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Validity of the Local Equilibrium Assumption for Modeling
Sorbing Solute Transport Through Homogeneous Soils

ALBERT J. VALOCCHI

Department of Civil Engineering, University of Illinois, Urbana

Sorption processes that occur during reactive solute movement through porous media can be modeled
using either an equilibrium or kinetic approach. Because of the resulting conceptual and mathematical
simplification. many transport models assume local chemical equilibrium is valid for describing sorption
reactions. This paper presents quantitative criteria to assess the validity of the local equilibrium assump-
tion for one-dimensional, steady flow through homogeneous soils. A method is described whereby
formulas for solute breakthrough curve time moments can be determined without knowledge of the
analytical solution to the mass transport model. This method is applied to several commonly used
nonequilibrium formulations as well as the standard linear equilibrium model. The formulations con-
sidered include both the physical nonequilibrium models where the sorption rate is controlled by diffu-
sive solute transfer between mobile and stagnant fluid zones and the chemical nonequilibrium models
where the overall sorption rate is governed by the rate of reaction at the soil-solution interfaces. Criteria
for local equilibrium to be valid are derived by comparing the time moment formulas for the nonequili-
brium and equilibrium models. These criteria explicitly show that basic system parameters (e g., seepage
velocity, dispersion coefficient, distribution coefficient, sorption rate, boundary conditions) have a signifi-
cant influence on the attainment of local equilibrium.

INTRODUCMON

Adsorption reactions are important processes governing the
fate of dissolved hazardous substances in groundwater.
Models of the transport of such substances must therefore
incorporate mathematical descriptions of the chemical process
of adsorption as well as the physical processes of advection
and dispersion. On a microscopic level, sorption reactions are
complex, time-dependent phenomena involving transport from
the bulk aquifer pore fluid to the soil-solution interfaces where
sorption occurs. As was noted recently by Rubin 1983], an
accurate representation of sorption kinetics requires quantita-
tive treatment of the microscopic transport steps which thus
necessitates the specification of the geometry of the sorbent
material. For naturally occurring porous media, accurate
knowledge of this level of microscopic detail is impossible;
however, if the microscopic processes are fast enough" with
respect to the bulk fluid flow rate, then reversible sorption
reactions can be assumed to be in a state of local chemical
equilibrium. In this paper, such an assumption will be referred
to as local equilibrium assumption (LEA).

The LEA results in significant conceptual as well as math-
ematical simplification; description of the microscopic reac-
tion pathways becomes unnecessary, and the appropriate
chemical equations are algebraic formulas (e.g., Freundlich,
Langmuir isotherms) whose parameters can be measured by
simple batch laboratory experiments. Thus it is not surprising
that many investigations to date have invoked the local equi-
librium assumption. However, as is evident from the partial
list of laboratory column experiments given in Table 1, models
based upon LEA do not always accurately simulate sorbing
solute transport. If local equilibrium is not attained, LEA-
based models will predict a breakthrough response that occurs
too late and exhibits too little dispersion. For hazardous sol-
utes, such miscalculations could have grave consequences.

Considering the large number of transport models that have
been formulated utilizing either equilibrium or kinetic reaction
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submodels, it is surprising that there have been so ew investi-
gations into the conditions under which LEA breaks down. In
an interesting study, James and Rubin [1979] performed lab-
oratory column experiments over a range of seepage velocities
and found that the equilibrium theory failed at the higher
fluxes (see Table 1). By using the model of Glueckauf [1955),
James and Rubin concluded that the local equilibrium as-
sumption applies when the ratio of the hydrodynamic disper-
sion coefficient to the molecular diffusion coefficient is near
unity." However, Table I does indicate several investigations
where equilibrium models proved successful under conditions
where hydrodynamic dispersion was significantly greater than
molecular diffusion (Io- 6 cm2 /s is a typical value of molecular
diffusivity). Bolt [1979] studied the criterion for LEA validity
by performing a theoretical analysis of solute movement
through an aggregated soil; however, his analysis neglected
the effect of hydrodynamic dispersion. Palciauskas and Dome-
nico [1976] studied only steady state conditions in their theo-
retical examination of diffusion-controlled carbonate dissolu-
tion. More recently, Jennings and Kirkner (1984] performed a
numerical simulation of one-dimensional multispecies trans-
port governed by a kinetic form of the competitive Langmuir
isotherm. By repeatedly executing the simulation model under
a variety of conditions, they were able to identify ranges of
parameter values for which the computed concentration pro-
files were indistinguishable from those generated by a LEA-
based model. In a recent review article, Rao and Jessup [1983)
present several commonly utilized nonequilibrium transport
models, and they discuss the significance of nonequilibrium
indices which arise when the transport equations are nondi-
mensionalized. In the work here we will show that the validity
of LEA depends upon several parameters in addition to Rao
and Jessup's nonequilibrium indices.

The purpose of this paper is to elucidate the conditions for
which local equilibrium is a valid assumption for modeling the
transport of sorbing solutes through homogeneous soils. In
order to accomplish this objective we consider three common-
ly used models of sorbing solute transport through a one-
dimensional, homogeneous soil column. In two of the models
the sorption rate is controlled by diffusive solute transfer be-
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TABLE I. Review of Experimental Studies of Solute Transport in Saturated Soil Columns

Seepage Dispersion
Porous Velocity, Coefficient,

Reference Medium Solute cm/s cmi/s Results

Kay and Elrick [1967] Honeywood Organic 3.2 x 10' - 3.6 x l -~ _ evidence of nonequilibrium
silt loam pesticide 6.8 x 10' 1.1 x 10' behavior at higher velocity

(lindane)
Lai and Jurinak [1972] Yolo loam Na, Ca 1.0 x 10' - 7.9 x 10- - evidence of nonequilibrium

