events       .51-3         51.5.2       Sensitivity to Operator Actions       .51-4         51.6       Summary of Results       .51-6         51.7       References       .51-8         ATTACHMENT 51A       ASSIGNMENT OF ERROR FACTORS TO BASIC         EVENT PROBABILITIES       .51A-1         ATTACHMENT 51B       @RISK UNCERTAINTY ANALYSIS RESULTS       .51B-1         CHAPTER 54       LOW-POWER AND SHUTDOWN RISK ASSESSMENT       .54-1         54.1       Introduction       .54-3         54.2       Data Analysis       .54-3         54.4       Event Tree/Mitigation System Evaluation       .54-3         54.5	*	50.5.4 Sensitivity to Standby Systems	50-12
50.6       Results		50.5.5 Sensitivity to Standby Systems; Manual DAS Credited	50-14
CHAPTER 51 UNCERTAINTY ANALYSIS 51.1 Introduction	50.6	Results	50-15
S1.1       Introduction       51-1         S1.2       Input Data/Error Factors       51-2         S1.3       Input Files       51-3         S1.4       Output Files       51-3         S1.5       Sensitivity Analyses       51-3         S1.5       Sensitivity to Simulation Parameters       51-3         S1.5.1       Sensitivity to Simulation Parameters       51-3         S1.5.2       Sensitivity to Coperator Actions       51-4         S1.5.3       Sensitivity to Operator Actions       51-4         S1.6       Summary of Results       51-6         S1.7       References       51-8         ATTACHMENT 51A       ASSIGNMENT OF ERROR FACTORS TO BASIC       EVENT PROBABILITIES         CHAPTERS 52 AND 53 NOT USED       S1A-1       ATTACHMENT 51B       @RISK UNCERTAINTY ANALYSIS RESULTS       51B-1         CHAPTER 54       LOW-POWER AND SHUTDOWN RISK ASSESSMENT       54-2       54-3       54-3         S4.1       Introduction       54-1       54-3       54-3         S4.4       Event Tree/Mitigation System Evaluation       54-3       54-3         S4.5       Common Cause Analysis Update for AP1000       54-3         S4.6       Human Reliability Assessment for AP1000       54-5	CHAPTER 51	INCERTAINTY ANALYSIS	
511.1       Input Data/Error Factors       51-2         51.2       Input Files       51-3         51.3       Input Files       51-3         51.4       Output Files       51-3         51.5       Sensitivity Analyses       51-3         51.5.1       Sensitivity to Simulation Parameters       51-3         51.5.2       Sensitivity to Key Basic Events       51-3         51.5.3       Sensitivity to Operator Actions       51-4         51.6       Summary of Results       51-6         51.7       References       51-6         51.7       References       51-8         ATTACHMENT 51A       ASSIGNMENT OF ERROR FACTORS TO BASIC       EVENT PROBABILITIES         CHAPTERS 52       AND 53 NOT USED       51A-1         CHAPTER 54       LOW-POWER AND SHUTDOWN RISK ASSESSMENT       54-1         54.1       Introduction       54-3         54.2       Data Analysis       54-3         54.3       Initiating Event Analysis       54-3         54.4       Event Tree/Mitigation System Evaluation       54-3         54.5       Common Cause Analysis Update for AP1000       54-3         54.6       Human Reliability Assessment for AP1000       54-5 <td< td=""><td>51 1</td><td>Introduction</td><td>51-1</td></td<>	51 1	Introduction	51-1
51.2       Input Files       51-3         51.3       Input Files       51-3         51.4       Output Files       51-3         51.5       Sensitivity Analyses       51-3         51.5.1       Sensitivity to Simulation Parameters       51-3         51.5.2       Sensitivity to Key Basic Events       51-3         51.5.3       Sensitivity to Operator Actions       51-4         51.5.3       Sensitivity to Operator Actions       51-4         51.6       Summary of Results       51-6         51.7       References       51-6         51.7       References       51-8         ATTACHMENT 51A       ASSIGNMENT OF ERROR FACTORS TO BASIC       EVENT PROBABILITIES         6       S1.7       References       51-7         7       References       51-8       51-8         ATTACHMENT 51B       @RISK UNCERTAINTY ANALYSIS RESULTS       51B-1         CHAPTER 54       LOW-POWER AND SHUTDOWN RISK ASSESSMENT       54-1         54.1       Introduction       54-2         54.3       Initiating Event Analysis       54-3         54.4       Event Tree/Mitigation System Evaluation       54-3         54.5       Common Cause Analysis Update for AP1000       54-3 </td <td>51.2</td> <td>Input Data/Error Factors</td> <td>51_2</td>	51.2	Input Data/Error Factors	51_2
51.3       Input Files       51-3         51.4       Output Files       51-3         51.5       Sensitivity Analyses       51-3         51.5.1       Sensitivity to Simulation Parameters       51-3         51.5.2       Sensitivity to Key Basic Events       51-3         51.5.3       Sensitivity to Operator Actions       51-4         51.6       Summary of Results       51-6         51.7       References       51-8         ATTACHMENT 51A       ASSIGNMENT OF ERROR FACTORS TO BASIC         EVENT PROBABILITIES       51A-1         ATTACHMENT 51B       @RISK UNCERTAINTY ANALYSIS RESULTS       51B-1         CHAPTERS 52 AND 53 NOT USED       51A-1         54.1       Introduction       54-1         54.2       Data Analysis       54-3         54.3       Initiating Event Analysis       54-3         54.4       Event Tree/Mitigation System Evaluation       54-3         54.4       Event Tree/Mitigation System Evaluation       54-3         54.4       Human Reliability Assessment for AP1000       54-3         54.7       Core Damage Quantification       54-9         54.8       Estimation of Shutdown Large Release Frequency       54-9 <td>51.2</td> <td>Input Education Factors</td> <td>51_3</td>	51.2	Input Education Factors	51_3
51.5       Sensitivity Analyses       51-3         51.5       Sensitivity to Simulation Parameters       51-3         51.5.1       Sensitivity to Simulation Parameters       51-3         51.5.2       Sensitivity to Key Basic Events       51-3         51.5.3       Sensitivity to Operator Actions       51-4         51.6       Summary of Results       51-6         51.7       References       51-8         ATTACHMENT 51A       ASSIGNMENT OF ERROR FACTORS TO BASIC         EVENT PROBABILITIES       51A-1         ATTACHMENT 51B       @RISK UNCERTAINTY ANALYSIS RESULTS       51B-1         CHAPTERS 52 AND 53 NOT USED       S1-4       51-4         54.1       Introduction       54-1         54.2       Data Analysis       54-3         54.3       Initiating Event Analysis       54-3         54.4       Event Tree/Mitigation System Evaluation       54-3         54.5       Common Cause Analysis Update for AP1000       54-3         54.6       Human Reliability Assessment for AP1000       54-3         54.7       Core Damage Quantification       54-6         54.8       Estimation of Shutdown Large Release Frequency       54-9	51.5	Autout Files	51_3
51.5       Sensitivity to Simulation Parameters       51-3         51.5.1       Sensitivity to Key Basic Events       51-3         51.5.2       Sensitivity to Operator Actions       51-4         51.5.3       Sensitivity to Operator Actions       51-4         51.6       Summary of Results       51-6         51.7       References       51-6         51.7       References       51-8         ATTACHMENT 51A       ASSIGNMENT OF ERROR FACTORS TO BASIC       51A-1         ATTACHMENT 51B       @RISK UNCERTAINTY ANALYSIS RESULTS       51B-1         CHAPTER 52       AND 53 NOT USED       51A-1         54.1       Introduction       54-1         54.2       Data Analysis       54-3         54.3       Initiating Event Analysis       54-3         54.4       Event Tree/Mitigation System Evaluation       54-3         54.5       Corre Damage Quantification       54-3         54.6       Human Reliability Assessment for AP1000       54-3         54.7       Core Damage Quantification       54-6         54.7.1       Discussion of Results       54-9         54.8       Estimation of Shutdown Large Release Frequency       54-9	51.5	Sensitivity Analyses	51_3
51.5.1       Sensitivity to Key Basic Events	51.5	51.5.1 Sensitivity to Simulation Darameters	51_3
511.5.2       Sensitivity to Operator Actions		51.5.2 Sensitivity to Key Basic Events	
51.6       Summary of Results		51.5.2 Sensitivity to Operator Actions	51_4
51.3       References       .51.7         ATTACHMENT 51A       ASSIGNMENT OF ERROR FACTORS TO BASIC         EVENT PROBABILITIES       .51.4.1         ATTACHMENT 51B       @RISK UNCERTAINTY ANALYSIS RESULTS       .51B-1         CHAPTERS 52 AND 53 NOT USED	51.6	Summary of Results	51-6
ATTACHMENT 51A ASSIGNMENT OF ERROR FACTORS TO BASIC EVENT PROBABILITIES	51.7	References	
EVENT PROBABILITIES       51A-1         ATTACHMENT 51B @RISK UNCERTAINTY ANALYSIS RESULTS       51B-1         CHAPTERS 52 AND 53 NOT USED         CHAPTER 54 LOW-POWER AND SHUTDOWN RISK ASSESSMENT         54.1       Introduction       54-1         54.2       Data Analysis       54-2         54.3       Initiating Event Analysis       54-3         54.4       Event Tree/Mitigation System Evaluation       54-3         54.5       Common Cause Analysis Update for AP1000       54-3         54.6       Human Reliability Assessment for AP1000       54-5         54.7       Core Damage Quantification       54-9         54.8       Estimation of Shutdown Large Release Frequency       54-9	ATTACHMEN	IT 51A ASSIGNMENT OF ERROR FACTORS TO BASIC	
ATTACHMENT 51B @RISK UNCERTAINTY ANALYSIS RESULTS	••	EVENT PROBABILITIES	51A-1
CHAPTERS 52 AND 53 NOT USED         CHAPTER 54 LOW-POWER AND SHUTDOWN RISK ASSESSMENT         54.1       Introduction       54-1         54.2       Data Analysis       54-2         54.3       Initiating Event Analysis       54-3         54.4       Event Tree/Mitigation System Evaluation       54-3         54.5       Common Cause Analysis Update for AP1000       54-3         54.6       Human Reliability Assessment for AP1000       54-5         54.7       Core Damage Quantification       54-6         54.8       Estimation of Shutdown Large Release Frequency       54-9	ATTACHMEN	IT 51B @RISK UNCERTAINTY ANALYSIS RESULTS	51B-1
CHAPTERS 52 AND 53 NOT USEDCHAPTER 54LOW-POWER AND SHUTDOWN RISK ASSESSMENT54.1Introduction			
CHAPTER 54LOW-POWER AND SHUTDOWN RISK ASSESSMENT54.1Introduction	CHAPTERS 5	2 AND 53 NOT USED	
54.1Introduction	CHAPTER 54	LOW-POWER AND SHUTDOWN RISK ASSESSMENT	
54.2Data Analysis	54.1	Introduction	54-1
54.3Initiating Event Analysis	54.2	Data Analysis	
54.4Event Tree/Mitigation System Evaluation54-354.5Common Cause Analysis Update for AP100054-354.6Human Reliability Assessment for AP100054-554.7Core Damage Quantification54-654.7.1Discussion of Results54-954.8Estimation of Shutdown Large Release Frequency54-9	54.3	Initiating Event Analysis	
<ul> <li>54.5 Common Cause Analysis Update for AP1000</li></ul>	54.4	Event Tree/Mitigation System Evaluation	54-3
<ul> <li>54.6 Human Reliability Assessment for AP1000</li></ul>	54.5	Common Cause Analysis Update for AP1000	
<ul> <li>54.7 Core Damage Quantification</li></ul>	54.6	Human Reliability Assessment for AP1000	
54.7.1 Discussion of Results	54.7	Core Damage Ouantification	
54.8 Estimation of Shutdown Large Release Frequency		54.7.1 Discussion of Results	
	54.8	Estimation of Shutdown Large Release Frequency	

Section		Title	Page
54.9	Sensitiv	ity Analyses	
	54.9.1	Case 1 – Minimum Equipment per Tech Specs During	
		Drained Conditions	
	54.9.2	Case 2 – No Credit for Standby Nonsafety Systems	
	54.9.3	Case 3 – HEP's Set Equal to 0.5	
	54.9.4	Case 4 – No Credit for Standby Nonsafety Systems –	
		Credit for Manual DAS	
	54.9.5	Case 5 - Assessment of Containment Closure Failure Probability	54-13
54.10	Conclus	ions	54-17
54.11	Reference	ces	54-17
CHAPTER 55	AP1000	SEISMIC MARGINS EVALUATION	
55.1	Seismic	Margin HCLPF Methodology	55-1
55.2	Calculat	ion of HCLPF Values	55-1
	55.2.1	Seismic Margin HCLPF Methodology	55-1
	55.2.2	Calculation of HCLPF Values	55-2
55.3	Seismic	Margin Model	55-11
	55.3.1	Major SMA Model Assumptions	55-11
	55.3.2	Seismic Initiating Events	55-12
	55.3.3	Initiating Event Category HCLPFs	
55.4	Calculat	ion of Plant HCLPF	55-16
	55.4.1	HCLPFs for Basic Events	55-16
	55.4.2	Calculation of Initiating Event HCLPFs	55-17
55.5	<b>Results</b> a	and Insights	55-17
	55.5.1	AP1000 SMA Results	55-17
	55.5.2	AP1000 SMA Insights	55-18
55.6	Reference	ces	55-20
CHAPTER 56	INTERN	NAL FLOODING ANALYSIS	
56.1	Introduc	tion	56-1
	56.1.1	Definitions	56-1
56.2	Methodo	blogy	56-1
	56.2.1	Summary of Methodology	56-1
	56.2.2	Information Collection	56-2
	56.2.3	Initial Screening Assessment	56-2
	56.2.4	Detailed Screening Assessment	56-4
	56.2.5	Identification of Flood-Induced Initiating Events	56-5
	56.2.6	Initiating Event Frequencies	56-6
56.3	Assump	tions	56-6
	56.3.1	General Flooding Analysis Assumptions and Engineering Judgmen	its56-6
	56.3.2	AP1000-Specific Assumptions	56-8

AP1000 Probabilistic Risk Assessment

# **TABLE OF CONTENTS (Cont.)**

# Section

# <u>Title</u>

	56.4	Information Collection	56-10
		56.4.1 PRA-Modeled Equipment and Locations	56-10
		56.4.2 Identification of Areas for Flooding Evaluation	
	56.5	At-Power Operations	56-10
		56.5.1 Initial Screening Assessment	
		56.5.2 Detailed Screening Assessment	
		56.5.3 Identification of Flood-Induced Initiating Events	56-26
		56.5.4 Calculation of Flood-Induced Initiating Event Frequencies	56-29
		56.5.5 Quantification of At-Power Flood-Induced Events	56-36
	56.6	Internal Flooding During Low-Power and Shutdown Conditions	56-38
۰.	۰.	56.6.1 Detailed Screening Assessment	56-38
		56.6.2 Identification of Flood-Induced Initiating Events	56-39
		56.6.3 Calculation of Flood-Induced Initiating Event Frequencies	56-40
• •		56.6.4 Quantification of Shutdown Internal Flooding Scenario CDFs	56-45
-		56.6.5 Total Shutdown Flooding Core Damage Frequency	56-47
		56.6.6 Seismically Induced Flooding	56-47
		56.6.7 Flooding Hazards During Refueling Outages	56-47
		56.6.8 Summary of Results	
	56.7	Large Release Frequency Estimates for Internal Flooding	56-48
	56.8	Results of AP1000 Internal Flooding Analysis	56-49
CHA	PTER 57	FIRE RISK ASSESSMENT	
	57.1	Introduction	
	57.2	Qualitative Analysis	
		57.2.1 AP600 Qualitative Analysis	57-1
		57.2.2 AP1000 Qualitative Analysis	
		57.2.3 AP1000 Fire Areas	
	57.3	Initiating Event Frequencies	
		57.3.1 Introduction	
	÷ ÷	57.3.2 Methodology	
	,	57.3.3 Results for Plant Except Containment and the Main Control Room	
	,	57.3.4 Results for the Containment	
		57.3.5 Results for the Main Control Room	
	57.4	Development of Fire Scenarios	
		57.4.1 Spurious Actuation Model	
		57.4.2 Propagation Model	
		57.4.3 Fire Suppression Model	
		57.4.4 Operation Actions	
		57.4.5 Development of Fire Scenarios	
	57.5	Calculation of Conditional Core Damage Probabilities (CCDP)	
	57.6	Calculation of CDF from Fire Events	
		57.6.1 Calculation of Plant Fire CDF	
		57.0.2 Comments on Plant Areas	

Section

**Page** 

### TABLE OF CONTENTS (Cont.)

Title

#### 57.6.3 57.6.4 57.7 57.7.1 57.7.2 Sensitivity Analysis of the Probability of a Spurious Actuation 57.7.3 57.7.4 57.7.5 57.7.6 Sensitivity Analysis on 1E to Non-1E Separation in the 57.7.7 57.7.8 57.8 57.8.1 Evaluation of AP1000 Shutdown Risk (Non-Drained Conditions)......57-33 57.8.2 57.8.3 57.8.4 57.9 57.9.1 57.9.2 57.9.3 57.10 57A.1 57A.2 Calculation of Failure Probability of OPA-01 ......57B-1 57B.1 57B.2 Calculation of Failure Probability of OPA-02 ......57B-3 57B.3 57B.4 ATTACHMENT 57D AP1000 POTENTIAL FOR FIRE-INDUCED SPURIOUS ACTUATION OF FUNCTIONS THAT RESULT IN A

AP1000 Probabilistic Risk Assessment

# TABLE OF CONTENTS (Cont.)

# <u>Section</u>

# <u>Title</u>

CHAPTER 58	WINDS, FLOODS, AND OTHER EXTERNAL EVENTS	
58.1	Introduction	
58.2	External Events Analysis	58-1
	58.2.1 Severe Winds and Tornadoes	58-1
	58.2.2 External Floods	
	58.2.3 Transportation and Nearby Facility Accidents	58-2
58.3	Conclusion	
58.4	References	
	and the second	•
CHAPTER 59	PRA RESULTS AND INSIGHTS	
59.1	Introduction	59-1
59.2	Use of PRA in the Design Process	59-3
59.3	Core Damage Frequency from Internal Initiating Events at Power	
	59.3.1 Dominant Core Damage Sequences	59-6
	59.3.2 Component Importances for At-Power Core Damage Frequency	59-7
	59.3.3 System Importances for At-Power Core Damage	59-8
	59.3.4 System Failure Probabilities for At-Power Core Damage	59-9
	59.3.5 Common Cause Failure Importances for At-Power Core Damage	
	59.3.6 Human Error Importances for At-Power Core Damage	59-9
	59.3.7 Accident Class Importances	59-10
	59.3.8 Sensitivity Analyses Summary for At-Power Core Damage	59-11
	59.3.9 Summary of Important Level 1 At-Power Results	59-12
59.4	Large Release Frequency for Internal Initiating Events at Power	
	59.4.1 Dominant Large Release Frequency Sequences	59-15
	59.4.2 Summary of Important Level 2 At-Power Results	59-16
59.5	Core Damage and Severe Release Frequency from Events at Shutdown	
	59.5.1 Summary of Shutdown Level 1 Results	59-19
	59.5.2 Large Release Frequency for Shutdown and Low-Power Events	
	59.5.3 Shutdown Results Summary	59-22
59.6	Results from Internal Flooding, Internal Fire, and Seismic Margin Analyses	59-23
	59.6.1 Results of Internal Flooding Assessment	
	59.6.2 Results of Internal Fire Assessment	59-24
	59.6.3 Results of Seismic Margin Analysis	59-25
59.7	Plant Dose Risk From Release of Fission-Products	
59.8	Overall Plant Risk Results	59-26
59.9	Plant Features Important to Reducing Risk	59-27
	59.9.1 Reactor Design	
	59.9.2 Systems Design	59-28
	59.9.3 Instrumentation and Control Design	
	59.9.4 Plant Layout	
	59.9.5 Containment Design	59-32
	$\mathbf{v}$ $\mathbf{v}$ $\mathbf{v}$ $\mathbf{v}$ $\mathbf{v}$ $\mathbf{v}$ $\mathbf{v}$	

### Title Section Page 59.10 59.10.1 59.10.3 PRA Input to MMI/Human Factors/Emergency Response Guidelines .......59-36 59.11 APPENDIX E AP1000 PRA FAULT TREE PICTURES FOR LEVEL 1 ANALYSIS FOR EVENTS AT POWER OPERATION......E-1

List of Tables

i

**AP1000** Probabilistic Risk Assessment

# LIST OF TABLES

Table No.	Title	Page
2-1	Internal Initiating Event Grouping Plant Systems and Equipment	
	Available for Transient/Accident Conditions (Sheets $1 - 10$ )	2-28
2-2	NUREG/CR 3862 Initiator Categories (Sheets 1 – 4)	2-38
2-3	NUREG/CR 3862 Initiator Categories not Considered in the	
	AP1000 PRA Analysis	2-42
2-4	AP1000 Internal Initiating Event Frequencies (Sheets 1 – 3)	2-43
2-5	Initiating Event Frequencies Used in Event Trees Quantification	2-46
· ·		
2A-1	Summary of Primary System Piping Data	2A-2
2A-2	Summary of Primary System Pipe Break Frequency Quantification	2A-3
2A-3	Summary of Steam Generator Tube Rupture Events	2A-4
2A-4	Spurious Stuck-Open Pressurizer Safety Valve	2A-5
2A-5	Interface Break on Accumulator Lines	2A-6
2A-6	Interface Break on IRWST Injection Lines	2A-7
2A-7	Initiating Events Review Data Summary (Sheets 1 – 8)	2A-8
2B-1	Summary of Main Steam Line and Feedwater Line Piping Data for	
	Secondary Side Break Frequency Quantification	2B-2
2B-2	Secondary Side Line Break Frequency Quantification	2B-3
2B-3	Stuck-Open Main Steam Line Safety Valve Frequency Quantification	
	(Sheets 1 – 2)	2B-4
3-1	Loss of CCS/SWS Initiating Event Fault Tree CSWF Success	
	Criteria Summary	3-8
3-2	Spurious Actuation of Automatic Depressurization Failure	
	Criteria Summary	3-9
3-3	Evaluation of Spurious Automatic Depressurization System Frequencies	
	(Sheets 1 – 6)	3-10
· · · ·		
4-1	AP1000 Large LOCA Event End State Summary	4-112
4-2	AP1000 Spurious ADS Actuation Event End State Summary	4-112
4-3	AP1000 Medium LOCA Event End State Summary	4-113
4-4	AP1000 CMT Line Break LOCA Event End State Summary	4-114
4-5	AP1000 SI Line Break Event End State Summary	4-115
4-6	AP1000 Small LOCA Event End State Summary	4-116
4-7	AP1000 RCS Leak Event End State Summary	4-117
4-8	AP1000 PRHR Tube Rupture Event End State Summary	4-117
4-9	AP1000 SGTR Event End State Summary	4-118
4-10	AP1000 Vessel Rupture Event End State Summary	4-119
4-11	AP1000 Interfacing Systems LOCA Event End State Summary	4-119
4-12	AP1000 Transients with MFW Event End State Summary	4-120
4-13	AP1000 Transients with Loss of RCS Flow Event End State Summary	4-121

XXXV

### LIST OF TABLES (Cont.)

#### Table No. Title Page 4-14 4-15 4-16 AP1000 Transients with Loss of CCW/SW Event End State Summary......4-124 4-17 4-18 4-19 4-20 4-21 4-22 4-23 4-24 AP1000 ATWS Precursor without MFW Event End State Summary ......4-132 4-25 4-26 4A-1 4A-2 Summary of Systems Associated with Mitigating Functions for AP1000 .......4A-18 5-1 5-2 5-3 5-4 5-5 5-6 6-1 Summary of Event Tree Top Events Success Criteria 6-2 6-3 Summary of Success Criteria for Operator Actions and Mission Times 7-1 Example for Fault Tree XXX Success Criteria Summary ......7-15 7-2 7-3 7-4 7-5 Example for Operator Actions and Misposition Analysis Summary .......7-16 7-6 7-7 7-8 7-9 8-1 8-2a 8-2b
## LIST OF TABLES (Cont.)

 $\sim \pi_{\rm c}$ 

# Table No.

# <u>Title</u>

8-2c	Fault Tree "PRL" Success Criteria	
8-2d	Fault Tree "PRP" Success Criteria	
8-2e	Fault Tree "PRS" Success Criteria	
8-2f	Fault Tree "PRW" Success Criteria	
8-2g	Fault Tree "PRI" Success Criteria	
. 8-3	System Dependency Matrix	
8-4	Component Test Assumptions	
8-5	Component Maintenance Assumptions	
8-6	Operator Actions and Misposition Analysis Summary	8-18
8-7	Common Cause Failures Summary	8-19
8-8	Basic Events Database for the PRHR System Fault Trees (Sheets 1 - 3)	8-20
9-1	List of System Fault Trees	9-9
9-2a	Fault Tree CM2AB Success Criteria Summary	9-10
9-2b	Fault Tree CM2SL Success Criteria Summary	9-11
9-2c	Fault Tree CM2L Success Criteria Summary	9-12
9-2d	Fault Tree CM2P Success Criteria Summary	9-13
9-2e	Fault Tree CM1A Success Criteria Summary	9-14
9-2f	Fault Tree CM2LLT Success Criteria Summary	9-15
9-2g	Fault Tree CMBOTH Success Criteria Summary	9-16
9-2h	Fault Tree CM2LA Success Criteria Summary	9-17
9-3	Notes Related to System Fault Tree Assumptions	9-18
9-4	System Dependency Matrix	9-18
9-5	Component Test Assumptions	9-19
9-6	Component Maintenance Assumptions	9-19
· 9-7	Operator Actions and Misposition Analysis Summary	9-20
9-8	Common Cause Failure Analysis Summary	9-20
9-9	Fault Tree Basic Events for Core Makeup Tank Subsystem (Sheets 1 – 3)	<b>9-2</b> 1
	$\mathcal{T}_{i}$ is the set of $\mathcal{T}_{i}$ . The set of $\mathcal{T}_{i}$ is the set of $\mathcal{T}_{i}$ , the set of $\mathcal{T}_{i}$ is the set of $\mathcal{T}_{i}$ .	
10-1	List of System Fault Trees	10-5
10-2a	Fault Tree AC2AB Success Criteria Summary	10-6
10-2b	Fault Tree AC1A Success Criteria Summary	10-7
10-2c	Fault Tree ACBOTH Success Criteria Summary	10-8
10-3	Notes Related to System Fault Tree Assumptions	10-9
10-4	System Dependency Matrix	10-9
10-5	Component Test Assumptions	10-9
10-6	Component Maintenance Assumptions	10-10
10-7	Operator Actions and Misposition Analysis Summary	10-10
10-8	Common Cause Failure Analysis Summary	10-10
10-9	Fault Tree Basic Events for Accumulator Subsystem	10-11

## LIST OF TABLES (Cont.)

## Table No.

## <u>Title</u>

## Page 1

11-19	List of ADS System Fault Trees (Sheets $1 - 2$ ) $11-8$
11-1a 11_1b	List of ADS System Fault Trees (for Plant Damage States Analysis) 11-10
11-10	ADS Success Criteria Versus Accident Conditions (Full Depressurization) 11 11
11-2a 11-2b	ADS Success Criteria Versus Accident Conditions (Partial Depressurization) 11-11
11-20	Automatic Depressurization System Fault Tree Summary (For Plant
11-2~	Damage States) 11-13
11-24	Fault Tree "ADA" Success Criteria 11-13
11-20 11-2e	Fault Tree "ADAR" Success Children 11-13
11-20 11-2f	Fault Tree "ADAL" Success Criteria 11-14
11-21 11-2g	Fault Tree "ADR" Success Criteria 11-15
11-2g 11-2h	Fault Tree "ADI " Success Criteria 11-16
11-2i	Fault Tree "ADM" Success Criteria
11-2i 11-2i	Fault Tree "ADMA" Success Criteria 11-17
11-2j	Fault Tree "ADO" Success Criteria 11-17
11-21	Fault Tree "ADS" Success Criteria 11-17
11-2n 11-2m	Fault Tree "ADT" Success Criteria 11-18
11-2n	Fault Tree "ADW" Success Criteria 11-10
11-20	Fault Tree "AD1" Success Criteria 11-19
11-2n	Fault Tree "ADIA" Success Criteria 11-20
11-20	Fault Tree "ADF" Success Criteria 11-20
11-2r	Fault Tree "ADR" Success Criteria 11-21
11-2s	Fault Tree "ADRA" Success Criteria
11-2t	Fault Tree "ADU" Success Criteria
11-2u	Fault Tree "ADUM" Success Criteria
11-2v	Fault Tree "ADV" Success Criteria
11-2w	Fault Tree "ADZ" Success Criteria
11-2x	Fault Tree "ADOLT" Data Summary
11-2v	Fault Tree "ADTLT" Success Criteria
11-3	Notes Related to ADS System Fault Tree Assumptions
11-4	System Dependencies Matrix
11-5	Component Test Assumptions
11-6	Component Maintenance Assumptions
11-7	Failure Probabilities Calculated
11-8	Operator Action Analysis Summary
11-9	Common Cause Failures Summary
11-10	Basic Events Data Base for the ADA System Fault Tree (Sheets 1 – 20)
12-1	List of System Fault Trees (FT)12-10
12-2a	Fault Tree "IW2AB" Success Criteria Summary
12-2b	Fault Tree "IW2ABM" Success Criteria Summary
12-2c	Fault Tree "TW2ABA" Success Criteria Summary
12-2d	Fault Tree "IW2ABP" Success Criteria Summary
12-2e	Fault Tree "TW2ABPM" Success Criteria Summary12-15

AP1000 Probabilistic Risk Assessment

u te ni te i

# LIST OF TABLES (Cont.)

## Table No.

## <u>Title</u>

Page

10.00		10.17
12-21	Fault Tree "IW2ABB" Success Criteria Summary	12-10
12-2g	Fault Tree "IW2ABBM" Success Criteria Summary	
12-2h	Fault Tree "IWIA" Success Criteria Summary	12-18
12-21	Fault Tree "IWIAM" Success Criteria Summary	12-19
12-2j	Fault Tree "IWF" Success Criteria Summary	
12-2k	Fault Tree "RECIRC" Success Criteria Summary	12-21
12-21	Fault Tree "RECIRCP" Success Criteria Summary	12-22
12-2m	Fault Tree "RECIRCB" Success Criteria Summary	12-23
12-2n	Fault Tree "RECIRC1" Success Criteria Summary	12-24
12-20	Fault Tree "RECIRC1P" Success Criteria Summary	12-25
12-2p	Fault Tree "RECIRC1B" Success Criteria Summary	12-26
12-3	System Dependency Matrix	12-27
12-4	Component Test Assumptions	12-28
12-5	Component Maintenance Assumptions	12-28
12-6	Failure Probabilities Calculated	12-29
12-7	Operator Actions and Misposition Analysis Summary	12-29
12-8	Common Cause Failure Analysis Summary	12-30
1 <b>2-9</b>	Fault Tree Basic Events (Sheets 1 – 11)	12-31
		-
13-1	List of System Fault Trees	13-7
13-2	Fault Tree PCT Success Criteria Summary	13-7
13-3	Notes Related to System Fault Trees Assumptions	13-7
13-4	System Dependency Matrix	13-8
13-5	Component Test Assumptions	13-8
13-6	Component Maintenance Assumptions	
13-7	Operator Actions and Misposition Analysis Summary	
13-8	Common Cause Failure Analysis Summary	
13-9	Fault Tree Basic Events for Passive Containment Cooling System	13-10
		1
14-1	List of System Fault Trees (At-Power)	14-8
14-2.a	Success Criteria Summary Fault Tree "FWT"	14-9
14-2.b	Success Criteria Summary Fault Tree "FWF"	14-10
14-2.c	Success Criteria Summary Fault Tree "SFWT"	14-11
14-2.d	Success Criteria Summary Fault Tree "SFW"	14-12
14-2.e	Success Criteria Summary Fault Tree "SFW1"	
14-2.f	Success Criteria Summary Fault Tree "SFWP"	14-14
14-2.g	Success Criteria Summary Fault Tree "SFWM"	
14-2.h	Success Criteria Summary Fault Tree "SFWA"	
14-2.j	Success Criteria Summary Fault Tree "COND"	
14-2.i	Success Criteria Summary Fault Tree "COND1"	
14-2.*	Success Criteria Summary Fault Tree "CDS"	
14-2.1	Success Criteria Summary Fault Tree "TCCW"	
14-3	Notes to System Fault Tree Assumptions	14-21
1-4-2	11000 to 0 Jowin 1 and 1100 (1990)	

## LIST OF TABLES (Cont.)

#### Table No. Title **Page** System Dependency Matrix (Sheets 1 – 2)......14-22 14-4 14-5 14-6 14-7 Failure Probabilities Calculated in this Section ......14-25 14-8 14-9 Common Cause Failure (CCF) Summary......14-27 14-10 15-1 15-2a Fault Tree CSBOR1 Success Criteria Summary......15-10 15-2b Fault Tree CVS1 Success Criteria Summary......15-11 15-2c 15-2d 15-2e 15-3 15-4 15-5 15-6 15-7 Operator Actions and Misposition Analysis Summary......15-19 15-8 Common Cause Failure Analysis Summary ......15-20 Fault Tree Basic Events for Chemical and Volume 15-9 16-1 16-2 16-3 16-4 16-5 16-6 16-7 16-8 16-9 17-1 17-2 17-3 17-4 17-5 17-6 17-7 17-8 17-9 Fault Tree Basic Events for Normal Residual Heat Removal System

AP1000 Probabilistic Risk Assessment

# LIST OF TABLES (Cont.)

# Table No.

# <u>Title</u>

- 18-1	List of System Fault Trees	.18-6
18-2a	Fault Tree CCN Success Criteria Summary	.18-6
18-2b	Fault Tree CCT Success Criteria Summary	.18-7
18-2c	Fault Tree CCP Success Criteria Summary	.18-7
18-3	Notes Related to System Fault Tree Assumptions	.18-8
18-4	System Dependency Matrix	.18-8
18-5	Component Test Assumptions	.18-9
18-6	Component Maintenance Assumptions	.18-9
18-7	Operator Actions and Misposition Analysis Summary	18-10
18-8	Common Cause Failure Analysis Summary1	8-10
18-9	Fault Tree Basic Events for Component Cooling Water System (Sheets 1 - 2)	8-11
19-1	List of System Fault Trees	.19-6
19-2a	Fault Tree SWN Success Criteria Summary	.19-6
19-2b	Fault Tree SWT Success Criteria Summary	.19-7
19-2c	Fault Tree SWP Success Criteria Summary	.19-7
19-3	Notes Related to System Fault Tree Assumptions	.19-8
19-4	System Dependency Matrix	.19-9
19-5	Component Test Assumptions1	.9-10
19-6	Component Maintenance Assumptions1	.9-10
19-7	Operator Actions and Misposition Analysis Summary	19-11
<b>19-8</b>	Common Cause Failure Analysis Summary1	.9-11
1 <b>9-9</b>	Fault Tree Basic Events for Service Water System (Sheets 1 – 4)	19-12
20-1	List of System Fault Trees	20-5
20-1	Fault Tree VWH Success Criteria Summary	20-5
20-2	Notes Related to System Fault Tree Assumptions	.20-5
20-3	System Dependency Matrix	.20-6
20-5	Component Test Assumptions	.20-7
20-6	Component Maintenance Assumptions	.20-7
20-7	Operator Actions and Misposition Analysis Summary	
20-8	Common Cause Failure Analysis Summary	.20-8
20-9	Fault Tree Basic Events for Central Chilled Water System (Sheets 1 – 2)	.20-9
21-1	List of System Fault Trees (Sheets 1 – 3)	.21-9
21-2	Fault Tree Success Criteria Summary (Sheets 1 – 16)	21-12
21-3	Notes Related to System Fault Tree Assumptions (Sheets 1 – 3)	21-28
21-4	System Dependency Matrix	21-31
21-5	Component Test Assumptions	21-31
21-6	Component Maintenance Assumptions	21-32
21-7	Operator Actions and Misposition Analysis Summary	21-32
21-8	Common Cause Failure Analysis Summary	21-32
21-9	Fault Tree Basic Events for AC Power System (Sheets 1 – 22)	21-33

