

Demonstration Plant SSC Testing Program

Presented to the US DOE 7 August 2003 Dieter Matzner

Demonstration Plant SSC Testing Program

- Prototyping tests for Systems Structures and Components (SSC) design verification
- Helium Test Facility (HTF)
- Testing of turbo machines
- Validation testing

Prototyping Tests for SSC Design Verification

- The purpose of the tests is to evaluate:
 - The applicability of the technology in meeting the design requirement of the SSC
 - To test the functionality of the SSC
 - To evaluate the manufacturability of the SSC

Burn-up measurement

BUMS test set-up

Activity measurement system (AMS)

Fuel Handling:

Fuel Handling:

Core Unloading Device

Sphere Counter

Reserve Shutdown System RSS) gas transport system test

Top loading

Discharge vessel

Secondary Shock Absorber est Set-up

Reactivity Control System: mproved 2nd Shock Absorber

Reactivity Control System (RCS) < C

RCS Drive SCRAM Test set-up

igh temperature SCRAM Shock test < <

eat transfer and pressure drop correlation ests

В

M

Ρ

Gas cycle valve tests

Gas cycle valve stiction test

Gas cycle valve actuator test

Bypass Valve Manufacturing

В

Μ

Spheres:1/6 Scale solid centre sphere flow analysis

& 3 Outlet Core Base

2 Outlet Core Base

3 Outlet Core Base

Helium Test Facility (HTF)

The Helium Test Facility is a facility in which full scale components could be tested under conditions which replicate full temperature and pressure operating conditions to which SSC will be exposed in the plant. The tests will include:

- Reliability tests
- Life cycle tests
- Steady state and transient tests of functionality in the operating environment

Helium Test Facility

В

M

Helium Test Facility

Å

Main Loop CharacteristicsScheduled TestPressure Range3.2MPa to 9.5MPaMain LoopTemperature Rangeup to 660°C**Maximum Flow2.47kg/s @ 9.5MPa@ max pressure2.47kg/s @ 9.5MPaTarget level of>99.997% pure Heliumpurification>99.997% pure Helium**Temperatures up to 100C are generated
within test sections

Helium Test Facility

P B M

ITF Components

P

Howden Blower

0 0 0

0

THTR Blower

Heater Configuration

Recuperator

HSS TEST PROGRAM

FHSS-HTF System has four test subsections, namely

- Sphere Conveying Test Section (SCTS)
- Block Insert Test Section (BITS)
- Storage Test Section (STS)
- Component Test Section (CTS) (In Laboratory)

Reactivity Control Systems

RCSS Component and System Qualification Tests.

 All extreme environmental conditions of RCS can be simulated. (Core channels up to 1100°C).

- All safety-related functions can be simulated.

Reactivity Control System

Reserve Shut Down System

Fests

BLOW DOWN ESTS

- Heat Capacitance Qualification Tests
- Gas Cycle & Systems Valve Test Programme

P

Testing of Turbomachines

Objectives

To perform tests to evaluate the performance of different turbo-machine components in a Helium environment as a risk reduction measure

Furbines flow verification tests P M В A Blade Ring -11-ŧ _____ 3/2 L. L. Hard **B** Blade Root ₽₽ E Blade Ring Seal Plate **Isolation Ring** Vane Shroud Vane Shroud **Ring Segment**

Furbines Leaf Seal Tests

Power Turbine Dry Gas Seal Tests

	Leakage (I/min)			
	Ductile		Tungsten Carbide	
	IB	OB	IB	OB
Air	137	9.0	102	3.0
Не	208	12.4	146	6.7

HIROSHIMA Lest Facility: PBMR Compressor tests

PBMR Validation Testing

The objectives of the validation testing is to:

- Experimentally validate First-of-a-Kind design assumptions
- To experimentally benchmark difficult to analyse design calculations
- To experimentally determine unknown data required for First-of-a-Kind analyses

PBMR Validation Testing

The facilities used are the:

- PBMR Micro Model (PBMM)
- Heat Transfer Test Facility (HTTF)
- ASTRA Critical Facility
- Natural Convection Oxidation Facility (NACOK)
- Fourth Quadrant Turbine Testing

Objectives

- Demonstrate the operation of a closed cycle, three-shaft, pre- and inter-cooled, recuperative Brayton cycle in order to gain a better understanding of its dynamic behavior.
- Demonstrate the control strategies of the PBMR including:
 - Startup.
 - Load following.
 - Load rejection.
- Demonstrate the ability of Flownet to simulate the integrated performance of the cycle.

Design constraints

- The dynamic behavior of the PBMM must display the same trends as that of the PBMR, but not necessarily with comparable time constants.
- The PBMM plant layout must have the same topology and representative major components as that of the PBMR.
- The control system of the PBMM must have the same topology and degrees of freedom as that of the PBMR.
- Must use off-the-shelf turbo chargers as opposed to purpose designed machines.
- Must use conventional heat source.

Thermal-flow design process

- Determine overall cycle layout.
- Determine major cycle parameters at nominal operating conditions.
 - Pressure level.
 - Maximum temperature.
 - Pressure ratio.
 - Power level.
- Component selection.
- System integration.
- Detailed hardware design.