2.0 x 10' 2.6 x l0' behavior
Gupta and Greenkorn [1974) Otawa sand plus PO4 2.5 x 10-2 3.7 x 10-l LEA valid

5% clay
van Genuchten et at. (1974] Norge loam Organic 1.6 x 10' - 1.7 x 10-5 - evidence of nonequilibrium

herbicide 1.7 x 10- 1.3 x 10' behavior at higher velocity
(picloram)

Hill and Lake [1978] Berea Na, Ca, Mg 3.5 x 10' - 6.4 x 10-5 - LEA valid
sandstone 7.0 x 10' 2.0x 10'

van Beek and Pal (1918] Synthetic ion- Na, Ca 2.9 x 10' 1.0 x 10- LEA valid
exchange resin

James and Rubin [1979] Delhi sand, Ca 1.7 x lo- - 3.0 x 10' - evidence of nonequilibrium
Oakley sand 1.7 x 10-2 3.5 x 10- behavior at higher velocity

Persaud and Wierenga [1982] Synthetic Na, Li, Cs 4.2 x 10' - 2.2 x10' - LEA valid
ion-exchange 21 x lo- 1.6 x10'
resin

Reynolds et al. [1982] Fine sand Sr, Cs 1.5 x 10- - 5.3 x 10- - evidence of nonequiibrium
1.1 x l0- 3.6 x 10' behavior observed for all

conditions
Nkedi-Kizza et a. 1983] lone oxisol 3HO, 34a 1.4 x 10' - 5.5 x 10- - evidence of nonequilibrium

3.0 x 10- 24 x 103 behavior at higher velocity

tween mobile and stagnant fluid zones, while in the third
model all of the pore fluid is mobile and the overall sorption
rate is governed by the rate of reaction at the soil-solution
interfaces. Closed-form analytical solutions to these models
are not easily available. Rather than resorting to numerical
solutions as did Jennings and KirCner [1984], we utilize a
methodology due to Aris 1958] t derive expressions for the
time moments of the solute breakthrough curve. Comparison
of the kinetic and equilibrium moment formulas then provides
a basis for quantifying the validity of LEA. These results illus-
trate that the distinction between equilibrium and kinetics de-
pends significantly upon transport system dynamics (eg, seep-
age velocity, dispersion coefficients, boundary conditions).

The models to be analyzed in thiswork are described in the
next section; these models are well established in the literature
and have been detailed by numerous.investigators. This paper
does not attempt to assess the relative merits of any particular
nonequilibrium model. Our goal is ,to describe a simple tech-
nique for deriving LEA criteria that can be applied to any
given kinetic formulation.

TRANsPORT EQUATIONS

A kinetic-based submodel of sorption requires a mathemat-
icaJ description of the microscopic processes that transport the
dissolved species to and from the surface where sorption
occurs. As was explained by Rubin [1983], such a description
is typically based upon a phenomenologically oriented formu-
lation that links macroscopic and microscopic quantities; one
popular and successful formulation assumes the reacting inter-
faces are within a porous pellet," aggregate, or particle.
Weber [1972], Vermeulen et a. [197J], Helfferich [1962], and
others have conceptually described the important microscopic
rate mechanisms. Based upon this approach, the sorption sub-
model involves a diffusion equation describing the microscop-
ic concentration profile within the sorbent particle along with
an adsorption rate expression and an equation linking the
microscopic concentration at the particle boundary to the
macroscopic aqueous concentration. The sorbent particle ge-

ometry is most commonly assumed to be spherical. This type
of formulation has long been used with great success in the
chemical process industry and in the field of wastewater treat-
ment [Vermeulen et a., 1973; Weber, 1972].

As was reviewed by van Genuchten and Cleary 1979] and
Rao and Jessup [1983], most models of nonequilibrium ad-
sorption of solutes during flow through soils and aquifers have
been based upon assuming that only one of the microscopic
mechanisms is rate limiting. These models are usually grouped
into two classes: (1) physical nonequilibrium models and (2)
chemical nonequilibrium models. In the first group the overall
sorption rate is controlled by the rate at which the solute is
transported to and from the reacting soil surfaces. In the
second group the time dependence of the microscopic trans-
port steps is neglected and the overall sorption rate is equal to
the rate of reaction at the soil-solution interfaces.

Physical Nonequilibrium

In this group of models the fluid inside the porous aggre-
gate is assumed stagnant, and thus the total liquid phase is
partitioned into mobile (interaggregate) and immobile (in-
traaggregate) zones. Rao and Jessup [1983], van Genuchten
and Cleary [1979], Rao er al. [1980a, b], arld others in the soil
science field have presented the conceptual foundations of
these models. These investigators see also van Genuchten et
al., 1984; van Genuchten, 1985; Nkedi-Kizza et al., 1982) give
the following governing transport equation for the case where
a certain fraction of the sorption sites can be in contact with
the mobile region and where equilibrium sorption in both
regions is governed by a linear isotherm:

at at' ax 2 a x (1)

where the subscripts m and im refer to parameters for the
mobile and immobile regions, respectively,.c is the aqueous
species concentration, e is porosity, R is the retardation Actor,
D is the hydrodynamic dispersion coefficient, is the seepage
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velocity, x is distance, and t is time.pherical aggregate
geometry,

parameter and can Ronsidered to be a nonequilibrium
index; for large enough" y, the diffusion physical nonequili-
brium model reduces to

c = c(x, r, t)r2 dr (2) Oc I Oc c
OT p X2 (15)

lt I

,

i I

a,

where c is the local aqueous phase concentration inside the
aggregate, r is the radial coordinate, and a is the aggregate
radius. Continuity of solute concentration at the aggregate
boundary is assumed,

c,.(x, t) = ca(x, a, ) (3)

Fick's Law along with the assumption of linear equilibrium
sorption gives the mass balance equation inside the sphere as

ac, D I a 2 c.) (4)

where D. is an effective molecular diffusion coefficient within
the aggregates.