## LIST OF TABLES (Cont.)

#### Table No. Title Page 22-1 Fault Tree Success Criteria Summary (Sheets 1 – 16)......22-10 22-2 22-3 22-4 22-5 22-6 22-7 22 - 822-9 Fault Tree Basic Events for Class 1E DC and UPS System (Sheets 1 – 12) ......22-29 22-10 23-1 23-2 23 - 323-423-5 23-623-7 Operator Actions and Misposition Analysis Summary......23-20 23-8 23-9 Fault Tree Basic Events for Non-Class 1E DC and UPS Power 24-1 24-2 24-3 Containment Penetrations Not Screened Out for Normal Operation 24-4 24-5a 24-5h 24-5c 24-6 24-7 24-8 24-9 24 - 1024-11 24-12 Fault Tree Basic Events for Containment Isolation System (Sheets 1 – 3)......24-29 25-1 25-2a 25-2b 25-2c 25-2d Fault Tree ENDCAIAI Success Criteria Summary......25-10

AP1000 Probabilistic Risk Assessment

# LIST OF TABLES (Cont.)

Table No.	Title	Page
25-2e	Fault Tree ENDCAIAP Success Criteria Summary	25-11
25-2f	Fault Tree CASF Success Criteria Summary	
25-3	Notes Related to System Fault Tree Assumptions	25-12
25-4	System Dependency Matrix	25-12
25-5	Component Test Assumptions	25-12
25-6	Component Maintenance Assumptions	25-13
25-7	Operator Actions and Misposition Analysis Summary	
25-8	Common Cause Failure Analysis Summary	
25-9	Fault Tree Basic Events for Instrument Air Subsystem (Sheets 1 - 4)	25-14
26-1	List of System Fault Trees	26-25
26-29	Fault Tree RTPMS and RTPMS1 Success Criteria Summary	26-26
26-2h	Fault Tree RTSTP Success Criteria Summary	26-26
26-20	Fault Tree PCI Success Criteria Summary	20-20 26_27
26-22	Fault Tree DCT Success Criteria Summary	20-27 26_27
26-24.1	Fault Tree RCN Success Criteria Summary	26-28
26-2e	I&C Subtree Success Criteria Summary (Sheets 1 – 08)	26-20
26-20	DMS L&C Subtree Constructions (Sheets 1 - 10)	26-127
20-3a 26-3h	Panresentative PMS I&C Subtree Plot I isting (Sheets 1 - 14)	26-146
26-30	DMS Dependency Matrix (Sheets 1 - 3)	26-160
26-5	PMS Components Test Assumptions	26-163
26-6	Component Maintenance Assumptions	26-163
26-7	Failure Probabilities Calculated in this Section (Sheets 1 - 5)	26-164
26-8	One rate of Actions and System Missocition Analysis Summary (Sheets 1 - 3)	26-169
26-0	Common Cause Early Analysis Summary (Sheets $1 - 2$ )	26-172
20-9	Eault Tree Basic Events for Basetor Trin System (Sheets $1 - 4$ )	26_172
20-10a 26-10b	Fault Tree Basic Events for the $lkC$ Subsystem (Sheets $1 - 4$ )	
26-11	Fault free basic Events for the fact Subsystem (Sheets $1 - 47$ )	
20-11	Assumed List of fact instrumentation (Sheets $1 - 5$ )	
27-1	List of System Fault Trees	
27-2a	Fault Tree DAS Success Criteria Summary	27-9
27-2ь	Fault Tree DAS1 Success Criteria Summary	
27-3	Notes Related to System Fault Tree Assumptions	27-10
27-4	System Dependency Matrix	27-10
27-5	Component Test Assumptions	27-10
27-6	Component Maintenance Assumptions	27-10
27-7	Operator Actions and Misposition Analysis Summary	27-10
27-8	Common Cause Failure Analysis Summary	27-11
27-9	Fault Tree Basic Events for Diverse Actuation System	27-12
28-1	List of System Fault Trees	
28-2	Fault Tree Success Criteria Summary (Sheets 1 – 22)	
28-3	PLS I&C Subtree Constructions (Sheets 1 – 9)	

## LIST OF TABLES (Cont.)

#### Table No. Title Page 28-4 28-528-6 28-7 28-8 28-9 28-10 28-11 28-12 28-13 29-1 29-2 29-3 29A-1 Extreme Environmental Conditions (Generic Causes of Dependent Failures) 29A-2 29A-3 30-1 30-2 30-3 30-4 30-5 30A-1 30A-2 30A-3 30A-4 31-1 32-1 32-2 Test and Maintenance Unavailabilities Used in AP1000 Core Damage 32-3 32-4 32-5 33-1 33-2 33-3

AP1000 Probabilistic Risk Assessment

# LIST OF TABLES (Cont.)

<u>, 11</u>-

## Table No.

# <u>Title</u>

33-4	AP1000 PRA Dominant CDF Sequences (Sheets 1 - 18)	
33-5	Contribution of Initiating Events to Plant Core Damage Frequency	
33-6	List of Basic Events and Their Descriptions (Sheets 1 - 33)	
34-1	Post-Accident Monitoring Equipment (Sheets 1 – 2)	
34-2	Level 1 Accident Class	
34-3	Summary of Release Categories	
34-4	3BE-1 Event Summary	
34-5	3BE-2 Event Summary	
34-6	3BE-4 Event Summary	
34-7	3BE-5 Event Summary	
34-8	3BE-6 Event Summary	
34-9	3BE-7 Event Summary	
34-10	3BE-3 Event Summary	
34-11	3BL-1 Event Summary	
34-12	3BL-2 Event Summary	
34-13	3BR-1 Event Summary	
34-14	3BR-1a Event Summary	34-37
34-15	3C-1 Event Summary	
34-16	3C-2 Event Summary	
34-17	3D-1 Event Summary	
34-18	3D-2 Event Summary	
34-19	3D-3 Event Summary	
34-20	3D-4 Event Summary	
34-21	6E-1 Event Summary	
34-22	61-1 Event Summary	
34-23	1AP-1 Event Summary	
34-24	1AP-2 Event Summary	
34-25	1A-1 Event Summary	
34-26	1A-2 Event Summary	
34-27	CFI Event Summary	
34-28	CFI Event Summary	
2120		
35-1	Functional Definitions of Level 1 Accident Classes	
35-2	CET Initial Conditions for Level 1 Accident Classes	35-22
35-3	Containment Event Tree Nodal Questions	35-23
35_4	Summary of Release Category Definitions	35_24
35.5	Summary of Containment Event Tree Success Criteria (Sheets 1 - 3)	35-24
35-5	Summary of Operator Actions Credited on Containment Event Tree	35_78
55-0	Summary of Operator Actions Credited on Containment Event Met	
36-1	Summary Table for RCS Depressurization (CET Node DP)	
<u>.</u>		
37-1	Summary Table for Containment Isolation (CET Node IS)	37-4

## LIST OF TABLES (Cont.)

<u>Table No.</u>	<u>Title</u> <u>Page</u>
38-1	Summary Table for Reflooding (CET Node RFL)
39-1	Material Inventories in AP1000 Reactor Vessel
39-2	Summary Table for Reactor Cavity Flooding (CET Node IR)
39-3	Summary Table for Debris Relocation to Cavity (CET Node VF)
39A-1	Core and Lower Internals Material Inventories in AP1000 Reactor Vessel
39A-2a	Mass and Power Distributions of Debris Layers in Top-Skewed
	Power Shape Case
39A-2b	Mass and Power Distributions of Debris Layers in Chopped Cosine
	Power Shape Case
39A-3a	Results of Top-Skewed Power Shape Case
39A-3b	Relocation Results of the Chopped Cosine Power Shape Case
39A-4	Material Properties Used in In-Vessel Melting and Relocation Calculation
39A-5	Debris Relocation Time Line
40-1	Summary of Nodal Failure Probabilities
40-2	Nominal and Bounding Containment Failure Probability at 24 and 72 Hours40-6
41-1	Containment Event Tree IG Nodal Failure Probability
41-2	Containment Event Tree Nodal Failure Probabilities
41-3	AP600 Scenario Dependencies for Early Detonation Analysis
41-4	Safety Margin Basis Containment Performance Requirement
41A-1	Summary of System Assumptions for AP1000 MAAP4.04 Hydrogen
	Analyses (Sheets 1 – 7)
41A-2	Summary of Hydrogen Generation Results MAAP4 Hydrogen Mixing Analyses41A-10
41A-3	Summary of Early Compartment Gas Composition Results For MAAP4
	Hydrogen Mixing Analyses
41A-4	Summary of Early Compartment Gas Composition Results for MAAP4
	Hydrogen Mixing Analyses
41A-5	Summary of Hydrogen Generation Results MAAP4 Hydrogen Mixing Analyses41A-11
41A-6	Summary of Early Compartment Gas Composition Results for MAAP4 Hydrogen Mixing Analyses 41A 12
414-7	Summary of Early Compartment Gas Composition Desults for MAADA
4128-1	Hydrogen Mixing Analyses
41A-8	Summary of Hydrogen Generation Results MAAP4 Hydrogen Mixing Analyses41A-13
41A-9	Summary of Early Compartment Gas Composition Results for MAAP4
	Hydrogen Mixing Analyses
41A-10	Summary of Early Compartment Gas Composition Results for MAAP4
	Hydrogen Mixing Analyses
41A-11	Summary of Hydrogen Generation Results MAAP4 Hydrogen Mixing Analyses41A-15

## LIST OF TABLES (Cont.)

.

. . . .

Table No.	Title	<b>Page</b>
41 A-12	Summary of Farly Compartment Gas Composition Results for MAAP4	.*
	Hydrogen Mixing Analyses	41A-16
41A-13	Summary of Early Compartment Gas Composition Results for MAAP4	
	Hydrogen Mixing Analyses	41A-16
41A-14	Summary of Hydrogen Generation Results MAAP4 Hydrogen Mixing Analyse	s41A-17
41A-15	Summary of Early Compartment Gas Composition Results for MAAP4	
	Hydrogen Mixing Analyses	41A-17
41A-16	Summary of Early Compartment Gas Composition Results for MAAP4	
н. Настания с	Hydrogen Mixing Analyses	41A-18
41A-17	Summary of Hydrogen Generation Results MAAP4 Hydrogen Mixing Analyse	s41A-18
41A-18	Summary of Early Compartment Gas Composition Results for MAAP4	
	Hydrogen Mixing Analyses	41A-19
41A-19	Summary of Early Compartment Gas Composition Results for MAAP4	
	Hydrogen Mixing Analyses	41A-19
41A-20	Summary of Hydrogen Generation Results MAAP4 Hydrogen Mixing Analyse	s41A-20
41A-21	Summary of Early Compartment Gas Composition Results for MAAP4	
	Hydrogen Mixing Analyses	41A-20
41A-22	Summary of Early Compartment Gas Composition Results for MAAP4	
	Hydrogen Mixing Analyses	41A-21
41A-23	Sequence 1A-3a	41A-22
41A-24	Sequence 1A-4a	41A-23
41A-25	Sequence 1AP-3	41A-24
41A-26	Sequence 1AP-4	41A-25
41A-27	Sequence 3D-1	41A-26
41A-28	Sequence 3D-2	41A-27
41A-29	Sequence 3D-3	41A-28
41A-30	Sequence 3D-5	41A-29
41A-31	Sequence 3BL-1	41A-30
41A-32	Sequence 3BL-2	41A-31
41A-33	Sequence 3C-1	41A-32
41A-34	Sequence 3BR-1a	41A-33
41A-35	Sequence 3BE-1	41A-34
41A-36	Sequence 3BE-2	41A-35
41A-37	Sequence 3BE-4	41A-30
41A-38	Sequence 3BE-5	41A-3/
41A-39	Sequence 3BE-0	41A-38
41A-40		41A-39
41A-41	Sequence SRF-A	41A-40
42-1	Parameters Used in the Construction of the APIMM Conditional Containment	
-+2-1	Failure Probability Distribution for Containment Temperature = $400^{\circ}$ F	47-9
42-2	Parameters Used in the Construction of the AP1000 Conditional Containment	
-72-2	Failure Prohability Distribution for Containment Temperature - 221°F	47-0
	ranue riodanity Distribution for Containment remperature - 551 1	······

## LIST OF TABLES (Cont.)

<u>Table No.</u>	Title	Page
42-3	Cumulative Containment Failure Probability, Temperature = 400°F	
42-4	Cumulative Containment Failure Probability, Temperature = 331°F	
43-1	Accident Class Frequencies	43-13
43-2	Boolean Expressions to Calculate Q1-Q29	43-14
43-3	CET Node Probabilities (Sheets 1 – 3)	43-15
43-4	Boolean Expressions for P1-P15	43-18
43-5	Contribution of PDS to LRF (Sheets 1 – 3)	43-19
43-6	Dominant CET Sequences Contributing to LRF (Sheets 1 - 69)	43-22
43-7	Summary of Release Frequency Calculations (Sheets 1 - 2)	43-91
43-8	LRF and Containment Effectiveness by Accident Class	43-93
43-9	Summary of AP1000 LRF Quantification for Internal Events At-Power	43-94
43-10	CET Event Tree Node Importances	43-95
43-11	Contribution of Initiating Events to Large Release	43-96
43-12	LRF Sensitivity Case – Non Credit for Standby Non-Safety	
	Systems (Sheets 1 – 9)	43-97
43-13	LRF Cutsets for the Case - Sensitivity to Standby Systems With Credit	
	for Manual DAS (Sheets 1 – 13)	43-106
43A-1	AP1000 PRA Dominant CDF Sequences for At-Power Events (Sheets 1 – 6)	)43A-2
43A-2	AP1000 PRA PDS Frequencies for At-Power Events	43A-8
43B-1	Calculation of Failure Probability of DP for PDS 6 (Sheets 1 – 7)	43B-2
43C-1	Evaluation of CET-Related Operator Actions	43C-2
44-1	MAAP Model Benchmarks (Sheets 1 – 4)	44-8
45-1	Environmental Release Fractions at 24 Hours After Core Damage	
45.0	Per Release Category	45-5
45-2	Environmental Release Fractions at 72 Hours After Core Damage Per Release Category	45-6
49-1	AP1000 Source Terms from Level 2 Analysis (MAAP)	49-9
49-2	AP1000 Source Terms for Dose Evaluation (MACCS2)	
49-3	Site Boundary Whole Body Dose [Effective Dose Equivalent (EDE)]. Siever	ts49-11
49-4	Site Boundary Thyroid Dose, Sieverts	
49-5	Population Whole Body Dose [Effective Dose Equivalent (EDE)].	
. –	0-80.5 km Person-Sieverts	
49-6	Site Boundary Red Marrow Dose (Total Acute). Sieverts	
49-7	Dose Summary	
49-8	Site Boundary Whole Body EDE Dose Risk – 24 Hours	
	• • • • • • • • • • • • • • • • • • • •	

AP1000 Probabilistic Risk Assessment

# LIST OF TABLES (Cont.)

Table No.	Title	Page 1
49-9	Site Boundary Whole Body EDE Dose Risk – 72 Hours	49-17
49-10	Population Whole Body EDE Dose Risk – 24 Hours	49-18
<b>49-11</b>	Population Whole Body EDE Dose Risk - 72 Hours	49-19
50-1	Core Damage for At-Power Events Contribution of Initiating Events to Plant	
	Core Damage Frequency	50-16
50-2	Core Damage for At-Power Events Conditional Core Damage Probability of Initiating Events	
50-3	AP1000 PRA Core Damage for At-Power Events Accident Sequence	
	Importances (Sheets 1 – 5)	50-18
50-4	Core Damage for At-Power Events End State Importances	50-23
50-5	Common Cause Importances – Risk Decrease (Sheets 1 – 2)	
50-6	Common Cause Importances – Risk Increase (Sheets 1 – 3)	
50-7	Human Error Risk Importances – Risk Decrease (Sheets 1 – 2)	
50-8	Human Error Risk Importances – Risk Increase (Sheets 1 – 2)	
50-9	Component Importances – Risk Decrease (Sheets 1 – 2)	
50-10	Component Importances – Risk Increase (Sheets 1 – 4)	
50-11	List of Systems for System Importance Analyses (Sheets 1 – 4)	
50-12	System Importance Calculation Results (Sheets 1 – 2)	
50-13	Systems Grouped by PRA System Importance.	
50-14	Operator Actions in "CMTOT.OUT" File	50-46
50-15	Contribution of IEVs to Core Damage Frequency	
50-16	Case 29 – Top 50 Dominant Cutsets (Sheets $1 - 2$ )	
50-17	Case 30 – Top 50 Dominant Cutsets (Sheets 1 – 2)	50-50
50-18	Case 31 – Top 50 Dominant Cutsets (Sheets 1 – 3)	
50-19	Passive System Check Valves in "CMTOT.OUT" File	50-55
50-20	Sensitivity Case 36 – Contribution of Initiating Events to CDF	
50-21	Sensitivity Case 36 – Top 50 CDF Cutsets (Sheets 1 – 8)	50-57
50-22	Risk Importances Sorted by Basic Event Identification (Sheets 1 – 13)	50-65
50-23	Risk Importances Sorted by Risk Increase (Sheets 1 – 15)	50-78
50-24	Risk Importances Sorted by Risk Decrease (Sheets 1 – 15)	50-93
50-25	Risk Increases Sorted by Slope (Birnbaum) Importance (Sheets 1 - 13)	50-108
51-1	Summary of Results of AP1000 PRA Uncertainty Analysis for	
	Internal Initiating Events at Power	51-9
51-2	List of Input Cutset Files	51-10
51A-1	Basic Event Uncertainties (Sheets 1 – 32)	51A-3
54-1	AP1000 Initiating Event Frequencies During Shutdown Conditions	54-18
54-2	AP1000 Design Impact on AP600 Shutdown Model	54-19
54-3	Times for Loss of RNS at Mid-loop Without IRWST Injection	54-20
54-4	AP1000 & AP600 Initiating Event CDF Contributions	54-21

## LIST OF TABLES (Cont.)

## Table No.

## <u>Title</u>

## Page 1

515	A DEGO Shutdown Level 1 DDA Ton 200 Cutots (Sheets 1 25) 54.22
54 6	AP1000 Shutdown Level 1 PRA Top 200 Cutsets (Sheets 1 – 25)
54-0	Provide Event Drobabilities Deviced in Case 1
54-1	Dasic Event Flobabilities Revised III Case 1
54.0	Revised CCF Basic Event Flobabilities (Sheets $I = 2$ )
54-9	Contribution of initiating Events to Flant CDF – Shuttown Sensitivity Case 1
54-10	AP1000 Shutdown PKA Sensitivity Case 2 CDF Cutsets (Sneets $1-5$ )
54-11	List of Basic Events "Dropped" to Make the Sensitivity Case 2
54-12	Contribution of Initiating Events to Plant CDF – Shutdown Sensitivity Case 2
54-13	Shutdown PRA Sensitivity Case 3 (Sheets 1 – 28)
54-14	Basic Events Whose Probabilities are Changed in Case 3
54-15	AP1000 Shutdown PRA Sensitivity Case 4 CDF Cutsets (Sheets 1 – 7)54-112
54-16	List of Basic Events "Dropped" to Make the Sensitivity Case 4
54-17	Contribution of Initiating Events to Plant CDF – Shutdown Sensitivity Case 454-120
54-18	AP1000 Shutdown PRA Basic Event Risk Importances – RAW (Sheets 1 – 8)54-121
54-19	AP1000 Shutdown PRA Basic Event Risk Importances – RRW (Sheets 1 – 3)54-129
54-20	AP1000 Shutdown PRA Case 2 Basic Event Risk Importances – RAW
	(Sheets 1 – 4)
54-21	AP1000 Shutdown PRA Case 2 Basic Event Risk Importances - RRW
	(Sheets 1 – 2)
55-1	Seismic Margin HCLPF Values (Sheets 1 – 4)
55-2	Basic Event HCLPF Values (Sheets 1 – 3)
55-3	EQ-IEV-STRUC HCLPF 55-28
55-4	FO-IEV-RVFA HCLPF 55-28
55-5	FOLIEVILI OCA HCI PE 55-20
55-6	FO_IEV_SLOCA HCLET 55-20
55-0	EQ-IEV-SECCA RELET
55-1	EQ-IEV-AT W5 HCLFF
56 1	Flooding Analysis Initial Companing Decults (Shoots 1 2) 56 50
56-1	At Denser Detailed Screening Results (Sheets 1 – 5)
50-2	At-Power Detailed Screening Results (Sneets 1 – 5)
30-3	At-Power Flooding-Induced Core Damage Frequency Quantification
<b>.</b>	Summary Results (Sheets 1 – 6)
56-4	Power Upgrade Difference Between AP1000 and AP600
56-5	Shutdown Flooding PRA
56-6	Shutdown Initiating Event CCDPs
57-1	AP1000 Fire Areas Excluding the Containment (Sheets 1 – 6)
57-2	AP1000 Fire Areas in the Containment (Sheets 1 – 2)
57-3	Fire Ignition Frequencies for AP1000 Fire Areas (Sheets 1 – 4)
57-4	Fire Ignition Frequencies for AP1000 Containment Fire Area
57-5	Fire Barrier Failure Probabilities
57-6	Automatic Suppression System Reliability

**AP1000 Probabilistic Risk Assessment** 

## LIST OF TABLES (Cont.)

#### Table No. **Title** Page 57-7 Summary of Qualitative Evaluation Results - Power Operation -Plant except Containment and Main Control Room (Sheets 1 - 15) ......57-63 57-8 Summary of Qualitative Evaluation Results for Containment at 57-9 Distribution of Fire CDF Frequency by Three Major Plant Areas......57-93 57-10 57-11 57-12 57-13 57-14 57-15 57-16 57-17 57-18 57-19 57-20 57-21 57-22 57-23 57-24 57-25 57-26 57-27 57A-1 57A-2 57A-3 DAS-ACT Fault Tree Cutsets Before Subtree Reduction......57A-13 57A-4 DAS-ACT Fault Tree Cutsets After Subtree Reduction (Sheets 1 – 10)......57A-14 57A-5 DAS-ACT Fault Tree Cutsets After Subtree Reduction (Sheets 1 – 9)......57A-24 AP1000 Fire PRA Scenario CCDPs for Over-Conservative Cases 57A-6 57C-1 57C-2 59-1 59-2 Internal Initiating Events at Power Dominant Core Damage Sequences 59-3 Sequence 1 – Safety Injection Line Break Dominant Cutsets (SI-LB-07) 59-4 59-5

li

## LIST OF TABLES (Cont.)

#### Table No. **Title** Page 59-6 Sequence 3 – Spurious ADS Actuation Dominant Cutsets (SPADS-08) Sequence 4 – Safety Injection Line Break Dominant Cutsets (SI-LB-08) 59-7 59-8 59-9 59-10 Sequence 7 – Medium LOCA Dominant Cutsets (MLOCA-05) (Sheets 1 – 3)...........59-59 Sequence 8 – Small LOCA Dominant Cutsets (SLOCA-12) (Sheets 1 – 3) ......59-62 59-11 59-12 59-13 Sequence 10 – Spurious ADS Actuation Dominant Cutsets (SPADS-09) 59-14 Typical System Failure Probabilities, Showing Higher Reliabilities for 59-15 59-16 59-17 59-18

## LIST OF FIGURES

Figure No.	Title	Page
2-1	Core Damage Logic Diagram for Internal Initiators (Sheets 1 – 4)	2-47
4A-1	Example Event Tree for Illustration of Terminology	4A-19
4A-2	Functional Event Tree	4A-20
4A-3	Illustration of A/B and A&B Notation	4A-21
4A-4	Illustration of Consequential Event and ATWS End States	4A-22
4A-5	AP1000 PRA Transients Template Event Tree (Sheets 1 – 3)	4A-23
4A-6	AP1000 PRA Small LOCA Template Event Tree (Sheets 1 – 2)	4A-26
<b>4B-1</b>	AP1000 Large LOCA Event Tree (Sheets 1 – 2)	4B-2
4B-2	AP1000 Large Spurious ADS Actuation Event Tree (Sheets 1 – 2)	4B-4
4B-3	AP1000 Medium LOCA Event Tree (Sheets 1 – 4)	4B-6
4B-4	AP1000 CMT Line Break Event Tree (Sheets 1 – 4)	4B-10
4B-5	AP1000 SI Line Break Event Tree (Sheets 1 - 3)	4B-14
4B-6	AP1000 Small LOCA Event Tree (Sheets 1 – 6)	4B-17
4B-7	AP1000 RCS Leak Event Tree	4B-23
4B-8	AP1000 Passive RHR Tube Rupture Event Tree	4B-24
4B-9a	AP1000 Steam Generator Tube Rupture Event Tree (Sheets 1 – 3)	4B-25
4B-9b	AP1000 SGTR Continues Event Tree (Sheets 1 – 6)	4B-28
4B-10	AP1000 Reactor Vessel Rupture Event Tree	4B-34
4B-11	AP1000 Interfacing Systems LOCA Event Tree	4B-35
4B-12	AP1000 Transients With Main Feedwater Event Tree (Sheets 1 – 4)	4B-36
4B-13	AP1000 Loss of Reactor Coolant Flow Event Tree (Sheets 1-4)	4B-40
4B-14	AP1000 Loss of Feedwater to One SG Tree (Sheets 1 - 4)	4B-44
4B-15	AP1000 Transients With Core Power Excursion Event Tree (Sheets 1 - 4)	4B-48
4B-16	AP1000 Transients With Loss of CCW/SW Event Tree (Sheets 1 - 4)	4B-52
4B-17	AP1000 Loss of MFW Event Tree (Sheets 1 - 4)	4B-56
4B-18	AP1000 Loss of Condenser Event Tree (Sheets 1-4)	4 <b>B</b> -60
4B-19	AP1000 Loss of Main Compressed Air Event Tree (Sheets 1 - 4)	4B-64
4B-20	AP1000 Loss of Offsite Power Event Tree (Sheets 1 - 7)	4B-68
4B-21	Main Steam Line Break Downstream of MSIVs Event Tree (Sheets 1 - 5)	4B-75
4B-22	Main Steam Line Break Upstream of MSIVs Event Tree (Sheets 1 - 9)	4B-80
4B-23	Stuck Open Secondary Side Safety Valve Event Tree (Sheets 1 - 5)	4B-89
4B-24a	ATWS Precursor Without Main Feedwater	4B-94
4B-24b	AP1000 ATWS Precursor Without Main Feedwater Continues	
	Event Tree (Sheets 1 – 6)	4B-95
4B-25	ATWS Precursor With SI (Sheets 1 – 6)	4B-101
4B-26	ATWS Precursor With MFW (Sheets 1 – 4)	4B-107
7-1	Power/Control Model for Large Loads (6900-vac/480-vac Pumps, Fans, and Motors)	7-33
7-2	Power/Control Model for Motor-Operated Valves	7-35
7-3	Power/Control Model for Air-Operated Valves	7-37

<u>Figure No.</u>	<u>Title</u> <u>Page</u>
7-4 7-5	Power/Control Model for Variable Speed Motor
8-1 8-2	PRHR – Simplified Piping and Instrumentation Diagram
9-1 9-2	Passive Core Cooling System Simplified Sketch
10-1	Passive Core Cooling System – Accumulator Subsystem10-12
11-1	Automatic Depressurization System Simplified Piping and Instrumentation Diagram
12-1	Simplified Piping & Instrumentation Diagram of the IRWST/Gravity Injection Subsystem
13-1	Passive Containment Cooling System Sketch13-11
15-1	Chemical and Volume Control System Piping and Instrumentation Diagram (Sheets 1 – 2)15-25
17-1	Normal Residual Heat Removal System Sketch
18-1	Component Cooling Water System Piping and Instrumentation Diagram
19-1	Service Water System Piping and Instrumentation Diagram
20-1	Central Chilled Water Low-Capacity Subsystem Piping and Instrumentation Diagram (Sheets 1 – 2)20-11
21-1	AC Power System One-Line Diagram
22-1 22-2	Class 1E DC System One-Line Diagram (Sheets 1 – 2)
25-1	Compressed & Instrument Air System Piping and Instrumentation Diagram25-19
29-1	IRWST Valve Configuration
30-1	Human Reliability Analysis Quantification Model
30A-1	Links Between SHARP Steps

AP1000 Probabilistic Risk Assessment

# LIST OF FIGURES (Cont.)

12

Figure No.	Title	Page
34-1	Case 3BE-1: Reactor Coolant System and Steam Generator Pressure	-
	DVI Line Break, Containment Water Level	
34-2	Case 3BE-1: ADS Stage 4 Flow Rates DVI Line Break, Containment	
	Water Level	
34-3	Case 3BE-1: Accumulator/CMT Water Mass DVI Line Break,	
	Containment Water Level	34-53
34-4	Case 3BE-1: IRWST Injection Flow Rate DVI Line Break,	
-	Containment Water Level	34-53
34-5	Case 3BE-1: Break Flow Rate DVI Line Break, Containment	
	Water Level	
34-6	Case 3BE-1: Reactor Vessel Water Level DVI Line Break,	
	Containment Water Level	
34-7	Case 3BE-1: Core Temperatures DVI Line Break, Containment	
	Water Level	
34-8	Case 3BE-1: Containment Water Pool Elevations DVI Line Break,	
	Containment Water Level	
34-9	Case 3BE-1: Containment Pressure DVI Line Break, Containment	
	Water Level	
34-10	Case 3BE-1: Containment Gas Temperatures DVI Line Break,	
 ,	Containment Water Level	
34-11	Case 3BE-1: Core Mass DVI Line Break, Containment Water Level	
34-12	Case 3BE-1: Reactor Pressure Vessel to Cavity Water Heat Transfer	
	DVI Line Break. Containment Water Level	
34-13	Case 3BE-1: In-Vessel Hydrogen Generation DVI Line Break.	
	Containment Water Level	34-58
34-14	Case 3BE-1: Mass Fraction of CsI Released to Containment	
	DVI Line Break, Containment Water Level	34-58
34-15	Case 3BE-1: Mass Fraction of Noble Gases Released to Environment	
	DVI Line Break, Containment Water Level	34-59
34-16	Case 3BE-1: Mass Fraction of Fission Products Released to Environment	
	DVI Line Break, Containment Water Level	
34-17	Case 3BE-1: Mass Fraction of SrO Released to Environment	
	DVI Line Break, Containment Water Level	
34-18	Case 3BE-2: Reactor Coolant System and Steam Generator Pressure	
	DVI Line Break, Fail Gravity Injection, No DVI Flooding	
34-19	Case 3BE-2: ADS Stage 4 Flow Rates DVI Line Break, Fail Gravity	
	Injection. No DVI Flooding.	
34-20	Case 3BE-2: Accumulator/CMT Water Mass DVI Line Break.	
	Fail Gravity Injection, No DVI Flooding.	
34-21	Case 3BE-2: IRWST Injection Flow Rate DVI Line Break.	
	Fail Gravity Injection, No DVI Flooding.	
34-22	Case 3BE-2: Break Flow Rate DVI Line Break. Fail Gravity Injection.	
	No DVI Flooding	
	₩	

<u>Figure No.</u>	<u>Title</u>	<u>Page</u>
34-23	Case 3BE-2: Reactor Vessel Water Level DVI Line Break, Fail Gravity	
	Injection, No DVI Flooding	
34-24	Case 3BE-2: Core Temperatures DVI Line Break, Fail Gravity Injection,	
	No DVI Flooding	
34-25	Case 3BE-2: Containment Water Pool Elevations DVI Line Break,	
	Fail Gravity Injection, No DVI Flooding	
34-26	Case 3BE-2: Containment Pressure DVI Line Break, Fail Gravity Injection,	
	No DVI Flooding	
34-27	Case 3BE-2: Containment Gas Temperatures DVI Line Break,	
	Fail Gravity Injection, No DVI Flooding	
34-28	Case 3BE-2: Core Mass DVI Line Break, Fail Gravity Injection,	
	No DVI Flooding	
34-29	Case 3BE-2: Reactor Pressure Vessel to Cavity Water Heat Transfer	
	DVI Line Break, Fail Gravity Injection, No DVI Flooding	
34-30	Case 3BE-2: In-Vessel Hydrogen Generation DVI Line Break,	
	Fail Gravity Injection, No DVI Flooding	
34-31	Case 3BE-2: Mass Fraction of CsI Released to Containment	
	DVI Line Break, Fail Gravity Injection, No DVI Flooding	34-67
34-32	Case 3BE-2: Mass Fraction of Noble Gases Released to Environment	
	DVI Line Break, Fail Gravity Injection, No DVI Flooding	34-67
34-33	Case 3BE-2: Mass Fraction of Fission Products Released to Environment	
	DVI Line Break, Fail Gravity Injection, No DVI Flooding	34-68
34-34	Case 3BE-2: Mass Fraction of SrO Released to Environment	
	DVI Line Break, Fail Gravity Injection, No DVI Flooding	34-68
34-35	Case 3BE-4: Reactor Coolant System and Steam Generator Pressure	
	Spurious ADS, Failed Gravity Injection	34-69
34-36	Case 3BE-4: ADS Stage 4 Flow Rates Spurious ADS, Failed Gravity	
	Injection	34-69
34-37	Case 3BE-4: Accumulator/CMT Water Mass Spurious ADS, Failed	
	Gravity Injection	34-70
34-38	Case 3BE-4: IRWST Injection Flow Rate Spurious ADS, Failed Gravity	
	Injection	34-70
34-39	Case 3BE-4: Break Flow Rate Spurious ADS, Failed Gravity Injection	
34-40	Case 3BE-4: Reactor Vessel Water Level Spurious ADS, Failed Gravity	
	Injection	
34-41	Case 3BE-4: Core Temperatures Spurious ADS, Failed Gravity Injection	
34-42	Case 3BE-4: Containment Water Pool Elevations Spurious ADS,	
	Failed Gravity Injection	
34-43	Case 3BE-4: Containment Pressure Spurious ADS, Failed Gravity	· · · ·
~	Injection.	
34-44	Case 3BE-4: Containment Gas Temperatures Spurious ADS,	
~	Failed Gravity Injection	
34-45	Case 3BE-4: Core Mass Spurious ADS, Failed Gravity Injection	

AP1000 Probabilistic Risk Assessment

# LIST OF FIGURES (Cont.)

1 - 1⁹⁴ 1

Figure No.	Title	Page
34-46	Case 3BE-4: Reactor Pressure Vessel to Cavity Water Heat Transfer	
	Spurious ADS, Failed Gravity Injection	34-74
34-47	Case 3BE-4: In-Vessel Hydrogen Generation Spurious ADS, Failed	· · ·
	Gravity Injection	34-75
34-48	Case 3BE-4: Mass Fraction of CsI Released to Containment Spurious ADS,	• *
	Failed Gravity Injection	34-75
34-49	Case 3BE-4: Mass Fraction of Noble Gases Released to Environment	
	Spurious ADS, Failed Gravity Injection	34-76
34-50	Case 3BE-4: Mass Fraction of Fission Products Released to Environment	
	Spurious ADS. Failed Gravity Injection	34-76
34-51	Case 3BE-4: Mass Fraction of SrO Released to Environment Spurious ADS.	
	Failed Gravity Injection	34-77
34-52	Case 3BE-5: Reactor Coolant System and Steam Generator Pressure	
	SBLOCA with Failed Gravity Injection	
34-53	Case 3BE-5: ADS Stage 4 Flow Rates SBLOCA with Failed Gravity	
54 55	Injection	34-78
31-51	Case 3RE-5. Accumulator/CMT Water Mass SRI OCA with Failed	
74-74	Gravity Injection	34-78
31-55	Case 3BE-5. IBWST Injection Flow Pate SBI OCA with Failed	
54-55	Gravity Injection	34-70
21 56	Cose 2 DE S. Break Flow Date SDI OCA with Eailed Crewity Injection	34-70
24-50	Case 3DE-5. Director Vessel Water Level SPLOCA with Failed	
54-57	Case 5DE-5. Reaction Vessel Water Level SDLOCA with Talled	34-80
21 50	Case 2DE 5. Core Temperatures SDI OCA with Eniled Crewity Injection	24.80
34-30	Case 3DE-5: Core Temperatures SBLOCA with Parent Oravity Injection	
34-39	Case 5DE-5: Containment water Fool Elevations SDLOCA with	24 91
24.60	Falled Gravity Injection	
34-00	Case 3DE-5: Containment Fressure SDLOCA with Failed Gravity Injection	
54-01	Case SBE-5: Containment Gas Temperature SBLOCA with Failed	24 93
0.4. <i>6</i> 0	Gravity Injection	
34-62	Case 3BE-5: Core Mass SBLOCA with Failed Gravity Injection	
34-63	Case 3BE-5: Reactor Pressure Vessel to Cavity water Heat Transfer	24.02
	SBLOCA with Failed Gravity Injection	
34-64	Case 3BE-5: In-Vessel Hydrogen Generation SBLUCA with Falled	24.02
	Gravity Injection	
34-65	Case 3BE-5: Mass Fraction of Csl Released to Containment SBLOCA	
	with Failed Gravity Injection	34-84
34-66	Case 3BE-5: Mass Fraction of Noble Gases Released to Environment	
	SBLOCA with Failed Gravity Injection	34-84
34-67	Case 3BE-5: Mass Fraction of Fission Products Released to Environment	
	SBLOCA with Failed Gravity Injection	34-85
34-68	Case 3BE-5: Mass Fraction of SrO Released to Environment SBLOCA	_
	with Failed Gravity Injection	34-85