Cycle layout

7 Clicl com

PBMR

Summary of differences

- Heat source is electrical resistance heater instead of nuclear reactor.
- Use of single stage centrifugal turbo-chargers instead of purpose designed multistage axial flow turbo machines.
- Load on power turbine is compressor with external load cooler instead of generator with resistor bank.
- Heat rejection via cooling tower instead of intermediate heat exchanger.
- SBS positioned differently.
- Does not contain LPT and PT cooling flows of recuperator by-pass flow.
- Use of Nitrogen instead of Helium as the working fluid.

Najor cycle parameters

Pressure level

- Require inventory control variation between 100% and 40%.
- Minimum cycle pressure at 40% power set at 100kPa.
- Therefore minimum cycle pressure at 100% set at 250kPa.
- Maximum cycle temperature
 - Off-the-shelf turbo chargers allow maximum turbine inlet temperature of 700°C.
 - Therefore heater outlet temperature set at 700°C.

Najor cycle parameters

Pressure ratio

- LPC and HPC must have equal pressure ratios.
- Optimize cycle thermal efficiency in terms of pressure ratio and recuperator effectiveness using

Najor cycle parameters

P B M

- **Power level**
 - Largest turbine in cycle is PT.
 - Use results from Flownet analysis to select largest commercially available off-the-shelf turbo charger for PT.
- Selection of LP and HP turbo chargers using results from Flownet analysis.

Summary of nominal operating <

- Maximum cycle temperature of 700 C.
- Minimum cycle pressure 250 kPa.
- Pressure ratio 3.6.
- Maximum cycle pressure 900 kPa.
- Power output \leftrightarrow 70 kW.
- Power input \leftrightarrow 365 kW.
- Cycle efficiency \leftrightarrow 19%.

Nominal operating conditions

Temperature-entropy diagram.

Project plan

Conceptual design phase Preliminary and Detail design phase Procurement Construction Commissioning **Demonstration** Utilization Phase Out (Future)

Furbocharger

Furbo Charger Layout

Furbo Charger Layout

Furbocharger plate

Pressure Vessel Layout

Electrical Heaters...

Recuperator

Μ B

System Layout...

Building Layout

Final plant (1)

P B M

Final plant (2)

Final plant (3)

Final plant (4)

P B M

Start-up

Start-up sequence

Start-up Bootstrap

В

Μ

P

Start-up

< 0 2 P B M

SBS

Presentation: US DOF - D Matzner

Start-up

< 0 2 P B M

Turbines

Start-up LPC and HPC

Procentation: US DOE D Matzner

Ρ

B

M

Start-up

P B M

PTC and SBS

Heat Transfer Test Facility

The objective of this test is to determine the heat transfer properties of packed graphite pebble beds with heat generation under various cooling conditions.

/alidation

Q1: Conduction from the centre of the pebble to the surface

Q2: Convection from the pebble surface to the gas

Q3: Point contact conduction between the pebble surfaces that are in contact with one another

Q4: Point contact conduction between the pebble surfaces that are in contact with the reflector

Q5: Thermal radiation between the pebble surfaces

Q6: Thermal radiation between the pebble surfaces and the reflector

Q7: Conduction in the gas

SANA Facility in Germany for Pebble Bed Heat Transfer Validation

SANA Facility Showing the Internals

why can we not just use SANA experiment results ?

ndamentally SANA was designed based on the modeling data required for the les used at the time – this means that flow in the pebble bed is neglected or proximated using the correlations obtained form the tests. – PBMR use codes such CFD and Flownex that include the fundamental modeling of the gas flow effects of heat transport in the reactor.

BMR geometry is different and falls beyond the scope of the experimental geometred in SANA

Parameter	SANA	PBMR
Geometry	Cylindrical	Annulus
Core aspect ratio	1	12

Separate effects test were not performed with SANA, therefore calibration of certai fects/parameters that are modeled is very difficult if not impossible and could not bused for for code validation.
Test Facility

В

M

Ρ

The ASTRA Critical Facility

- ASTRA Critical Facility at the Russian Research Centre – Kurchatov in Moscow
- Purpose is to perform benchmark experiments simulating specific characteristic features of the PBMR design
- The physical configuration of the ASTRA facility allowed for the possibility to carry out experiments simulating PBMR physics
- VSOP is the main core neutronics code used for the PBMR
- One important aim is to use the ASTRA Experiments to validate VSOP

The ASTRA Critical Facility

The NACOK Facility

- NACOK Natural Convection in Core with Corrosion
- The objective of this test facility is to investigate the oxidation (corrosion) of hot graphite cores by oxygen under natural circulation following an air ingress event

The NACOK Facility

P B M

The NACOK Facility

NACOC - MAIN DATA	
Max. temp. in experimental channel	1200 °C
Max. temp. in return tube	008 008
Max throughput of air	17 g/s
Total number of thermo-couples	82
Total number of gas measurement points	26
Number of points to measure gas velocity	2
Max. heating power	147 kW

The Multi-Quadrant Testing Facility

P B M

The primary objective of the multiquadrant Turbo Machine Test Facility is to conduct various Separate Effects Tests on a relatively small scale to determine empirically the performance of compressors and turbines operating in quadrants other than the usual