Equations (I) through (4) constitute one of the basic trans-
port models to be analyzed in this paper; henceforth these
equations will be referred to as the diffusion physical none-
quilbrium model. It will be more convenient to consider the
dimensionless form of (1) through (4). The following dimen-
sionless variables are defined [see van Genuchten et al., 1984;
van Genuchten, 1985]:

T = L t (5)
L0

x
X = : (6)

p vL (7

r (8)
a

DLO. (9)
-a

2vO.

OR. (10)
OR

where T is a dimensionless time equivalent to the number of
pore volumes leached through a soil column of length Lo P is
the Peclet number, 0 = 0. + O, is the total porosity, and R is
the total retardation factor defined by OR - O6,R,. + 0,,,
Note that R can also be defined in the standard fashion as
R = I + pk,/0, where p is the total bulk density of the porous
medium, and k, is the distribution coefficient. Given the above
definitions, (1) through (4) becomes

which is the familiar form of the solute transport equation
when LEA is valid. Later in this paper it is shown that the
applicability of (15) depends upon other parameters in addi-
tion to y.

In order to avoid geometrical specification of the stagnant
region and to simplify the mathematical formulation, several
investigators have proposed approximate first-order type rate
equations to account for mass exchange between mobile and
immobile zones Coats and Smith, 1964; Baker, 1977; van Ge-
nuchten and Wierenga, 1976]. In this approach, (1) is solved
along with

a"Rj ac d= a4c -c, (16)

where a is an empirical mass transfer coefficient that depends
in some way upon aggregate geometry and the diffusion coef-
ficient. Rao et al. [1980a] and van Genuchten 1985] have
derived expressions for a for certain idealized aggregate
shapes.

Equations () and (16) constitute the second of the basic
transport models to be analyzed in this work; these equations
will be referred to as the first-order physical nnequilibrium
model. The dimensionless form ol(16) is

(I -OPR acb o Xc - c; (17)

where l - aL/(vO.) is a dimensionless mass transfer parame-
ter. Hence (11) and (17) constitute the dimensionless form of
the first-order physical nonequilbrium model. For large A, the
first-order model approaches the LEA model given by (15).

Chemical Nonequilibriunt
In this class of models, no distinction is made between

mobile and stagnant liquid regions. Thus the governing solute
transport equation is

de Os 02c de
a+p a= DO 2 - vO a (18)

where is the sorbed species concentration, p is the bulk
density of the porous medium, and other parameters are as
defined previously. We assume here that the overall sorption
rate (s/Ot) can be described as a first-order linear kinetic ex-
pression

PR ac + (I P)R a I = dc' dc,

c,.(X, T) = 3 c.(X, , T)2 de

c4(X, T) - c(X, 1, T)

(I -PO I 0 4 2 OC

as-= kC - ks (19)
(I1)

where k, and k, are the forward and reverse rate coefficients
(12) for the heterogeneous sorption reaction. Jennings and Kirkner

(1984] have recently studied a formulation where (19) is re-
(13) placed by a nonlinear, Langmuir-type rate expression. The

dimensionless form of (8) and (19) is

(14)

For simplicity, the subscript m will be dropped from c,,
throughout the rest of this paper.

Rao and Jessup [198a] note that is a dimensionless rate

()c p as I 2 c Oc
T O 9U TTT dX X

Os =
OT=F(kc -s)

(20)

(21)
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The nth central moment is given as
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/Il - i25)
Fig. I. Schematic represenzation f olute breakthrough resulting

from a pulse input of mass.
j IX. T) dT

where X and P are given by (6i and 0i. respectively. T is given
by 5) which reduces to T = rt L. since P. = t, k, = kf k, is
the distribution i.e.. equilibrium) coefficient. and F is a dimen-
sionless rate parameter defined by

Although the moments can be formally computed if the solu-
tion ciX. T) is known. Aris [1958] has shown that under very
general conditions

F = k,L 122) P_, dPn I 

,Ahere .IX. pi is the Laplace transform of oX. T). that is.

c( p) = I e -"clX. Ti dT
so0

i26)

(27)

Equations 201 and ilI constitute the final transport model we
will study in this paper: we ill refer to these equations as the
linear chemical nonequilibrium model.

Vkedi-Ki::a et al. [1984] describe a two-site chemical none-
quilibrium model where sorption on type " sites is governed
by linear equilibrium and sorption on "type 2" sites is gov-
erned b a first-order rate expression analogous to 191. The
two-site model is not explicitly analyzed in this ork; how-
ever. NVkedi-Ki::a e al. [19841 have shown that the two-site
model is mathematically equivalent to the first-order physical
nonequilibrium model gi'en by i1) and (17).

TIME NOMENT ANALYSIS

Although the pre iously presented models can be solved
analytically, the solutions are frequently in the form of inte-
grals that are relatively difficult to evaluate [e.g.. Rasmuson
and .eretnieks. 1980: Rosen. 1952]. Despite these analytical
problems. it is relatively easy to use a method originally de-
scribed by .4ris [1958] to derive expressions for the time mo-
ments of the concentration breakthrough curves that would
result from any arbitrar! pulselike input of mass. Time mo-
ments provide useful and ph!sically meaningful descriptors of
the concentration breakthrough: for example. the first three
time moments would describe the mean breakthrough time,
the degree of spreading. and the degree of asymmetry of the
concentration response curve. respectively. Time moment
analysis is a standard chemical engineering procedure to de-
termine dispersive and rate parameters for packed bed reac-
tors [Turner. 1972: Suzuki and Smith, 1971; Fahim and
W gao. 1982]. Here we use the moment analysis as a tool to
characterize the differences between nonequilibrium and equi-
librium models of sorbing solute transport.