<u>Figure No.</u>	Title	<u>Page</u>
34-69	Case 3BE-6: Reactor Coolant System and Steam Generator Pressure	
	SBLOCA with Failed Gravity Injection	
34-70	Case 3BE-6: ADS Stage 4 Flow Rates SBLOCA with Failed Gravity	
		34-86
34-71	Case 3BE-6: Accumulator/CMT Water Mass SBLOCA with Failed Gravity Injection	34-87
34-72	Case 3BE-6: IRWST Injection Flow Rate SBI OCA with Failed	
J7-72	Gravity Injection	34-87
34-73	Case 3BE-6: Break Flow Rate SRI OCA with Failed Gravity Injection	34-88
34-74	Case 3BE-6: Breator Vessel Water Level SBLOCA with Failed Gravity	
54-74	Injection	34_88
34-75	Case 3BE-6: Core Temperatures SBLOCA with Failed Gravity Injection	34-80
34-76	Case 3BE-6: Containment Water Pool Elevations SBLOCA with	
5470	Failed Gravity Injection	34-89
34-77	Case 3BE-6: Containment Pressure SBLOCA with Failed Gravity Injection	34-90
34-78	Case 3BE-6: Containment Gas Temperature SBLOCA with Failed	
54 /0	Gravity Injection	
34-79	Case 3BE-6: Core Mass SBLOCA with Failed Gravity Injection	
34-80	Case 3BE-6: Reactor Pressure Vessel to Cavity Water Heat Transfer	
	SBLOCA with Failed Gravity Injection	34-91
34-81	Case 3BE-6: In-Vessel Hydrogen Generation SBLOCA with Failed	
	Gravity Injection	34-92
34-82	Case 3BE-6: Mass Fraction of CsI Released to Containment SBLOCA	
	with Failed Gravity Injection	34-92
34-83	Case 3BE-6: Mass Fraction of Noble Gases Released to Environment	
	SBLOCA with Failed Gravity Injection	34-93
34-84	Case 3BE-6: Mass Fraction of Fission Products Released to Environment	
	SBLOCA with Failed Gravity Injection	34-93
34-85	Case 3BE-6: Mass Fraction of SrO Released to Environment SBLOCA	
	with Failed Gravity Injection	34-94
34-86	Case 3BE-7: Reactor Coolant System and Steam Generator Pressure	
	SBLOCA with Failed Gravity Injection	34-94
34-87	Case 3BE-7: ADS Stage 4 Flow Rates SBLOCA with Failed Gravity	
	Injection	34-95
34-88	Case 3BE-7: Accumulator/CMT Water Mass SBLOCA with Failed	
	Gravity Injection	34-95
34-89	Case 3BE-7: IRWST Injection Flow Rate SBLOCA with Failed Gravity	
	Injection	34-96
34-90	Case 3BE-7: Break Flow Rate SBLOCA with Failed Gravity Injection	34-96
34-91	Case 3BE-7: Reactor Vessel Water Level SBLOCA with Failed	
	Gravity Injection	34-97
34-92	Case 3BE-7: Core Temperatures SBLOCA with Failed Gravity Injection	

AP1000 Probabilistic Risk Assessment

# LIST OF FIGURES (Cont.)

<u>Figure No.</u>	Title	Page
34-93	Case 3BE-7: Containment Water Pool Elevations SBLOCA with	· · ·
	Failed Gravity Injection	
34-94	Case 3BE-7: Containment Pressure SBLOCA with Failed Gravity Injection	
34-95	Case 3BE-7: Containment Gas Temperature SBLOCA with Failed	
	Gravity Injection	
34-96	Case 3BE-7: Core Mass SBLOCA with Failed Gravity Injection	
34-97	Case 3BE-7: Reactor Pressure Vessel to Cavity Water Heat Transfer	
	SBLOCA with Failed Gravity Injection	
34-98	Case 3BE-7: In-Vessel Hydrogen Generation SBLOCA with Failed	
	Gravity Injection	
34-99	Case 3BE-7: Mass Fraction of CsI Released to Containment SBLOCA	
	with Failed Gravity Injection	
34-100	Case 3BE-7: Mass Fraction of Noble Gases Released to Environment	
54 100	SBLOCA with Failed Gravity Injection	34-101
34-101	Case 3BE-7. Mass Fraction of Fission Products Released to Environment	
54-101	SBLOCA with Failed Gravity Injection	34-102
34-102	Case 3BE-7. Mass Fraction of SrO Released to Environment SBLOCA	
54 102	with Failed Gravity Injection	34-102
34-103	Case 3BF-3. Reactor Coolant System and Steam Generator Pressure	
54-105	DVI I ine Break Esiled Gravity Injection No PXS Flooding	34-103
34-104	Case 3BE-3. ADS Stare 4 Flow Pate DVI Line Break Failed Gravity	
54-104	Injection No PYS Flooding	34-103
34-105	Case 3RE-3. A commulator/CMT Water Mass DVI I ine Break	
J4-10J	Failed Gravity Injection No PXS Flooding	34-104
34-106	Case 3RE-3. IBWST Injection Flow Rate DVI I ine Break	
54-100	Failed Gravity Injection No DYS Flooding	34-104
34-107	Case 3BE-3. Break Flow Rate DVI Line Break Failed Gravity Injection	
54-107	No PYS Flooding	34-105
34-108	Case 3BE-3. Deastor Vessel Water Level DVI Line Break	
34-100	Failed Gravity Injection No PYS Flooding	34-105
34.100	Case 3RE-3: Core Temperatures DVI in Break Egiled Gravity Injection	
34-107	No DVS Elocding	34-106
24.110	NO FAS Flooding	
54-110	Case 5DE-5. Containment water Foor Elevations DVI Line Dicax, Failed Gravity Injection No DYS Flooding	34-106
24 111	Case 2BE-2: Containment Pressure DVI Line Break Eailed Gravity	
34-111	Injection No DYS Flooding	34-107
24 112	Case 2DE 2. Containment Geo Temperature DVI Line Prock Foiled	
54-112	Case 5BE-5. Containment Gas Temperature DVI Line Dicak, Failed	24 107
24 112	Gravity Injection, NO PAS Flooding	
34-113	Lase SDE-S: CORE MASS DVI LINE BREAK, FAIRED GRAVITY INJECTION,	24 100
04.114	NO FAD FIOODING	
54-114	Case 3BE-3: Reactor Pressure Vessel to Cavity water Heat Transfer	24 100
	DVI Line Break, Failed Gravity Injection, No PXS Flooding	

34-115       Case 3BE-3: In-Vessel Hydrogen Generation DVI Line Break, Failed       34-109         34-116       Case 3BE-3: Mass Fraction of CsI Released to Containment DVI       34-109         34-117       Case 3BE-3: Mass Fraction of Noble Gases Released to Environment       34-109         34-118       Case 3BE-3: Mass Fraction of Fission Products Released to Environment DVI Line Break, Failed Gravity Injection, No PXS Flooding.       34-110         34-118       Case 3BE-3: Mass Fraction of SrO Released to Environment DVI       34-110         34-119       Case 3BE-3: Mass Fraction of SrO Released to Environment DVI       34-110         34-119       Case 3BE-1: Reactor Coolant System and Steam Generator Pressure       34-111         34-120       Case 3BL-1: Reactor Coolant System and Steam Generator Pressure       34-112         34-121       Case 3BL-1: Reactor Coolant System and Steam Generator Pressure       34-112         34-122       Case 3BL-1: Reactor COMT Water Mass SBLOCA with Failed Gravity Injection	<u>Figure No.</u>	<u>Title</u>	Page
Gravity Injection, No PXS Flooding       34-109         34-116       Case 3BE-3: Mass Fraction of Csl Released to Containment DVI Line Break, Failed Gravity Injection, No PXS Flooding       34-109         34-117       Case 3BE-3: Mass Fraction of Noble Gases Released to Environment DVI Line Break, Failed Gravity Injection, No PXS Flooding       34-110         34-118       Case 3BE-3: Mass Fraction of Fission Products Released to Environment DVI Line Break, Failed Gravity Injection, No PXS Flooding       34-110         34-119       Case 3BE-3: Mass Fraction of StO Released to Environment DVI Line Break, Failed Gravity Injection, No PXS Flooding       34-111         34-120       Case 3BE-1: Reactor Coolant System and Steam Generator Pressure SBLOCA with Failed Gravity Injection       34-111         34-121       Case 3BL-1: ADS Stage 4 Flow Rates SBLOCA with Failed Gravity Injection       34-112         34-122       Case 3BL-1: ACCumulator/CMT Water Mass SBLOCA with Failed Gravity Injection       34-113         34-124       Case 3BL-1: Rew Flow Rate SBLOCA with Failed Gravity Injection       34-113         34-124       Case 3BL-1: Reactor Vessel Water Level SBLOCA with Failed Gravity Injection       34-114         34-125       Case 3BL-1: Containment Pressure SBLOCA with Failed Gravity Injection       34-114         34-126       Case 3BL-1: Containment Pressure SBLOCA with Failed Gravity Injection       34-115         34-127       Case 3BL-1: Containment Pressure SB	34-115	Case 3BE-3: In-Vessel Hydrogen Generation DVI Line Break, Failed	
34-116       Case 3BE-3: Mass Fraction of CsI Released to Containment DVI Line Break, Failed Gravity Injection, No PXS Flooding.       34-109         34-117       Case 3BE-3: Mass Fraction of Noble Gases Released to Environment DVI Line Break, Failed Gravity Injection, No PXS Flooding.       34-110         34-118       Case 3BE-3: Mass Fraction of Fission Products Released to Environment DVI Line Break, Failed Gravity Injection, No PXS Flooding.       34-110         34-119       Case 3BE-3: Mass Fraction of SrO Released to Environment DVI Line Break, Failed Gravity Injection. No PXS Flooding.       34-111         34-120       Case 3BL-1: Reactor Coolant System and Steam Generator Pressure SBLOCA with Failed Gravity Injection       34-111         34-121       Case 3BL-1: ADS Stage 4 Flow Rates SBLOCA with Failed Gravity Injection.       34-112         34-122       Case 3BL-1: Core Mass SBLOCA with Failed Gravity Injection.       34-113         34-124       Case 3BL-1: RWST Injection Flow Rate SBLOCA with Failed Gravity Injection.       34-113         34-124       Case 3BL-1: Reak Flow Rate SBLOCA with Failed Gravity Injection.       34-114         34-125       Case 3BL-1: Reak Flow Rate SBLOCA with Failed Gravity Injection.       34-113         34-126       Case 3BL-1: Core Temperatures SBLOCA with Failed Gravity Injection.       34-114         34-127       Case 3BL-1: Core Temperatures SBLOCA with Failed Gravity Injection.       34-114         34-128       <		Gravity Injection, No PXS Flooding	34-109
Line Break, Failed Gravity Injection, No PXS Flooding.       34-109         34-117       Case 3BE-3: Mass Fraction of Noble Gases Released to Environment DVI Line Break, Failed Gravity Injection, No PXS Flooding.       34-110         34-118       Case 3BE-3: Mass Fraction of Fission Products Released to Environment DVI Line Break, Failed Gravity Injection, No PXS Flooding       34-110         34-119       Case 3BE-3: Mass Fraction of SrO Released to Environment DVI Line Break, Failed Gravity Injection, No PXS Flooding       34-111         34-120       Case 3BL-1: Reactor Coolant System and Steam Generator Pressure SBLOCA with Failed Gravity Injection       34-111         34-121       Case 3BL-1: Reactor Coolant System and Steam Generator Pressure SBLOCA with Failed Gravity Injection       34-112         34-121       Case 3BL-1: Reactor Coolant System and Steam Generator Pressure SBLOCA with Failed Gravity Injection       34-112         34-122       Case 3BL-1: Recumulator/CMT Water Mass SBLOCA with Failed Gravity Injection       34-112         34-124       Case 3BL-1: Rew Flow Rate SBLOCA with Failed Gravity Injection       34-113         34-125       Case 3BL-1: Reactor Vessel Water Level SBLOCA with Failed Gravity Injection       34-114         34-126       Case 3BL-1: Core Temperatures SBLOCA with Failed Gravity Injection       34-115         34-128       Case 3BL-1: Containment Pressure SBLOCA with Failed Gravity Injection       34-115         34-129       Ca	34-116	Case 3BE-3: Mass Fraction of CsI Released to Containment DVI	
34-117       Case 3BE-3: Mass Fraction of Noble Gases Released to Environment DVI Line Break, Failed Gravity Injection, No PXS Flooding		Line Break, Failed Gravity Injection, No PXS Flooding	34-109
DVI Line Break, Failed Gravity Injection, No PXS Flooding.	34-117	Case 3BE-3: Mass Fraction of Noble Gases Released to Environment	
34-118       Case 3BE-3: Mass Fraction of Fission Products Released to Environment DVI Line Break, Failed Gravity Injection, No PXS Flooding       34-110         34-119       Case 3BE-3: Mass Fraction of SrO Released to Environment DVI Line Break, Failed Gravity Injection, No PXS Flooding       34-111         34-120       Case 3BL-1: Reactor Coolant System and Steam Generator Pressure SBLOCA with Failed Gravity Injection       34-111         34-121       Case 3BL-1: ADS Stage 4 Flow Rates SBLOCA with Failed Gravity Injection       34-112         34-122       Case 3BL-1: ADS Stage 4 Flow Rates SBLOCA with Failed Gravity Injection       34-112         34-123       Case 3BL-1: RWST Injection Flow Rate SBLOCA with Failed Gravity Injection       34-113         34-124       Case 3BL-1: Break Flow Rate SBLOCA with Failed Gravity Injection       34-113         34-125       Case 3BL-1: Break Flow Rate SBLOCA with Failed Gravity Injection       34-114         34-126       Case 3BL-1: Core Temperatures SBLOCA with Failed Gravity Injection       34-114         34-127       Case 3BL-1: Containment Water Pool Elevations SBLOCA with Failed Gravity Injection       34-115         34-128       Case 3BL-1: Containment Pressure SBLOCA with Failed Gravity Injection       34-115         34-129       Case 3BL-1: Containment Gas Temperature SBLOCA with Failed Gravity Injection       34-116         34-130       Case 3BL-1: Containment Gas Temperature SBLOCA with Failed Gravity I		DVI Line Break, Failed Gravity Injection, No PXS Flooding	34-110
Environment DVI Line Break, Failed Gravity Injection, No PXS       34-110         34-119       Case 3BE-3: Mass Fraction of SrO Released to Environment DVI       34-110         111       Line Break, Failed Gravity Injection, No PXS Flooding       34-111         34-120       Case 3BL-1: Reactor Coolant System and Steam Generator Pressure       34-111         34-121       Case 3BL-1: Reactor Coolant System and Steam Generator Pressure       34-111         34-122       Case 3BL-1: ADS Stage 4 Flow Rates SBLOCA with Failed Gravity       34-112         34-123       Case 3BL-1: ACcumulator/CMT Water Mass SBLOCA with Failed Gravity       34-112         34-124       Case 3BL-1: RRWST Injection Flow Rate SBLOCA with Failed Gravity       34-112         34-125       Case 3BL-1: Break Flow Rate SBLOCA with Failed Gravity Injection       34-113         34-126       Case 3BL-1: Core Temperatures SBLOCA with Failed Gravity Injection       34-114         34-126       Case 3BL-1: Containment Water Pool Elevations SBLOCA with Failed Gravity Injection       34-115         34-127       Case 3BL-1: Containment Tressure SBLOCA with Failed Gravity Injection       34-115         34-128       Case 3BL-1: Containment Tressure SBLOCA with Failed Gravity Injection       34-115         34-129       Case 3BL-1: Containment Gas Temperature SBLOCA with Failed Gravity Injection       34-116         34-130       <	34-118	Case 3BE-3: Mass Fraction of Fission Products Released to	
Flooding       34-110         34-119       Case 3BE-3: Mass Fraction of SrO Released to Environment DV1         Line Break, Failed Gravity Injection, No PXS Flooding       .34-111         34-120       Case 3BL-1: Reactor Coolant System and Steam Generator Pressure         SBLOCA with Failed Gravity Injection       .34-111         34-121       Case 3BL-1: ADS Stage 4 Flow Rates SBLOCA with Failed Gravity       .34-112         34-122       Case 3BL-1: Accumulator/CMT Water Mass SBLOCA with Failed Gravity       .34-112         34-122       Case 3BL-1: MST Injection Flow Rate SBLOCA with Failed Gravity       .34-112         34-124       Case 3BL-1: Break Flow Rate SBLOCA with Failed Gravity       .34-113         34-125       Case 3BL-1: Break Flow Rate SBLOCA with Failed Gravity Injection		Environment DVI Line Break, Failed Gravity Injection, No PXS	
34-119       Case 3BE-3: Mass Fraction of SrO Released to Environment DVI Line Break, Failed Gravity Injection, No PXS Flooding		Flooding	34-110
Line Break, Failed Gravity Injection, No PXS Flooding	34-119	Case 3BE-3: Mass Fraction of SrO Released to Environment DVI	
34-120       Case 3BL-1: Reactor Coolant System and Steam Generator Pressure SBLOCA with Failed Gravity Injection       34-111         34-121       Case 3BL-1: ADS Stage 4 Flow Rates SBLOCA with Failed Gravity Injection       34-112         34-122       Case 3BL-1: Accumulator/CMT Water Mass SBLOCA with Failed Gravity Injection       34-112         34-123       Case 3BL-1: RWST Injection Flow Rate SBLOCA with Failed Gravity Injection       34-113         34-124       Case 3BL-1: Break Flow Rate SBLOCA with Failed Gravity Injection       34-113         34-125       Case 3BL-1: Break Flow Rate SBLOCA with Failed Gravity Injection       34-114         34-126       Case 3BL-1: Core Temperatures SBLOCA with Failed Gravity Injection       34-114         34-127       Case 3BL-1: Core Temperatures SBLOCA with Failed Gravity Injection       34-114         34-126       Case 3BL-1: Core Temperatures SBLOCA with Failed Gravity Injection       34-115         34-126       Case 3BL-1: Core Tamperature SBLOCA with Failed Gravity Injection       34-116         34-127       Case 3BL-1: Containment Pressure SBLOCA with Failed Gravity Injection       34-115         34-128       Case 3BL-1: Containment Pressure SBLOCA with Failed Gravity Injection       34-116         34-130       Case 3BL-1: Containment Vessel to Cavity Water Heat Transfer       34-116         34-131       Case 3BL-1: In-Vessel Hydrogen Generation SBLOCA with Fail		Line Break, Failed Gravity Injection, No PXS Flooding	34-111
SBLOCA with Failed Gravity Injection       34-111         34-121       Case 3BL-1: ADS Stage 4 Flow Rates SBLOCA with Failed Gravity       34-112         34-122       Case 3BL-1: Accumulator/CMT Water Mass SBLOCA with Failed Gravity Injection       34-112         34-123       Case 3BL-1: IRWST Injection Flow Rate SBLOCA with Failed Gravity Injection       34-113         34-124       Case 3BL-1: Break Flow Rate SBLOCA with Failed Gravity Injection       34-113         34-125       Case 3BL-1: Break Flow Rate SBLOCA with Failed Gravity Injection       34-113         34-126       Case 3BL-1: Core Temperatures SBLOCA with Failed Gravity Injection       34-114         34-126       Case 3BL-1: Core Temperatures SBLOCA with Failed Gravity Injection       34-114         34-127       Case 3BL-1: Core Temperatures SBLOCA with Failed Gravity Injection       34-114         34-128       Case 3BL-1: Containment Pressure SBLOCA with Failed Gravity Injection       34-115         34-129       Case 3BL-1: Containment Gas Temperature SBLOCA with Failed Gravity Injection       34-116         34-130       Case 3BL-1: Core Mass SBLOCA with Failed Gravity Injection       34-116         34-131       Case 3BL-1: Core Mass SBLOCA with Failed Gravity Injection       34-116         34-131       Case 3BL-1: Core Mass SBLOCA with Failed Gravity Injection       34-116         34-132       Case 3BL-1: Mass F	34-120	Case 3BL-1: Reactor Coolant System and Steam Generator Pressure	
34-121       Case 3BL-1: ADS Stage 4 Flow Rates SBLOCA with Failed Gravity Injection		SBLOCA with Failed Gravity Injection	34-111
Injection       34-112         34-122       Case 3BL-1: Accumulator/CMT Water Mass SBLOCA with Failed         Gravity Injection       34-112         34-123       Case 3BL-1: IRWST Injection Flow Rate SBLOCA with Failed Gravity         Injection       34-113         34-124       Case 3BL-1: Break Flow Rate SBLOCA with Failed Gravity Injection       34-113         34-125       Case 3BL-1: Reactor Vessel Water Level SBLOCA with Failed Gravity Injection       34-114         34-126       Case 3BL-1: Core Temperatures SBLOCA with Failed Gravity Injection       34-114         34-127       Case 3BL-1: Containment Water Pool Elevations SBLOCA with Failed       34-115         34-128       Case 3BL-1: Containment Pressure SBLOCA with Failed Gravity Injection       34-115         34-129       Case 3BL-1: Containment Gas Temperature SBLOCA with Failed       34-116         34-130       Case 3BL-1: Containment Gas Temperature SBLOCA with Failed       34-116         34-131       Case 3BL-1: Core Mass SBLOCA with Failed Gravity Injection       34-116         34-131       Case 3BL-1: Core Mass SBLOCA with Failed Gravity Injection       34-116         34-131       Case 3BL-1: Core Mass SBLOCA with Failed Gravity Injection       34-116         34-132       Case 3BL-1: Core Mass SBLOCA with Failed Gravity Injection       34-116         34-133       <	34-121	Case 3BL-1: ADS Stage 4 Flow Rates SBLOCA with Failed Gravity	
34-122       Case 3BL-1: Accumulator/CMT Water Mass SBLOCA with Failed       34-112         34-123       Case 3BL-1: IRWST Injection Flow Rate SBLOCA with Failed Gravity       34-113         34-124       Case 3BL-1: Break Flow Rate SBLOCA with Failed Gravity Injection		Injection	34-112
Gravity Injection       34-112         34-123       Case 3BL-1: IRWST Injection Flow Rate SBLOCA with Failed Gravity       34-113         34-124       Case 3BL-1: Break Flow Rate SBLOCA with Failed Gravity Injection       34-113         34-125       Case 3BL-1: Reactor Vessel Water Level SBLOCA with Failed Gravity       34-114         34-126       Case 3BL-1: Core Temperatures SBLOCA with Failed Gravity Injection       34-114         34-127       Case 3BL-1: Cortainment Water Pool Elevations SBLOCA with Failed       34-115         34-128       Case 3BL-1: Containment Pressure SBLOCA with Failed Gravity Injection       34-115         34-128       Case 3BL-1: Containment Pressure SBLOCA with Failed Gravity Injection       34-116         34-130       Case 3BL-1: Containment Gas Temperature SBLOCA with Failed Gravity Injection       34-116         34-130       Case 3BL-1: Core Mass SBLOCA with Failed Gravity Injection       34-116         34-131       Case 3BL-1: Core Mass SBLOCA with Failed Gravity Injection       34-116         34-131       Case 3BL-1: Core Mass SBLOCA with Failed Gravity Injection       34-116         34-131       Case 3BL-1: Nessel Hydrogen Generation SBLOCA with Failed Gravity Injection       34-117         34-132       Case 3BL-1: Mass Fraction of CsI Released to Containment SBLOCA with Failed Gravity Injection       34-117         34-133       Case 3BL-1: M	34-122	Case 3BL-1: Accumulator/CMT Water Mass SBLOCA with Failed	
34-123       Case 3BL-1: IRWST Injection Flow Rate SBLOCA with Failed Gravity       34-113         34-124       Case 3BL-1: Break Flow Rate SBLOCA with Failed Gravity Injection		Gravity Injection	34-112
Injection34-11334-124Case 3BL-1: Break Flow Rate SBLOCA with Failed Gravity Injection34-11334-125Case 3BL-1: Reactor Vessel Water Level SBLOCA with Failed Gravity34-11434-126Case 3BL-1: Core Temperatures SBLOCA with Failed Gravity Injection34-11434-127Case 3BL-1: Containment Water Pool Elevations SBLOCA with Failed34-11534-128Case 3BL-1: Containment Pressure SBLOCA with Failed Gravity Injection34-11534-129Case 3BL-1: Containment Gas Temperature SBLOCA with Failed34-11634-130Case 3BL-1: Core Mass SBLOCA with Failed Gravity Injection34-11634-131Case 3BL-1: Core Mass SBLOCA with Failed Gravity Injection34-11634-130Case 3BL-1: Core Mass SBLOCA with Failed Gravity Injection34-11634-131Case 3BL-1: Core Mass SBLOCA with Failed Gravity Injection34-11634-132Case 3BL-1: In-Vessel Hydrogen Generation SBLOCA with Failed Gravity Injection34-11734-132Case 3BL-1: In-Vessel Hydrogen Generation SBLOCA with Failed Gravity Injection34-11734-134Case 3BL-1: Mass Fraction of CsI Released to Containment SBLOCA with Failed Gravity Injection34-11834-134Case 3BL-1: Mass Fraction of Fission Products Released to Environment SBLOCA with Failed Gravity Injection34-11934-136Case 3BL-1: Mass Fraction of SrO Released to Environment SBLOCA with Failed Gravity Injection34-11934-136Case 3BL-1: Mass Fraction of SrO Released to Environment SBLOCA with Failed Gravity Injection34-11934-136Case 3BL-2: Reactor Co	34-123	Case 3BL-1: IRWST Injection Flow Rate SBLOCA with Failed Gravity	
34-124       Case 3BL-1: Break Flow Rate SBLOCA with Failed Gravity Injection		Injection	34-113
34-125       Case 3BL-1: Reactor Vessel Water Level SBLOCA with Failed Gravity         Injection       34-114         34-126       Case 3BL-1: Core Temperatures SBLOCA with Failed Gravity Injection       34-114         34-127       Case 3BL-1: Containment Water Pool Elevations SBLOCA with Failed       34-114         34-128       Case 3BL-1: Containment Pressure SBLOCA with Failed Gravity Injection       34-115         34-128       Case 3BL-1: Containment Gas Temperature SBLOCA with Failed       34-116         34-130       Case 3BL-1: Core Mass SBLOCA with Failed Gravity Injection       34-116         34-131       Case 3BL-1: Reactor Pressure Vessel to Cavity Water Heat Transfer       38LOCA with Failed Gravity Injection       34-117         34-132       Case 3BL-1: In-Vessel Hydrogen Generation SBLOCA with Failed       34-117         34-132       Case 3BL-1: Mass Fraction of CsI Released to Containment SBLOCA       34-117         34-134       Case 3BL-1: Mass Fraction of Noble Gases Released to Environment       34-118         34-134       Case 3BL-1: Mass Fraction of Fission Products Released to Environment       34-118         34-135       Case 3BL-1: Mass Fraction of SrO Released to Environment       34-119         34-136       Case 3BL-1: Mass Fraction of SrO Released to Environment SBLOCA       34-119         34-136       Case 3BL-1: Mass Fraction of SrO Released to Envir	34-124	Case 3BL-1: Break Flow Rate SBLOCA with Failed Gravity Injection	34-113
Injection34-11434-126Case 3BL-1: Core Temperatures SBLOCA with Failed Gravity Injection34-11434-127Case 3BL-1: Containment Water Pool Elevations SBLOCA with Failed Gravity Injection34-11534-128Case 3BL-1: Containment Pressure SBLOCA with Failed Gravity Injection34-11534-129Case 3BL-1: Containment Gas Temperature SBLOCA with Failed Gravity Injection34-11634-130Case 3BL-1: Core Mass SBLOCA with Failed Gravity Injection34-11634-131Case 3BL-1: Core Mass SBLOCA with Failed Gravity Injection34-11634-131Case 3BL-1: Reactor Pressure Vessel to Cavity Water Heat Transfer SBLOCA with Failed Gravity Injection34-11734-132Case 3BL-1: In-Vessel Hydrogen Generation SBLOCA with Failed Gravity Injection34-11734-133Case 3BL-1: In-Vessel Hydrogen Generation SBLOCA with Failed Gravity Injection34-11734-134Case 3BL-1: Mass Fraction of CsI Released to Containment SBLOCA with Failed Gravity Injection34-11834-135Case 3BL-1: Mass Fraction of Noble Gases Released to Environment SBLOCA with Failed Gravity Injection34-11834-135Case 3BL-1: Mass Fraction of Fission Products Released to Environment SBLOCA with Failed Gravity Injection34-11934-136Case 3BL-1: Mass Fraction of SrO Released to Environment SBLOCA with Failed Gravity Injection34-11934-136Case 3BL-1: Mass Fraction of SrO Released to Environment SBLOCA with Failed Gravity Injection34-11934-136Case 3BL-1: Mass Fraction of SrO Released to Environment SBLOCA with Failed Gravity Injection34	34-125	Case 3BL-1: Reactor Vessel Water Level SBLOCA with Failed Gravity	
34-126       Case 3BL-1: Core Temperatures SBLOCA with Failed Gravity Injection		Injection	34-114
34-127       Case 3BL-1: Containment Water Pool Elevations SBLOCA with Failed         Gravity Injection       34-115         34-128       Case 3BL-1: Containment Pressure SBLOCA with Failed Gravity Injection       34-115         34-129       Case 3BL-1: Containment Gas Temperature SBLOCA with Failed       34-115         34-130       Case 3BL-1: Core Mass SBLOCA with Failed Gravity Injection       34-116         34-130       Case 3BL-1: Core Mass SBLOCA with Failed Gravity Injection       34-116         34-131       Case 3BL-1: Core Mass SBLOCA with Failed Gravity Injection       34-116         34-131       Case 3BL-1: Core Mass SBLOCA with Failed Gravity Injection       34-116         34-131       Case 3BL-1: Reactor Pressure Vessel to Cavity Water Heat Transfer       SBLOCA with Failed Gravity Injection       34-117         34-132       Case 3BL-1: In-Vessel Hydrogen Generation SBLOCA with Failed       Gravity Injection       34-117         34-132       Case 3BL-1: Mass Fraction of CsI Released to Containment SBLOCA       34-118         34-133       Case 3BL-1: Mass Fraction of Noble Gases Released to Environment       34-118         34-134       Case 3BL-1: Mass Fraction of Fission Products Released to Environment       34-118         34-135       Case 3BL-1: Mass Fraction of SrO Released to Environment       34-119         34-136       Case 3BL-1: Mass Fraction of	34-126	Case 3BL-1: Core Temperatures SBLOCA with Failed Gravity Injection	34-114
Gravity Injection34-11534-128Case 3BL-1: Containment Pressure SBLOCA with Failed Gravity Injection34-11534-129Case 3BL-1: Containment Gas Temperature SBLOCA with Failed Gravity Injection34-11634-130Case 3BL-1: Core Mass SBLOCA with Failed Gravity Injection34-11634-131Case 3BL-1: Core Mass SBLOCA with Failed Gravity Injection34-11634-131Case 3BL-1: Reactor Pressure Vessel to Cavity Water Heat Transfer SBLOCA with Failed Gravity Injection34-11734-132Case 3BL-1: In-Vessel Hydrogen Generation SBLOCA with Failed Gravity Injection34-11734-133Case 3BL-1: Mass Fraction of CsI Released to Containment SBLOCA with Failed Gravity Injection34-11834-134Case 3BL-1: Mass Fraction of Noble Gases Released to Environment SBLOCA with Failed Gravity Injection34-11834-135Case 3BL-1: Mass Fraction of Fission Products Released to Environment SBLOCA with Failed Gravity Injection34-11934-136Case 3BL-1: Mass Fraction of SrO Released to Environment SBLOCA with Failed Gravity Injection34-11934-136Case 3BL-2: Reactor Coolant System and Steam Generator Pressure DVI Line Break with Failed Gravity Injection34-120	34-127	Case 3BL-1: Containment Water Pool Elevations SBLOCA with Failed	
34-128Case 3BL-1: Containment Pressure SBLOCA with Failed Gravity Injection		Gravity Injection	34-115
34-129       Case 3BL-1: Containment Gas Temperature SBLOCA with Failed         Gravity Injection       34-116         34-130       Case 3BL-1: Core Mass SBLOCA with Failed Gravity Injection       34-116         34-131       Case 3BL-1: Reactor Pressure Vessel to Cavity Water Heat Transfer       34-116         34-132       Case 3BL-1: Reactor Pressure Vessel to Cavity Water Heat Transfer       34-117         34-132       Case 3BL-1: In-Vessel Hydrogen Generation SBLOCA with Failed       34-117         34-133       Case 3BL-1: In-Vessel Hydrogen Generation SBLOCA with Failed       34-117         34-133       Case 3BL-1: Mass Fraction of CsI Released to Containment SBLOCA       34-118         34-134       Case 3BL-1: Mass Fraction of Noble Gases Released to Environment       34-118         34-135       Case 3BL-1: Mass Fraction of Fission Products Released to Environment       34-118         34-135       Case 3BL-1: Mass Fraction of SrO Released to Environment       34-119         34-136       Case 3BL-1: Mass Fraction of SrO Released to Environment       34-119         34-137       Case 3BL-1: Mass Fraction of SrO Released to Environment       34-119         34-136       Case 3BL-2: Reactor Coolant System and Steam Generator Pressure       34-119         34-137       Case 3BL-2: Reactor Coolant System and Steam Generator Pressure       34-120	34-128	Case 3BL-1: Containment Pressure SBLOCA with Failed Gravity Injection	34-115
Gravity Injection34-11634-130Case 3BL-1: Core Mass SBLOCA with Failed Gravity Injection34-11634-131Case 3BL-1: Reactor Pressure Vessel to Cavity Water Heat Transfer SBLOCA with Failed Gravity Injection34-11734-132Case 3BL-1: In-Vessel Hydrogen Generation SBLOCA with Failed Gravity Injection34-11734-133Case 3BL-1: Mass Fraction of CsI Released to Containment SBLOCA with Failed Gravity Injection34-11834-134Case 3BL-1: Mass Fraction of Noble Gases Released to Environment SBLOCA with Failed Gravity Injection34-11834-135Case 3BL-1: Mass Fraction of Fission Products Released to Environment SBLOCA with Failed Gravity Injection34-11834-136Case 3BL-1: Mass Fraction of SrO Released to Environment SBLOCA with Failed Gravity Injection34-11934-136Case 3BL-1: Mass Fraction of SrO Released to Environment SBLOCA with Failed Gravity Injection34-11934-137Case 3BL-2: Reactor Coolant System and Steam Generator Pressure DVI Line Break with Failed Gravity Injection34-120	34-129	Case 3BL-1: Containment Gas Temperature SBLOCA with Failed	
34-130Case 3BL-1: Core Mass SBLOCA with Failed Gravity Injection		Gravity Injection	34-116
34-131Case 3BL-1: Reactor Pressure Vessel to Cavity Water Heat Transfer SBLOCA with Failed Gravity Injection34-11734-132Case 3BL-1: In-Vessel Hydrogen Generation SBLOCA with Failed Gravity Injection34-11734-133Case 3BL-1: Mass Fraction of CsI Released to Containment SBLOCA with Failed Gravity Injection34-11834-134Case 3BL-1: Mass Fraction of Noble Gases Released to Environment SBLOCA with Failed Gravity Injection34-11834-135Case 3BL-1: Mass Fraction of Fission Products Released to Environment SBLOCA with Failed Gravity Injection34-11834-136Case 3BL-1: Mass Fraction of SrO Released to Environment SBLOCA with Failed Gravity Injection34-11934-137Case 3BL-2: Reactor Coolant System and Steam Generator Pressure DVI Line Break with Failed Gravity Injection34-120	34-130	Case 3BL-1: Core Mass SBLOCA with Failed Gravity Injection	34-116
34-132SBLOCA with Failed Gravity Injection34-11734-132Case 3BL-1: In-Vessel Hydrogen Generation SBLOCA with Failed Gravity Injection34-11734-133Case 3BL-1: Mass Fraction of CsI Released to Containment SBLOCA with Failed Gravity Injection34-11834-134Case 3BL-1: Mass Fraction of Noble Gases Released to Environment SBLOCA with Failed Gravity Injection34-11834-135Case 3BL-1: Mass Fraction of Fission Products Released to Environment SBLOCA with Failed Gravity Injection34-11834-135Case 3BL-1: Mass Fraction of SrO Released to Environment SBLOCA with Failed Gravity Injection34-11934-136Case 3BL-1: Mass Fraction of SrO Released to Environment SBLOCA with Failed Gravity Injection34-11934-137Case 3BL-2: Reactor Coolant System and Steam Generator Pressure DVI Line Break with Failed Gravity Injection34-120	34-131	Case 3BL-1: Reactor Pressure Vessel to Cavity Water Heat Transfer	
<ul> <li>34-132 Case 3BL-1: In-Vessel Hydrogen Generation SBLOCA with Failed Gravity Injection</li></ul>		SBLOCA with Failed Gravity Injection	34-117
Gravity Injection34-11734-133Case 3BL-1: Mass Fraction of CsI Released to Containment SBLOCA with Failed Gravity Injection34-11834-134Case 3BL-1: Mass Fraction of Noble Gases Released to Environment SBLOCA with Failed Gravity Injection34-11834-135Case 3BL-1: Mass Fraction of Fission Products Released to Environment SBLOCA with Failed Gravity Injection34-11834-136Case 3BL-1: Mass Fraction of SrO Released to Environment SBLOCA 	34-132	Case 3BL-1: In-Vessel Hydrogen Generation SBLOCA with Failed	
34-133       Case 3BL-1: Mass Fraction of CsI Released to Containment SBLOCA         with Failed Gravity Injection		Gravity Injection	34-117
with Failed Gravity Injection34-11834-134Case 3BL-1: Mass Fraction of Noble Gases Released to Environment SBLOCA with Failed Gravity Injection34-11834-135Case 3BL-1: Mass Fraction of Fission Products Released to Environment SBLOCA with Failed Gravity Injection34-11934-136Case 3BL-1: Mass Fraction of SrO Released to Environment SBLOCA with Failed Gravity Injection34-11934-137Case 3BL-2: Reactor Coolant System and Steam Generator Pressure DVI Line Break with Failed Gravity Injection34-120	34-133	Case 3BL-1: Mass Fraction of CsI Released to Containment SBLOCA	
<ul> <li>34-134 Case 3BL-1: Mass Fraction of Noble Gases Released to Environment SBLOCA with Failed Gravity Injection</li></ul>		with Failed Gravity Injection	34-118
SBLOCA with Failed Gravity Injection	34-134	Case 3BL-1: Mass Fraction of Noble Gases Released to Environment	
<ul> <li>34-135 Case 3BL-1: Mass Fraction of Fission Products Released to Environment SBLOCA with Failed Gravity Injection</li></ul>		SBLOCA with Failed Gravity Injection	
34-136       SBLOCA with Failed Gravity Injection	34-135	Case 3BL-1: Mass Fraction of Fission Products Released to Environment	
<ul> <li>34-136 Case 3BL-1: Mass Fraction of SrO Released to Environment SBLOCA with Failed Gravity Injection</li></ul>		SBLOCA with Failed Gravity Injection	34-119
<ul> <li>with Failed Gravity Injection</li></ul>	34-136	Case 3BL-1: Mass Fraction of SrO Released to Environment SBLOCA	
34-137 Case 3BL-2: Reactor Coolant System and Steam Generator Pressure DVI Line Break with Failed Gravity Injection		with Failed Gravity Injection	
DVI Line Break with Failed Gravity Injection	34-137	Case 3BL-2: Reactor Coolant System and Steam Generator Pressure	
		DVI Line Break with Failed Gravity Injection	34-120

AP1000 Probabilistic Risk Assessment

# LIST OF FIGURES (Cont.)

÷.

