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Demonstration Plant
SSC Testing Program

• Prototyping tests for Systems
Structures and Components
(SSC) design verification

• Helium Test Facility (HTF)
• Testing of turbo machines
• Validation testing
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Prototyping Tests for
SSC Design Verification

• The purpose of the tests is to
evaluate:
– The applicability of the technology

in meeting the design requirement
of the SSC

– To test the functionality of the SSC
– To evaluate the manufacturability of

the SSC
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Burn-up measurement

BUMS test set-up

Activity measurement system
(AMS)
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Fuel Handling:
Air Test Loop
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Fuel Handling:

Core Unloading Device
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Fuel Handling:
Double Seat Isolation Valve Verification Testing

• Ring Type
(Peak)

• Solid Disk
(Vespel)

• Original
German
Design

Note: Ring Seat still mounted on
grinding jig for surface finishing
operation

Seat

Shielding Block

Head
Backing Plate
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Fuel Handling:
Sphere Counter
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Reserve Shutdown System
(RSS) gas transport system test

Top loading Discharge vessel
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Reactivity Control System:
Secondary Shock Absorber
Test Set-up
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Reactivity Control System:
Improved 2nd Shock Absorber
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Reactivity Control System (RCS)

RCS Control Rod Drive
Mechanism

RCS Drive SCRAM Test set-up
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High temperature SCRAM Shock test
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Pre-cooler and Intercooler
heat transfer and pressure drop correlation
tests
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Pre-cooler and Intercooler
heat transfer and pressure drop correlation
tests
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Gas cycle valve
tests

Gas cycle valve stiction test Gas cycle valve actuator test
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Gas cycle Valves:
Bypass Valve Manufacturing
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Spent Fuel Tank with rods
Test to measure loads on rods
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Fuel Spheres:1/6 Scale solid centre
sphere flow analysis

Reactor Simulation
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Fuel Spheres: Sphere flow tests
2&3 Outlet Core Base

SLOW ZONE

ACCELERATED
 ZONE

2 Outlet Core Base 3 Outlet Core Base
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Helium Test Facility (HTF)

   The Helium Test Facility is a facility in which
full scale components could be tested under
conditions which replicate full temperature
and pressure operating conditions to which
SSC will be exposed in the plant. The tests
will include:
– Reliability tests
– Life cycle tests
– Steady state and transient tests of functionality in

the operating environment
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Helium Test Facility

HTF Closed
Loop

(Steady State)
Tests

HTF Closed
Loop

(Steady State)
Tests

TESTS

MPS
RECUPERATOR

TEST SET-UP

MPS
RECUPERATOR

TEST SET-UP

FHSS TEST SET-
UP

FHSS TEST SET-
UP

RSS TEST SET-
UP

RSS TEST SET-
UP

RCS TEST SET-
UP

RCS TEST SET-
UP

ICS BLOW-
DOWN SET-UP

ICS BLOW-
DOWN SET-UP

GAS CYCLE
VALVE TEST

SET-UP

GAS CYCLE
VALVE TEST

SET-UP

EXTERNAL
INTERFACES

EXTERNAL
INTERFACES

HTF

HTF Blow
Down

(Transient)
Tests

HTF Blow
Down

(Transient)
Tests
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Helium Test Facility

Main Loop CharacteristicsMain Loop Characteristics
Scheduled Test
   Pressure Range   3.2MPa to 9.5MPa
Main Loop
   Temperature Range   up to 660°C**
Maximum Flow
   @ max pressure   2.47kg/s @ 9.5MPa
Target level of
   purification   >99.997% pure Helium
 **Temperatures up to 1100C are generated

within test sections
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Blowers
Fresh Helium Supply

Dust Filter
RCS Test Set-up

RSS Test Set-up

FHSS Test Set-up

Water Cooler

Water Cooler

Recuperator, 
Water Cooler
Combination

Water Cooler

Blow Down Tanks

Heaters Compressor

Helium Test Facility
Layout
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Helium Test Facility

 Blower

Cooler
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HTF Components

THTR Blower

Howden Blower

Heater Configuration
Recuperator
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FHSS TEST PROGRAM

FHSS-HTF System has four test
subsections, namely

• Sphere Conveying Test Section
(SCTS)

• Block Insert Test Section (BITS)
• Storage Test Section (STS)
• Component Test Section (CTS)

(In Laboratory)
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Reactivity Control Systems
Tests

   RCSS Component and
System Qualification Tests.
– All extreme environmental

conditions of  RCS can  be
simulated. (Core channels up to
1100°C).