As is shown schematically in Figure 1. if a soil column is
subjected at its intluent end to a pulselike input of mass, then
the distribution of concentration versus time at any down-
stream location will also be pulselike. Such a concentration
distribution can be described by its absolute moments, defined
as

The power of Aris' method is that it enables computation of
the moments from the concentration solution in the Laplace
domain, which is often easy to obtain.

Results

The Laplace domain solutions for the previously presented
nonequilibrium models are derived in Appendix A. The solu-
tions assume a semi-infinite domain and a Dirac impulse input
of mass at the soil column inlet: the initial and boundary
conditions are thus

cX T = 0 = sl X. T = 0) = c,,,(X. T = 0 = 0 (28)

(1 X -x . T s( Y -. T ci(X - . T = (29)

(. -P - ) v =o = .46T)
(30)

In 301. i Ti is the Dirac Delta function and 4 = M (L).
where Al is the mass input per unit column cross-sectional
area, since, by definition.

v. =- (t - D ) ) ,, = s- di{ 131)

For the linear chemical nonequilibrium model. 0,,, in (31) is
equivalent to .

Several investigators have demonstrated that the solutions
derived in Appendix A do not directly apply to solute con-
centrations measured in the effluent of a column leaching ex-
periment [Brigham. 1974; Kreft and Zuber, 1978; ran Genuch-
ten et al., 1984; Parker and ran Genuchten, 1984]. These stud-
ies have shown that a proper description is obtained by apply-
ing a mass balance condition at the end of the soil column
{X = I)

m = T"c X. T) dT

ceT) = -- (32)
(23)

where X and T are the dimensionless distance and dimension-
less time. respectively. The amount of mass passing any lo-
cation X is proportional to min: thus the nth normalized abso-
lute moment can be defined as

The variable c, is usually denoted the flowing or flux con-
centration, whereas c is termed the in situ or resident con-
centration. The flux concentration can be defined at any lo-
cation in the soil column and can be interpreted as the ratio of
the solute mass flux to the fluid volume flux (specific dis-
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TABLF 2 Time Moment Formulas for Equilibrium and Nonequilibrium Models, Dirac Input

Physical Nonequilibrium Chemical
Loca i No nequilibrium.

Moment Equilibrium Diffusion First Order Linear

! , XR XR XR XR
2.V R l OR- 2 X I - /17 R 2XR i 2I - IR: I'XR' 2XR - I)

P P 5 P P F
I ' I2VR' 4 I - li 2R' 12XR3 l2.Vi I 10,R 3 I 2X R 1XRIR -

p, P- 7 * p: Pei PF
4 X - 1l13R' 6Xil - J'R' 6XiR - I)

10>5 - : 

chargel. Applsing (321 t the diffusion physical nonequilibi
solution A 3 gises

,(lX. pi = A- exp [I I - Pif;Rp GipI)) )

where Gipl is defined b A2). Likeskise. the Laplace tr
form of the flux concentration for the irst-order physical 
equilibrium model AIS) is

IX.) pi= 4 exp [ *( I I p )f#Rp tap) )

where Hip) is defined b A717. and for the linear chen
nonequilibrium model A 91 is

A..I p)=Aex XP( I -( I (l FR-l l'))

The ukcript Aill be dropped. since only flux concentrat
are considered in the remainder of this paper. In the limii
the appropriate rate parameters -;. J. Fl get large. the n'
quilibrium solutions approach

I =1 ep [ |- ( 1 p)

which is the Laplace domain solution of the LEA model I
The Laplace domain solutions. 1331 through (361. can

differentiated according to 126) in order to compute the t
moments of the concentration breakthrough curve at any
bitrarv location X. The details of this differentiation and lit
ing procedure are straightforward but become tedious for
higher order moments. these details are not reported h
The final expressions for the first three central moments
gisen in Table 2. These results tend to corroborate the fi
ings of presious theoretical studies and laboratory coli
experiments: namel\. that sorption rate limitations are ger
all! manifested hs an enhanced spreading and tailing 
increased second and third central momenti of solute bre
through curse. The expressions in Table 2 demonstrate 
at least for the models postulated in this study. noneqi
brium does not influence the mean breakthrough time of
solute pulse Table 2 also shovs a striking similarity am
the time moment expressions for the arious nonequilibri
models: this suggests that the general shape of solute bre

rium through curses is not er\ sensitie to the form of the kinetic
submodel.

The expressions in Table 2 provide a basis for quantifying
the effects of rate limitations and evaluating the alidit of
LEA. since nonequilibrium and equilibrium breakthrough
curves will be essentially indistinguishable from one another

33) When their respective moments are approximately equal. As is
expected from Table 2 and the mathematical formulation of

ans- the kinetic submodels. the nonequilibrium breakthrough
ion- curves approach the equilibrium breakthrough curses when

the dimensionless rate parameter increases. This is demon-
strated for the linear chemical nonequilibrium model in Figure

which compares the equilibrium and nonequilibrium break-
through curses at A = I for the case with P = 10 and R = 4.

(34) The equilibrium breakthrough curve is gisen bx the inverse of
I (36) which is reported by DeSoedr and Wieretna [1979] and

nuca K~r.qr and Zuher [1978] as

PR ~~~PR
]X (lx 1 (4T : ) T exp 4T( R J

%where C X. T) is a relati e concentration defined as

L 5

.=- = I WL 1381

The quantity Ml UI is the dissolsed solute concentration that
would be attained if the total mass input were uniformly dis-
tributed throughout the soil column pore olume: the defini-

(361 tion 138i is commonly utilized in chemical engineering studies
isee. for example. Leienrpitl and Bi h t [1963]. In the stud-
ies of DeSnidr and ierenqa [ 1979] and tan Genuciren