Figure No.	Title	Page
34-138	Case 3BL-2: ADS Stage 4 Flow Rates DVI Line Break with Failed	
	Gravity Injection	
34-139	Case 3BL-2: Accumulator/CMT Water Mass DVI Line Break with	· .
•	Failed Gravity Injection	
34-140	Case 3BL-2: IRWST Injection Flow Rate DVI Line Break with	
- · ·	Failed Gravity Injection	
34-141	Case 3BL-2: Break Flow Rate DVI Line Break with Failed Gravity	
	Injection	
34-142	Case 3BL-2: Reactor Vessel Water Level DVI Line Break with Failed	- 
	Gravity Injection	
34-143	Case 3BL-2: Core Temperatures DVI Line Break with Failed Gravity	
	Injection	
34-144	Case 3BL-2: Containment Water Pool Elevations DVI Line Break with	
	Failed Gravity Injection	
34-145	Case 3BL-2: Containment Pressure DVI Line Break with Failed	
	Gravity Injection	
34-146	Case 3BL-2: Containment Gas Temperature DVI Line Break with	
	Failed Gravity Injection	
34-147	Case 3BL-2: Core Mass DVI Line Break with Failed Gravity Injection	
34-148	Case 3BL-2: Reactor Pressure Vessel to Cavity Water Heat Transfer	
	DVI Line Break with Failed Gravity Injection	
34-149	Case 3BL-2: In-Vessel Hydrogen Generation DVI Line Break with	· · · · ·
	Failed Gravity Injection	
34-150	Case 3BL-2: Mass Fraction of CsI Released to Containment DVI	
	Line Break with Failed Gravity Injection	
34-151	Case 3BL-2: Mass Fraction of Noble Gases Released to Environment	
	DVI Line Break with Failed Gravity Injection	34-127
34-152	Case 3BL-2: Mass Fraction of Fission Products Released to Environment	
	DVI Line Break with Failed Gravity Injection	
34-153	Case 3BL-2: Mass Fraction of SrO Released to Environment DVI	
04.154	Line Break with Failed Gravity Injection	
34-154	Case 3BR-1: Reactor Coolant System and Steam Generator Pressure	
04 155	CL LBLOCA to Loop Compartment 2/2 Gravity Injection/Recirculation Lin	es34-128
34-155	Case 3BR-1: ADS Stage 4 Flow Rates CL LBLOCA to Loop	04 100
04.1 <i>60</i>	Compartment 2/2 Gravity Injection/Recirculation Lines	
34-130	Case 3BR-1: Accumulator/CM1 water Mass CL LBLOCA to Loop	24 100
0A 157	Compariment 2/2 Gravity Injection/Recirculation Lines	
34-157	Case 3BR-1: IRWS1 Injection Flow Rate CL LBLOCA to Loop	24 170
24 150	Compariment 2/2 Gravity Injection/Recirculation Lines	
34-138	Case 3DK-1: Break Flow Kate CL LBLUCA to Loop Compartment	24 120
24 160	2/2 Gravity Injection/Kecifculation Lines	
54-139	Case 3BK-1: Reactor Vessel water Level CL LBLUCA to Loop	A4 104
	Compariment 2/2 Gravity Injection/Recirculation Lines	

lxi

AP1000 Probabilistic Risk Assessment

<u>Figure No.</u>	Title	Page
34-160	Case 3BR-1: Core Temperatures CL LBLOCA to Loop	
	Compartment 2/2 Gravity Injection/Recirculation Lines	
34-161	Case 3BR-1: Containment Water Pool Elevations CL LBLOCA to	
	Loop Compartment 2/2 Gravity Injection/Recirculation Lines	
34-162	Case 3BR-1: Containment Pressure CL LBLOCA to Loop	
	Compartment 2/2 Gravity Injection/Recirculation Lines	
34-163	Case 3BR-1: Containment Gas Temperature CL LBLOCA to Loop	
	Compartment 2/2 Gravity Injection/Recirculation Lines	34-133
34-164	Case 3BR-1: Core Mass CL LBLOCA to Loop Compartment 2/2	
	Gravity Injection/Recirculation Lines	
34-165	Case 3BR-1: Reactor Pressure Vessel to Cavity Water Heat Transfer	
	CL LBLOCA to Loop Compartment 2/2 Gravity Injection/Recirculation	
	Lines	
34-166	Case 3BR-1: In-Vessel Hydrogen Generation CL LBLOCA to Loop	
	Compartment 2/2 Gravity Injection/Recirculation Lines	
34-167	Case 3BR-1: Mass Fraction of CsI Released to Containment	
	CL LBLOCA to Loop Compartment 2/2 Gravity Injection/Recirculation	
	Lines	
34-168	Case 3BR-1: Mass Fraction of Noble Gases Released to Environment	
	CL LBLOCA to Loop Compartment 2/2 Gravity Injection/Recirculation	
	Lines	
34-169	Case 3BR-1: Mass Fraction of Fission Products Released to Environment	
	CL LBLOCA to Loop Compartment 2/2 Gravity Injection/Recirculation	
	Lines	
34-170	Case 3BR-1: Mass Fraction of SrO Released to Environment CL LBLOCA	
	to Loop Compartment 2/2 Gravity Injection/Recirculation Lines	
34-171	Case 3BR-1a: Reactor Coolant System and Steam Generator Pressure	
	CL LBLOCA with Failed Accumulators	
34-172	Case 3BR-1a: ADS Stage 4 Flow Rates CL LBLOCA with Failed	
	Accumulators	
34-173	Case 3BR-1a: Accumulator/CMT Water Mass CL LBLOCA with	
	Failed Accumulators	
34-174	Case 3BR-1a: IRWST Injection Flow Rate CL LBLOCA with Failed	
	Accumulators	
34-175	Case 3BR-1a: Break Flow Rate CL LBLOCA with Failed Accumulators	
34-176	Case 3BR-1a: Reactor Vessel Water Level CL LBLOCA with Failed	
	Accumulators	
34-177	Case 3BR-1a: Core Temperatures CL LBLOCA with Failed Accumulators	
34-178	Case 3BR-1a: Containment Water Pool Elevations CL LBLOCA	-
	with Failed Accumulators	
34-179	Case 3BR-1a: Containment Pressure CL LBLOCA with Failed	
	Accumulators	34-141

AP1000 Probabilistic Risk Assessment

# LIST OF FIGURES (Cont.)

Figure No.	Title	Page
34-180	Case 3BR-1a: Containment Gas Temperature CL LBLOCA with	
	Failed Accumulators	
34-181	Case 3BR-1a: Core Mass CL LBLOCA with Failed Accumulators	34-142
34-182	Case 3BR-1a: Reactor Pressure Vessel to Cavity Water Heat Transfer	
	CL LBLOCA with Failed Accumulators	
34-183	Case 3BR-1a: In-Vessel Hydrogen Generation CL LBLOCA with	·····
0.100	Failed Accumulators	
34-184	Case 3BR-1a: Mass Fraction of CsI Released to Containment	
51101	CLLBLOCA with Failed Accumulators	34-143
34-185	Case 3BR-1a: Mass Fraction of Noble Gases Released to Environment	
0.1100	CLUBLOCA with Failed Accumulators	34-144
34-186	Case 3BR-1a: Mass Fraction of Fission Products Released to Environment	
5.100	CLUBLOCA with Failed Accumulators	34-144
34-187	Case 3BR-1a: Mass Fraction of StO Released to Environment CL LBLOCA	
54-107	with Failed Accumulators	34-145
34-188	Case 3C-1: Reactor Coolant System and Steam Generator Pressure	
J7-100	Vascal Puntura	34-145
34-180	Case 3C-1. ADS Stage & Flow Pater Vescel Punture	34_146
34-100	Case 3C-1. ADS Stage + 110W Rates Vessel Rupule	34-146
34-190	Case 3C-1: IPWST Injection Flow Pate Vessel Rupture	34-147
34-191	Case 3C-1. Repet Flow Pate Vessel Punture	34_147
24 102	Case 2C 1: Decator Vessel Water Level Vessel Dupture	2/14/
34-193	Case 3C-1. Core Temperatures Vessel Punture	3/_1/8
24 105	Case 2C 1: Containment Water Bool Elevations Vessel Pupture	24.140
34-195	Case 2C 1: Containment Pressure Vessel Punture	3/_1/0
24-190 24 107	Case 3C-1: Containment Gas Temperature Vessel Ruplure	24 150
34-197 34-108	Case 3C-1: Containinent Gas Temperature Vesser Rupture	34-150
24.100	Case 2C-1: Deactor Pressure Vessel to Cavity Water Heat Transfer	
34-199	Vascal Dupture	24 151
24 200	Case 20 1. In Vaccal Hydrogen Conception Vaccal Durburg	24 151
34-200	Case 2C 1: Mean Emotion of Col Balanced to Containment Vessel Buntum	
24-201	Case 3C-1: Mass Fraction of Usik Released to Containment Vessel Rupture	
54-202	Case 3C-1: Mass Fraction of Noble Gas Released to Environment vessel	24 152
24.002	Kupture	
34-203	Case 3C-1: Mass Fraction of Fission Products Released to Environment	24 152
24.004	Vessel Rupture	
34-204	Case 3C-1: Mass Fraction of SFO Released to Environment Vessel Rupture	
34-205	Case 3C-2: Reactor Coolant System and Steam Generator Pressure Vessel	24 154
24.000	Kupture with Containment Failure	
54-206	Case 3C-2: ADS Stage 4 Flow Kates Vessel Kupture with Containment	04 184
34-207	Case 3C-2: Accumulator/CMT Water Mass Vessel Rupture with	<u> </u>
	Containment Failure	34-155

<u>Figure No.</u>	Title	<u>Page</u>
34-208	Case 3C-2: IRWST Injection Flow Rate Vessel Rupture with	
	Containment Failure	
34-209	Case 3C-2: Break Flow Rate Vessel Rupture with Containment Failure	
34-210	Case 3C-2: Reactor Vessel Water Level Vessel Rupture with	
	Containment Failure	34-156
34-211	Case 3C-2: Core Temperatures Vessel Rupture with Containment Failure	34-157
34-212	Case 3C-2: Containment Water Pool Elevations Vessel Rupture with	
	Containment Failure	34-157
34-213	Case 3C-2: Containment Pressure Vessel Rupture with Containment	
	Failure	34-158
34-214	Case 3C-2: Containment Gas Temperature Vessel Rupture with	
	Containment Failure	
34-215	Case 3C-2: Core Mass Vessel Rupture with Containment Failure	34-159
34-216	Case 3C-2: Reactor Pressure Vessel to Cavity Water Heat Transfer	
	Vessel Rupture with Containment Failure	34-159
34-217	Case 3C-2: In-Vessel Hydrogen Generation Vessel Rupture with	
	Containment Failure	34-160
34-218	Case 3C-2: Mass Fraction of CsI Released to Containment Vessel	
	Rupture with Containment Failure	
34-219	Case 3C-2: Mass Fraction of Noble Gases Released to Environment	
	Vessel Rupture with Containment Failure	
34-220	Case 3C-2: Mass Fraction of Fission Products Released to Environment	
	Vessel Rupture with Containment Failure	
34-221	Case 3C-2: Mass Fraction of SrO Released to Environment Vessel	
	Rupture with Containment Failure	34-162
34-222	Case 3D-1: Reactor Coolant System and Steam Generator Pressure	
	Spurious ADS-4 with Failed CMTs	34-162
34-223	Case 3D-1: ADS Stage 4 Flow Rates Spurious ADS-4 with Failed CMTs	
34-224	Case 3D-1: Accumulator/CMT Water Mass Spurious ADS-4 with	
	Failed CMTs	
34-225	Case 3D-1: IRWST Injection Flow Rate Spurious ADS-4 with Failed	
	CMTs	
34-226	Case 3D-1: Break Flow Rate Spurious ADS-4 with Failed CMTs	
34-227	Case 3D-1: Reactor Vessel Water Level Spurious ADS-4 with Failed	
	CMTs	
34-228	Case 3D-1: Core Temperatures Spurious ADS-4 with Failed CMTs	
34-229	Case 3D-1: Containment Water Pool Elevations Spurious ADS-4 with	
	Failed CMTs	
34-230	Case 3D-1: Containment Pressure Spurious ADS-4 with Failed CMTs	
34-231	Case 3D-1: Containment Gas Temperature Spurious ADS-4 with Failed	
	CMTs	
34-232	Case 3D-1: Core Mass Spurious ADS-4 with Failed CMTs	34-167

AP1000 Probabilistic Risk Assessment

# LIST OF FIGURES (Cont.)

in the second

Figure No.	Title	Page
34-233	Case 3D-1: Reactor Pressure Vessel to Cavity Water Heat Transfer	· ·
	Spurious ADS-4 with Failed CMTs	34-168
34-234	Case 3D-1: In-Vessel Hydrogen Generation Spurious ADS-4 with	
	Failed CMTs	34-168
34-235	Case 3D-1: Mass Fraction of CsI Released to Containment Spurious	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 19
	ADS-4 with Failed CMTs	34-169
34-236	Case 3D-1: Mass Fraction of Noble Gases Released to Environment	
	Spurious ADS-4 with Failed CMTs	34-169
34-237	Case 3D-1: Mass Fraction of Fission Products Released to Environment	
	Spurious ADS-4 with Failed CMTs	34-170
34-238	Case 3D-1: Mass Fraction of SrO Released to Environment Spurious	
	ADS-4 with Failed CMTs	34-170
34-239	Case 3D-2: Reactor Coolant System and Steam Generator Pressure	
	Spurious ADS-2 with Failed CMTs	34-171
34-240	Case 3D-2: ADS Stage 4 Flow Rates Spurious ADS-2 with Failed CMTs	34-171
34-241	Case 3D-2: Accumulator/CMT Water Mass Spurious ADS-2 with	
	Failed CMTs	34-172
34-242	Case 3D-2: IRWST Injection Flow Rate Spurious ADS-2 with Failed CMTs	34-172
34-243	Case 3D-2: Break Flow Rate Spurious ADS-2 with Failed CMTs	34-173
34-244	Case 3D-2: Reactor Vessel Water Level Spurious ADS-2 with Failed CMTs	34-173
34-245	Case 3D-2: Core Temperatures Spurious ADS-2 with Failed CMTs	34-174
34-246	Case 3D-2: Containment Pool Water Elevations Spurious ADS-2 with	
	Failed CMTs	34-174
34-247	Case 3D-2: Containment Pressure Spurious ADS-2 with Failed CMTs	34-175
34-248	Case 3D-2: Containment Gas Temperature Spurious ADS-2 with Failed	
	CMTs	34-175
34-249	Case 3D-2: Core Mass Spurious ADS-2 with Failed CMTs	34-176
34-250	Case 3D-2: Reactor Pressure Vessel to Cavity Water Heat Transfer	
	Spurious ADS-2 with Failed CMTs	34-176
34-251	Case 3D-2: In-Vessel Hydrogen Generation Spurious ADS-2 with	
	Failed CMTs	34-177
34-252	Case 3D-2: Mass Fraction of CsI Released to Containment Spurious	
	ADS-2 with Failed CMTs	34-177
34-253	Case 3D-2: Mass Fraction of Noble Gas Released to Environment	
	Spurious ADS-2 with Failed CMTs	34-178
34-254	Case 3D-2: Mass Fraction of Fission Products Released to Environment	
	Spurious ADS-2 with Failed CMTs	34-178
34-255	Case 3D-2: Mass Fraction of SrO Released to Environment Spurious	
	ADS-2 with Failed CMTs	34-179
34-256	Case 3D-3: Reactor Coolant System and Steam Generator Pressure	
	DVI Line Break with Failed ADS	
34-257	Case 3D-3. ADS Stage 4 Flow Rates DVI Line Break with Failed ADS	
54-251	Care of 2. 1100 parts - 1104 1400 p 11 rais picar with 1 mon 1100	

### Figure No. Title Page Case 3D-3: Accumulator/CMT Water Mass DVI Line Break with 34-258 34-259 34-260 34-261 34-262 Case 3D-3: Containment Water Pool Elevations DVI Line Break with 34-263 34-264 34-265 Case 3D-3: Containment Gas Temperature DVI Line Break with Failed 34-266 Case 3D-3: Reactor Pressure Vessel to Cavity Water Heat Transfer 34-267 Case 3D-3: In-Vessel Hydrogen Generation DVI Line Break with 34-268 Case 3D-3: Mass Fraction of CsI Released to Containment DVI 34-269 34-270 Case 3D-3: Mass Fraction of Noble Gases Released to Environment Case 3D-3: Mass Fraction of Fission Products Released to Environment 34-271 Case 3D-3: Mass Fraction of SrO Released to Environment DVI 34-272 34-273 Case 3D-4: Reactor Coolant System and Steam Generator Pressure 34-274 Case 3D-4: ADS Stage 4 Flow Rates Spurious ADS-2, Failed CMTs, 34-275 Case 3D-4: Accumulator/CMT Water Mass Spurious ADS-2, Failed CMTs, 34-276 Case 3D-4: IRWST Injection Flow Rate Spurious ADS-2, Failed CMTs, 34-277 Case 3D-4: Break Flow Rate Spurious ADS-2, Failed CMTs, Diffusion 34-278 Case 3D-4: Reactor Vessel Water Level Spurious ADS-2, Failed CMTs, 34-279 Case 3D-4: Core Temperatures Spurious ADS-2, Failed CMTs, 34-280 Case 3D-4: Containment Water Pool Elevations Spurious ADS-2, 34-281 Case 3D-4: Containment Pressure Spurious ADS-2, Failed CMTs.

lxvi

**AP1000 Probabilistic Risk Assessment** 

## LIST OF FIGURES (Cont.)

#### Figure No. Title Page 34-282 Case 3D-4: Containment Gas Temperature Spurious ADS-2, Failed CMTs, 34-283 34-284 Case 3D-4: Reactor Pressure Vessel to Cavity Water Heat Transfer 34-285 Case 3D-4: In-Vessel Hydrogen Generation Spurious ADS-2, Failed 34-286 Case 3D-4: Mass Fraction of CsI Released to Containment Spurious Case 3D-4: Mass Fraction of Noble Gases Released to Environment 34-287 34-288 Case 3D-4: Mass Fraction of Fission Products Released to Environment Case 3D-4: Mass Fraction of SrO Release to Environment Spurious 34-289 Case 6E-1: Reactor Coolant System and Steam Generator Pressure 34-290 34-291 34-292 34-293 34-294 34-295 34-296 34-297 34-298 34-299 34-300 34-301 Case 6E-1: Reactor Pressure Vessel to Cavity Water Heat Transfer SGTR 34-302 34-303 Case 6E-1: Mass Fraction of CsI Released to Containment SGTR Early 34-304 Case 6E-1: Mass Fraction of Noble Gases Released to Environment 34-305 Case 6E-1: Mass Fraction of Fission Products Released to Environment Case 6E-1: Mass Fraction of SrO Released to Environment SGTR 34-306 34-307 Case 6L-1: Reactor Coolant System and Steam Generator Pressure Case 6L-1: ADS Stage 4 Flow Rates SGTR Core Melt Failure at 34-308

lxvii

Figure No.	Title	Page [
34-309	Case 6L-1: Accumulator/CMT Water Mass SGTR Core Melt Failure	
	at Recirculation	34-206
34-310	Case 6L-1: IRWST Injection Flow Rate SGTR Core Melt Failure	
	at Recirculation	34-206
34-311	Case 6L-1: Break Flow Rate SGTR Core Melt Failure at Recirculation	34-207
34-312	Case 6L-1: Reactor Vessel Water Level SGTR Core Melt Failure at	
	Recirculation	
34-313	Case 6L-1: Core Temperatures SGTR Core Melt Failure at Recirculation	34-208
34-314	Case 6L-1: Containment Water Pool Elevations SGTR Core Melt	
	Failure at Recirculation	34-208
34-315	Case 6L-1: Containment Pressure SGTR Core Melt Failure at	
34-316	Case 6L-1: Containment Gas Temperature SGTR Core Melt Failure at	24.000
24.217	Recirculation	
34-317	Case 6L-1: Core Mass SGIR Core Melt Failure at Recirculation	
34-318	Case 6L-1: Reactor Pressure Vessel to Cavity water Heat Transfer	24 010
24 210	SGIR Core Meil Failure at Recirculation	
34-319	case of reliable to the set of th	24 011
24 220	at Recifculation	
34-320	Case OL-1. Mass Flaction of Csi Released to Containment SOTR	24 011
34-321	Core 61.1: Mass Fraction of Noble Cases Beleased to Environment	
54-521	Case of -1. Mass Flaction of Noble Gases Released to Environment	34-212
34-322	Case 61 -1: Mass Fraction of Fission Products Released to Environment	
54-522	SGTR Core Melt Failure at Reciprulation	34-212
34-323	Case 6L-1. Mass Fraction of SrO Released to Environment SGTR	
54 525	Core Melt Failure at Recirculation	34-213
34-324	Case 1AP-1: Reactor Coolant System and Steam Generator Pressure	
01021	SBLOCA with PRHR. CMTs Failed	34-213
34-325	Case 1AP-1: ADS Stage 4 Flow Rates SBLOCA with PRHR. CMTs Failed	34-214
34-326	Case 1AP-1: Accumulator/CMT Water Mass SBLOCA with PRHR.	
	CMTs Failed	
34-327	Case 1AP-1: IRWST Injection Flow Rate SBLOCA with PRHR.	
	CMTs Failed	
34-328	Case 1AP-1: Break Flow Rate SBLOCA with PRHR. CMTs Failed	
34-329	Case 1AP-1: Reactor Vessel Water Level SBLOCA with PRHR.	
	CMTs Failed	
34-330	Case 1AP-1: Core Temperatures SBLOCA with PRHR. CMTs Failed	
34-331	Case 1AP-1: Containment Pool Water Elevations SBLOCA with PRHR.	
-	CMTs Failed	
34-332	Case 1AP-1: Containment Pressure SBLOCA with PRHR, CMTs Failed	
34-333	Case 1AP-1: Containment Gas Temperature SBLOCA with PRHR.	
	CMTs Failed	34-218

## LIST OF FIGURES (Cont.)

### Figure No. Title Page 34-334 34-335 Case 1AP-1: Reactor Pressure Vessel to Cavity Water Heat Transfer Case 1AP-1: In-Vessel Hydrogen Generation SBLOCA with PRHR. 34-336 Case 1AP-1: Mass Fraction of CsI Released to Containment SBLOCA 34-337 34-338 Case 1AP-1: Mass Fraction of Noble Gases Released to Environment Case 1AP-1: Mass Fraction of Fission Products Released to Environment 34-339 Case 1AP-1: Mass Fraction of SrO Released to Environment SBLOCA 34-340 34-341 Case 1AP-2: Reactor Coolant System and Steam Generator Pressure Case 1AP-2: ADS Stage 4 Flow Rates SBLOCA with PRHR. 34-342 34-343 Case 1AP-2: Accumulator/CMT Water Mass SBLOCA with PRHR, 34-344 Case 1AP-2: IRWST Injection Flow Rate SBLOCA with PRHR. 34-345 34-346 Case 1AP-2: Reactor Vessel Water Level SBLOCA with PRHR, 34-347 Case 1AP-2: Containment Water Pool Elevations SBLOCA with PRHR. 34-348 34-349 34-350 Case 1AP-2: Containment Gas Temperature SBLOCA with PRHR, 34-351 Case 1AP-2: Reactor Pressure Vessel to Cavity Water Heat Transfer 34-352 34-353 Case 1AP-2: In-Vessel Hydrogen Generation SBLOCA with PRHR, Case 1AP-2: Mass Fraction of CsI Released to Containment SBLOCA 34-354 Case 1AP-2: Mass Fraction of Noble Gases Released to Environment 34-355 34-356 Case 1AP-2: Mass Fraction of Fission Products Released to Environment Case 1AP-2: Mass Fraction of SrO Released to Environment SBLOCA 34-357

#### Figure No. Title **Page** Case 1A-1: Reactor Coolant System and Steam Generator Pressure 34-358 34-359 34-360 Case 1A-1: Accumulator/CMT Water Mass Transient with Creep of 34-361 34-362 34-363 34-364 34-365 Case 1A-1: Containment Pool Water Elevations Transient with Creep of 34-366 34-367 Case 1A-1: Containment Gas Temperature Transient with Creep of 34-368 34-369 Case 1A-1: Reactor Pressure Vessel to Cavity Water Heat Transfer Case 1A-1: In-Vessel Hydrogen Generation Transient with Creep of 34-370 34-371 Case 1A-1: Mass Fraction of CsI Released to Containment Transient 34-372 Case 1A-1: Mass Fraction of Noble Gases Released to Environment 34-373 Case 1A-1: Mass Fraction of Fission Products Released to Environment 34-374 Case 1A-1: Mass Fraction of SrO Released to Environment Transient 34-375 Case 1A-2: Reactor Coolant System and Steam Generator Pressure 34-376 34-377 Case 1A-2: Accumulator/CMT Water Mass Transient with Creep of 34-378 34-379 34-380 34-381 34-382 Case 1A-2: Containment Water Pool Elevations Transient with Creep 34-383 34-384 Case 1A-2: Containment Gas Temperature Transient with Creep of 34-385

AP1000 Probabilistic Risk Assessment

## LIST OF FIGURES (Cont.)

.

Figure No.	Title	Page
34-386	Case 1A-2: Reactor Pressure Vessel to Cavity Water Heat Transfer	
	Transient with Creep of SG Tubes	34-244
34-387	Case 1A-2: In-Vessel Hydrogen Generation Transient with Creep of	
	SG Tubes	34-245
34-388	Case 1A-2: Mass Fraction of CsI Released to Containment Transient	
	with Creep of SG Tubes	34-245
34-389	Case 1A-2: Mass Fraction of Noble Gases Released to Environment	1977 - A
* •	Transient with Creep of SG Tubes	34-246
34-390	Case 1A-2: Mass Fraction of Fission Products Released to Environment	11000
	Transient with Creep of SG Tubes	34-246
34-391	Case 1A-2: Mass Fraction of SrO Released to Environment Transient	
	with Creep of SG Tubes	34-247
34-392	Case 3BE-1: Containment Pressure DDT Intermediate Containment Failure	34-247
34-393	Case 3BE-1: Containment Gas Temperature DDT Intermediate	
	Containment Failure	34-248
34-394	Case 3BE-1: Containment Hydrogen Concentration DDT Intermediate	
	Containment Failure	34-248
34-395	Case 3BE-1: Noble Gases Release Fraction DDT Intermediate	
	Containment Failure	34-249
34-396	Case 3BE-1: CsI and RbI Release Fraction DDT Intermediate	
	Containment Failure	34-249
34-397	Case 3BE-1: TeO ₂ Release Fraction DDT Intermediate Containment Failure	34-250
34-398	Case 3BE-1: Sr0 Release Fraction DDT Intermediate Containment Failure	34-250
34-399	Case 3BE-1: Mo0 ₂ Release Fraction DDT Intermediate Containment Failure	34-251
34-400	Case 3BE-1: Cs0H and Rb0H Release Fraction DDT Intermediate	
	Containment Failure	34-251
34-401	Case 3BE-1: Ba0 Release Fraction DDT Intermediate Containment Failure	34-252
34-402	Case 3BE-1: La ₂ 0 ₃ Release Fraction DDT Intermediate Containment Failure	34-252
34-403	Case 3BE-1: CeO ₂ Release Fraction DDT Intermediate Containment Failure	34-253
34-404	Case 3BE-1: Sb Release Fraction DDT Intermediate Containment Failure	34-253
34-405	Case 3BE-1: Te ₂ Release Fraction DDT Intermediate Containment Failure	34-254
34-406	Case 3BE-1: U0 ₂ Release Fraction DDT Intermediate Containment Failure	34-254
34-407	Case 3BE-1: RCS Pressure No PCS Water Cooling and Late Containment	
	Failure	34-255
34-408	Case 3BE-1: Reactor Vessel Mixture Level No PCS Water Cooling and Late	
· · ·	Containment Failure	34-255
34-409	Case 3BE-1: Core-Exit Temperature No PCS Water Cooling and Late	
	Containment Failure	34-256
34-410	Case 3BE-1: In-Vessel Hydrogen Generation No PCS Water Cooling and Late	
-	Containment Failure	34-256
34-411	Case 3BE-1: Containment Pressure No PCS Water Cooling and Late	
	Containment Failure	34-257

<u>Figure No.</u>	<u>Title</u> <u>P</u> :	<u>age</u>
34-412	Case 3BE-1: Containment Gas Temperature No PCS Water Cooling and Late	257
34-413	Case 3BE-1: Containment Hydrogen Concentration No PCS Water Cooling and Late Containment Failure	258
34-414	Case 3BE-1: Noble Gas Release Fraction No PCS Water Cooling and Late Containment Failure	258
34-415	Case 3BE-1: CsI and RbI Release Fraction No PCS Water Cooling and Late Containment Failure	259
34-416	Case 3BE-1: TeO ₂ Release Fraction No PCS Water Cooling and Late Containment Failure	259
34-417	Case 3BE-1: Sr0 Release Fraction No PCS Water Cooling and Late Containment Failure	260
34-418	Case 3BE-1: Mo0 ₂ Release Fraction No PCS Water Cooling and Late Containment Failure	260
34-419	Case 3BE-1: Cs0H and Rb0H Release Fraction No PCS Water Cooling and Late Containment Failure 34-7	261
34-420	Case 3BE-1: Ba0 Release Fraction No PCS Water Cooling and Late Containment Failure 34-7	261
34-421	Case 3BE-1: La ₂ 0 ₃ Release Fraction No PCS Water Cooling and Late	262
34-422	Case 3BE-1: CeO ₂ Release Fraction No PCS Water Cooling and Late	262
34-423	Case 3BE-1: Sb Release Fraction No PCS Water Cooling and Late Containment Failure	263
34-424	Case 3BE-1: Te ₂ Release Fraction No PCS Water Cooling and Late	263
34-425	Case 3BE-1: U0 ₂ Release Fraction No PCS Water Cooling and Late Containment Failure	264
35-1	Containment Event Tree	-29
36-1	AP1000 Accident Class 1A Base Case for Node DP Success – RCS Pressure	6-7
36-2	AP1000 Accident Class 1A Base Case for Node DP Success – Core-Exit Gas Temperature	6-8
36-3	AP1000 Accident Class 1A Base Case for Node DP Success – Steam Generator Tube Creep Damage	6-9
36-4	AP1000 Steam Generator Tube Rupture with PRHR and Stuck-Open SV – Passive RHR Heat Removal	-10
36-5	AP1000 Steam Generator Tube Rupture with PRHR and Stuck-Open SV – Core Makeup Tank Flow (one tank)	-11
36-6	AP1000 Steam Generator Tube Rupture with PRHR and Stuck-Open SV – Reactor Coolant System Pressure	-12
# LIST OF FIGURES (Cont.)