– All safety-related functions can
be simulated.

Reserve Shut
Down System

Reactivity
Control
System
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BLOW DOWN
TESTS

• Heat Capacitance
Qualification Tests

• Gas Cycle &
Systems Valve Test
Programme



Presentation: US DOE - D Matzner 30

    Testing of Turbomachines

   Objectives
– To perform tests to evaluate the

performance of different turbo-
machine components in a Helium
environment as a risk reduction
measure
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Turbines flow verification tests
A  Blade Ring

B  Blade Root

� Blade Ring

�Vane Shroud �Ring Segment

� Isolation Ring

E-Seal

�Vane Shroud

Seal Plate
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Turbines Leaf Seal Tests
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Power Turbine Dry Gas Seal Tests

Leakage (l/min)

OBIBOBIB

6.714612.4208He

3.01029.0137Air

Tungsten CarbideDuctile
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Hiroshima Test Facility:
PBMR Compressor tests

Case-3 HPC
10MW Test

Layout

Common parts for
10MW and 20MW
Test
Parts changed for
10MW and 20MW
Test
Commonality
depend on 20MW
Arrangement

Valve UnitFlow
Meter
Unit

Cooler Unit

Compressor

Working area for shipment

Side Views

Plan ViewLayout for LP & HP compressor tests
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PBMR Validation Testing

The objectives of the validation testing is to:
• Experimentally validate First-of-a-Kind design

assumptions
• To experimentally benchmark difficult to

analyse design calculations
• To experimentally determine unknown data

required for First-of-a-Kind analyses
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PBMR Validation Testing

The facilities used are the:
• PBMR Micro Model (PBMM)
• Heat Transfer Test Facility (HTTF)
• ASTRA Critical Facility
• Natural Convection Oxidation Facility

(NACOK)
• Fourth Quadrant Turbine Testing



PBMR Micro Model
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Objectives

• Demonstrate the operation of a closed cycle,
three-shaft, pre- and inter-cooled,
recuperative Brayton cycle in order to gain a
better understanding of its dynamic behavior.

• Demonstrate the control strategies of the
PBMR including:
– Startup.
– Load following.
– Load rejection.

• Demonstrate the ability of Flownet to simulate
the integrated performance of the cycle.
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Design constraints

• The dynamic behavior of the PBMM must display
the same trends as that of the PBMR, but not
necessarily with comparable time constants.

• The PBMM plant layout must have the same
topology and representative major components as
that of the PBMR.

• The control system of the PBMM must have the
same topology and degrees of freedom as that of
the PBMR.

• Must use off-the-shelf turbo chargers as opposed
to purpose designed machines.

• Must use conventional heat source.
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Thermal-flow design process

• Determine overall cycle layout.
• Determine major cycle parameters at

nominal operating conditions.
– Pressure level.
– Maximum temperature.
– Pressure ratio.
– Power level.

• Component selection.
• System integration.
• Detailed hardware design.
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Cycle layout

PBMM

RX
HPC

HS

HPT LPT

PCIC

PT

LPC

CT
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GBPLPBHPB
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PTCV

PV
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CWP

NIV

SBSIV

NEV

PBMR

RX
HPC

PBR

HPT LPT

PCIC

PT

LPC

SBS

G

GBPLPBHPB

SIV

SBSIV

PV

CWP

NIV

SBSOV

NEV

R

7 Clicks to
complete
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Summary of differences

• Heat source is electrical resistance heater instead of
nuclear reactor.

• Use of single stage centrifugal turbo-chargers instead of
purpose designed multistage axial flow turbo machines.

• Load on power turbine is compressor with external load
cooler instead of generator with resistor bank.

• Heat rejection via cooling tower instead of intermediate
heat exchanger.

• SBS positioned differently.
• Does not contain LPT and PT cooling flows of

recuperator by-pass flow.
• Use of Nitrogen instead of Helium as the working fluid.
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Major cycle parameters

• Pressure level
– Require inventory control variation between 100%

and 40%.
– Minimum cycle pressure at 40% power set at

100kPa.
– Therefore minimum cycle pressure at 100% set at

250kPa.
• Maximum cycle temperature

– Off-the-shelf turbo chargers allow maximum turbine
inlet temperature of 700°C.

– Therefore heater outlet temperature set at 700°C.
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Major cycle parameters
• Pressure ratio

– LPC and HPC must have equal pressure ratios.
– Optimize cycle thermal efficiency in terms of

pressure ratio and recuperator effectiveness using
Flownet.