5i. [1981]. 035i is inserted analyticalh. and the result is presented
i be as an integral insoloing modified Bessel functions. Howeser.
time the analytical in erse was found to yield anomalous results for

ar- large values of F consequentls. the nonequilibrium results in
mit- Figure 2 "cre calculated by numerically inverting the Laplace
the transform (35i. To enhance the reliability of the calculated

iere. results. two different insersion algorithms Aere utilized. one
are due to Durhin [1974]. the other due to Seh'est [1970]. The

ind- latter algorithm has been recently applied to solute transport
imn problems b oencl and Ogata [1981]. For the curses pre-
ner- sented in this paper the to methods gase results that gener-
(i.e.. ally agreed to within a few percent. The curses displayed in
eak- Figure 2 clearly illustrate that LEA becomes more applicable
that as F increases for fixed salues of P and R. For most practical
uili- purposes we could say that LEA is certainly alid when
the F 2 100 for the conditions of Figure 2.

ong The differences among the curses in Figure 2 are logically
ium reflected in the computed salues for the moments: the salues
!ak- for p and u3 as computed from the appropriate formulas of
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Fig. 2. Comparison of equilibrium and linear chemical nonequilibrium breakthrough curves at X = I
R = 4. Mass input at X = 0 is a Dirac impulse.

9. 00

for P = 10 and

Table 2 are also given in Figure 2. Defining e,, the fracti.
change in the nth central moment, as

PK JuE

where the superscripts K and E refer to the kinetic (i.e.. n,
quilibrium) and equilibrium models, respectively, we can c
pute e, = 0.02 and et = 0.02 for the F = 100 breakthrc
and e2 = 0.19 and e3 = 0.21 for the F = 10 breakthrough
the context of the time moment analysis, the question of I
validity gives rise to two fundamental issues: first, how dot
depend upon system parameters, and second, how large ca
be before the solute breakthrough exhibits severe deviat
from local equilibrium. The latter issue is beyond the scor
this paper; however, it could possibly be addressed by ir
preting the solute breakthrough curve as a probability der
function and subsequently applying one of the well-kn,
series expansions of an arbitrary density function in term
its moments [see Kendall and Stuart, 1977, chapter 6). Ti
series expansions have been applied to solute transport pi
lems by numerous investigators, including Gelhar et al. [19
Kucera [1965], Wiedemann et al. [1978], and Razav ei
[1978].

The former issue, the effect of system parameters upoi
can be easily addressed with the time moment formula
Table 2. Substituting the appropriate expression from Tat
into (39) yields for the linear chemical nonequilibrium mod

onal P 1 /P(I-)\
E' = - -(15 -21 )

(39) and for the first-order physical nonequilibrium model are

P
Lone- e = - (I - fl)2

om-
lugh = = (I-_l)2( P -f)
i.lIncoc 2 

(43)

(441

(45)

Since solute breakthrough will exhibit greater deviations from
equilibrium conditions as increases, the preceding equations
describe the influence of system parameters upon LEA validi-
ty. The results (40H45) are consistent with the previously
noted fact that equilibrium is approached as the dimensionless
rate (F, , ) increases for fixed values of P. R and fi; however.
these equations indicate that the approach to equilibrium also
depends upon the porous medium's dispersive (P) and equilib-
rium sorptive (R. ) properties. As an example. the results
specify the crucial role played by the ratio P F for the linear

P(R - I)
2F R2

P (R -1)/ IP I\
F R F 2R)

(40)

(41)

The corresponding results for the diffusion physical nonequili-
brium model are

P I
E2 = -( -) 2 (42)

7 15

P/F

Fig. 3. Dependence of e2 upon P. F. and R for the linear chemical
nonequilibrium model and a Dirac input.
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I..
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Fig. 4 Comparison of equilibrium and linear chemical nonequilibnum breakthrough curves at X = I for P = 10 and
R = 20. Mass input at X = 0 is a Dirac impulse.

chemical nonequilibrium model: for fixed R values P F is an
index of nonequilibrium behavior. This is demonstrated in
Figure 3. which is a plot of 40) The key point is that the
question of whether or not LEA is valid does not have a
simple answer: thc answer depends upon all system parame-
ters as well as upon the assumed form of the nonequilibrium
submodel.

The linear chemical nonequilibrium model can be used to
illustrate some of the above-mentioned parameter influences.
Figure 4 shows the equilibrium and nonequilibrium break-
through at X = I for P = 10. F = 10. and R = 20: these re-
sults were obtained with the previously discussed numerical
Laplace transform in.erters. Comparison with the F = 10
curie in Figure 2 dramatically shows the influence of increas-

ing the retardation factor: increasing R from 4 to 20 decreases
r, from 0.19 to approximately 0.05 see also Figure 31. The
deviation between the equilibrium and F = 10 curves in
Figure 4 is thus significantly smaller than in Figure 2.

Figure 5 shows the breakthrough results for P = 100 and
R = 4. the nonequilibrium curves for F = 1000 and F = 100
have the same P F ratios as the F = 100 and F = 10 curves in
Figure 2 here P= 10. Hence the -, and c3 values for
F = 1000 in Figure 5 are identical to those for F = 100 in
Figure 2. A similar equality applies between F = 100 in Figure
5 and F = 10 in Figure 2. Comparing the F = 100 curves in
Figures 2 and 5 demonstrates that the linear chemical none-
quilibrium model approaches local equilibrium as P decreases.
for fixed F and R.

a

I P=100 R=4

A2 $3
- EUIL 0.32 0. 0768

& F-1000 0. 326 0. 0783
C F-100 0. 3 0. 093

0

2.00 2.50 3. 00 3.0 4 00 4 50 5 00 550 6.00 6 30
T (DIMENSIONLESS TIME)