1

人名 法管

Figure No.	Title	Page
36-7	AP1000 Steam Generator Tube Rupture with PRHR and Stuck-Open SV –	
	Core-Exit Gas Temperature	36-13
39-1	AP1000 Base Case In-Vessel Retention of Molten Core Debris	39-23
39-2	AP1000 Core Shroud	39-24
39-3	Comparison of ULPU-2000 Configuration III and ULPU-2000 Configuration IV.	39-25
39-4	Effect of Water Level on Water Circulation During IVR	39-26
39-5	ULPU-2000 Configuration IV Results (Reference 39-4)	39-27
39-6	AP1000 In-Vessel Retention of Molten Core Debris Quantification Zirconium	
- • •	Oxidation Fraction Input Probability Distribution	39-28
39-7	AP1000 In-Vessel Retention of Molten Core Debris Quantification Mass of	
	Steel in Debris Input Probability Distribution	
39-8	AP1000 In-Vessel Retention of Molten Core Debris Quantification Time of	(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
	Final Bounding State Input Probability Distribution	
39-9	AP1000 In-Vessel Retention of Molten Core Debris Quantification Height of	
	the Oxide Laver	39-31
39-10	AP1000 In-Vessel Retention of Molten Core Debris Quantification Height of	
57 10	the Metal I aver	30.32
30_11	AP1000 In-Vessel Retention of Molten Core Debris Quantification Power	····· <i>································</i>
JJ-11	Density in Oxide Debris	30-33
20 12	A D1000 In Vessel Detention of Molten Core Debris Quantification Internal	
37-12	Ar 1000 III-Vessel Retention of Molech Core Debits Quantification Internal	20 24
20.12	AB1000 In Vessel Detention of Molton Com Dahris Quantification External	
39-13	AF 1000 In-Vessel Retention of Molen Core Deons Quantification External	20.25
20.14	A D1000 in Vessel Detention of Melter Core Debuie Quantification	
39-14	AP1000 In-Vessel Retention of Molten Core Deoris Quanufication	20.26
20.15	A D1000 Descine Care Carling Senter	
39-15	AP1000 Passive Core Cooling System	
39-10	Containment Floodable Region	
39-17	Containment Ploodable Region – Exploded View	
39-18	AP1000 Cavity Flooding Kate	39-40
39-19	Schematic of the AP1000 Reactor Vessel, Vessel Cavity, Vessel Insulation,	
	and Vents	39-41
39A-1	AP1000 Reactor Pressure Vessel, Core and Lower Internals	39A-21
39A-2	Core Shroud	39A-22
39A-3	Bottom of Core Shroud, Core Barrel, and Lower Core Support Plate	
	(Not to Scale)	39A-23
39A-4	Axial Power Shapes Used for Core Relocation Analysis	39A-24
39A-5	Radial Power Shape Used for Core Relocation Analysis	39A-25
39A-6	Cross Section Geometry of Finite Difference Computational Model	39A-26
39A-7	Computational Mesh for Finite Difference Computational Model	39A-27
39A-8	MAAP4 AP1000 Core Melting and Relocation, Top-Skewed Power Shape	
	Reactor - Coolant System Pressure	39A-28
	•	

lxxiii

Figure No.	<u>Title</u>	<u>Page</u>
39A-9	MAAP4 AP1000 Core Melting and Relocation, Top-Skewed Power Shape	
	Containment and Reactor Coolant System Pressure	39A-28
39A-10	MAAP4 AP1000 Core Melting and Relocation, Chopped Cosine Power	
	Shape – Reactor Vessel Mixture Level	39A-29
39A-11	MAAP4 AP1000 Core Melting and Relocation, Top-Skewed Power Shape –	
	Hottest Temperature in Core	39A-29
39A-12	MAAP4 AP1000 Core Melting and Relocation, Top-Skewed Power Shape –	
	Mass of Hydrogen Generated in Core	39A-30
39A-13	MAAP4 AP1000 Core Melting and Relocation, Top-Skewed Power Shape	
	Temperature of Core Shroud/Barrel (Core Elevation 1.7 – 2.0 m)	39A-30
39A-14	MAAP4 AP1000 Core Melting and Relocation, Top-Skewed Power Shape	
	Temperature of Core Shroud/Barrel (Core Elevation 2.0 – 2.3 m)	39A-31
39A-15	MAAP4 AP1000 Core Melting and Relocation, Top-Skewed Power Shape -	
	Mass of Core Shroud/Barrel	39A-31
39A-16	MAAP4 AP1000 Core Melting and Relocation, Top-Skewed Power Shape	
	Volume of Debris in Reactor Vessel Lower Plenum	39A-32
39A-17	MAAP4 AP1000 Core Melting and Relocation, Chopped Cosine Power	
	Shape – Reactor Coolant System Pressure	39A-32
39A-18	MAAP4 AP1000 Core Melting and Relocation, Chopped Cosine Power	
	Shape – Containment and Reactor Coolant System Pressure	39A-33
39A-19	MAAP4 AP1000 Core Melting and Relocation, Chopped Cosine Power	
	Shape – Reactor Vessel Mixture Level	39A-33
39A-20	MAAP4 AP1000 Core Melting and Relocation, Chopped Cosine Power	
	Shape – Hottest Temperature in Core	39A-34
39A-21	MAAP4 AP1000 Core Melting and Relocation, Chopped Cosine Power	
	Shape – Mass of Hydrogen Generated in Core	39A-34
39A-22	MAAP4 AP1000 Core Melting and Relocation, Chopped Cosine Power Shape	
	Temperature of Core Shroud/Barrel (Core Elevation 1.1 – 1.4 m)	39A-35
39A-23	MAAP4 AP1000 Core Melting and Relocation, Chopped Cosine Power Shape	
	Temperature of Core Shroud/Barrel (Core Elevation 1.4 – 1.7 m)	39A-35
39A-24	MAAP4 AP1000 Core Melting and Relocation, Chopped Cosine Power	
	Shape – Mass of Core Shroud/Barrel	39A-36
39A-25	MAAP4 AP1000 Core Melting and Relocation. Chopped Cosine Power	
	Shape Volume of Debris in Reactor Vessel Lower Plenum	39A-36
39A-26	Initial Oxide Relocation to Lower Plenum	
39A-27	Finite Difference Result for Top-Skewed Power Shape at Level 5	39A-38
39A-28	Finite Difference Temperature Man Level 5 at 5380 Seconds for	
	Ton-Skewed Power Shape Case	
39A-29	MAAP4 Core Temperature Profile for Ton-Skewed Power Shape Core	
	Elevation = $2.0 - 2.3$ m Above Bottom of Active Fuel (Core Axial Row 12)	39A-39
39A-30	Relocation of Corium	
39A-31	Model for Relocation to Lower Plenum	39A-40

**AP1000 Probabilistic Risk Assessment** 

#### LIST OF FIGURES (Cont.)

ŧ 1.

#### Figure No. **Title** Page 40-1 40-2 40-3 40-4 AP1000 Containment Venting Loss of Containment Air ......40-10 40-5 40-6 IRWST Hydrogen Venting......41-36 41-1 Accident Class 3BE Early Detonation Decomposition Event Tree -41-2 . **'** Accident Class 3BE Early Detonation Decomposition Event Tree -41-3 41-4 Accident Class 3BL Early Detonation Decomposition Event Tree .......41-39 41-5 41-6 Accident Class 3D/1D Early Detonation Decomposition Event Tree......41-41 41-7 41-8 No Reflood Pre-Burn Containment Pressure Probability Density Function .......41-44 41-9 No-Reflood Hydrogen Deflagration Peak Pressure Probability.......41-45 41-10 41-11 Early Reflood Hydrogen Generation Probability Density Function.......41-46 41-12 Early Reflood Pre-Burn Containment Pressure Probability Density Function.......41-47 41-13 Early Reflood Hydrogen Deflagration Peak Pressure Probability.......41-48 41-14 41-15 41-16 41-17 Accident Class 3BE Intermediate Detonation Decomposition Event Tree -Accident Class 3BE Intermediate Detonation Decomposition Event Tree -41-18 41-19 41-20 41-21 Accident Class 3D/1D Intermediate Detonation Decomposition Event Tree ......41-56 41-22 41A-1 Case 3BE-1: Reactor Coolant System Pressure DVI Line Break for 41A-2 Case 3BE-1: Core-Exit Gas Temperature DVI Line Break for Case 3BE-1: Reactor Vessel Mixture Level DVI Line Break for 41A-3 Case 3BE-1: Hydrogen Generated In-Vessel DVI Line Break for 41A-4

lxxv

41A-5  Case 3BE-1: Containment Pressure DVI Line Break for Containment    41A-6  Case 3BE-1: Containment Gas Temperature DVI Line Break for    41A-6  Case 3BE-1: Containment Gas Temperature DVI Line Break for    41A-7  Case 3BE-1: Containment Compartments Water Level DVI Line Break for    41A-8  Case 3BE-1: Well-Mixed Compartment Hydrogen Concentration DVI Line    Break for Containment Water Level  41A-44    41A-9  Case 3BE-1: Well-Mixed Compartment Steam Concentration DVI Line    Break for Containment Water Level  41A-45    41A-10  Case 3BE-1: Well-Mixed Compartment Oxygen Concentration DVI Line    Break for Containment Water Level  41A-45    41A-11  Case 3BE-1: Confined Compartment Hydrogen Concentration DVI Line    Break for Containment Water Level  41A-46    41A-12  Case 3BE-1: Confined Compartment Steam Concentration DVI Line    Break for Containment Water Level  41A-46    41A-13  Case 3BE-1: Confined Compartment Steam Concentration DVI Line    Break for Containment Water Level  41A-47    41A-14  Case 3BE-1: Equivalence Ratio in CMT Room DVI Line Break for    Containment Water Level  41A-47    41A-15  Case 3BE-1: Equivalence Ratio in CMT Room DVI Line Break for	<u>Figure No.</u>	<u>Title</u>	Page
Water Level  41A-43    41A-6  Case 3BE-1: Containment Gas Temperature DVI Line Break for  41A-43    41A-7  Case 3BE-1: Containment Compartments Water Level DVI Line Break for  41A-43    41A-8  Case 3BE-1: Well-Mixed Compartment Hydrogen Concentration DVI Line  41A-44    41A-9  Case 3BE-1: Well-Mixed Compartment Steam Concentration DVI Line  41A-44    41A-9  Case 3BE-1: Well-Mixed Compartment Steam Concentration DVI Line  41A-45    41A-10  Case 3BE-1: Well-Mixed Compartment Oxygen Concentration DVI Line  41A-45    41A-10  Case 3BE-1: Confined Compartment Hydrogen Concentration DVI Line  41A-45    41A-11  Case 3BE-1: Confined Compartment Hydrogen Concentration DVI Line  41A-46    41A-12  Case 3BE-1: Confined Compartment Steam Concentration DVI Line  41A-46    41A-13  Case 3BE-1: Confined Compartment Oxygen Concentration DVI Line  41A-46    41A-13  Case 3BE-1: Confined Compartment Oxygen Concentration DVI Line  41A-47    41A-13  Case 3BE-1: Confined Compartment Oxygen Concentration DVI Line  41A-46    41A-13  Case 3BE-1: Equivalence Ratio in SG Room DVI Line Break for  41A-47    41A-16  Case 3BE-1: Equivalence Ratio in CMT Room DVI Line Break for  41A-48	41A-5	Case 3BE-1: Containment Pressure DVI Line Break for Containment	
41A-6  Case 3BE-1: Containment Gas Temperature DVI Line Break for Containment Water Level.		Water Level	41A-43
Containment Water Level.  41A-43    41A-7  Case 3BE-1: Containment Compartments Water Level DVI Line Break for    Containment Water Level.  41A-44    41A-8  Case 3BE-1: Well-Mixed Compartment Hydrogen Concentration DVI Line    Break for Containment Water Level.  41A-45    41A-9  Case 3BE-1: Well-Mixed Compartment Steam Concentration DVI Line    Break for Containment Water Level.  41A-45    41A-10  Case 3BE-1: Well-Mixed Compartment Oxygen Concentration DVI Line    Break for Containment Water Level.  41A-45    41A-11  Case 3BE-1: Confined Compartment Hydrogen Concentration DVI Line    Break for Containment Water Level.  41A-46    41A-12  Case 3BE-1: Confined Compartment Oxygen Concentration DVI Line    Break for Containment Water Level.  41A-46    41A-13  Case 3BE-1: Confined Compartment Oxygen Concentration DVI Line    Break for Containment Water Level.  41A-47    41A-13  Case 3BE-1: Confined Compartment Oxygen Concentration DVI Line    Break for Containment Water Level.  41A-47    41A-13  Case 3BE-1: Equivalence Ratio in SG Room DVI Line Break for    Containment Water Level.  41A-47    41A-14  Case 3BE-1: Equivalence Ratio in R	41A-6	Case 3BE-1: Containment Gas Temperature DVI Line Break for	
41A-7  Case 3BE-1: Containment Compartments Water Level DVI Line Break for Containment Water Level.		Containment Water Level	41A-43
Containment Water Level  41A-44    41A-8  Case 3BE-1: Well-Mixed Compartment Hydrogen Concentration DVI Line Break for Containment Water Level  41A-44    41A-9  Case 3BE-1: Well-Mixed Compartment Steam Concentration DVI Line Break for Containment Water Level  41A-45    41A-10  Case 3BE-1: Well-Mixed Compartment Oxygen Concentration DVI Line Break for Containment Water Level  41A-45    41A-11  Case 3BE-1: Confined Compartment Oxygen Concentration DVI Line Break for Containment Water Level  41A-46    41A-12  Case 3BE-1: Confined Compartment Steam Concentration DVI Line Break for Containment Water Level  41A-46    41A-13  Case 3BE-1: Confined Compartment Oxygen Concentration DVI Line Break for Containment Water Level  41A-46    41A-14  Case 3BE-1: Equivalence Ratio in SG Room DVI Line Break for Containment Water Level  41A-47    41A-15  Case 3BE-1: Equivalence Ratio in CMT Room DVI Line Break for Containment Water Level  41A-48    41A-16  Case 3BE-1: Equivalence Ratio in IRWST DVI Line Break for Containment Water Level  41A-49    41A-17  Case 3BE-1: Equivalence Ratio in PXS DVI Line Break with Failed Gravity Injection and No PXS Flooding  41A-49    41A-18  Case 3BE-2: Reactor Coolant System Pressure DVI Line Break with Failed Gravity Injection and No PXS Flooding  41A-50    41A-20  Case 3B	41A-7	Case 3BE-1: Containment Compartments Water Level DVI Line Break for	
41A-8  Case 3BE-1: Well-Mixed Compartment Hydrogen Concentration DVI Line Break for Containment Water Level  41A-44    41A-9  Case 3BE-1: Well-Mixed Compartment Steam Concentration DVI Line Break for Containment Water Level  41A-45    41A-10  Case 3BE-1: Well-Mixed Compartment Oxygen Concentration DVI Line Break for Containment Water Level  41A-45    41A-11  Case 3BE-1: Confined Compartment Hydrogen Concentration DVI Line Break for Containment Water Level  41A-46    41A-12  Case 3BE-1: Confined Compartment Steam Concentration DVI Line Break for Containment Water Level  41A-46    41A-13  Case 3BE-1: Confined Compartment Oxygen Concentration DVI Line Break for Containment Water Level  41A-46    41A-14  Case 3BE-1: Equivalence Ratio in SG Room DVI Line Break for Containment Water Level  41A-47    41A-14  Case 3BE-1: Equivalence Ratio in CMT Room DVI Line Break for Containment Water Level  41A-48    41A-16  Case 3BE-1: Equivalence Ratio in RWST DVI Line Break for Containment Water Level  41A-48    41A-16  Case 3BE-1: Equivalence Ratio in PXS DVI Line Break with Failed Gravity Injection and No PXS Flooding  41A-49    41A-18  Case 3BE-2: Core-Exit Gas Temperature DVI Line Break with Failed Gravity Injection and No PXS Flooding  41A-50    41A-20  Case 3BE-2: Containment Pressure DVI Line Break with Failed Gravity Injection and No PXS Flo		Containment Water Level	41A-44
Break for Containment Water Level.  41A.44    41A-9  Case 3BE-1: Well-Mixed Compartment Steam Concentration DVI Line    Break for Containment Water Level.  41A.45    41A-10  Case 3BE-1: Confined Compartment Oxygen Concentration DVI Line    Break for Containment Water Level.  41A.45    41A-11  Case 3BE-1: Confined Compartment Hydrogen Concentration DVI Line    Break for Containment Water Level.  41A.45    41A-12  Case 3BE-1: Confined Compartment Steam Concentration DVI Line Break for Containment Water Level.  41A.46    41A-13  Case 3BE-1: Confined Compartment Oxygen Concentration DVI Line Break for Containment Water Level.  41A.46    41A-13  Case 3BE-1: Equivalence Ratio in SG Room DVI Line Break for Containment Water Level.  41A.47    41A-14  Case 3BE-1: Equivalence Ratio in CMT Room DVI Line Break for Containment Water Level.  41A.48    41A-16  Case 3BE-1: Equivalence Ratio in RWST DVI Line Break for Containment Water Level.  41A.48    41A-16  Case 3BE-1: Equivalence Ratio in PXS DVI Line Break with Failed Gravity Injection and No PXS Flooding.  41A.49    41A-18  Case 3BE-2: Core-Exit Gas Temperature DVI Line Break with Failed Gravity Injection and No PXS Flooding.  41A.50    41A-20  Case 3BE-2: Conte-Exit Gas Temperature DVI Line Break with Failed Gra	41A-8	Case 3BE-1: Well-Mixed Compartment Hydrogen Concentration DVI Line	
41A-9  Case 3BE-1: Well-Mixed Compartment Steam Concentration DVI Line Break for Containment Water Level		Break for Containment Water Level	41A-44
Break for Containment Water Level  41A-45    41A-10  Case 3BE-1: Well-Mixed Compartment Oxygen Concentration DVI Line Break for Containment Water Level  41A-45    41A-11  Case 3BE-1: Confined Compartment Hydrogen Concentration DVI Line Break for Containment Water Level  41A-46    41A-12  Case 3BE-1: Confined Compartment Steam Concentration DVI Line Break for Containment Water Level  41A-46    41A-13  Case 3BE-1: Confined Compartment Oxygen Concentration DVI Line Break for Containment Water Level  41A-47    41A-14  Case 3BE-1: Equivalence Ratio in SG Room DVI Line Break for Containment Water Level  41A-47    41A-15  Case 3BE-1: Equivalence Ratio in CMT Room DVI Line Break for Containment Water Level  41A-47    41A-15  Case 3BE-1: Equivalence Ratio in IRWST DVI Line Break for Containment Water Level  41A-48    41A-16  Case 3BE-1: Equivalence Ratio in PXS DVI Line Break for Containment Water Level  41A-49    41A-17  Case 3BE-2: Reactor Coolant System Pressure DVI Line Break with Failed Gravity Injection and No PXS Flooding  41A-49    41A-19  Case 3BE-2: Cone-Exit Gas Temperature DVI Line Break with Failed Gravity Injection and No PXS Flooding  41A-50    41A-21  Case 3BE-2: Containment Pressure DVI Line Break with Failed Gravity Injection and No PXS Flooding  41A-51    41A-21  Case 3BE-2: C	41A-9	Case 3BE-1: Well-Mixed Compartment Steam Concentration DVI Line	
41A-10  Case 3BE-1: Well-Mixed Compartment Oxygen Concentration DVI Line Break for Containment Water Level.  41A-45    41A-11  Case 3BE-1: Confined Compartment Hydrogen Concentration DVI Line Break for Containment Water Level.  41A-46    41A-12  Case 3BE-1: Confined Compartment Steam Concentration DVI Line Break for Containment Water Level.  41A-46    41A-13  Case 3BE-1: Confined Compartment Oxygen Concentration DVI Line Break for Containment Water Level.  41A-47    41A-14  Case 3BE-1: Equivalence Ratio in SG Room DVI Line Break for Containment Water Level.  41A-47    41A-15  Case 3BE-1: Equivalence Ratio in CMT Room DVI Line Break for Containment Water Level.  41A-48    41A-15  Case 3BE-1: Equivalence Ratio in RWST DVI Line Break for Containment Water Level.  41A-48    41A-17  Case 3BE-1: Equivalence Ratio in PXS DVI Line Break for Containment Water Level  41A-48    41A-17  Case 3BE-1: Equivalence Ratio in PXS DVI Line Break with Failed Gravity Injection and No PXS Flooding.  41A-49    41A-19  Case 3BE-2: Core-Exit Gas Temperature DVI Line Break with Failed Gravity Injection and No PXS Flooding.  41A-50    41A-20  Case 3BE-2: Core-Exit Gas Temperature DVI Line Break with Failed Gravity Injection and No PXS Flooding.  41A-51    41A-21  Case 3BE-2: Containment Pressure DVI Line Break with Failed Gravity Injection and No PXS Floodin		Break for Containment Water Level	41A-45
Break for Containment Water Level.  41A-45    41A-11  Case 3BE-1: Confined Compartment Hydrogen Concentration DVI Line Break for Containment Water Level.  41A-46    41A-12  Case 3BE-1: Confined Compartment Steam Concentration DVI Line Break for Containment Water Level.  41A-46    41A-13  Case 3BE-1: Confined Compartment Oxygen Concentration DVI Line Break for Containment Water Level.  41A-46    41A-14  Case 3BE-1: Confined Compartment Oxygen Concentration DVI Line Break for Containment Water Level.  41A-47    41A-14  Case 3BE-1: Equivalence Ratio in SG Room DVI Line Break for Containment Water Level.  41A-47    41A-15  Case 3BE-1: Equivalence Ratio in CMT Room DVI Line Break for Containment Water Level.  41A-48    41A-16  Case 3BE-1: Equivalence Ratio in RWST DVI Line Break for Containment Water Level.  41A-48    41A-16  Case 3BE-1: Equivalence Ratio in PXS DVI Line Break for Containment Water Level  41A-49    41A-17  Case 3BE-2: Reactor Coolant System Pressure DVI Line Break with Failed Gravity Injection and No PXS Flooding.  41A-49    41A-20  Case 3BE-2: Core-Exit Gas Temperature DVI Line Break with Failed Gravity Injection and No PXS Flooding.  41A-50    41A-21  Case 3BE-2: Hydrogen Generated In-Vessel DVI Line Break with Failed Gravity Injection and No PXS Flooding.  41A-51    41A-22  <	41A-10	Case 3BE-1: Well-Mixed Compartment Oxygen Concentration DVI Line	
41A-11  Case 3BE-1: Confined Compartment Hydrogen Concentration DVI Line Break for Containment Water Level.  41A-46    41A-12  Case 3BE-1: Confined Compartment Steam Concentration DVI Line Break for Containment Water Level  41A-46    41A-13  Case 3BE-1: Confined Compartment Oxygen Concentration DVI Line Break for Containment Water Level  41A-47    41A-14  Case 3BE-1: Equivalence Ratio in SG Room DVI Line Break for Containment Water Level  41A-47    41A-15  Case 3BE-1: Equivalence Ratio in CMT Room DVI Line Break for Containment Water Level  41A-48    41A-16  Case 3BE-1: Equivalence Ratio in IRWST DVI Line Break for Containment Water Level  41A-48    41A-16  Case 3BE-1: Equivalence Ratio in PXS DVI Line Break for Containment Water Level  41A-48    41A-17  Case 3BE-1: Equivalence Ratio in PXS DVI Line Break for Containment Water Level  41A-49    41A-18  Case 3BE-2: Reactor Coolant System Pressure DVI Line Break with Failed Gravity Injection and No PXS Flooding  41A-49    41A-20  Case 3BE-2: Reactor Vessel Mixture Level DVI Line Break with Failed Gravity Injection and No PXS Flooding  41A-50    41A-21  Case 3BE-2: Reactor Vessel Mixture Level DVI Line Break with Failed Gravity Injection and No PXS Flooding  41A-51    41A-22  Case 3BE-2: Containment Pressure DVI Line Break with Failed Gravity Injection and No PXS Flooding  <		Break for Containment Water Level	41A-45
Break for Containment Water Level  41A-46    41A-12  Case 3BE-1: Confined Compartment Steam Concentration DVI Line Break for Containment Water Level  41A-46    41A-13  Case 3BE-1: Confined Compartment Oxygen Concentration DVI Line Break for Containment Water Level  41A-47    41A-14  Case 3BE-1: Equivalence Ratio in SG Room DVI Line Break for Containment Water Level  41A-47    41A-15  Case 3BE-1: Equivalence Ratio in CMT Room DVI Line Break for Containment Water Level  41A-48    41A-16  Case 3BE-1: Equivalence Ratio in IRWST DVI Line Break for Containment Water Level  41A-48    41A-16  Case 3BE-1: Equivalence Ratio in PXS DVI Line Break for Containment Water Level  41A-48    41A-17  Case 3BE-1: Equivalence Ratio in PXS DVI Line Break for Containment Water Level  41A-49    41A-18  Case 3BE-2: Reactor Coolant System Pressure DVI Line Break with Failed Gravity Injection and No PXS Flooding  41A-49    41A-19  Case 3BE-2: Core-Exit Gas Temperature DVI Line Break with Failed Gravity Injection and No PXS Flooding  41A-50    41A-20  Case 3BE-2: Reactor Vessel Mixture Level DVI Line Break with Failed Gravity Injection and No PXS Flooding  41A-51    41A-21  Case 3BE-2: Containment Pressure DVI Line Break with Failed Gravity Injection and No PXS Flooding  41A-51    41A-22  Case 3BE-2: Containment G	41A-11	Case 3BE-1: Confined Compartment Hydrogen Concentration DVI Line	
41A-12  Case 3BE-1: Confined Compartment Steam Concentration DVI Line Break for Containment Water Level  41A-46    41A-13  Case 3BE-1: Confined Compartment Oxygen Concentration DVI Line Break for Containment Water Level  41A-47    41A-14  Case 3BE-1: Equivalence Ratio in SG Room DVI Line Break for Containment Water Level  41A-47    41A-15  Case 3BE-1: Equivalence Ratio in CMT Room DVI Line Break for Containment Water Level  41A-47    41A-16  Case 3BE-1: Equivalence Ratio in IRWST DVI Line Break for Containment Water Level  41A-48    41A-16  Case 3BE-1: Equivalence Ratio in PXS DVI Line Break for Containment Water Level  41A-48    41A-17  Case 3BE-1: Equivalence Ratio in PXS DVI Line Break with Failed Gravity Injection and No PXS Flooding  41A-49    41A-18  Case 3BE-2: Reactor Coolant System Pressure DVI Line Break with Failed Gravity Injection and No PXS Flooding  41A-50    41A-20  Case 3BE-2: Reactor Vessel Mixture Level DVI Line Break with Failed Gravity Injection and No PXS Flooding  41A-51    41A-21  Case 3BE-2: Hydrogen Generated In-Vessel DVI Line Break with Failed Gravity Injection and No PXS Flooding  41A-51    41A-22  Case 3BE-2: Containment Pressure DVI Line Break with Failed Gravity Injection and No PXS Flooding  41A-51    41A-23  Case 3BE-2: Containment Gas Temperature DVI Line Break with Failed Gravity Injection and N		Break for Containment Water Level	41A-46
for Containment Water Level  41A-46    41A-13  Case 3BE-1: Confined Compartment Oxygen Concentration DVI Line Break for Containment Water Level  41A-47    41A-14  Case 3BE-1: Equivalence Ratio in SG Room DVI Line Break for Containment Water Level  41A-47    41A-15  Case 3BE-1: Equivalence Ratio in CMT Room DVI Line Break for Containment Water Level  41A-47    41A-16  Case 3BE-1: Equivalence Ratio in CMT Room DVI Line Break for Containment Water Level  41A-48    41A-16  Case 3BE-1: Equivalence Ratio in IRWST DVI Line Break for Containment Water Level  41A-48    41A-17  Case 3BE-1: Equivalence Ratio in PXS DVI Line Break for Containment Water Level  41A-49    41A-18  Case 3BE-2: Reactor Coolant System Pressure DVI Line Break with Failed Gravity Injection and No PXS Flooding  41A-49    41A-20  Case 3BE-2: Core-Exit Gas Temperature DVI Line Break with Failed Gravity Injection and No PXS Flooding  41A-50    41A-21  Case 3BE-2: Reactor Vessel Mixture Level DVI Line Break with Failed Gravity Injection and No PXS Flooding  41A-51    41A-22  Case 3BE-2: Containment Pressure DVI Line Break with Failed Gravity Injection and No PXS Flooding  41A-51    41A-23  Case 3BE-2: Containment Gas Temperature DVI Line Break with Failed Gravity Injection and No PXS Flooding  41A-52    41A-24  Case 3BE-2: Conta	41A-12	Case 3BE-1: Confined Compartment Steam Concentration DVI Line Break	
41A-13  Case 3BE-1: Confined Compartment Oxygen Concentration DVI Line Break for Containment Water Level		for Containment Water Level	41A-46
Break for Containment Water Level  41A-47    41A-14  Case 3BE-1: Equivalence Ratio in SG Room DVI Line Break for Containment Water Level  41A-47    41A-15  Case 3BE-1: Equivalence Ratio in CMT Room DVI Line Break for Containment Water Level  41A-48    41A-16  Case 3BE-1: Equivalence Ratio in IRWST DVI Line Break for Containment Water Level  41A-48    41A-17  Case 3BE-1: Equivalence Ratio in PXS DVI Line Break for Containment Water Level  41A-48    41A-17  Case 3BE-1: Equivalence Ratio in PXS DVI Line Break for Containment Water Level  41A-49    41A-18  Case 3BE-2: Reactor Coolant System Pressure DVI Line Break with Failed Gravity Injection and No PXS Flooding  41A-49    41A-20  Case 3BE-2: Core-Exit Gas Temperature DVI Line Break with Failed Gravity Injection and No PXS Flooding  41A-50    41A-21  Case 3BE-2: Reactor Vessel Mixture Level DVI Line Break with Failed Gravity Injection and No PXS Flooding  41A-51    41A-22  Case 3BE-2: Containment Pressure DVI Line Break with Failed Gravity Injection and No PXS Flooding  41A-51    41A-23  Case 3BE-2: Containment Pressure DVI Line Break with Failed Gravity Injection and No PXS Flooding  41A-52    41A-24  Case 3BE-2: Containment Compartments Water Level DVI Line Break with Failed Gravity Injection and No PXS Flooding  41A-52    41A-24  Case 3	41A-13	Case 3BE-1: Confined Compartment Oxygen Concentration DVI Line	
41A-14  Case 3BE-1: Equivalence Ratio in SG Room DVI Line Break for Containment Water Level		Break for Containment Water Level	41A-47
Containment Water Level41A-4741A-15Case 3BE-1: Equivalence Ratio in CMT Room DVI Line Break for Containment Water Level41A-4841A-16Case 3BE-1: Equivalence Ratio in IRWST DVI Line Break for Containment Water Level41A-4841A-17Case 3BE-1: Equivalence Ratio in PXS DVI Line Break for Containment Water Level41A-4941A-18Case 3BE-2: Reactor Coolant System Pressure DVI Line Break with Failed Gravity Injection and No PXS Flooding41A-4941A-20Case 3BE-2: Core-Exit Gas Temperature DVI Line Break with Failed Gravity Injection and No PXS Flooding41A-5041A-20Case 3BE-2: Reactor Vessel Mixture Level DVI Line Break with Failed Gravity Injection and No PXS Flooding41A-5041A-21Case 3BE-2: Reactor Vessel Mixture Level DVI Line Break with Failed Gravity Injection and No PXS Flooding41A-5141A-21Case 3BE-2: Containment Pressure DVI Line Break with Failed Gravity Injection and No PXS Flooding41A-5141A-23Case 3BE-2: Containment Pressure DVI Line Break with Failed Gravity Injection and No PXS Flooding41A-5241A-23Case 3BE-2: Containment Gas Temperature DVI Line Break with Failed Gravity Injection and No PXS Flooding41A-5241A-24Case 3BE-2: Containment Compartments Water Level DVI Line Break with Failed Gravity Injection and No PXS Flooding41A-5241A-24Case 3BE-2: Well-Mixed Compartment Hydrogen Concentration DVI Line41A-5241A-25Case 3BE-2: Well-Mixed Compartment Hydrogen Concentration DVI Line41A-52	41A-14	Case 3BE-1: Equivalence Ratio in SG Room DVI Line Break for	
41A-15  Case 3BE-1: Equivalence Ratio in CMT Room DVI Line Break for Containment Water Level		Containment Water Level	41A-47
Containment Water Level.41A-4841A-16Case 3BE-1: Equivalence Ratio in IRWST DVI Line Break for Containment Water Level.41A-4841A-17Case 3BE-1: Equivalence Ratio in PXS DVI Line Break for Containment Water Level.41A-4941A-18Case 3BE-2: Reactor Coolant System Pressure DVI Line Break with Failed Gravity Injection and No PXS Flooding.41A-4941A-19Case 3BE-2: Core-Exit Gas Temperature DVI Line Break with Failed Gravity Injection and No PXS Flooding.41A-5041A-20Case 3BE-2: Reactor Vessel Mixture Level DVI Line Break with Failed Gravity Injection and No PXS Flooding.41A-5041A-20Case 3BE-2: Reactor Vessel Mixture Level DVI Line Break with Failed Gravity Injection and No PXS Flooding.41A-5041A-21Case 3BE-2: Reactor Vessel Mixture Level DVI Line Break with Failed Gravity Injection and No PXS Flooding.41A-5141A-22Case 3BE-2: Containment Pressure DVI Line Break with Failed Gravity Injection and No PXS Flooding.41A-5141A-23Case 3BE-2: Containment Gas Temperature DVI Line Break with Failed Gravity Injection and No PXS Flooding.41A-5241A-24Case 3BE-2: Containment Compartments Water Level DVI Line Break with Failed Gravity Injection and No PXS Flooding.41A-5241A-24Case 3BE-2: Containment Compartments Water Level DVI Line Break with Failed Gravity Injection and No PXS Flooding.41A-5241A-25Case 3BE-2: Containment Compartments Water Level DVI Line Break with Failed Gravity Injection and No PXS Flooding.41A-5241A-25Case 3BE-2: Well-Mixed Compartment Hydrogen Concentration DVI Line41A-52 <td>41A-15</td> <td>Case 3BE-1: Equivalence Ratio in CMT Room DVI Line Break for</td> <td></td>	41A-15	Case 3BE-1: Equivalence Ratio in CMT Room DVI Line Break for	
41A-16  Case 3BE-1: Equivalence Ratio in IRWST DVI Line Break for    41A-16  Case 3BE-1: Equivalence Ratio in PXS DVI Line Break for Containment    41A-17  Case 3BE-1: Equivalence Ratio in PXS DVI Line Break for Containment    Water Level  41A-48    41A-18  Case 3BE-2: Reactor Coolant System Pressure DVI Line Break with Failed    Gravity Injection and No PXS Flooding  41A-49    41A-19  Case 3BE-2: Core-Exit Gas Temperature DVI Line Break with Failed    Gravity Injection and No PXS Flooding  41A-50    41A-20  Case 3BE-2: Reactor Vessel Mixture Level DVI Line Break with Failed    Gravity Injection and No PXS Flooding  41A-50    41A-21  Case 3BE-2: Hydrogen Generated In-Vessel DVI Line Break with Failed    Gravity Injection and No PXS Flooding  41A-51    41A-22  Case 3BE-2: Containment Pressure DVI Line Break with Failed    Gravity Injection and No PXS Flooding  41A-51    41A-23  Case 3BE-2: Containment Gas Temperature DVI Line Break with Failed    Gravity Injection and No PXS Flooding  41A-52    41A-24  Case 3BE-2: Containment Gas Temperature DVI Line Break with Failed    Gravity Injection and No PXS Flooding  41A-52    41A-24  Case 3BE-2: Containment Compartments Water Leve		Containment Water Level	41A-48
Containment Water Level41A-4841A-17Case 3BE-1: Equivalence Ratio in PXS DVI Line Break for ContainmentWater Level41A-4941A-18Case 3BE-2: Reactor Coolant System Pressure DVI Line Break with FailedGravity Injection and No PXS Flooding41A-4941A-19Case 3BE-2: Core-Exit Gas Temperature DVI Line Break with FailedGravity Injection and No PXS Flooding41A-5041A-20Case 3BE-2: Reactor Vessel Mixture Level DVI Line Break with FailedGravity Injection and No PXS Flooding41A-5041A-21Case 3BE-2: Hydrogen Generated In-Vessel DVI Line Break with FailedGravity Injection and No PXS Flooding41A-5141A-22Case 3BE-2: Containment Pressure DVI Line Break with Failed Gravity Injection and No PXS Flooding41A-23Case 3BE-2: Containment Pressure DVI Line Break with Failed Gravity Injection and No PXS Flooding41A-24Case 3BE-2: Containment Gas Temperature DVI Line Break with Failed Gravity Injection and No PXS Flooding41A-52Case 3BE-2: Containment Compartments Water Level DVI Line Break with Failed Gravity Injection and No PXS Flooding41A-52Case 3BE-2: Containment Compartment Water Level DVI Line Break with Failed Gravity Injection and No PXS Flooding41A-52Case 3BE-2: Well-Mixed Compartment Hydrogen Concentration DVI Line	41A-16	Case 3BE-1: Equivalence Ratio in IRWST DVI Line Break for	
41A-17  Case 3BE-1: Equivalence Ratio in PXS DVI Line Break for Containment    Water Level  41A-49    41A-18  Case 3BE-2: Reactor Coolant System Pressure DVI Line Break with Failed    Gravity Injection and No PXS Flooding.  41A-49    41A-19  Case 3BE-2: Core-Exit Gas Temperature DVI Line Break with Failed    Gravity Injection and No PXS Flooding.  41A-49    41A-20  Case 3BE-2: Core-Exit Gas Temperature DVI Line Break with Failed    Gravity Injection and No PXS Flooding.  41A-50    41A-20  Case 3BE-2: Reactor Vessel Mixture Level DVI Line Break with Failed    Gravity Injection and No PXS Flooding.  41A-50    41A-21  Case 3BE-2: Hydrogen Generated In-Vessel DVI Line Break with Failed    Gravity Injection and No PXS Flooding.  41A-51    41A-22  Case 3BE-2: Containment Pressure DVI Line Break with Failed Gravity    Injection and No PXS Flooding.  41A-51    41A-23  Case 3BE-2: Containment Gas Temperature DVI Line Break with Failed Gravity Injection and No PXS Flooding.    41A-24  Case 3BE-2: Containment Compartments Water Level DVI Line Break with Failed Gravity Injection and No PXS Flooding.    41A-24  Case 3BE-2: Containment Compartments Water Level DVI Line Break with Failed Gravity Injection and No PXS Flooding.    41A-25		Containment Water Level	41A-48
Water Level41A-4941A-18Case 3BE-2: Reactor Coolant System Pressure DVI Line Break with Failed Gravity Injection and No PXS Flooding.41A-4941A-19Case 3BE-2: Core-Exit Gas Temperature DVI Line Break with Failed Gravity Injection and No PXS Flooding.41A-5041A-20Case 3BE-2: Reactor Vessel Mixture Level DVI Line Break with Failed Gravity Injection and No PXS Flooding.41A-5041A-20Case 3BE-2: Reactor Vessel Mixture Level DVI Line Break with Failed Gravity Injection and No PXS Flooding.41A-5041A-21Case 3BE-2: Hydrogen Generated In-Vessel DVI Line Break with Failed Gravity Injection and No PXS Flooding.41A-5141A-22Case 3BE-2: Containment Pressure DVI Line Break with Failed Gravity Injection and No PXS Flooding.41A-5141A-23Case 3BE-2: Containment Gas Temperature DVI Line Break with Failed Gravity Injection and No PXS Flooding.41A-5241A-24Case 3BE-2: Containment Compartments Water Level DVI Line Break with Failed Gravity Injection and No PXS Flooding.41A-5241A-24Case 3BE-2: Containment Compartments Water Level DVI Line Break with Failed Gravity Injection and No PXS Flooding.41A-5241A-25Case 3BE-2: Well-Mixed Compartment Hydrogen Concentration DVI Line41A-52	41A-17	Case 3BE-1: Equivalence Ratio in PXS DVI Line Break for Containment	
41A-18  Case 3BE-2: Reactor Coolant System Pressure DVI Line Break with Failed    Gravity Injection and No PXS Flooding		Water Level	41A-49
Gravity Injection and No PXS Flooding.41A-4941A-19Case 3BE-2: Core-Exit Gas Temperature DVI Line Break with Failed Gravity Injection and No PXS Flooding.41A-5041A-20Case 3BE-2: Reactor Vessel Mixture Level DVI Line Break with Failed Gravity Injection and No PXS Flooding.41A-5041A-21Case 3BE-2: Hydrogen Generated In-Vessel DVI Line Break with Failed Gravity Injection and No PXS Flooding.41A-5141A-22Case 3BE-2: Containment Pressure DVI Line Break with Failed Gravity Injection and No PXS Flooding.41A-5141A-22Case 3BE-2: Containment Pressure DVI Line Break with Failed Gravity Injection and No PXS Flooding.41A-5141A-23Case 3BE-2: Containment Gas Temperature DVI Line Break with Failed Gravity Injection and No PXS Flooding.41A-5241A-24Case 3BE-2: Containment Compartments Water Level DVI Line Break with Failed Gravity Injection and No PXS Flooding.41A-5241A-24Case 3BE-2: Containment Compartments Water Level DVI Line Break with Failed Gravity Injection and No PXS Flooding.41A-5241A-25Case 3BE-2: Well-Mixed Compartment Hydrogen Concentration DVI Line41A-52	41A-18	Case 3BE-2: Reactor Coolant System Pressure DVI Line Break with Failed	
41A-19Case 3BE-2: Core-Exit Gas Temperature DVI Line Break with Failed Gravity Injection and No PXS Flooding		Gravity Injection and No PXS Flooding	41A-49
Gravity Injection and No PXS Flooding	41A-19	Case 3BE-2: Core-Exit Gas Temperature DVI Line Break with Failed	
41A-20  Case 3BE-2: Reactor Vessel Mixture Level DVI Line Break with Failed    Gravity Injection and No PXS Flooding		Gravity Injection and No PXS Flooding	41A-50
Gravity Injection and No PXS Flooding	41A-20	Case 3BE-2: Reactor Vessel Mixture Level DVI Line Break with Failed	
41A-21  Case 3BE-2: Hydrogen Generated In-Vessel DVI Line Break with Failed    Gravity Injection and No PXS Flooding		Gravity Injection and No PXS Flooding	41A-50
Gravity Injection and No PXS Flooding	41A-21	Case 3BE-2: Hydrogen Generated In-Vessel DVI Line Break with Failed	
41A-22  Case 3BE-2: Containment Pressure DVI Line Break with Failed Gravity    Injection and No PXS Flooding		Gravity Injection and No PXS Flooding	41A-51
Injection and No PXS Flooding	41A-22	Case 3BE-2: Containment Pressure DVI Line Break with Failed Gravity	
41A-23Case 3BE-2: Containment Gas Temperature DVI Line Break with Failed Gravity Injection and No PXS Flooding		Injection and No PXS Flooding.	41A-51
Gravity Injection and No PXS Flooding	41A-23	Case 3BE-2: Containment Gas Temperature DVI Line Break with Failed	
41A-24Case 3BE-2: Containment Compartments Water Level DVI Line Break with Failed Gravity Injection and No PXS Flooding		Gravity Injection and No PXS Flooding	41A-52
Failed Gravity Injection and No PXS Flooding	41A-24	Case 3BE-2: Containment Compartments Water Level DVI Line Break with	
41A-25 Case 3BE-2: Well-Mixed Compartment Hydrogen Concentration DVI Line		Failed Gravity Injection and No PXS Flooding	41A-52
	41A-25	Case 3BE-2: Well-Mixed Compartment Hydrogen Concentration DVI Line	
Break with Failed Gravity Injection and No PXS Flooding		Break with Failed Gravity Injection and No PXS Flooding	41A-53