– Overall pressure ratio set to 1.9 x 1.9 = 3.6
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Major cycle parameters
• Power level

– Largest turbine in cycle is PT.
– Use results from Flownet analysis to select largest

commercially available off-the-shelf turbo charger
for PT.

• Selection of LP and HP turbo chargers using
results from Flownet analysis.

1

1.2

1.4

1.6

1.8

2

2.2

2.4

0 2 4 6 8 10 12 14
NDM

PR
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Summary of nominal operating
conditions

• Maximum cycle temperature of 700 �C.
• Minimum cycle pressure 250 kPa.
• Pressure ratio 3.6.
• Maximum cycle pressure 900 kPa.
• Power output � 70 kW.
• Power input � 365 kW.
• Cycle efficiency � 19%.
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Nominal operating conditions

Temperature-entropy diagram.
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Project plan

• Conceptual design phase

• Preliminary and Detail design phase

• Procurement

• Construction

• Commissioning

• Demonstration

• Utilization

• Phase Out (Future)

 J      F     M     A     M     J     J      A     S     O
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Turbocharger
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Turbo Charger Layout

Expansion Bellows

HP Turbo Charger

PT Turbo Charger

LP Turbo Charger

Internal Supports
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Turbo Charger Layout

HP Turbo
Charger

PT Turbo
Charger

LP Turbo
Charger
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Turbocharger plate
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Pressure Vessel Layout

Recuperator

Inter Cooler

Turbo machinery

Pre Cooler

Electric Heater
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Electrical Heaters…
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Recuperator
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System Layout…

Cooling Tower

NICS Tanks Pressure Vessel
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Building Layout
Auxiliary Bay

Control / Office
Room

Overhead Crane

Pressure Vessel
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Final plant (1)
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Final plant (2)
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Final plant (3)
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Final plant (4)
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Start-up

Start-up sequence
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Start-up
Bootstrap
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Start-up
SBS
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Start-up
Turbines
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Start-up
LPC and HPC
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Heat Transfer Test Facility

The objective of this test is to
determine the heat transfer
properties of packed graphite
pebble beds with heat generation
under various cooling conditions.
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Pebble Bed Heat Transfer
Validation
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SANA Facility in Germany for Pebble
Bed Heat Transfer Validation
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SANA Facility Showing the
Internals
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Why can we not just use SANA
experiment results ?

•Fundamentally SANA was designed based on the modeling data required for  the
codes used at the time – this means that flow in the pebble bed is neglected or
approximated using the correlations obtained form the tests. – PBMR use codes such
as CFD and Flownex that include the fundamental modeling of the gas flow effects on
the heat transport in the reactor.
•PBMR geometry is different and falls beyond the scope of the experimental geometry
used in SANA

    Parameter SANA PBMR
    Geometry Cylindrical Annulus

Core aspect ratio 1 12

•Separate effects test were not performed with SANA, therefore calibration of certain
effects/parameters that are modeled is very difficult if not impossible and could not be

used for for code validation.
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Proposed Integrated Effects
Test Facility
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The ASTRA Critical Facility
• ASTRA Critical Facility at the Russian Research

Centre – Kurchatov in Moscow
• Purpose is to perform benchmark experiments

simulating specific characteristic features of the
PBMR design

• The physical configuration of the ASTRA facility
allowed for the possibility to carry out experiments
simulating PBMR physics

• VSOP is the main core neutronics code used for the
PBMR

• One important aim is to use the ASTRA
Experiments to validate VSOP
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The ASTRA Critical Facility
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The NACOK Facility

• NACOK Natural Convection in Core with
Corrosion

• The objective of this test facility is to
investigate the oxidation (corrosion) of
hot graphite cores by oxygen under
natural circulation following an air
ingress event
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The NACOK Facility
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The NACOK Facility

NACOC - MAIN DATANACOC - MAIN DATA
Max. temp. in experimental channel 1200 �C
Max. temp. in return tube   800 �C
Max throughput of air 17 g/s
Total number of  thermo-couples  82
Total number of gas measurement points 26
Number of points to measure gas velocity 2
Max. heating power 147 kW
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The Multi-Quadrant Testing
Facility

   The primary objective of the multi-
quadrant Turbo Machine Test Facility
is to conduct various Separate Effects
Tests on a relatively small scale to
determine empirically the performance
of compressors and turbines
operating in quadrants other than the
usual