Fig. 5. Comparison of equilibrium and linear chemical nonequilibrium breakthrough curves at = I for P = 100 and
R = 4 Mass input at X = 0 is a Dirac Impulse.
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Figure 5 also illustrates that the solute breakthrough curves
become more smmetrical as P increases. This feature is con-
sistent with the moment formulas in Table 2 which show that
an increase in P will generally cause A3 skewness) to diminish
with respect to p (ariancei. It is possible to demonstrate
theoretically that the LEA breakthrough curve described by
437) approaches a Gaussian distribution with mean XR and
variance 2XR: P as P increases see, for example, Turner
[1972] and Sautt [1980]i. For dimensionless rate values that
are not "too small" the nonequilibrium breakthrough will also
be approximately Gaussian. This suggests the possibility of
using analytical properties of the normal probability function
to develop quantitative criteria for LEA alidity. As is stated
above, the solute breakthrough curses for large P values can
be approximated as

out of the stagnant pores. Rao et al. [19806] and DeSmedt and
Wierenga [1984] have recently applied this effective dispersion
coefficient approach to tracer movement in saturated and un-
saturated laboratory columns. Pickens et al. [1981] compared
field breakthrough curves for nonreactive and reactive solutes
and observed that nonequilibrium effects could be modeled
with a modified dispersion coefficient. These observations are
consistent with Figure 5 which demonstrates that the solute
breakthrough curves become Gaussian as P increases.

The time moment analysis explicitly shows the effect of pa-
rameters upon the variance of the solute breakthrough curve.
Therefore it is a simple task to utilize the expressions in Table
2 to derive effective dispersion coefficients. Modifying the re-
sults of Aris [1958] and Turner [1972] for the dimensionless
variable definitions used in this paper. we can show that

OtX. T) - exp LT2-XRJ
('2a 7 l P --) [ 2a,

where y, is given in Table 2. The maximum solute
centration will thus occur at a time T = XR and be equ
i2zpo- '- . In analogy to 4391, the fractional change in
maximum solute concentration can be defined as

C._ E _(C. )
Cm.a I 

where the superscripts E and K refer to the equilibrium
kinetic models, respectively. Equation 147) can be comb
with (39) to yield

/ma I V I # )

(46) f = 1 (t L

ff 2 De)r ( p

(494

(504

where the moments are those listed in Table 2. Note that
(1 = ,,, for the linear chemical nonequilibrium model). Thus

(47) solute transport through long soil columns (large P is gov-
erned by an advection-dispersion equation with an elTective

and velocity given by 491 and an effective dispersion coefficient
ind given by (501. Table 2 indicates that the equilibrium and none-

mlned quilibrium models have the same Herr

r (1

,.f -R =
(51)

(48)

where . is given by 401. 42). or (44). The result (481 repre-
sents one way to quantitatively describe the influence of pa-
rameter values upon deviations from local equilibrium. As an
example. for the linear chemical nonequilibrium model (48)
can be used to answer the question, How small can F be

lk~ before E.. becomes greater than some specified tolerance?
The validity of (48) can be tested with the results in Figure 5
despite the fact that the curves displayed there are not precise-
ly Gaussian. For F = 100, P = 100, and R = 4. = 0.19 see
Figure 3; hence (48) predicts Emx = 0.083. The numerical data
used to plot Figure 5 reveals Cm.. ;: 072 and C,.' t 0.66
yielding a computed ma. = 0.083. which is identical to the
value predicted by (48).

The normal probability distribution is completely specified
by two parameters, the mean and the variance. Therefore if
the nonequilibrium breakthrough curves shown in Figure 5
are approximately Gaussian, then they can be described by an
advection-dispersion type of equation. That is, an additional
set of kinetic submodel equations is not required. This point is
discussed further in the following section.

An Effective Dispersion Approach

The models described in this paper consist of an advection-
dispersion equation for transport along the soil column plus
an additional equation explicitly accounting for solute transfer
between the aqueous and sorbed states. However, Passioura
[1971]. Baker [1977], and others studying the problem of
nonreactive solute movement through media containing dead-
end pores have shown theoretically that the additional kinetic
equation is not required to described breakthrough from long
soil columns. provided that the dispersion coefficient is modi-
fied to reflect the source-sink effects of mass transfer into and

whereas the equilibrium model has

D m

the diffusion physical nonequilibrium model has

D (f, (I - f) '(t.) 2

R 1 15DROt,

the first-order physical nonequilibrium model has

D 0 ,, (I - 132(0vm)
D R R20

and the linear chemical nonequilibrium model has

D + \R - 1) I
Dear R R} R f

(52)

(53)

154)

155)

Analytical solutions to the advection-dispersion equation
with the above noted effective velocity and dispersion coef-
ficients have been compared to linear chemical nonequili-
brium breakthrough curves computed by numerical inversion
of (35). The two solutions agree very closely over a wide range
of F values. provided P is large enough: in this work,
P > 1000 proved sufficient. This P value is in the same range
as that reported by Baker [1977] and DeSmedt and Wierenga
[1984].

Son-Dirac Inputs

As previously noted. LEA is generally valid when the rate of
change of solute mass due to the microscopic sorption pro-
cesses is much faster than that due to the bulk flow process.
Therefore LEA validity should depend upon the time vari-



0I

01

o 0 sR

rn
r-

I

Zo

-

CHI: VALIDInT O LOCAL EQuILIBRIUM Ass;

P=100 R=4 T=5

A2 A3

- EOUIL 1.362 0.0768
C F-100 1.422 0.093

02. 00 3 400 5 00 6. 00 7 00 3. 00
0 T (DIMENSIONLESS TIME)

9.00 10. 00 II.00

Fly. 6. Comparison or equilibrium and linear chemical nonequilibrium breakthrough curves at X = I for P = 100 and
R 4. Mass input at X is a symmetrical triangular function with base. T. equal to 5 and height equal to 2 TO.

ation of the mass input function as well as the relative 
nitude of the seepage velocity. dispersion coefficient. and 5

tion rate parameters. The time moment analysis can be e
extended to cases of non-Dirac pulse inputs of mass. For
case. the boundary condition 301 becomes

. l X Al ..