AP1000 Probabilistic Risk Assessment

## LIST OF FIGURES (Cont.)

Figure No.	Title	Page
41A-26	Case 3BE-2: Well-Mixed Compartment Steam Concentration DVI Line	
	Break with Failed Gravity Injection and No PXS Flooding	41A-53
41A-27	Case 3BE-2: Well-Mixed Compartment Oxygen Concentration DVI Line	
	Break with Failed Gravity Injection and No PXS Flooding	41A-54
41A-28	Case 3BE-2: Confined Compartment Hydrogen Concentration DVI Line	
	Break with Failed Gravity Injection and No PXS Flooding	41A-54
41A-29	Case 3BE-2: Confined Compartment Steam Concentration DVI Line Break	
	with Failed Gravity Injection and No PXS Flooding	41A-55
41A-30	Case 3BE-2: Confined Compartment Oxygen Concentration DVI Line Break	
	with Failed Gravity Injection and No PXS Flooding	41A-55
41A-31	Case 3BE-2: Equivalence Ratio in SG Room DVI Line Break with Failed	
	Gravity Injection and No PXS Flooding	41A-56
41A-32	Case 3BE-2: Equivalence Ratio in CMT Room DVI Line Break with Failed	
	Gravity Injection and No PXS Flooding	
41A-33	Case 3BE-2: Equivalence Ratio in IRWST DVI Line Break with Failed	
	Gravity Injection and No PXS Flooding	
41A-34	Case 3BE-2: Equivalence Ratio in PXS DVI Line Break with Failed	
	Gravity Injection and No PXS Flooding	41A-57
41A-35	Case 3BE-4: Reactor Coolant System Pressure Spurious ADS, Failed	
	Gravity Injection	41A-58
41A-36	Case 3BE-4: Core-Exit Gas Temperature Spurious ADS, Failed Gravity	
	Injection	41A-58
41A-37	Case 3BE-4. Reactor Vessel Mixture Level Spurious ADS Failed Gravity	
1111 07	Injection	41 A-59
41A-38	Case 3BE-4. Hydrogen Generated In-Vessel Spurious ADS Failed Gravity	
111 50	Injection	41 A-59
41A-39	Case 3BE-4: Containment Pressure Spurious ADS Failed Gravity Injection	41A-60
41A-40	Case 3BE-4: Containment Gas Temperature Spurious ADS Failed	
	Gravity Injection	414-60
41A-41	Case 3BE-4: Containment Compartments Water Level Spurious ADS	
••••	Failed Gravity Injection	414-61
41A-42	Case 3BE-4. Well-Mixed Compartment Hydrogen Concentration Spurious	
	ADS Failed Gravity Injection	<b>41A-61</b>
41A-43	Case 3BE-4: Well-Mixed Compartment Steam Concentration Spurious	
	ADS Failed Gravity Injection	41A-62
41A-44	Case 3BE-4. Well-Mixed Compartment Oxygen Concentration Spurious	
4478-44	ADS Failed Gravity Injection	414-62
414-45	Case 3BEA. Confined Compartment Hydrogen Concentration Spurious	
	ADS Failed Gravity Injection	414-62
414-46	Case 3BEA. Confined Compartment Steam Concentration Sources ADS	
UF-ALF	Failed Gravity Injection	A1 A -62
414-47	Case 3BEA. Confined Compartment Oxygen Concentration Subjects	
710-71	Failed Gravity Injection	A1 A _6A
	I with the fight of the second s	

lxxvii

Figure No.	Title	Page [
41A-48	Case 3BE-4: Equivalence Ratio in SG Room Spurious ADS, Failed	
	Gravity Injection	41A-64
41A-49	Case 3BE-4: Equivalence Ratio in CMT Room Spurious ADS, Failed	A1 A 65
A1 A 50	Case 2DE 4. Equivalance Datic in DWST Sourious ADS. Equid Gravity	41A-05
41A-30	Injection	41A-65
41A-51	Case 3BE-4: Equivalence Ratio in PXS Spurious ADS, Failed Gravity	
	Injection	41A-66
41A-52	Case 3BE-5: Reactor Coolant System Pressure SBLOCA with Failed	
	Gravity Injection	41A-66
41A-53	Case 3BE-5: Core-Exit Gas Temperature SBLOCA with Failed Gravity	
	Injection	41A-67
41A-54	Case 3BE-5: Reactor Vessel Mixture Level SBLOCA with Failed	
	Gravity Injection	41A-67
41A-55	Case 3BE-5: Hydrogen Generated In-Vessel SBLOCA with Failed	
	Gravity Injection	41A-68
41A-56	Case 3BE-5: Containment Pressure SBLOCA with Failed Gravity Injection	41A-68
41A-57	Case 3BE-5: Containment Gas Temperature SBLOCA with Failed	
	Gravity Injection	41A-69
41A-58	Case 3BE-5: Containment Compartments Water Level SBLOCA with	
	Failed Gravity Injection	41A-69
41A-59	Case 3BE-5: Well-Mixed Compartment Hydrogen Concentration SBLOCA	
	with Failed Gravity Injection	41A-70
41A-60	Case 3BE-5: Well-Mixed Compartment Steam Concentration SBLOCA	
	with Failed Gravity Injection	41A-70
41A-61	Case 3BE-5: Well-Mixed Compartment Oxygen Concentration SBLOCA	
	with Failed Gravity Injection	41A-71
41A-62	Case 3BE-5: Confined Compartment Hydrogen Concentration SBLOCA	
	with Failed Gravity Injection	41A-71
41A-63	Case 3BE-5: Confined Compartment Steam Concentration SBLOCA with	
	Failed Gravity Injection	41A-72
41A-64	Case 3BE-5: Confined Compartment Oxygen Concentration SBLOCA	
	with Failed Gravity Injection	41A-72
41A-65	Case 3BE-5: Equivalence Ratio in SG Room SBLOCA with Failed	
	Gravity Injection	41A-73
41A-66	Case 3BE-5: Equivalence Ratio in CMT Room SBLOCA with Failed	
	Gravity Injection	41A-73
41A-67	Case 3BE-5: Equivalence Ratio in IRWST SBLOCA with Failed	
	Gravity Injection	41A-74
41A-68	Case 3BE-5: Equivalence Ratio in PXS SBLOCA with Failed Gravity	
	Injection	
41A-69	Case 3BE-6: Reactor Coolant System Pressure SBLOCA with Failed	
	Gravity Injection	

AP1000 Probabilistic Risk Assessment

## LIST OF FIGURES (Cont.)

5.g.,

Figure No.	Title	Page
41A-70	Case 3BE-6: Core-Exit Gas Temperature SBLOCA with Failed Gravity Injection	41A-75
41A-71	Case 3BE-6: Reactor Vessel Mixture Level SBLOCA with Failed	
	Gravity Injection	41A-76
41A-72	Case 3BE-6: Hydrogen Generated In-Vessel SBLOCA with Failed	s
1	Gravity Injection	41A-76
41A-73	Case 3BE-6: Containment Pressure SBLOCA with Failed Gravity Injection	41A-77
41A-74	Case 3BE-6: Containment Gas Temperature SBLOCA with Failed	100 A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A
a ta di A second	Gravity Injection	41A-77
41A-75	Case 3BE-6: Containment Compartments Water Level SBLOCA with	
·	Failed Gravity Injection	41A-78
41A-76	Case 3BE-6: Well-Mixed Compartment Hydrogen Concentration SBLOCA	1
	with Failed Gravity Injection	41A-78
41A-77	Case 3BE-6: Well-Mixed Compartment Steam Concentration SBLOCA	•
	with Failed Gravity Injection	41A-79
41A-78	Case 3BE-6: Well-Mixed Compartment Oxygen Concentration SBLOCA	. · ·
	with Failed Gravity Injection	41A-79
41A-79	Case 3BE-6: Confined Compartment Hydrogen Concentration SBLOCA	
	with Failed Gravity Injection	41A-80
41A-80	Case 3BE-6: Confined Compartment Steam Concentration SBLOCA with	·
· •	Failed Gravity Injection	41A-80
41A-81	Case 3BE-6: Confined Compartment Oxygen Concentration SBLOCA with	
	Failed Gravity Injection	41A-81
41A-82	Case 3BE-6: Equivalence Ratio in SG Room SBLOCA with Failed	
	Gravity Injection	41A-81
41A-83	Case 3BE-6: Equivalence Ratio in CMT Room SBLOCA with Failed	
	Gravity Injection	41A-82
41A-84	Case 3BE-6: Equivalence Ratio in IRWST SBLOCA with Failed Gravity	
	Injection	41A-82
41A-85	Case 3BE-6: Equivalence Ratio in PXS SBLOCA with Failed Gravity	
	Injection	41A-83
41A-86	Case 3BE-8: Reactor Coolant System Pressure SGTR	41A-83
41A-87	Case 3BE-8: Core-Exit Gas Temperature SGTR	41A-84
41A-88	Case 3BE-8: Reactor Vessel Mixture Level SGTR	41A-84
41A-89	Case 3BE-8: Hydrogen Generated In-Vessel SGTR	41A-85
41A-90	Case 3BE-8: Containment Pressure SGTR	41A-85
41A-91	Case 3BE-8: Containment Gas Temperature SGTR	41A-86
41A-92	Case 3BE-8: Containment Compartments Water Level SGTR	41A-86
41A-93	Case 3BE-8: Well-Mixed Compartment Hydrogen Concentration SGTR	41A-87
41A-94	Case 3BE-8: Well-Mixed Compartment Steam Concentration SGTR	41A-87
41A-95	Case 3BE-8: Well-Mixed Compartment Oxygen Concentration SGTR	41A-88
41A-96	Case 3BE-8: Confined Compartment Hydrogen Concentration SGTR	41A-88
41A-97	Case 3BE-8: Confined Compartment Steam Concentration SGTR	41A-89

lxxix

## Figure No.

## <u>Title</u>

#### Page 1

41A-98	Case 3BE-8: Confined Compartment Oxygen Concentration SGTR	41A-89
41A-99	Case 3BE-8: Equivalence Ratio in SG Room SGTR	41 <b>A-90</b>
41A-100	Case 3BE-8: Equivalence Ratio in CMT Room SGTR	41 <b>A-90</b>
41A-101	Case 3BE-8: Equivalence Ratio in IRWST SGTR	41A-91
41A-102	Case 3BE-8: Equivalence Ratio in PXS SGTR	41 <b>A-9</b> 1
41A-103	Case 3BE-9: Reactor Coolant System Pressure SGTR	41A-92
41A-104	Case 3BE-9: Core-Exit Gas Temperature SGTR	41A-92
41A-105	Case 3BE-9: Reactor Vessel Mixture Level SGTR	41A-93
41A-106	Case 3BE-9: Hydrogen Generated In-Vessel SGTR	41A-93
41A-107	Case 3BE-9: Containment Pressure SGTR	41A-94
41A-108	Case 3BE-9: Containment Gas Temperature SGTR	41A-94
41A-109	Case 3BE-9: Containment Compartments Water Level SGTR	41A-95
41A-110	Case 3BE-9: Well-Mixed Compartment Hydrogen Concentration SGTR	41A-95
41A-111	Case 3BE-9: Well-Mixed Compartment Steam Concentration SGTR	41A-96
41A-112	Case 3BE-9: Well-Mixed Compartment Oxygen Concentration SGTR	41A-96
41A-113	Case 3BE-9: Confined Compartment Hydrogen Concentration SGTR	
41A-114	Case 3BE-9: Confined Compartment Steam Concentration SGTR	41A-97
41A-115	Case 3BE-9: Confined Compartment Oxygen Concentration SGTR	
41A-116	Case 3BE-9: Equivalence Ratio in SG Room SGTR	
41A-117	Case 3BE-9: Equivalence Ratio in CMT Room SGTR	
41A-118	Case 3BE-9: Equivalence Ratio in IRWST SGTR	
41A-119	Case 3BE-9: Equivalence Ratio in PXS SGTR	
41A-120	Case 3BL-1: Reactor Coolant System Pressure SBLOCA with Failed	
	Gravity Recirculation	
41A-121	Case 3BL-1: Core-Exit Gas Temperature SBLOCA with Failed	
	Gravity Recirculation	
41A-122	Case 3BL-1: Reactor Vessel Mixture Level SBLOCA with Failed	
	Gravity Recirculation	
41A-123	Case 3BL-1: Hydrogen Generated In-Vessel SBLOCA with Failed	
	Gravity Recirculation	
41A-124	Case 3BL-1: Containment Pressure SBLOCA with Failed Gravity	
	Recirculation	
41A-125	Case 3BL-1: Containment Gas Temperature SBLOCA with Failed	
	Gravity Recirculation	41A-103
41A-126	Case 3BL-1: Containment Compartments Water Level SBLOCA with	
	Failed Gravity Recirculation	41A-103
41A-127	Case 3BL-1: Well-Mixed Compartment Hydrogen Concentration SBLOCA	
	with Failed Gravity Recirculation	41A-104
41A-128	Case 3BL-1: Well-Mixed Compartment Steam Concentration SBLOCA	
	with Failed Gravity Recirculation	41 4-104
41A-129	Case 3BL-1. Well-Mixed Compartment Oxygen Concentration SRI OCA	
<b>┓</b> ┹┇ <b>╄╴<u>┺</u><i>╘</i>┙╱</b>	with Failed Gravity Recirculation	414-105

AP1000 Probabilistic Risk Assessment

## LIST OF FIGURES (Cont.)

4

<u>Figure No.</u>	Title	Page
41A-130	Case 3BL-1: Confined Compartment Hydrogen Concentration SBLOCA with Failed Gravity Recirculation	41A-105
41A-131	Case 3BL-1: Confined Compartment Steam Concentration SBLOCA with Failed Gravity Recirculation	41A-106
41A-132	Case 3BL-1: Confined Compartment Oxygen Concentration SBLOCA with Failed Gravity Recirculation	41A-106
41A-133	Case 3BL-1: Equivalence Ratio in SG Room SBLOCA with Failed Gravity Recirculation	41A-107
41A-134	Case 3BL-1: Equivalence Ratio in CMT Room SBLOCA with Failed Gravity Recirculation	41A-107
41A-135	Case 3BL-1: Equivalence Ratio in IRWST SBLOCA with Failed Gravity Recirculation	41A-108
41A-136	Case 3BL-1: Equivalence Ratio in PXS SBLOCA with Failed Gravity Recirculation	41A-108
41A-137	Case 3BL-2: Reactor Coolant System Pressure DVI Line Break with Failed Gravity Recirculation	41A-109
41A-138	Case 3BL-2: Core-Exit Gas Temperature DVI Line Break with Failed Gravity Recirculation	41A-109
41A-139	Case 3BL-2: Reactor Vessel Mixture Level DVI Line Break with Failed Gravity Recirculation	41A-110
41A-140	Case 3BL-2: Hydrogen Generated In-Vessel DVI Line Break with Failed Gravity Recirculation	41A-110
41A-141	Case 3BL-2: Containment Pressure DVI Line Break with Failed Gravity Recirculation	41A-111
41A-142	Case 3BL-2: Containment Gas Temperature DVI Line Break with Failed Gravity Recirculation	41A-111
41 <b>A-143</b>	Case 3BL-2: Containment Compartments Water Level DVI Line Break with Failed Gravity Recirculation	41A-112
41A-144	Case 3BL-2: Well-Mixed Compartment Hydrogen Concentration DVI Line Break with Failed Gravity Recirculation	41A-112
41A-145	Case 3BL-2: Well-Mixed Compartment Steam Concentration DVI Line Break with Failed Gravity Recirculation	41A-113
41A-146	Case 3BL-2: Well-Mixed Compartment Oxygen Concentration DVI Line Break with Failed Gravity Recirculation	41A-113
41A-147	Case 3BL-2: Confined Compartment Hydrogen Concentration DVI Line Break with Failed Gravity Recirculation	41A-114
41A-148	Case 3BL-2: Confined Compartment Steam Concentration DVI Line Break with Failed Gravity Recirculation	41A-114
41A-149	Case 3BL-2: Confined Compartment Oxygen Concentration DVI Line Break with Failed Gravity Recirculation	41A-115
41A-150	Case 3BL-2: Equivalence Ratio in SG Room DVI Line Break with Failed Gravity Recirculation	41A-115

Figure No.	Title	<u>Page</u>
41A-151	Case 3BL-2: Equivalence Ratio in CMT Room DVI Line Break with	
	Failed Gravity Recirculation	41A-116
41A-152	Case 3BL-2: Equivalence Ratio in IRWST DVI Line Break with Failed	
	Gravity Recirculation	41A-116
41A-153	Case 3BL-2: Equivalence Ratio in PXS DVI Line Break with Failed	
	Gravity Recirculation	41A-117
41A-154	Case 3BR-1: Reactor Coolant System Pressure CL LBLOCA with	
	Accumulator Failure	41A-117
41A-155	Case 3BR-1: Core-Exit Gas Temperature CL LBLOCA with	
	Accumulator Failure	41A-118
41A-156	Case 3BR-1: Reactor Vessel Mixture Level CL LBLOCA with	
	Accumulator Failure	41A-118
41A-157	Case 3BR-1: Hydrogen Generated In-Vessel CL LBLOCA with	
	Accumulator Failure	41A-119
41A-158	Case 3BR-1: Containment Pressure CL LBLOCA with Accumulator	
	Failure	41A-119
41A-159	Case 3BR-1: Containment Gas Temperature CL LBLOCA with	
	ccumulator Failure	41A-120
41A-160	Case 3BR-1: Containment Compartments Water Level CL LBLOCA	
	with Accumulator Failure	41A-120
41A-161	Case 3BR-1: Well-Mixed Compartment Hydrogen Concentration	
	CL LBLOCA with Accumulator Failure	41A-121
41A-162	Case 3BR-1: Well-Mixed Compartment Steam Concentration CL LBLOCA	
	with Accumulator Failure	41A-121
41A-163	Case 3BR-1: Well-Mixed Compartment Oxygen Concentration CL LBLOCA	
	with Accumulator Failure	41A-122
41A-164	Case 3BR-1: Confined Compartment Hydrogen Concentration CL LBLOCA	
	with Accumulator Failure	41A-122
41A-165	Case 3BR-1: Confined Compartment Steam Concentration CL LBLOCA	
	with Accumulator Failure	41A-123
41A-166	Case 3BR-1: Confined Compartment Oxygen Concentration CL LBLOCA	
	with Accumulator Failure	41A-123
41A-167	Case 3BR-1: Equivalence Ratio in SG Room CL LBLOCA with	
	Accumulator Failure	41A-124
41A-168	Case 3BR-1: Equivalence Ratio in CMT Room CL LBLOCA with	
	Accumulator Failure	41 <b>A-12</b> 4
41A-169	Case 3BR-1: Equivalence Ratio in IRWST CL LBLOCA with	
	Accumulator Failure	41A-125
41A-170	Case 3BR-1: Equivalence Ratio in PXS CL LBLOCA with Accumulator	
-	Failure	41A-125
41A-171	Case 3BR-1a: Reactor Coolant System Pressure CL LBLOCA with	
	Accumulator Failure	41A-126

AP1000 Probabilistic Risk Assessment

## LIST OF FIGURES (Cont.)

Figure No.	Title	Page
41A-172	Case 3BR-1a: Core-Exit Gas Temperature CL LBLOCA with	
· .	Accumulator Failure	41A-126
41A-173	Case 3BR-1a: Reactor Vessel Mixture Level CL LBLOCA with Accumulator Failure	41A-127
41A-174	Case 3BR-1a: Hydrogen Generated In-Vessel CL LBLOCA with	
	Accumulator Failure	41A-127
41A-175	Case 3BR-1a: Containment Pressure CL LBLOCA with Accumulator	
	Failure	41A-128
41A-176	Case 3BR-1a: Containment Gas Temperature CL LBLOCA with	. *
	Accumulator Failure	41A-128
41A-177	Case 3BR-1a: Containment Compartments Water Level CL LBLOCA	
	with Accumulator Failure	41A-129
41A-178	Case 3BR-1a: Well-Mixed Compartment Hydrogen Concentration	2
·	CL LBLOCA with Accumulator Failure	41A-129
41A-179	Case 3BR-1a: Well-Mixed Compartment Steam Concentration CL LBLOCA	
· · · .	with Accumulator Failure	41A-130
41A-180	Case 3BR-1a: Well-Mixed Compartment Oxygen Concentration	· · · ·
· _	CL LBLOCA with Accumulator Failure	41A-130
41A-181	Case 3BR-1a: Confined Compartment Hydrogen Concentration	÷ .
•	CL LBLOCA with Accumulator Failure	41A-131
41A-182	Case 3BR-1a: Confined Compartment Steam Concentration CL LBLOCA	
	with Accumulator Failure	41A-131
41A-183	Case 3BR-1a: Confined Compartment Oxygen Concentration CL LBLOCA	
	with Accumulator Failure	41A-132
<b>41A-18</b> 4	Case 3BR-1a: Equivalence Ratio in SG Room CL LBLOCA with	
	Accumulator Failure	41A-132
41A-185	Case 3BR-1a: Equivalence Ratio in CMT Room CL LBLOCA with	
	Accumulator Failure	41A-133
41A-186	Case 3BR-1a: Equivalence Ratio in IRWST CL LBLOCA with	
	Accumulator Failure	41A-133
41A-187	Case 3BR-1a: Equivalence Ratio in PXS CL LBLOCA with	
41 4 100	Accumulator Failure	41A-134
41A-188	Case 3C-1: Reactor Coolant System Pressure Vessel Rupture	41A-134
41A-189	Case 3C-1: Core-Exit Gas Temperature Vessel Rupture	41A-135
41A-190	Case 3C-1: Reactor Vessel Mixture Level Vessel Rupture	41A-135
41A-191	Case 3C-1: Hydrogen Generated In-Vessel Vessel Rupture	41A-130
41A-192	Case 3C-1: Containment Pressure Vessel Kupture	41A-130
41A-195	Case 3C-1: Containment Gas Temperature Vessel Rupture	41A-137
4175-194 A1 A 105	Case 3C-1: Containment Compartments Water Level Vessel Kupture	417-13/
+173-173	Case JC-1. Weit-Mixed Compariment rightogen Concentration Vessel Running	414-139
414-106	Case 3C-1. Well-Mixed Compartment Steam Concentration Vessel	
410-170	Case 50-1. Weit-Mined Compariment Steam Concentration Vessel	A1 A _120
	T/hhmr	

نر

<u>Figure No.</u>	Title	<u>Page</u>
41A-197	Case 3C-1: Well-Mixed Compartment Oxygen Concentration Vessel	
	Rupture	41A-139
41A-198	Case 3C-1: Confined Compartment Hydrogen Concentration Vessel	<i>/</i> 1 A_120
A1A 100	Case 3C-1: Confined Comportment Steam Concentration Vessel	
417-133	Rupture	41A-140
41A-200	Case 3C-1: Confined Compartment Oxygen Concentration Vessel	
	Rupture	41A-140
41A-201	Case 3C-1: Equivalence Ratio in SG Room Vessel Rupture	41A-141
41A-202	Case 3C-1: Equivalence Ratio in CMT Room Vessel Rupture	41A-141
41A-203	Case 3C-1: Equivalence Ratio in IRWST Vessel Rupture	41A-142
41A-204	Case 3C-1: Equivalence Ratio in PXS Vessel Rupture	41A-142
41A-205	Case 3D-1: Reactor Coolant System Pressure Spurious ADS-4 with Failed	
	CMTs.	41A-143
41A-206	Case 3D-1: Core-Exit Gas Temperature Spurious ADS-4 with Failed	A1 A 1 A2
41 4 007	CM18	41A-145
41A-207	Case 3D-1: Reactor Vessel Mixture Level Spurious ADS-4 with Failed CMTs	41 A-144
41A-208	Case 3D-1: Hydrogen Generated In-Vessel Spurious ADS-4 with Failed	
4111 200	CMTe	41 4-144
414-209	Case 3D-1: Containment Pressure Spurious ADS-4 with Failed CMTs	A1 A_145
414-210	Case 3D-1: Containment Gas Temperature Spurious ADS-4 with Failed	
4111-210	CMTs	41A-145
41A-211	Case 3D-1: Containment Compartments Water Level Spurious ADS-4 with	
	Failed CMTs	41A-146
41A-212	Case 3D-1: Well-Mixed Compartment Hydrogen Concentration Spurious	
	ADS-4 with Failed CMTs	41A-146
41A-213	Case 3D-1: Well-Mixed Compartment Steam Concentration Spurious	
	ADS-4 with Failed CMTs	41A-147
41A-214	Case 3D-1: Well-Mixed Compartment Oxygen Concentration Spurious	
	ADS-4 with Failed CMTs	41A-147
41A-215	Case 3D-1: Confined Compartment Hydrogen Concentration Spurious	
	ADS-4 with Failed CMTs	41A-148
41A-216	Case 3D-1: Confined Compartment Steam Concentration Spurious	
	ADS-4 with Failed CMTs	41A-148
41A-217	Case 3D-1: Confined Compartment Oxygen Concentration Spurious	
	ADS-4 with Failed CMTs	41A-149
41A-218	Case 3D-1: Equivalence Ratio in SG Room Spurious ADS-4 with Failed	
	CMTs	41A-149
41A-219	Case 3D-1: Equivalence Ratio in CMT Room Spurious ADS-4 with	
	Failed CMTs	41A-150
41A-220	Case 3D-1: Equivalence Ratio in IRWST Spurious ADS-4 with Failed	
	CMTs	41A-150

Figure No.	Title	Page
41A-221	Case 3D-1: Equivalence Ratio in PXS Spurious ADS-4 with Failed	
	CMTs	41A-151
41A-222	Case 3D-2: Reactor Coolant System Pressure Spurious ADS-2, Failed	
	CMTs	41A-151
41A-223	Case 3D-2: Core-Exit Gas Temperature Spurious ADS-2, Failed	
	CMTs	41A-152
41A-224	Case 3D-2: Reactor Vessel Mixture Level Spurious ADS-2, Failed	
	CMTs	41A-152
41A-225	Case 3D-2: Hydrogen Generated In-Vessel Spurious ADS-2, Failed	- 1 - L
	CMTs	41A-153
41A-226	Case 3D-2: Containment Pressure Spurious ADS-2, Failed CMTs	41A-153
41A-227	Case 3D-2: Containment Gas Temperature Spurious ADS-2, Failed	
	CMTs	41A-154
41A-228	Case 3D-2: Containment Compartments Water Level Spurious ADS-2,	
	Failed CMTs	41A-154
41A-229	Case 3D-2: Well-Mixed Compartment Hydrogen Concentration Spurious	
	ADS-2, Failed CMTs	41A-155
41A-230	Case 3D-2: Well-Mixed Compartment Steam Concentration Spurious	
	ADS-2, Failed CMTs	41A-155
41A-231	Case 3D-2: Well-Mixed Compartment Oxygen Concentration Spurious	
	ADS-2, Failed CMTs	41A-156
41A-232	Case 3D-2: Confined Compartment Hydrogen Concentration Spurious	
	ADS-2, Failed CMTs	41A-156
41A-233	Case 3D-2: Confined Compartment Steam Concentration Spurious ADS-2,	
	Failed CMTs	41A-157
41A-234	Case 3D-2: Confined Compartment Oxygen Concentration Spurious	×
	ADS-2, Failed CMTs	41A-157
41A-235	Case 3D-2: Equivalence Ratio in SG Room Spurious ADS-2, Failed	· .
	CMTs	41A-158
41A-236	Case 3D-2: Equivalence Ratio in CMT Room Spurious ADS-2, Failed	
	CMTs	41A-158
41A-237	Case 3D-2: Equivalence Ratio in IRWST Spurious ADS-2, Failed	
e stran	CMTs	41A-159
41A-238	Case 3D-2: Equivalence Ratio in PXS Spurious ADS-2, Failed CMTs	41A-159
41A-239	Case 3D-3: Reactor Coolant System Pressure DVI Line Break with	
	no ADS	41A-160
41A-240	Case 3D-3: Core-Exit Gas Temperature DVI Line Break with no ADS	41A-160
41A-241	Case 3D-3: Reactor Vessel Mixture Level DVI Line Break with no	
· .	ADS	41A-161
41A-242	Case 3D-3: Hydrogen Generated In-Vessel DVI Line Break with no	
	ADS	41A-161
41A-243	Case 3D-3: Containment Pressure DVI Line Break with no ADS	41A-162

i

<u>Figure No.</u>	Title	Page
41A-244	Case 3D-3: Containment Gas Temperature DVI Line Break with no	
	ADS	41A-162
41A-245	Case 3D-3: Containment Compartments Water Level DVI Line Break	
	with no ADS	41A-163
41A-246	Case 3D-3: Well-Mixed Compartment Hydrogen Concentration DVI	
	Line Break with no ADS	41A-163
41A-247	Case 3D-3: Well-Mixed Compartment Steam Concentration DVI Line	
	Break with no ADS	41A-164
41A-248	Case 3D-3: Well-Mixed Compartment Oxygen Concentration DVI Line	
	Break with no ADS	41A-164
41A-249	Case 3D-3: Confined Compartment Hydrogen Concentration DVI Line	
	Break with no ADS	41A-165
41A-250	Case 3D-3: Confined Compartment Steam Concentration DVI Line Break	
	with no ADS	41A-165
41A-251	Case 3D-3: Confined Compartment Oxygen Concentration DVI Line	
	Break with no ADS	41 <b>A-166</b>
41A-252	Case 3D-3: Equivalence Ratio in SG Room DVI Line Break with no	
	ADS	41A-166
41A-253	Case 3D-3: Equivalence Ratio in CMT Room DVI Line Break with	
	no ADS	41A-167
41A-254	Case 3D-3: Equivalence Ratio in IRWST DVI Line Break with no	
	ADS	41A-167
41A-255	Case 3D-3: Equivalence Ratio in PXS DVI Line Break with no ADS	41A-168
41A-256	Case 3D-5: Reactor Coolant System Pressure Spurious ADS-2, Failed	
	CMTs, Diffusion Flame	41A-168
41A-257	Case 3D-5: Core-Exit Gas Temperature Spurious ADS-2, Failed CMTs,	
	Diffusion Flame	41A-169
41A-258	Case 3D-5: Reactor Vessel Mixture Level Spurious ADS-2, Failed CMTs,	
	Diffusion Flame	41A-169
41A-259	Case 3D-5: Hydrogen Generated In-Vessel Spurious ADS-2, Failed CMTs,	
	Diffusion Flame	41A-170
41A-260	Case 3D-5: Containment Pressure Spurious ADS-2, Failed CMTs,	
	Diffusion Flame	41A-170
41A-261	Case 3D-5: Containment Gas Temperature Spurious ADS-2, Failed CMTs,	
	Diffusion Flame	41A-171
41A-262	Case 3D-5: Containment Compartments Water Level Spurious ADS-2,	
	Failed CMTs, Diffusion Flame	41A-171
41A-263	Case 3D-5: Well-Mixed Compartment Hydrogen Concentration Spurious	
	ADS-2, Failed CMTs, Diffusion Flame	41A-172
41A-264	Case 3D-5: Well-Mixed Compartment Steam Concentration Spurious	
	ADS-2, Failed CMTs, Diffusion Flame	41A-172
41A-265	Case 3D-5: Well-Mixed Compartment Oxygen Concentration Spurious	
	ADS-2, Failed CMTs, Diffusion Flame	41A-173

AP1000 Probabilistic Risk Assessment

## LIST OF FIGURES (Cont.)

Figure No.	Title	Page
41A-266	Case 3D-5: Confined Compartment Hydrogen Concentration Spurious	
	ADS-2, Failed CMTs, Diffusion Flame	41A-173
41A-267	Case 3D-5: Confined Compartment Steam Concentration Spurious	
	ADS-2, Failed CMTs, Diffusion Flame	41A-174
41A-268	Case 3D-5: Confined Compartment Oxygen Concentration Spurious	
· · ·	ADS-2, Failed CMTs, Diffusion Flame	41A-174
41A-269	Case 3D-5: Equivalence Ratio in SG Room Spurious ADS-2, Failed	
	CMTs, Diffusion Flame	41A-175
41A-270	Case 3D-5: Equivalence Ratio in CMT Room Spurious ADS-2, Failed	
	CMTs, Diffusion Flame	41A-175
41A-271	Case 3D-5: Equivalence Ratio in IRWST Spurious ADS-2, Failed CMTs,	
	Diffusion Flame	41A-176
41A-272	Case 3D-5: Equivalence Ratio in PXS Spurious ADS-2, Failed CMTs,	
	Diffusion Flame	41A-176
41A-273	Case 1A-3: Reactor Coolant System Pressure FW Failure with Creep of	
	SG Tubes	41A-177
41A-274	Case 1A-3: Core-Exit Gas Temperature FW Failure with Creep of	
	SG Tubes	41A-177
41A-275	Case 1A-3: Reactor Vessel Mixture Level FW Failure with Creep of	
	SG Tubes	41A-178
41A-276	Case 1A-3: Hydrogen Generated In-Vessel FW Failure with Creep of	
	SG Tubes	41A-178
41A-277	Case 1A-3: Containment Pressure FW Failure with Creep of SG Tubes	41A-179
41A-278	Case 1A-3: Containment Gas Temperature FW Failure with Creep of	
	SG Tubes	41A-179
41A-279	Case 1A-3: Containment Compartments Water Level FW Failure with	ана се
· · · · ·	Creep of SG Tubes	41A-180
41A-280	Case 1A-3: Well-Mixed Compartment Hydrogen Concentration	
	FW Failure with Creep of SG Tubes	41A-180
41A-281	Case 1A-3: Well-Mixed Compartment Steam Concentration FW Failure	
	with Creep of SG Tubes	41A-181
41A-282	Case 1A-3: Well-Mixed Compartment Oxygen Concentration FW Failure	
:	with Creep of SG Tubes	41A-181
41A-283	Case 1A-3: Confined Compartment Hydrogen Concentration FW Failure	
	with Creep of SG Tubes	41A-182
41A-284	Case 1A-3: Confined Compartment Steam Concentration FW Failure	
	with Creep of SG Tubes	41A-182
41A-285	Case 1A-3: Confined Compartment Oxygen Concentration FW Failure	
	with Creep of SG Tubes	41A-183
41A-286	Case 1A-3: Equivalence Ratio in SG Room FW Failure with Creep of	
	SG Tubes	41A-183
41A-287	Case 1A-3: Equivalence Ratio in CMT Room FW Failure with Creep	
	of SG Tubes	41A-184

<u>Figure No.</u>	Title	Page
41A-288	Case 1A-3: Equivalence Ratio in IRWST FW Failure with Creep of SG Tubes	41A-184
41A-289	Case 1A-3: Equivalence Ratio in PXS FW Failure with Creep of SG Tubes	
41A-290	Case 1A-3a: Reactor Coolant System Pressure Transient with Creep	
	of SG Tubes	41A-185
41A-291	Case 1A-3a: Core-Exit Gas Temperature Transient with Creep of SG Tubes.	41A-186
41A-292	Case 1A-3a: Reactor Vessel Mixture Level Transient with Creep of	
	SG Tubes	41A-186
41A-293	Case 1A-3a: Hydrogen Generated In-Vessel Transient with Creep of	
	SG Tubes	41A-187
41A-294	Case 1A-3a: Containment Pressure Transient with Creep of SG Tubes	41A-187
41A-295	Case 1A-3a: Containment Gas Temperature Transient with Creep of	
	SG Tubes	41A-188
41A-296	Case 1A-3a: Containment Compartments Water Level Transient with	
	Creep of SG Tubes	41A-188
41A-297	Case 1A-3a: Well-Mixed Compartment Hydrogen Concentration	
	Transient with Creep of SG Tubes	41A-189
41A-298	Case 1A-3a: Well-Mixed Compartment Steam Concentration Transient	
	with Creep of SG Tubes	41A-189
41A-299	Case 1A-3a: Well-Mixed Compartment Oxygen Concentration Transient	
	with Creep of SG Tubes	41A-190
41A-300	Case 1A-3a: Confined Compartment Hydrogen Concentration Transient	
	with Creep of SG Tubes	41 <b>A-190</b>
41A-301	Case 1A-3a: Confined Compartment Steam Concentration Transient with	
	Creep of SG Tubes	41A-191
41A-302	Case 1A-3a: Confined Compartment Oxygen Concentration Transient	
	with Creep of SG Tubes	41A-191
41A-303	Case 1A-3a: Approximate Detonation Cell Width in SG Room Transient	
	with Creep of SG Tubes	41A-192
41A-304	Case 1A-3a: Approximate Detonation Cell Width in CMT Room Transient	
	with Creep of SG Tubes	41A-192
41A-305	Case 1A-3a: Equivalence Ratio in IRWST Transient with Creep of	
	SG Tubes	41A-193
41A-306	Case 1A-3a: Approximate Detonation Cell Width in PXS Transient with	
	Creep of SG Tubes	41A-193
41A-307	Case 1A-4: Reactor Coolant System Pressure FW Failure with Creep	
	of SG Tubes	41A-194
41A-308	Case 1A-4: Core-Exit Gas Temperature FW Failure with Creep of	
	SG Tubes	41A-194
41A-309	Case 1A-4: Reactor Vessel Mixture Level FW Failure with Creep of	
	SG Tubes	41A-195
41A-310	Case 1A-4: Hydrogen Generated In-Vessel FW Failure with Creep of	
	SG Tubes	41A-195

Figure No.	Title	Page
41A-311 41A-312	Case 1A-4: Containment Pressure FW Failure with Creep of SG Tubes Case 1A-4: Containment Gas Temperature FW Failure with Creep of	41A-196
41A-313	SG Tubes Case 1A-4: Containment Compartments Water Level FW Failure with	41 <b>A-19</b> 6
41A-314	Creep of SG Tubes Case 1A-4: Well-Mixed Compartment Hydrogen Concentration	41A-197
41A-315	Case 1A-4: Well-Mixed Compartment Steam Concentration FW Failure with Creep of SG Tubes	41A-197
41A-316	Case 1A-4: Well-Mixed Compartment Oxygen Concentration FW Failure with Creep of SG Tubes	41A-198
41A-317	Case 1A-4: Confined Compartment Hydrogen Concentration FW Failure with Creep of SG Tubes	41A-199
41A-318	Case 1A-4: Confined Compartment Steam Concentration FW Failure with Creep of SG Tubes	41A-199
41A-319	Case 1A-4: Confined Compartment Oxygen Concentration FW Failure with Creep of SG Tubes	41A-200
41A-320	Case 1A-4: Equivalence Ratio in SG Room FW Failure with Creep of SG Tubes	41A-200
41A-321	Case 1A-4: Equivalence Ratio in CMT Room FW Failure with Creep of SG Tubes	41A-201
41A-322	Case IA-4: Equivalence Ratio in IRWST FW Failure with Creep of SG Tubes	
41A-323 41A-324	Case 1A-4: Equivalence Ratio in PXS FW Failure with Creep of SG Tubes Case 1A-4a: Reactor Coolant System Pressure Transient with Creep of SG Tubes	41A-202
41A-325 41A-326	Case 1A-4a: Core-Exit Gas Temperature Transient with Creep of SG Tubes. Case 1A-4a: Reactor Vessel Mixture Level Transient with Creep of	41A-203
41A-327	SG Tubes Case 1A-4a: Hydrogen Generated In-Vessel Transient with Creep of	41A-203
41A-328	Case 1A-4a: Containment Pressure Transient with Creep of SG Tubes	41A-204 41A-204
41A-329	Case 1A 4a: Containment Gas Temperature Transfent with Creep of SG Tubes	41A-205
41A-331	Creep of SG Tubes	41A-205
41A-332	Transient with Creep of SG Tubes Case 1A-4a: Well-Mixed Compartment Steam Concentration Transient	41A-206
41A-333	with Creep of SG Tubes Case 1A-4a: Well-Mixed Compartment Oxygen Concentration Transient	41A-206
	with Creep of SG Tubes	41A-207

<u>Figure No.</u>	Title	Page
41A-334	Case 1A-4a: Confined Compartment Hydrogen Concentration Transient	
	with Creep of SG Tubes	41A-207
41A-335	Case 1A-4a: Confined Compartment Steam Concentration Transient with	
	Creep of SG Tubes	41A-208
41A-336	Case 1A-4a: Confined Compartment Oxygen Concentration Transient with Creep of SG Tubes	41A-208
41A-337	Case 1A-4a: Approximate Detonation Cell Width in SG Room Transient	41 4 200
A1 A 229	Case 1 A day Revivalance Datio in CMT Doom Transient with Cross of	41A-207
41A-330	Case IA-4a. Equivalence Rano in Civil Room Hanstein with Cleep of SG Tuber	41 4-200
41 4 220	Cose 1 A de: Equivalence Datio in IBWST Transient with Creen of	
41A-337	Case 1A-4a. Equivalence Rand in IRWS1 Hanslein with Creep of	41 4 210
A1 A 240	Cose 1 A Act. Equivalence Datio in DVS Transient with Creen of SG Tubes	41A-210
41A-340	Case 1AP 2: Reactor Coolant System Pressure SPLOCA Eviled PPUP	41A-210
41A-341	and CMTs	A1A 211
41 4 242	Cose 1 AD 2: Core Exit Cose Temporature SDI OCA Englad DDUD	
41A-342	and CMTa	A1 A 211
A1 A 242	Cose 1 AD 2: Desetor Vessel Mixture Level SDI OCA Esiled DDUD	
417-343	and CMTs	41 4-212
A1 A 244	Case 1 A D.2. Hudmann Congrated in Vessel SPI OCA Failed DDHD	
417-244	and CMTs	414-212
A1 A-345	Case 1 AD-2. Containment Pressure SBI OCA Failed DBHD and CMTs	41 A-213
41A-345 A1A-346	Case 1 A D_3. Containment Gas Temperature SRI OCA Failed DBHR	<del>4</del> 1 <u>A</u> -21J
417-240	and CMTs	414-213
A1 A-347	Case 1 A D-3. Containment Compartments Water Level SBLOCA Failed	
411-347	DRHR and CMTe	41 4-214
414-348	Case 1 AP-3. Well-Mixed Compartment Hydrogen Concentration SBI OCA	
414-240	Failed PRHR and CMTs	414-214
A1 A_340	Case 1 AP-3. Well-Mixed Compartment Steam Concentration SBI OCA	
417-242	East PAR -5. Wen-Mixed Comparament Steam Concentration SDECCA,	414-215
41A-350	Case 1AP-3: Well-Mixed Compartment Oxygen Concentration SBLOCA	
1111 000	Failed PRHR and CMTs	41A-215
41A-351	Case 1AP-3: Confined Compartment Hydrogen Concentration SBLOCA	
4111 331	Failed PRHR and CMTs	41A-216
41A-352	Case 1AP-3: Confined Compartment Steam Concentration SBLOCA.	
111 332	Failed PRHR and CMTs	41A-216
41A-353	Case 1AP-3: Confined Compartment Oxygen Concentration SBLOCA.	
1111 000	Failed PRHR and CMTs.	41A-217
41A-354	Case 1AP-3: Equivalence Ratio in SG Room SBLOCA. Failed PRHR	
	and CMTs	41A-217
41A-355	Case 1AP-3: Equivalence Ratio in CMT Room SRI OCA, Failed PRHR	
	and CMTs	41A-218
		-

AP1000 Probabilistic Risk Assessment

Figure No.	Title	Page
41A-356	Case 1AP-3: Equivalence Ratio in IRWST SBLOCA, Failed PRHR	
	and CMTs	41A-218
41A-357	Case 1AP-3: Equivalence Ratio in PXS SBLOCA, Failed PRHR and CMTs.	41A-219
41A-358	Case 1AP-4: Reactor Coolant System Pressure SBLOCA with Failed	414 010
A1 A 250	PKHK and ADS	41A-219
41A-539	and ADS	41A-220
41A-360	Case 1AP-4: Reactor Vessel Mixture Level SBLOCA with Failed PRHR	
	and ADS	41A-220
41A-361	Case 1AP-4: Hydrogen Generated In-Vessel SBLOCA with Failed PRHR	
:	and ADS	41A-221
41A-362	Case 1AP-4: Containment Pressure SBLOCA with Failed PRHR and	
41.4.000		41A-221
41A-363	Case IAP-4: Containment Gas Temperature SBLOCA with Failed PRHR and ADS	A1 A . 222
A1 A 36A	Case 1 AD 4. Containment Compartments Water Level SPLOCA with	
41A-304	Case IAP-4. Containment Compartments Water Level SDLOCA with Failed DRHR and ADS	41 4-222
414-365	Case 1 AP.4: Well-Mixed Compartment Hydrogen Concentration SBI OCA	
41A-303	with Failed PRHR and ADS	41 A-223
41A-366	Case 1AP-4: Well-Mixed Compartment Steam Concentration SBLOCA	
	with Failed PRHR and ADS	41A-223
41A-367	Case 1AP-4: Well-Mixed Compartment Oxygen Concentration SBLOCA	
	with Failed PRHR and ADS	41A-224
41A-368	Case 1AP-4: Confined Compartment Hydrogen Concentration SBLOCA	
· • • •	with Failed PRHR and ADS	41A-224
41A-369	Case 1AP-4: Confined Compartment Steam Concentration SBLOCA with	
	Failed PRHR and ADS	41A-225
41A-370	Case 1AP-4: Confined Compartment Oxygen Concentration SBLOCA with	
	Failed PRHR and ADS	41A-225
- 41A-371	Case 1AP-4: Equivalence Ratio in SG Room SBLOCA with Failed PRHR	41 4 000
A1 A 270	and ADS	41A-220
41A-572	Case IAP-4: Equivalence Rado in CM1 Room SBLOCA with Failed PRHR and ADS	414-226
41A-373	Case 1AP-4: Equivalence Ratio in IRWST SBLOCA with Failed PRHR	
	and ADS	41A-227
41A-374	Case 1AP-4: Equivalence Ratio in PXS SBLOCA with Failed PRHR and	
	ADS	41A-227
41R-1	Case 3BR - I LOCA with Accumulator Failure Reactor Coolant	
	System Presente	41R-3
41B-2	Case 3BR – LLOCA with Accumulator Failure Reactor Vessel	
	Mixture Level	

Figure No.	Title	Page
41 <b>B-3</b> 41 <b>B-</b> 4	Case 3BR – LLOCA with Accumulator Failure Core-Exit Gas Temperatur	e41B-4
410-4	In-Vessel	
41B-5	Case 3BR – LLOCA with Accumulator Failure Containment Pressure	
41B-6	Case 3BR – LLOCA with Accumulator Failure Containment Gas	
	Temperature	41B-5
41B-7	Case 3BR – LLOCA with Accumulator Failure Containment	
	Compartment Hydrogen Concentration	41 <b>B-6</b>
41B-8	Case 3BR – LLOCA with Accumulator Failure Hydrogen Flow Rate	
	Through Break	41 <b>B</b> -6
41B-9	Case 3BR – LLOCA with Accumulator Failure Well-Mixed	
400 40	Compartment Hydrogen Concentration	41B-7
41B-10	Case 3BR – LLOCA with Accumulator Failure Well-Mixed	41D 7
410 11	Compariment Oxygen Concentration	41 <b>B</b> -/
41 <b>D-</b> 11	Case 3BR – LLOCA with Accumulator Failure well-Mixed	A1D 9
A1R-12	Case $3BR = IIOCA$ with A computator Failure Approximate	
41D-12	Detonation Cell Width in Steam Generator Compartment	41 <b>B</b> -8
41B-13	Case 3BR – LLOCA with Accumulator Failure Containment	
410 15	Compartments Water Level	41 <b>B-</b> 9
41B-14	Case 3BR – LLOCA with Accumulator Failure Hydrogen Flow Rate	
	Through ADS to IRWST	
41B-15	Case 3BR – LLOCA with Accumulator Failure Confined	
	Compartment Hydrogen Concentration	41B-10
41B-16	Case 3BR – LLOCA with Accumulator Failure Confined	
	Compartment Oxygen Concentration	41B-10
41 <b>B-17</b>	Case 3BR – LLOCA with Accumulator Failure Confined	
	Compartment Steam Concentration	41 <b>B-</b> 11
42-1	AP1000 Containment Fragility at Containment Temperature of 400°F	
42-2	AP1000 Containment Fragility at Containment Temperature of 331°F	
43-1	Plant Damage State Contributions to CDF	43-119
43-2	Containment Event Tree – CET (Sheets 1 – 3)	43-120
43-3	3BE CET (Sheets 1 – 3)	43-123
43-4	3BL CET (Sheets 1 – 3)	43-126
43-5	3BR CET (Sheets 1 – 3)	
43-6	1A CET (Sheets 1 – 3)	
43-7	1AP CET (Sheets $1 - 3$ )	
43-8	3A CET (Sheets 1 – 3)	
43-9	3C CET (Sheets 1 - 3)	
45-10	$3U \cup E1$ (Sheets $1 - 3$ )	
43-11	0  CET (Sneets  1 - 3)	43-147

## LIST OF FIGURES (Cont.)

 $\mathbb{P}^{\mathbf{k}}_{2}$ 

Figure No.	Title	Page
43-12	Contribution of PDS to LRF.	43-150
43-13	Summary of CET Quantification (Sheets 1 – 2)	43-151
44-1	MAAP4 AP1000 Containment Nodalization	
45-1	Release Category IC, Case 3BE-5 – SBLOCA with Failed Gravity Injection: Release Fraction of Noble Gases	45-7
45-2	Release Category IC, Case 3BE-5 – SBLOCA with Failed Gravity Injection: Release Eraction of Casium Indide	15 7
45-3	Release Category IC, Case 3BE-5 – SBLOCA with Failed Gravity Injection: Release Fraction of Tellurium Dioxide	45-7
45-4	Release Category IC, Case 3BE-5 – SBLOCA with Failed Gravity Injection: Release Fraction of Strontium Oxide	
45-5	Release Category IC, Case 3BE-5 – SBLOCA with Failed Gravity Injection: Release Fraction of Molybdenum Dioxide	
45-6	Release Category IC, Case 3BE-5 – SBLOCA with Failed Gravity Injection: Release Fraction of Cesium Hydroxide	
45-7	Release Category IC, Case 3BE-5 – SBLOCA with Failed Gravity Injection: Release Fraction of Barium Oxide	45-10
45-8	Release Category IC, Case 3BE-5 – SBLOCA with Failed Gravity Injection: Release Fraction of Dilanthanum Trioxide	45-10
45-9	Release Category IC, Case 3BE-5 – SBLOCA with Failed Gravity Injection: Release Fraction of Cerium Dioxide	45-11
45-10	Release Category IC, Case 3BE-5 – SBLOCA with Failed Gravity Injection: Release Fraction of Tin	45-11
45-11	Release Category IC, Case 3BE-5 – SBLOCA with Failed Gravity Injection: Release Fraction of Tellurium	45-12
45-12	Release Category IC, Case 3BE-5 – SBLOCA with Failed Gravity Injection: Release Fraction of Uranium Dioxide	45-12
45-13	Release Category BP, Case 6E-1 – SGTR with Stuck Open SG Safety Valve: Release Fraction of Noble Gases	45-13
45-14	Release Category BP, Case 6E-1 – SGTR with Stuck Open SG Safety Valve: Release Fraction of Cesium Iodide	
45-15	Release Category BP, Case 6E-1 – SGTR with Stuck Open SG Safety Valve: Release Fraction of Tellurium Dioxide	
45-16	Release Category BP, Case 6E-1 – SGTR with Stuck Open SG Safety Valve: Release Fraction of Strontium Oxide	
45-17	Release Category BP, Case 6E-1 – SGTR with Stuck Open SG Safety Valve: Release Fraction of Molybdenum Dioxide	
45-18	Release Category BP, Case 6E-1 – SGTR with Stuck Open SG Safety Valve: Release Fraction of Cesium Hydroxide	45-15
45-19	Release Category BP, Case 6E-1 – SGTR with Stuck Open SG Safety Valve: Release Fraction of Barium Oxide	45-16

:

#### Figure No. Title Page Release Category BP, Case 6E-1 – SGTR with Stuck Open SG Safety Valve: 45-20 45-21 Release Category BP, Case 6E-1 - SGTR with Stuck Open SG Safety Valve: 45-22 Release Category BP, Case 6E-1 - SGTR with Stuck Open SG Safety Valve: Release Fraction of Tin......45-17 45-23 Release Category BP, Case 6E-1 – SGTR with Stuck Open SG Safety Valve: 45-24 Release Category BP, Case 6E-1 – SGTR with Stuck Open SG Safety Valve: 45-25 Release Category CI, Case 3C-2 – Vessel Rupture with Containment Failure: 45-26 Release Category CL Case 3C-2 – Vessel Rupture with Containment Failure: 45-27 Release Category CI, Case 3C-2 – Vessel Rupture with Containment Failure: Release Category CI, Case 3C-2 - Vessel Rupture with Containment Failure: 45-28 45-29 Release Category CI, Case 3C-2 – Vessel Rupture with Containment Failure: 45-30 Release Category CI, Case 3C-2 – Vessel Rupture with Containment Failure: Release Fraction of Cesium Hydroxide ......45-21 45-31 Release Category CI, Case 3C-2 – Vessel Rupture with Containment Failure: Release Fraction of Barium Oxide......45-22 45-32 Release Category CI, Case 3C-2 – Vessel Rupture with Containment Failure: Release Fraction of Dilanthanum Trioxide......45-22 45-33 Release Category CL, Case 3C-2 – Vessel Rupture with Containment Failure: Release Category CL, Case 3C-2 – Vessel Rupture with Containment Failure: 45-34 Release Fraction of Tin......45-23 45-35 Release Category CL Case 3C-2 – Vessel Rupture with Containment Failure: 45-36 Release Category CI, Case 3C-2 – Vessel Rupture with Containment Failure: 45-37 Release Category CFE, Case 3D-4 – Spurious ADS-2, Failed CMTs, 45-38 Release Category CFE, Case 3D-4 – Spurious ADS-2, Failed CMTs, 45-39 Release Category CFE, Case 3D-4 – Spurious ADS-2, Failed CMTs, Diffusion Flame: Release Fraction of Tellurium Dioxide......45-26 45-40 Release Category CFE, Case 3D-4 - Spurious ADS-2, Failed CMTs, Diffusion Flame: Release Fraction of Strontium Oxide......45-26

AP1000 Probabilistic Risk Assessment

## LIST OF FIGURES (Cont.)

77

۴.

i

Figure No.	Title	Page
45-41	Release Category CFE, Case 3D-4 – Spurious ADS-2, Failed CMTs,	
	Diffusion Flame: Release Fraction of Molybdenum Dioxide	45-27
45-42	Release Category CFE, Case 3D-4 – Spurious ADS-2, Failed CMTs,	
	Diffusion Flame: Release Fraction of Cesium Hydroxide	45-27
45-43	Release Category CFE, Case 3D-4 – Spurious ADS-2, Failed CMTs,	
	Diffusion Flame: Release Fraction of Barium Oxide	45-28
45-44	Release Category CFE, Case 3D-4 – Spurious ADS-2, Failed CMTs.	
,	Diffusion Flame: Release Fraction of Dilanthanum Trioxide	
45-45	Release Category CFE, Case 3D-4 – Spurious ADS-2, Failed CMTs.	····
	Diffusion Flame: Release Fraction of Cerium Dioxide	
45-46	Release Category CFE, Case 3D-4 – Spurious ADS-2, Failed CMTs.	
	Diffusion Flame: Release Fraction of Tin	
45-47	Release Category CFE, Case 3D-4 – Spurious ADS-2, Failed CMTs.	
	Diffusion Flame: Release Fraction of Tellurium	
45-48	Release Category CFE, Case 3D-4 – Spurious ADS-2, Failed CMTs.	
	Diffusion Flame: Release Fraction of Uranium Dioxide	45-30
45-49	Release Category CFL Case 3BE-3 – DVI Line Break, Failed Gravity	
	Injection No PXS Flooding: Release Fraction of Noble Gases	45-31
45-50	Release Category CFL Case 3BE-3 - DVI Line Break, Failed Gravity	
10 00	Injection No PXS Flooding: Release Fraction of Cesium Indide	45-31
45-51	Release Category CFL Case 3BE-3 – DVI Line Break, Failed Gravity	
10 01	Injection, No PXS Flooding: Release Fraction of Tellurium Dioxide	
45-52	Release Category CFI. Case 3BE-3 – DVI Line Break, Failed Gravity	
	Injection No PXS Flooding: Release Fraction of Strontium Oxide	
45-53	Release Category CFL Case 3BE-3 – DVI Line Break, Failed Gravity	
	Injection No PXS Flooding: Release Fraction of Molybdenum Dioxide	45-33
45-54	Release Category CFL Case 3BE-3 – DVI Line Break, Failed Gravity	-
	Injection, No PXS Flooding: Release Fraction of Cesium Hydroxide	
45-55	Release Category CFI. Case 3BE-3 – DVI Line Break, Failed Gravity	
	Injection No PXS Flooding: Release Fraction of Barium Oxide	
45-56	Release Category CFL Case 3BE-3 - DVI Line Break, Failed Gravity	
10 00	Injection No PXS Flooding: Release Fraction of Dilanthanum Trioxide	45-34
45-57	Release Category CFL Case 3BE-3 - DVI Line Break, Failed Gravity	
-0007	Injection No PXS Flooding: Release Fraction of Cerium Dioxide	45-35
45-58	Release Category CFL Case 3RE-3 – DVI Line Break Failed Gravity	
45 50	Injection No PXS Flooding: Release Fraction of Tin	45-35
45-59	Release Category CFL Case 3BE-3 – DVI Line Break, Failed Gravity	
	Injection No PXS Flooding: Release Fraction of Tellurium	
45-60	Release Category CFL Case 3BE-3 - DVI Line Break, Failed Gravity	
	Injection, No PXS Flooding: Release Fraction of Uranium Dioxide	45-36
45-61	Release Category CFL, Case 3BE-7 – SRI OCA with Failed Gravity	
	Injection: Release Fraction of Noble Gases	45-37
	aljeelett. Referer & Referer of Etopic Group manimum manimum manimum manimum	

xcv

<u>Figure No.</u>	<u>Title</u> Page
45-62	Release Category CFL, Case 3BE-7 – SBLOCA with Failed Gravity
	Injection: Release Fraction of Cesium Iodide
45-63	Release Category CFL, Case 3BE-7 – SBLOCA with Failed Gravity
	Injection: Release Fraction of Tellurium Dioxide
45-64	Release Category CFL, Case 3BE-7 – SBLOCA with Failed Gravity
	Injection: Release Fraction of Strontium Oxide
45-65	Release Category CFL, Case 3BE-7 – SBLOCA with Failed Gravity
	Injection: Release Fraction of Molybdenum Dioxide
45-66	Release Category CFL. Case 3BE-7 – SBLOCA with Failed Gravity
	Injection: Release Fraction of Cesium Hydroxide
45-67	Release Category CFL. Case 3BE-7 – SBLOCA with Failed Gravity
	Injection: Release Fraction of Barium Oxide
45-68	Release Category CFL, Case 3BE-7 – SBLOCA with Failed Gravity
	Injection: Release Fraction of Dilanthanum Trioxide
45-69	Release Category CFL, Case 3BE-7 – SBLOCA with Failed Gravity
	Injection: Release Fraction of Cerium Dioxide
45-70	Release Category CFL. Case 3BE-7 – SBLOCA with Failed Gravity
	Injection: Release Fraction of Tin
45-71	Release Category CFL, Case 3BE-7 – SBLOCA with Failed Gravity
	Injection: Release Fraction of Tellurium
45-72	Release Category CFL, Case 3BE-7 – SBLOCA with Failed Gravity
	Injection: Release Fraction of Uranium Dioxide
45-73	Release Category IC. Case 3BE-5 – SBLOCA with Failed Gravity
10 10	Injection Direct-Release Sensitivity: Release Fraction of Noble Gases
45-74	Release Category IC. Case 3BE-5 – SBLOCA with Failed Gravity
	Injection Direct-Release Sensitivity: Release Fraction of Cesium Jodide
45-75	Release Category IC. Case 3BE-5 – SBLOCA with Failed Gravity
	Injection Direct-Release Sensitivity: Release Fraction of Tellurium Dioxide 45-44
45-76	Release Category IC. Case 3BE-5 - SBLOCA with Failed Gravity
10 / 0	Injection Direct-Release Sensitivity Release Fraction of Strontium Oxide 45-44
45-77	Release Category IC Case 3BE-5 - SRLOCA with Failed Gravity Injection
10 11	Direct-Release Sensitivity Release Fraction of Molybdenum Dioxide 45-45
45-78	Release Category IC Case 3RE-5 - SRLOCA with Failed Gravity
45-70	Injection Direct-Release Sensitivity Release Fraction of Cesium Hydroxide 45.45
45-79	Release Category IC Case 3BE-5 - SBI OCA with Failed Gravity
-15-15	Injection Direct Release Sensitivity: Release Eraction of Barium Oxide 45.46
45-80	Release Category IC Case 3RE-5 - SRI OCA with Earled Gravity Injection
45-00	Direct Release Sensitivity: Release Eraction of Dilanthanum Trioxide 45.46
45 91	Palasse Category IC Case 3RE-5, SRI OCA with Eailed Gravity
10-61	Injection Direct Palage Sancitivity: Palage Erection of Carium Directed 45 47
45-87	Release Category IC Case 3RE-5 - SRI OCA with Reiled Gravity
<del>4</del> J-04	Injection Direct Deleges Cancitivity: Deleges Errotion of Tin
	mjecuon Dreet-Release Sensiuvity: Release Fraction of 1111

AP1000 Probabilistic Risk Assessment

## LIST OF FIGURES (Cont.)

É

.

ų

Figure No.	Title	Page
45-83	Release Category IC, Case 3BE-5 – SBLOCA with Failed Gravity	
	Injection Direct-Release Sensitivity: Release Fraction of Tellurium	45-48
45-84	Release Category IC, Case 3BE-5 – SBLOCA with Failed Gravity	
	Injection Direct-Release Sensitivity: Release Fraction of Uranium Dioxide	45-48
45A-1	AP1000 Fission Product Release Fractions for Release Category CFE -	
	Noble Gases	45A-3
45A-2	AP1000 Fission Product Release Fractions for Release Category CFE –	
	CsI and RbI	45A-3
45A-3	AP1000 Fission Product Release Fractions for Release Category CFE –	
	TeO ₂	45A-4
45A-4	AP1000 Fission Product Release Fractions for Release Category CFE –	
	SrO	45A-4
45A-5	AP1000 Fission Product Release Fractions for Release Category CFE –	
	MoO ₂	45A-5
45A-6	AP1000 Fission Product Release Fractions for Release Category CFE –	
	CsOH and RbOH	45A-5
45A-7	AP1000 Fission Product Release Fractions for Release Category CFE –	
	BaO	45A-6
45A-8	AP1000 Fission Product Release Fractions for Release Category CFE –	
45A-9	AP1000 Fission Product Release Fractions for Release Category CFE -	
	CeO2	45A-7
45A-10	AP1000 Fission Product Release Fractions for Release Category CFE -	
	Sh	454-7
454-11	A DIMA Firston Product Delegge Frontions for Delegge Category (FFF - Te.	/5A_8
454-12	A P1000 Fission Product Release Fractions for Release Category CFE - 10.	
454 12	AP1000 2DE 1 Case with Intermediate DDT Containment Eailure	4JA-0
437-13	BCS Descripto	454 0
454 14	A D1000 2DE 1 Case with Intermediate DDT Containment Eailure	4347
4JA-14	AP1000 SBE-1 Case with Intermediate DD1 Containment Panute –	454.0
AE 4 1E	A D1000 2DE 1 Constraint Internet line DDT Containment Esilare	43A-9
43A-13	AP1000 3BE-1 Case with Intermediate DD1 Containment Failure –	45 4 10
151 15		45A-10
45A-10	AP1000 3BE-1 Case with Intermediate DD1 Containment Failure –	17. 10
	In-Vessel Hydrogen Generation	45A-10
45A-17	AP1000 3BE-1 Case with Intermediate DDT Containment Failure –	
	Containment Pressure	45A-11
45A-18	AP1000 3BE-1 Case with Intermediate DDT Containment Failure –	
	Containment Gas Temperature	45A-11
45A-19	AP1000 3BE-1 Case with Intermediate DDT Containment Failure –	
	Containment Hydrogen Concentration	45A-12
45A-20	AP1000 3BE-1 Case with Intermediate DDT Containment Failure -	
	Noble Gases Release Fraction	45A-12

<u>Figure No.</u>	Title	Page 1
45A-21	AP1000 3BE-1 Case with Intermediate DDT Containment Failure –	
	CsI and RbI Release Fraction	45A-13
45A-22	AP1000 3BE-1 Case with Intermediate DDT Containment Failure –	
	TeO ₂ Release Fraction	45A-13
45A-23	AP1000 3BE-1 Case with Intermediate DDT Containment Failure –	
	SrO Release Fraction	45A-14
45A-24	AP1000 3BE-1 Case with Intermediate DDT Containment Failure –	
	MoO ₂ Release Fraction	45A-14
45A-25	AP1000 3BE-1 Case with Intermediate DDT Containment Failure –	
	CsOH and RbOH Release Fraction	45A-15
45A-26	AP1000 3BE-1 Case with Intermediate DDT Containment Failure –	
	BaO Release Fraction	
45A-27	AP1000 3BE-1 Case with Intermediate DDT Containment Failure -	
	La202 Release Fraction	
45A-28	AP1000 3BE-1 Case with Intermediate DDT Containment Failure –	
	CeO Release Fraction	45A-16
45A-29	AP1000 3BE-1 Case with Intermediate DDT Containment Failure –	
1011 22	Sh Release Fraction	45A-17
45A-30	AP1000 3BE-1 Case with Intermediate DDT Containment Failure –	
	Te Release Fraction	45A-17
45A-31	AP1000 3BE-1 Case with Intermediate DDT Containment Failure –	
	IIO Release Fraction	45A-18
45A-32	AP1000 3BE-1 Case with no PCS Water Cooling and Late Containment	
-511 52	Failure – Containment Pressure	45A-18
45A-33	AP1000 3BE-1 Case with no PCS Water Cooling and Late Containment	
1011 00	Failure – Noble Gases Release Fraction	45A-19
45A-34	AP1000 3BE-1 Case with no PCS Water Cooling and Late Containment	
	Failure – CsI and RbI Release Fraction	45A-19
454-35	AP1000 3BE-1 Case with no PCS Water Cooling and Late Containment	
-511 55	Failure - TeO. Release Fraction	454-20
454-36	AP1000 3BE-1 Case with no PCS Water Cooling and Late Containment	······································
4511-50	Failure - SrO Release Fraction	454-20
454-37	AP1000 3BE-1 Case with no PCS Water Cooling and Late Containment	······································
-54-57	Failure - MoQ. Release Fraction	454-21
454-38	AP1000 3BE-1 Case with no PCS Water Cooling and Late Containment	
4571-50	Failure - CsOH and RhOH Release Fraction	454-21
454-30	A D1000 3BE-1 Case with no DCS Water Cooling and I ate Containment	······································
+34-33	Failure Ro Delesse Fraction	15 1 22
454-40	A D1000 3RE-1 Case with no DCS Water Cooling and I ate Containment	······································
4777-40	Fribura I a O. Daleasa Errotion	15 1 22
A5A A1	A D1000 2DE 1 Case with no DCS Water Cooling and I ato Containment	
4747-41	AF 1000 DE-1 Case with no res water Cooling and Late Containment	A5 4 00
	ranuic - CEU2 KEIEase Flacuuli	4JA-23