As in the Dirac input situation. .4 = M 10L). where is
total mass input per unit column cross-sectional area. Acc
ing to (56). the total mass is input over time according tc
function 11T). In order for the solute breakthrough curve t
pulselike. f tTI must also have the general form of a pulse:
is. f T must rise from zero and return to zero after some 
time (see Figure 1). Mass balance arguments also show
l T must satisfy

Mag- we will take IT) to be a symmetrical triangular function with
.orp- base width equal to TO. This simple functional form has mean
asily O1 equal to T 2. variance (vt equal to T 2 24. and skew-
this ness v3) equal to zero. Hence the values of Mi and p for both

the equilibrium and nonequilibrium models are increased by
these amounts: that is. the equilibrium breakthrough curve

156i has

2XR2 T*2
pI = + -P 24

(601

and the linear chemical nonequilibrium breakthrough curve
has

2XR 2 2XiR - I) T*2

P2 = P F 24 (61)

IlfIT) dT = (57)

The Dirac input condition 30) can thus be viewed as a special
case of the general pulse input condition 56).

Expressions for the time moments of the solute break-
through curves resulting from a mass input described by (56)
can easily be deri ed from the expressions previously defined
in Table 2 for a Dirac input. It is shown in Appendix B that
the time moments of solute breakthrough for the two different
inputs are related by

oh I = ,uMia t 1t l(58)

fin - Hn + I. n = 2. 3 159)

w-here the I and i superscripts refer to the general pulse input
and the Dirac input. respectively: is the first absolute
moment mean) of the input function (rT: and v is the nth
central moment of I( T see equations 123H25). Therefore the
general pulse moments are gi en by the expressions in Table 2
plus the appropriate moment of the input function.

In order to examine the implications of non-Dirac inputs.

Thus spreading of the breakthrough curve will reflect the ef-
fects of the non-Dirac input function as well as the parameters
P. R. and F. As before. we can use differences between the
equilibrium and nonequilibrium moments as an index of LEA
validity. By using definition 39). we find the linear chemical
nonequilibrium model has

C. P R- I)(II P*2 -1

£2 F JWv, 48XR (62)

Comparing (62) with the result 140) for the Dirac input. we
conclude that deviations from local equilibrium behavior
should become less significant as the solute mass is input
gradually over longer and longer time intervals. As is demon-
strated in (621. the importance of a nonzero TO depends upon
the magnitude of P. X. and R.

The effects of non-Dirac mass inputs can also be visualized
by examining solute breakthrough curves resulting from the
symmetrical triangular input. These breakthrough curves can
be computed with the previously mentioned numerical La-
place transform inversion algorithms. The Laplace domain
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solution for the linear chemical nonequilibrium model is
Appendix B)

j(X. P) = .4f(pI

exp ~ I-(. Q±FR l) ]
[ ( ( ~P ( - F /})

where fip) is the Laplace transform of the triangular ii
function. With the aid of Ahrarnowit: and Stequn [19':
1025]. we can calculate f I as

flpl = -j 2 tanh ( -) - e -rap

The inverse of (63) is plotted in Figure 6 as relative
centration versus T at X = I for T = 5. P = 100. and R
The equilibrium breakthrough curve was computed by u
very large F values in 63). Comparison of Figures 6 at
show that deviations from local equilibrium for the 
input are much more pronounced than those for the triai
lar input. This agrees with 621 which shows that , for
F = 100 curve decreases from 0.19 for the Dirac input Fi
5j to 0.045 for the triangular input (Figure 61.

DISCUSSION AND CONCLUSIONS

It is generally recognized that LEA is valid when the rat
change of solute mass due to the microscopic sorption
cesses is "much faster" than that due to the bulk flow
cesses. This study shows that this qualitative statement cai
quantified for any given kinetic formulation. By analyzing
pressions for the time moments of sorbing solute br,
through curves. we derived criteria for LEA validity in
dimensional, steady flow through homogeneous soils. T
criteria are given by (40) through 145). Even for the sir
models postulated here, the issue of LEA validity dept
upon a complex interplay between macroscopic transl
properties (seepage velocity, hydrodynamic dispersion. 
variation of mass input) and microscopic sorption propel
(e.g., mass transfer coefficient, aggregate size. distribution c
ficient). The results derived in this paper depend additior
upon the assumed nonequilibrium submodel. Also, as
noted by Rubin 1983], the distinction between equilibr
and kinetics is pragmatic rather than fundamental. Figur
through 5 demonstrate that kinetic breakthrough cu
smoothly approach the LEA curve as appropriate parame
change in the proper fashion. the point at which LEj
deemed valid" depends upon some subjective assessmen
permissible error. This allowable level of error is likely tc
larger in a practical field problem than in a theoretical lab4
tory experiment.

The time moment methodology utilized in this study
powerful tool for characterizing the behavior of mathemat
models of sorbing solute transport. Because analytical s,
tion of the coupled differential equations that typically c,
prise such models is not necessary, the method can be rea
applied to a wide variety of nonequilibrium formulations.
example. Kucera [1965] has used the time moment methoi
analyze a very general model accounting for film diffus
internal diffusion within a porous spherical aggregate,
kinetically controlled adsorption onto the internal aggrel
surfaces. However, the time moment analysis is restricted
linear problems, since it relies upon the Laplace transforr
the model solution.