AP1000 Probabilistic Risk Assessment

#### LIST OF FIGURES (Cont.)

di -yi

į

 $\{1, i, j\},$ 

Figure No.	Title	Page
45 <b>A</b> -42	AP1000 3BE-1 Case with no PCS Water Cooling and Late Containment	
	Failure – Sb Release Fraction	45A-23
45A-43	AP1000 3BE-1 Case with no PCS Water Cooling and Late Containment	
	Failure – Te ₂ Release Fraction	45A-24
45A-44	AP1000 3BE-1 Case with no PCS Water Cooling and Late Containment	
	Failure – UO ₂ Release Fraction	45A-24
- 49-1	Population Whole Body Dose – BP Source Term. 24 Hours	
49-2	Population Whole Body Dose – BP Source Term 72 Hours	
49-3	Site Boundary Whole Body Dose – BP Source Term, 24 Hours	
49-4	Site Boundary Whole Body Dose – BP Source Term, 72 Hours	
49-5	Site Boundary Red Bone Marrow Dose – BP Source Term, 24 Hours	
49-6	Site Boundary Red Bone Marrow Dose – BP Source Term, 72 Hours	
49-7	Site Boundary Thyroid Dose – BP Source Term. 24 Hours	
49-8	Site Boundary Thyroid Dose – BP Source Term, 72 Hours	
49-9	Population Whole Body Dose - CFE Source Term. 24 Hours	
49-10	Population Whole Body Dose - CFE Source Term, 72 Hours	
49-11	Site Boundary Whole Body Dose - CFE Source Term, 24 Hours	
49-12	Site Boundary Whole Body Dose - CFE Source Term, 72 Hours	
49-13	Site Boundary Red Bone Marrow Dose - CFE Source Term, 24 Hours	
49-14	Site Boundary Red Bone Marrow Dose - CFE Source Term, 72 Hours	
49-15	Site Boundary Thyroid Dose - CFE Source Term, 24 Hours	
49-16	Site Boundary Thyroid Dose - CFE Source Term, 72 Hours	
49-17	Population Whole Body Dose - CFI Source Term, 24 Hours	49-28
49-18	Population Whole Body Dose - CFI Source Term, 72 Hours	
49-19	Site Boundary Whole Body Dose - CFI Source Term, 24 Hours	
49-20	Site Boundary Whole Body Dose - CFI Source Term, 72 Hours	
49-21	Site Boundary Red Bone Marrow Dose - CFI Source Term, 24 Hours	49-30
49-22	Site Boundary Red Bone Marrow Dose - CFI Source Term, 72 Hours	49-30
49-23	Site Boundary Thyroid Dose - CFI Source Term, 24 Hours	
49-24	Site Boundary Thyroid Dose - CFI Source Term, 72 Hours	
49-25	Population Whole Body Dose - CFL Source Term, 24 Hours	
49-26	Population Whole Body Dose - CFL Source Term, 72 Hours	
49-27	Site Boundary Whole Body Dose - CFL Source Term, 24 Hours	
49-28	Site Boundary Whole Body Dose - CFL Source Term, 72 Hours	
49-29	Site Boundary Red Bone Marrow Dose - CFL Source Term, 24 Hours	
49-30	Site Boundary Red Bone Marrow Dose - CFL Source Term, 72 Hours	
49-31	Site Boundary Thyroid Dose - CFL Source Term, 24 Hours	
49-32	Site Boundary Thyroid Dose - CFL Source Term, 72 Hours	
49-33	Population Whole Body Dose - CI Source Term, 24 Hours	49-36
49-34	Population Whole Body Dose - CI Source Term, 72 Hours	49-36
49-35	Site Boundary Whole Body Dose - CI Source Term, 24 Hours	49-37
49-36	Site Boundary Whole Body Dose - CI Source Term, 72 Hours	49-37

## Figure No.

## <u>Title</u>

# <u>Page</u>

49-37	Site Boundary Red Bone Marrow Dose - CI Source Term, 24 Hours	49-38
49-38	Site Boundary Red Bone Marrow Dose - CI Source Term, 72 Hours	49-38
49-39	Site Boundary Thyroid Dose - CI Source Term, 24 Hours	49-39
49-40	Site Boundary Thyroid Dose - CI Source Term, 72 Hours	49-39
49-41	Population Whole Body Dose - DIRECT Source Term, 24 Hours	49-40
49-42	Population Whole Body Dose - DIRECT Source Term, 72 Hours	49-40
49-43	Site Boundary Whole Body Dose - DIRECT Source Term, 24 Hours	49-41
49-44	Site Boundary Whole Body Dose - DIRECT Source Term, 72 Hours	49-41
49-45	Site Boundary Red Bone Marrow Dose - DIRECT Source Term, 24 Hours	49-42
49-46	Site Boundary Red Bone Marrow Dose - DIRECT Source Term, 72 Hours	49-42
49-47	Site Boundary Thyroid Dose - DIRECT Source Term, 24 Hours	49-43
49-48	Site Boundary Thyroid Dose - DIRECT Source Term, 72 Hours	49-43
49-49	Population Whole Body Dose - IC Source Term, 24 Hours	49-44
49-50	Population Whole Body Dose – IC Source Term, 72 Hours	49-44
49-51	Site Boundary Whole Body Dose - IC Source Term, 24 Hours	49-45
49-52	Site Boundary Whole Body Dose - IC Source Term, 72 Hours	49-45
49-53	Site Boundary Red Bone Marrow Dose - IC Source Term, 24 Hours	49-46
49-54	Site Boundary Red Bone Marrow Dose - IC Source Term, 72 Hours	49-46
49-55	Site Boundary Thyroid Dose - IC Source Term, 24 Hours	49-47
49-56	Site Boundary Thyroid Dose – IC Source Term, 72 Hours	49-47
49-57	Overall Dose Risk - Site Boundary Whole Body EDE Dose, 24 Hours	49-48
	• •	
49-58	Overall Dose Risk - Site Boundary Red Bone Marrow Dose (Acute), 24 Hours	49-49
49-58	Overall Dose Risk – Site Boundary Red Bone Marrow Dose (Acute), 24 Hours	49-49
49-58 51-1	Overall Dose Risk – Site Boundary Red Bone Marrow Dose (Acute), 24 Hours AP1000 Base Core Damage Frequency Uncertainty Analysis	49-49
49-58 51-1 51-2	Overall Dose Risk – Site Boundary Red Bone Marrow Dose (Acute), 24 Hours AP1000 Base Core Damage Frequency Uncertainty Analysis AP1000 Sensitivity Case Uncertainty Analysis	49-49 51-11 51-11
49-58 51-1 51-2 51B-1	Overall Dose Risk – Site Boundary Red Bone Marrow Dose (Acute), 24 Hours AP1000 Base Core Damage Frequency Uncertainty Analysis AP1000 Sensitivity Case Uncertainty Analysis Distribution for Plant Core Damage Frequency	49-49 51-11 51-11
49-58 51-1 51-2 51B-1 51B-2	Overall Dose Risk – Site Boundary Red Bone Marrow Dose (Acute), 24 Hours AP1000 Base Core Damage Frequency Uncertainty Analysis AP1000 Sensitivity Case Uncertainty Analysis Distribution for Plant Core Damage Frequency Safety Injection Line Break	49-49 51-11 51B-2 51B-2
49-58 51-1 51-2 51B-1 51B-2 51B-3	Overall Dose Risk – Site Boundary Red Bone Marrow Dose (Acute), 24 Hours AP1000 Base Core Damage Frequency Uncertainty Analysis AP1000 Sensitivity Case Uncertainty Analysis Distribution for Plant Core Damage Frequency Safety Injection Line Break Large LOCA	49-49 51-11 51B-2 51B-2 51B-3
49-58 51-1 51-2 51B-1 51B-2 51B-3 51B-4	Overall Dose Risk – Site Boundary Red Bone Marrow Dose (Acute), 24 Hours AP1000 Base Core Damage Frequency Uncertainty Analysis AP1000 Sensitivity Case Uncertainty Analysis Distribution for Plant Core Damage Frequency Safety Injection Line Break Large LOCA Large Spurious ADS Actuation	49-49 51-11 51B-2 51B-2 51B-3 51B-3
49-58 51-1 51-2 51B-1 51B-2 51B-3 51B-4 51B-5	Overall Dose Risk – Site Boundary Red Bone Marrow Dose (Acute), 24 Hours AP1000 Base Core Damage Frequency Uncertainty Analysis AP1000 Sensitivity Case Uncertainty Analysis Distribution for Plant Core Damage Frequency Safety Injection Line Break Large LOCA Small LOCA	49-49 51-11 51B-2 51B-2 51B-3 51B-3 51B-4
49-58 51-1 51-2 51B-1 51B-2 51B-3 51B-4 51B-5 51B-6	Overall Dose Risk – Site Boundary Red Bone Marrow Dose (Acute), 24 Hours AP1000 Base Core Damage Frequency Uncertainty Analysis AP1000 Sensitivity Case Uncertainty Analysis Distribution for Plant Core Damage Frequency Safety Injection Line Break Large LOCA Large Spurious ADS Actuation Small LOCA Medium LOCA	49-49 51-11 51B-2 51B-2 51B-3 51B-3 51B-4 51B-4
49-58 51-1 51-2 51B-1 51B-2 51B-3 51B-3 51B-4 51B-5 51B-6 51B-7	Overall Dose Risk – Site Boundary Red Bone Marrow Dose (Acute), 24 Hours AP1000 Base Core Damage Frequency Uncertainty Analysis	49-49 51-11 51B-2 51B-2 51B-3 51B-3 51B-4 51B-4 51B-5
49-58 51-1 51-2 51B-1 51B-2 51B-3 51B-3 51B-4 51B-5 51B-6 51B-7 51B-8	Overall Dose Risk – Site Boundary Red Bone Marrow Dose (Acute), 24 Hours AP1000 Base Core Damage Frequency Uncertainty Analysis	49-49 51-11 51B-2 51B-2 51B-3 51B-3 51B-4 51B-4 51B-5 51B-5
49-58 51-1 51-2 51B-1 51B-2 51B-3 51B-3 51B-4 51B-5 51B-6 51B-7 51B-8 51B-8 51B-9	Overall Dose Risk – Site Boundary Red Bone Marrow Dose (Acute), 24 Hours AP1000 Base Core Damage Frequency Uncertainty Analysis AP1000 Sensitivity Case Uncertainty Analysis Distribution for Plant Core Damage Frequency Safety Injection Line Break Large LOCA Large Spurious ADS Actuation Small LOCA Medium LOCA Reactor Vessel Rupture Steam Generator Tube Rupture Safety Injection Line Break – Sequence 7	49-49 51-11 51B-2 51B-2 51B-3 51B-3 51B-4 51B-4 51B-5 51B-5 51B-5
49-58 51-1 51-2 51B-1 51B-2 51B-3 51B-3 51B-4 51B-5 51B-6 51B-7 51B-6 51B-7 51B-8 51B-9 51B-9 51B-10	Overall Dose Risk – Site Boundary Red Bone Marrow Dose (Acute), 24 Hours AP1000 Base Core Damage Frequency Uncertainty Analysis	49-49 51-11 51B-2 51B-2 51B-3 51B-3 51B-4 51B-4 51B-5 51B-5 51B-6 51B-6
49-58 51-1 51-2 51B-1 51B-2 51B-3 51B-3 51B-4 51B-5 51B-6 51B-7 51B-8 51B-9 51B-10 51B-11	Overall Dose Risk – Site Boundary Red Bone Marrow Dose (Acute), 24 Hours AP1000 Base Core Damage Frequency Uncertainty Analysis	49-49 51-11 51B-2 51B-2 51B-3 51B-3 51B-4 51B-4 51B-5 51B-5 51B-6 51B-7
49-58 51-1 51-2 51B-1 51B-2 51B-3 51B-3 51B-4 51B-5 51B-6 51B-7 51B-8 51B-9 51B-10 51B-11 51B-12	Overall Dose Risk – Site Boundary Red Bone Marrow Dose (Acute), 24 Hours AP1000 Base Core Damage Frequency Uncertainty Analysis AP1000 Sensitivity Case Uncertainty Analysis Distribution for Plant Core Damage Frequency Safety Injection Line Break Large LOCA Large Spurious ADS Actuation Small LOCA Medium LOCA Reactor Vessel Rupture Steam Generator Tube Rupture Safety Injection Line Break – Sequence 7 Large LOCA – Sequence 8 Spurious ADS – Sequence 8	49-49 51-11 51B-2 51B-2 51B-3 51B-3 51B-4 51B-4 51B-5 51B-5 51B-6 51B-6 51B-7 51B-7
49-58 51-1 51-2 51B-1 51B-2 51B-3 51B-3 51B-4 51B-5 51B-6 51B-7 51B-6 51B-7 51B-8 51B-9 51B-10 51B-11 51B-12 51B-13	Overall Dose Risk – Site Boundary Red Bone Marrow Dose (Acute), 24 Hours AP1000 Base Core Damage Frequency Uncertainty Analysis	49-49 51-11 51B-2 51B-2 51B-3 51B-3 51B-4 51B-4 51B-5 51B-5 51B-6 51B-7 51B-7 51B-7 51B-8
49-58 51-1 51-2 51B-1 51B-2 51B-3 51B-3 51B-4 51B-5 51B-6 51B-7 51B-6 51B-7 51B-8 51B-9 51B-10 51B-11 51B-12 51B-13 51B-14	Overall Dose Risk – Site Boundary Red Bone Marrow Dose (Acute), 24 Hours    AP1000 Base Core Damage Frequency Uncertainty Analysis    AP1000 Sensitivity Case Uncertainty Analysis    Distribution for Plant Core Damage Frequency	49-49 51-11 51B-2 51B-2 51B-3 51B-3 51B-4 51B-4 51B-5 51B-6 51B-6 51B-7 51B-7 51B-8 51B-8
49-58 51-1 51-2 51B-1 51B-2 51B-3 51B-3 51B-4 51B-5 51B-6 51B-7 51B-8 51B-7 51B-8 51B-9 51B-10 51B-11 51B-12 51B-13 51B-14 51B-15	Overall Dose Risk – Site Boundary Red Bone Marrow Dose (Acute), 24 Hours AP1000 Base Core Damage Frequency Uncertainty Analysis AP1000 Sensitivity Case Uncertainty Analysis Distribution for Plant Core Damage Frequency Safety Injection Line Break Large LOCA Large Spurious ADS Actuation Small LOCA Medium LOCA Reactor Vessel Rupture Steam Generator Tube Rupture Safety Injection Line Break – Sequence 7 Large LOCA – Sequence 8 Spurious ADS – Sequence 8 Safety Injection Line Break – Sequence 8d Reactor Vessel Rupture – Sequence 2 Small LOCA – Sequence 5	49-49 51-11 51B-2 51B-2 51B-3 51B-3 51B-3 51B-4 51B-4 51B-5 51B-6 51B-6 51B-7 51B-7 51B-8 51B-8 51B-9
49-58 51-1 51-2 51B-1 51B-2 51B-3 51B-3 51B-4 51B-5 51B-6 51B-7 51B-6 51B-7 51B-8 51B-9 51B-10 51B-11 51B-12 51B-13 51B-14 51B-15 51B-16	Overall Dose Risk – Site Boundary Red Bone Marrow Dose (Acute), 24 Hours AP1000 Base Core Damage Frequency Uncertainty Analysis AP1000 Sensitivity Case Uncertainty Analysis Distribution for Plant Core Damage Frequency Safety Injection Line Break Large LOCA Medium LOCA Reactor Vessel Rupture Steam Generator Tube Rupture Steam Generator Tube Rupture Safety Injection Line Break – Sequence 7 Large LOCA – Sequence 8 Spurious ADS – Sequence 8 Safety Injection Line Break – Sequence 7 Safety Injection Line Break – Sequence 8 Safety Injection Line Break – Sequence 7 Safety Injection Line Break – Sequence 8 Safety Injection Line Break – Sequence 7 Safety Injection Line Break	49-49 51-11 51B-2 51B-2 51B-2 51B-3 51B-3 51B-4 51B-4 51B-5 51B-5 51B-6 51B-7 51B-7 51B-7 51B-8 51B-8 51B-9 51B-9 51B-9

AP1000 Probabilistic Risk Assessment

# LIST OF FIGURES (Cont.)

- 9

5

한동 4 **2** 

#### Figure No.

## <u>Title</u>

Page

51B-10Sparlous TADSSequence 751B-19Spurious ADS - Sequence 751B-1151B-20Safety Injection Line Break - Sequence 351B-1151B-21SGTR Event - Sequence 4151B-1251B-22ATWS Precursor with no MFW - Sequence 2351B-1251B-23Small LOCA - Sequence 951B-1351B-24Medium LOCA - Sequence 951B-1351B-25SGTR Event - Sequence 1351B-1451B-26Large LOCA - Sequence 851B-1451B-27CMT Line Break - Sequence 551B-15
51B-20Safety Injection Line Break - Sequence 351B-1151B-21SGTR Event - Sequence 4151B-1251B-22ATWS Precursor with no MFW - Sequence 2351B-1251B-23Small LOCA - Sequence 951B-1351B-24Medium LOCA - Sequence 951B-1351B-25SGTR Event - Sequence 1351B-1451B-26Large LOCA - Sequence 851B-1451B-27CMT Line Break - Sequence 551B-15
51B-21SGTR Event - Sequence 4151B-1251B-22ATWS Precursor with no MFW - Sequence 2351B-1251B-23Small LOCA - Sequence 951B-1351B-24Medium LOCA - Sequence 951B-1351B-25SGTR Event - Sequence 1351B-1451B-26Large LOCA - Sequence 851B-1451B-27CMT Line Break - Sequence 551B-15
51B-22ATWS Precursor with no MFW - Sequence 23
51B-22  Fit wis freedustrian in the win we dequence 25 minutes 15
51B-25  Silan Dock - Sequence 9    51B-24  Medium LOCA - Sequence 9    51B-25  SGTR Event - Sequence 13    51B-26  Large LOCA - Sequence 8    51B-27  CMT Line Break - Sequence 5
51B-24Interfamilia Doorn's Dequence 951B-25SGTR Event - Sequence 1351B-26Large LOCA - Sequence 851B-27CMT Line Break - Sequence 5
51B-25DefinitionDefinition51B-26Large LOCA - Sequence 8
51B-27 CMT Line Break – Sequence 5
54-1 Loss of Offsite Power During Hot/Cold Shutdown (RCS Filled)
Event Tree (Sheets $1 - 2$ )
54-2 Loss of RNS During Hot/Cold Shutdown (RCS Filled) Event Tree
54-3 Loss of CCW/SW During Hot/Cold Shutdown (RCS Filled) Event Tree
54-4 LOCA/RNS-V024 Opens During Hot/Cold Shutdown (RCS Filled) Event Tree
54-5 LOCA/RNS Pipe Rupture During Hot/Cold Shutdown (RCS Filled) Event Tree
54-6 Overdraining of Reactor Coolant System During Draindown to Mid-loop
Event Tree
54-7 Loss of Offsite Power During RCS drained Condition Event Tree
54-8 Loss of RNS During RCS drained Condition Event Tree
54-9 Loss of CCW/SW During RCS drained Condition Event Tree
54-10 LOCA/RNS-V024 Opens During RCS drained Condition Event Tree
55-1 Seismic Initiating Event Hierarchy Tree
57-1 Example Event Tree Model
57-2 Contribution of Plant Areas to Fire CDF
57-3 Contribution of Fire Area to Fire CDF
57A-1 DAS-ACT Fault Tree
57C-1 0000 AF 00 Yard Building (Including Transformer Yard)57C-12
57C-2 1200 AF 01 RCA of Auxiliary Building (All Zones)
57C-3 1200 AF 02 New Fuel and Used Fuel Storage, Waste Disposal
Container (All Zones)
57C-4 1200 AF 03 Corridors 100' & 117' 6"
57C-5 1201 AF 02 Division B Batteries/DC Equipment Room/Instrumentation
and Control
57C-6 1201 AF 03 Division D DC Equipment/I&C
57C-7 1201 AF 04 Division B/D VBS Equipment
57C-8 1201 AF 05 MSIV Compartment A
57C-9 1201 AF 06 MSIV Compartment B

<u>Figure No.</u>	Title	<u>Page</u>
57C-10	1202 AF 02 Northeast Elevator Shaft	57C-21
57C-11	1202 AF 03 Division C Batteries/DC Equipment/I&C Room/	
	RCP Trip Switchgear Room/I&C Penetration Room	57C-22
57C-12	1202 AF 04 Division A Electrical Equipment/Battery Room/I&C Room	57C-23
57C-13	1204 AF 01 RNS Pump Room B	57C-24
57 <b>C</b> -14	1204 AF 03 South Shield Building Elevator Shaft	57C-25
57C-15	1205 AF 02 Southeast Elevator Shaft	57C-26
57C-16	1210 AF 01 Corridor/Spare Battery Room/Spare Room/Spare Battery	
	Charger Room	57C-27
57C-17	1220 AF 01 Division B RCP Trip Switchgear/Spare Room/Corridor 82 6"	57C-28
57C-18	1220 AF 02 Lower Annulus Valve Area	57C-29
57C-19	1230 AF 01 Corridor Division A, B, C, D and Remote Shutdown Workstatio	on57C-30
57C-20	1230 AF 02 Non-Class 1E Electrical Compartment - 100'	57C-31
57C-21	1232 AF 01 Remote Shutdown Workstation	57C-32
57C-22	1240 AF 01 Non-Class 1E Electrical Compartment - 117'	57C-33
57C-23	1242 AF 02 Division A Penetration Area	57C-34
57C-24	1243 AF 01 Reactor Trip Switchgear I	57C-35
57C-25	1243 AF 02 Reactor Trip Switchgear II	57C-36
57C-26	1250 AF 01 Nonradioactive Ventilation System	57C-37
57C-27	2000 AF 01 Turbine Building Floor	57C-38
57C-28	2003 AF 01 Auxiliary Boiler Equipment Room	57C-39
57C-29	2009 AF 02 Elevator Machine Room	57C-40
57C-30	2033 AF 02 Motor-Driven Fire Pump Room	57C-41
57C-31	2040 AF 01 Clean and Dirty Lube Oil Storage	57C-42
57C-32	2043 AF 01 Chemical Laboratory	57C-43
57C-33	2050 AF 01 Lube Oil Conditioner Room	57C-44
57C-34	2052 AF 01 Southwest 6.9KV Switchgear Room	57C-45
57C-35	2053 AF 01 Electrical Equipment Room	57C-46
57C-36	2053 AF 02 Northwest 6.9KV Switchgear Room	57C-47
57C-37	4003 AF 01 Demineralized Water Deoxygenating Room/	
	Air Handling Equipment Rooms	57C-48
57C-38	4031 AF 01 Battery Room and Battery Charger Room 1	57C-49
57C-39	4031 AF 02 Battery Room and Battery Charger Room 2/	
	Computer Room B/Shift Turnover Room	57C-50
57C-40	4031 AF 05 Corridor/Spare Battery Room/Spare Room/	
	Spare Battery Charger Room	57C-51
57C-41	4031 AF 06 Central Alarm Station/Security Room 1	57C-52
57C-42	4032 AF 01 Decontamination Room, Non-Radiological and	
	Radiological Controlled Area Entry/Exit Area	57C-53
57C-43	4032 AF 02 Containment Access Corridor Elevation 107' 2"	57 <b>C-5</b> 4
57C-44	4033 AF 01 Hot Machine Shop	57C-55
57C-45	4034 AF 01 General Offices	57C-56
57C-46	4041 AF 01 Conference Rooms/Computer Room A/Corridor	57C-57

**AP1000 Probabilistic Risk Assessment** 

## LIST OF FIGURES (Cont.)

ŧ

Sec. 3. 2

*

#### Figure No.

# <u>Title</u>

57C-47	4041 AF 02 Corridor/Restroom57C-58
57C-48	4042 AF 01 Non-Class 1E Switchgear #1 57C-59
57C-49	4042 AF 02 Non-Class 1E Switchgear #2 57C-60
57C-50	4052 AF 01 Staging and Storage Area/Containment Air Filtration
	Exhaust Rooms A & B
57C-51	5031 AF 01 Radwaste Building
57C-52	6030 AF 01 Diesel Generator Room A
57C-53	6030 AF 02 Diesel Generator Room B57C-64
57C-54	6030 AF 03 Fuel Oil Day Tank Room A 57C-65
57C-55	6030 AF 04 Fuel Oil Day Take Room B
57C-56	1100 AF 11204 Reactor Coolant Drain Tank Room
57C-57	1100 AF 11206 Accumulator Room A57C-68
57C-58	1100 AF 11207 Accumulator Room B57C-69
57C-59	1100 AF 11208 RNS Valve Room57C-70
57C-60	1100 AF 11300A Maintenance Floor (SE Quadrant Access)
57C-61	1100 AF 11300B Maintenance Floor (NNE Quadrant) and RCDT Access
57C-62	1100 AF 11301 SG Compartment 1
57C-63	1100 AF 11302 SG Compartment 2
57C-64	1100 AF 11303 Pressurizer Compartment
57C-65	1100 AF 11303A ADS Lower Valve Area
57C-66	1100 AF 11303B ADS Upper Valve Area
57C-67	1100 AF 11500 Operating Deck
57C-68	1200 AF 12341 Middle Annulus
57C-69	1200 AF 12555 Main Control Room Emergency Habitability System Air
	Storage/Operating Deck Staging Area
59-1	Contribution of Initiating Events to Core Damage
59-2	24-Hour Site Boundary Dose Cumulative Frequency Distribution

**Revision 4** 

#### **Revision 1 Change Roadmap**

AP1000 Probabilistic Risk Assessment

Section	Page No.	Type of Change ⁽¹⁾
AP1000 Document Cover Sheet		Editorial
Probabilistic Risk Assessment, Title Page		Editorial
TofC	i through c	Editorial
Revision 1 Change Roadmap	ci through civ	Editorial
1	1-6	Editorial
3	3-4	Editorial
Attachment 4B	4B-24	720.027
Attachment 4B	4B-74	Editorial
6	6-9	720.025
		(720.029)
6	6-12	720.025
		(720.029)
		Editorial
6	6-16	Editorial
6	6-17	720.026
6	6-19 through 6-53	720.023
		(720.024)
		(720.097)
6	6-62	720.031
6	6-69	720.025
		(720.029)
6	6-71	720.025
		(720.029)
8	8-23 and 8-25	Editorial
12	12-6	720.033
12	12-30	720.033
26	26-11 and 26-12	Editorial
28	28-10 and 28-11	Editorial
29	29-17	720.033
29	29-21	720.033

#### **REVISION 1 CHANGE ROADMAP**

#### AP1000 Probabilistic Risk Assessment

#### **Revision 1 Change Roadmap**

## **REVISION 1 CHANGE ROADMAP (Cont.)**

Section	Page No.	Type of Change ⁽¹⁾
30	30-35 and 30-36	720.068
30	30-66 and 30-67	720.068
30	30-110	Editorial
34	34-1	720.042
34	34-4 and 34-5	720.042
34	34-6 and 34-7	720.042
		Editorial
34	34-8 through 34-243	720.042
35	35-28	720.043
39	39-4	720.073
	<b>AA F</b>	
39	39-5	120.088
		720.083, 720.089)
30	39-6	720.088
		720.073
		(720.048, 720.074,
		720.083, and 720.089)
39	39-12	Editorial
39	39-19	Editorial
39	39-20	720.073
39	<b>39-21</b>	Editorial 720.088
Attachment 39A	39A-1 through 39A-40	720.088
		(720.048, 720.074,
		720.083, and 720.089)
41	41-6	720.042
41	41-15	720.093
41	41-20	720.054
41	41-31	Editorial
Attachment 41A	41A-1 through 41A-228	720.042
Attachment 41B	41B-1 through 41B-11	720.093
43	43-126 and 43-127	Editorial
Attachment 43C	43C-1 and 43C-2	720.043
44	44-7	Editorial

<b>REVISION 1</b>	CHANGE ROA	ADMAP (Cont.)
-------------------	------------	---------------

Section	Page No.	Type of Change ⁽¹⁾
45	45-1 through 45-3	470.013
	-	(470.012)
45	45-4	470.013
		(470.012)
		Editorial
45	45-5 through 45-48	470.013
		(470.012)
49	49-1	720.056
49	49-4 through 49-6	720.056
49	49-9 through 49-49	720.056
50	50-14	720.034
55	55-5	DSER OI 19A.2-5 (R1)
55	55-7	DSER OI 19A.2-4 (R1)
		DSER OI 19A.2-5 (R1)
		DSER OI 19A.2-6 (R1)
55	55-20	DSER OI 19A.2-6 (R1)
57	57-1 through 57-109	Letter DCP/NRC1515
Attachment 57A	57A-1 through 57A-37	Letter DCP/NRC1515
Attachment 57B	57B-1 through 57B-6	Letter DCP/NRC1515
Attachment 57C	57C-1 through 57C-80	Letter DCP/NRC1515
Attachment 57D	57D-1 through 57D-7	Letter DCP/NRC1515
59	59-20 and 59-21	Editorial
59	59-23 through 59-25	Letter DCP/NRC1515
59	59-26	720.056
59	59-28	Editorial
59	59-29 through 59-32	720.038
59	59-34 through 59-38	720.038
59	59-72	<b>Editorial</b>
59	59-73	Technical
59	59-83	Editorial
59	59-75 through 59-96	720.038
59	59-97	720.038
		720.066
59	59-98	720.038
59	59-100	Technical

Section	Page No.	<u>Type of Change⁽¹⁾</u>
Appendix A	A-1 through A-166	720.007
		720.010
		720.011
		720.012
		720.013
		720.015
		720.016
Appendix B	<b>B-6</b>	720.058
Appendix B	B-13	720.076
- ·		
Appendix D	D-14 and D-15	720.078
Appendix D	D-31	720.078
Appendix D	D-35 and D-36	Technical
Appendix D	D-37 through D-58	720.078

## **REVISION 1 CHANGE ROADMAP (Cont.)**

1. Changes incorporated as a result of Westinghouse responses to NRC Request for Additional Information (RAI) identified by RAI number. RAI number in parenthesis contains a reference to RAI response listed above.

#### **Revision 2 Change Roadmap**

# **REVISION 2 CHANGE ROADMAP**

Section	Page No.	<u>Type of Change⁽¹⁾</u>
AP1000 Document Cover Sheet		Editorial
Probabilistic Risk Assessment, Title Page		Editorial
T of C	i through c	Editorial
Revision 2 Change Roadmap	cv through cvii	Editorial
6	6-17	720.026 (R1)
6	6-28	720.024 (R1)
6	6-32 and 6-33	720.024 (R1)
6	6-37 through 6-39	720.024 (R1)
6	6-41	720.024 (R1)
6	6-50 through 6-53	720.024 (R1)
6	6-69	720.029 (R1)
24	24-17	720.046 (R1)
24	24-22 and 24-23	720.046 (R1)
24	24-27	720.046 (R1)
30	30-26a through 30-28	720.029 (R1)
35	35-28	720.043 (R1)
43	43-9 and 43-9a	720.039 (R2)
43	43-9b	Editorial
43	43-10a	720.039 (R2)
43	43-10b	Editorial
43	43-93a through 43-93w	720.039 (R2)
43	93-93x	Editorial
Attachment 43C	43C-2	720.043 (R1)
50	50-1	
50	50-1a and 50-1b	Editorial
50	50-14	720.039 (R2)
50	50-14a	720.039 (R2)
50	50-14b	Editorial
54	54-1 through 54-131	720.038 (R2)
Revision 2 Change Roadmap

AP1000 Probabilistic Risk Assessment

# **REVISION 2 CHANGE ROADMAP (Cont.)**

Section	Page No.	<u>Type of Change⁽¹⁾</u>
56	56-1	720.038 (R1)
		Editorial
56	56-9	Editorial
56	56-17 and 56-18	Editorial
56	56-20	Editorial
56	56-36 and 56-37	Editorial
56	56-38	Editorial
		720.038 (R1)
56	56-38a through 56-38k	720.038 (R1)
56	56-381	Editorial
56	56-47 through 56-49	Editorial
56	56-51	Editorial
56	56-54 and 56-55	720.038 (R1)
57	57-14 and 57-15	280.011 (R1)
57	57-15a and 57-15b	Editorial
59	59-23 and 59-23a	720.038 (R1)
59	59-23b	Editorial
59	59-34	720.038 (R1)
59	59-72	720.038 (R1)
Appendix A	A-12	Editorial
Appendix A	A-24 through A-26	440.014 (R1)
Appendix A	A-26a	440.014 (R1)
		720.024 (R1)
Appendix A	A-26b	Editorial
Appendix A	A-27	720.012 (R1)
Appendix A	A-31	720.012 (R1)
Appendix A	A-33	720.010 (R1)
Appendix A	A-33a and A-33b	Editorial
Appendix A	A-44	Editorial
Appendix A	A-57 through A-61	720.012 (R1)
Appendix A	A-63	720.012 (R1)
Appendix A	A-66	720.012 (R1)
Appendix A	A-103a through A-103b	440.014 (R1)
Appendix A	A-103c and A-103d	720.012 (R1)
Appendix A	A-151 and A-152	720.013 (R1)
Appendix A	A-165 and A-166	720.013 (R1)

cix

## **REVISION 2 CHANGE ROADMAP (Cont.)**

Section	Page No.	Type of Change ⁽¹⁾
Appendix D	D-13 and D-14	720.080 (R1)
Appendix D	D-35 and D-36	720.080 (R1)

1. Changes incorporated as a result of Westinghouse responses to NRC Request for Additional Information (RAI) identified by RAI number.

1

#### **Revision 3 Change Roadmap**

#### AP1000 Probabilistic Risk Assessment

### **REVISION 3 CHANGE ROADMAP**

Section	Page No.	<u>Type of Change⁽¹⁾</u>
AP1000 Document Cover Sheet		Editorial
Probabilistic Risk Assessment, Title Page		Editorial
T of C	i through cii	Editorial
Revision 3 Change Roadmap	сх	Editorial
Attachment 45A	45A-1 through 45A-24	Technical
57	57-1 and 57-2	Editorial
57	57-4	Editorial
57	57-11 and 57-12	Editorial
57	57-17	Editorial
57	57-22 and 57-23	Editorial
57	57-30 through 57-39	720.038 (R1)
57	57-40	720.038 (R1) Editorial
57	57-41 and 57-42	720.038 (R1)
57	57-78	Editorial
57	57-117 through 57-124	720.038 (R1)
Appendix A	A-23 through A-25	720.009 (R2)
Appendix A	A-105 through A-111	720.009 (R2)

1. Changes incorporated as a result of Westinghouse responses to NRC Request for Additional Information (RAI) identified by RAI number.

### **Revision 4 Change Roadmap**

.

AP1000 Probabilistic Risk Assessment

### **REVISION 4 CHANGE ROADMAP**

Section	Page No.	Type of Change ⁽¹⁾
AP1000 Document Cover Sheet		Editorial
Probabilistic Risk Assessment, Title Page		Editorial
TofC	i through ciii	Editorial
Revision 4 Change Roadmap	cxii and cxiii	Editorial
34	34-4	Editorial
34	34-16	DSER OI 19.1.10.3-1 (R1)
34	34-19 through 34-21	DSER OI 19.1.10.3-1 (R1)
34	34-50 and 34-51	DSER OI 19.1.10.3-1 (R1)
34	34-247 through 34-264	DSER OI 19.1.10.3-1 (R1)
42	42-3	DSER OI 19.2.6-1 (R1)
42	42-6	DSER OI 19.2.6-3
42	42-7 and 42-8	Editorial
43	43-10	Editorial
43	43-13	Editorial
Attachment 43D	43D-1	DSER OI 19.1.3.2-1
Attachment 43E	43E-1 and 43E-2	DSER OI 19.1.3.2-2
45	45-2	DSER OI 19.1.10.3-1 (R1)
45	45-5 and 45-6	DSER OI 19.1.10.3-1 (R1)
45	45-13 through 45-18	DSER OI 19.1.10.3-1 (R1)
45	45-31 through 45-42	DSER OI 19.1.10.3-1 (R1)
Attachment 45A	45A-1 through 45A-24	Deleted per DSER OI 19.1.10.3-1 (R1)
49	49-6	DSER OI 19.1.10.3-1 (R1)
49	49-9 through 49-49	DSER OI 19.1.10.3-1 (R1)
50	50-1	Editorial
54	54-9	DSER OI 19.1.10.2-3
54	54-12	DSER OI 19.1.10.2-3
54	54-13	Editorial
54	54-22 through 54-71	Editorial
54	54-76 through 54-80	DSER OI 19.1.10.2-5 Editorial

**Revision 4 Change Roadmap** 

AP1000 Probabilistic Risk Assessment

Section	Page No.	Type of Change ⁽¹⁾
54	54-83 through 54-110	DSER OI 19.1.10.2-5 Editorial
54	54-112 through 54-118	DSER OI 19.1.10.2-5 Editorial
54	54-121 through 54-137	DSER OI 19.1.10.2-3
55	55-5	DSER OI 19A.2-5 (R1)
55	55-7	DSER OI 19A.2-4 (R1) DSER OI 19A.2-5 (R1) DSER OI 19A.2-6 (R1) Editorial
55	55-16 through 55-18	Editorial
55	55-20	DSER OI 19A.2-6 (R1)
55	55-25 through 55-29	Editorial
56	56-46	DSER OI 19.3.10-1
59	59-26	DSER OI 19.1.10.3-1 (R1)
59	59-37	DSER OI 19A.3-2 (R1)
59	59-45 through 59-70	Editorial
59	59-73	DSER OI 19.1.10.3-1 (R1)
59	59-74	Editorial
59	59-100	DSER OI 19.1.10.3-1 (R1)

### **REVISION 4 CHANGE ROADMAP (Cont.)**

1. Changes incorporated as a result of Draft Safety Evaluation Report (DSER) Open Item (OI) Response identified by DSER OI number.

**Revision 4**