Although we have only analyzed one-dimensional. ste

(see Riow through homogeneous soil columns. our results have
some interesting implications for practical field problems. For
example. while a kinetic sorption model ma, be necessary for
nearly instantaneous contaminant inputs e... a spilli. LEA
may be valid for describing transport from a hazardous waste

163) landfill where the pollutants may be input more gradually
over time.

in conclusion. it should be noted that the LEA criteria
rIput developed in this study are strongly dependent upon the form
- P of the hypothesized kinetic model. In order for the derived

criteria to be practically useful. the conceptual model of the
nonequilibrium processes must have a sound scientific basis so

164) that the sorption parameters are physically meaningful and
measurable.

con-
= 4.
sing
nd g APPENDIx A: TRANSPORT MODEL SOLUTIONS

lirac IN THE LAPLACE DOMAIN

1gu- Ditiusion Physical Nnequilibrium
the Nnqiiru

gure The basic diffusion physical nonequilibrium model is given
by 111 ) through 114). which are subject to the initial and
boundary conditions 1281 through (30). The definition of the
Laplace transform given by 27) can be used in (I ). (12). and

re of 141 to give

I dY2 d -d - fiRp - (I - f)Rpe,, = 0

,,, = 3 | t d%

,,2 d ( d, 

(Al)

(A2)

0A3)

respectively. The boundary conditions 129) and 30) will trans-
form to

fi. -- ). p = 

i I diTI=

P dYX = A

and condition w 3) will transform to

-IX. pI = X . = l. PI

IA4)

IA5)

(A6)

Equation A3) can be combined with (A2) to yield an ex-
pression for j,_ which when substituted into (AI) gives

ld% -d -fip = 0 (A7)
P X -dX- P;idsa)| =° I7

Next. the aggregate mass balance equation A3) can be written
as

2 d) + J di _ 1J = 
(A8)

where: = I(p)' 2 and ' = I;,[R( - )]. Equation (A8) pos-
sesses solutions in the form of modified spherical Bessel func-
tions [Abranowit: and Sequn, 1972]. The solution that is
finite at A = 0. when combined with the condition (A6) will
yield

j.fX. .1~. PI 1 2 X p 2
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I 22 (A9)
\f ( 0'I exp [r (I -I - (Rp + H(pIl) )1 (A181

where 1, 2 is the modified spherical Bessel function of the first
kind. From the solution A91 we can calculate

dc-,, (1X. P1 r tcosh 2 sinh (P) I

sinh ((7) ) 2 , )
WY~~~~~~

Linear Chemical Nonequilibrium

This model is given by (201 and (211. Proceeding as in the
previous analyses, the appropriate Laplace domain solution is
found to be

24
j(X, p1 =

I + Il+ 4p 'I + FR 1))]1 2

(A 10)

where we have used the identity

7: - sinh:

When (A 101 is evaluated at = I and substituted into (A7) the
result is

I d2c dC
P -- -[flRp+ Gtpi]c = JA 1)

P hdX

where

exp I (I K (I
+4p (I +FIR I ))" )]

+ II 1 (A 19)

APPENDIX B: RELATION BETWEEN TIME MOMENTS FOR

DIRAC INPUT AND GENERAL PULSE INPUT

From Appendix A, the general Laplace-domain solution to
the nonequilibrium models can be expressed in the form

CMX ) = &41I~eX (B )

G(p = 3-;. coth (P.) -I (A121

The solution of AI I satisfying the boundary conditions (A4)
and A51 is

= , .'2.4

where B is an arbitrary constant fixed by the boundary con-
dition at X = 0. For a Dirac input, boundary condition (30)
for c transforms to (AS) for . thus giving B = .4 [I - .(p),P].
Equation (BI) can thus be written

c= A eAIPIX
/.p)

I _~

B2)

c(A. PI =

I + {I + 4 [IiRp -+ G 2pl]
where the superscript 5 denotes the Diract input solution.

For a general pulse input, the Laplace transform of bound-
ary condition (561 is

exp ( I (I 4 [#Rp G(p]) ) (A131

Fir.sr-Order PhYsical .N'onequilibrium

This model consists of 1111 and (171 subject to the con-
ditions 281 through 301. Taking the Laplace transform of (l)l
and 1171 yields

I d2 - d- R -I -#)Rpjj = (A 141
P d dX

(I - fl)Rpj. = w.v(c- -C,',) (A15)

respectively. When (A15) is substituted into (A14), the result is

I-dC - de - (Rp + Hpllc = 0 (A16)Pd2dX

where

Hl(p) (I - lRp- (A 17)
i I-#)Rp + (9 ( 7

The solution of A 16) subject to boundary conditions A4) and
IA51 is

(P dX)|. (B3)

where f(p) is the Laplace transform of the input functionf(TI.
When B3) is used to specify the constant in (BI), the result is

-f = Af(p) elx f(p=f

P

(B4)

where the superscript f denotes the general pulse input solu-
tion.

The Laplace-domain solutions are related to the solute
breakthrough time moments by (26). Therefore

m = - 1)' lin dp (B5)

The relation between i and e9 given by (4) and the general
form of the chain rule given by Abramowit: and Stegun [1972.
p. 12] will yield

d~ee Xdewc f "J (n\ d"-'J d'9 d"£
dp) dp^ dpR r dp+dp'' dp

(B6)

where (,) is the binomial coefficient defined as n!.lr!(n -r)!].

Substitution of (B61 into (B41 will yield after some algebraic

2.4
(X. p = .

I _.- [I _ - iflRp + H 2p)]
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manipulation

Mj = n'o T nB7)

where r denotes the nth absolute moment of the input func-
tion fT),

Tf= T) dJ = (-1) urn i - (B8)
.0 -O~~~ ~,dp J

Because of the mass balance condition 57) onf(T). mof =

mo. Dividing (B7) by m, will give the following relationship
between the normalized moments for the general pulse and
Dirac input solutions:

A'f= E (r ,4, '8 (B94

Equation (B9) can be used in conjunction with the well-known
relationship between absolute and central moments [Kendall
and Stuart. 1977. p. 58]

r0 (r)

to give the following useful expressions for the first three mo-
ments:

. = p I + t.{(B10)

PIr = U2 + '2(Bl 1)

3W = 33 + V3 (B 12)

where v is the nth central moment off T).
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