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Validity of the Local Equilibrium Assumption for Modeling
Sorbing Solute Transport Through Homogeneous Soils

ALBERT J. VALOCCHI
Department of Civil Engineering, University of linois, Urbana

Sorption processes that occur during reactive solute movement through porous media can be modeled
using either an equilibrium or kinetic approach. Because of the resulting conceptual and mathematical
simplification, many transport models assume local chemical equilibrium is valid for describing sorption
reactions. This paper presents quantitative criteria to assess the validity of the local equilibrium assump-
tion for one-dimensional, steady flow through homogeneous soils. A method is described whereby
formulas for solute breakthrough curve time moments can be determined without knowledge of the
analytical solution to the mass transport model. This method is applied to several commonly used
nonequilibrium formulations as well as the standard linear equilibrium model. The formulations con-
sidered include both the physical nonequilibrium models where the sorption rate is controlled by diffu-
sive solute transfer between mobile and stagnant fluid zones and the chemical nonequilibrium models
where the overall sorption rate is governed by the rate of reaction at the soil-solution interfaces. Criteria
for local equilibrium to be valid are derived by comparing the time moment formulas for the nonequili-
brium and equilibrium models. These criteria explicitly show that basic system parameters (e.g., secpage
velocity, dispersion coefficient, distribution coefficient, sorption rate, boundary conditions) have & signifi-

cant influence on the attainment of local equilibrium.

INTRODUCTION

Adsorption reactions are important processes governing the
fate of dissolved hazardous substances in groundwater.
Models of the transport of such substances must therefore
incorporate mathematical descriptions of the chemical process
of adsorption as well as the physical processes of advection
and dispersion. On a microscopic level, sorption reactions are
complex, time-dependent phenomena involving transport from
the bulk aquifer pore fluid to the soil-solution interfaces where
sorption occurs. As was noted recently by Rubin [1983), an
accurate representation of sorption kinetics requires quantita-
tive treatment of the microscopic transport steps which thus
necessitates the specification of the geometry of the sorbent
material. For naturally occurring porous media, accurate
knowledge of this level of microscopic detail is impossible;
however, if the microscopic processes are “fast enough”™ with
respect to the bulk fluid flow rate, then reversible sorption
reactions can be assumed to be in a state of local chemical
equilibrium. In this paper, such an assumption will be referred
to as local equilibrium assumption (LEA).

The LEA results in significant conceptual as well as math-
ematical simplification; description of the microscopic reac-
tion pathways becomes unnecessary, and the appropriate
chemical equations are algebraic formulas (e.g., Freundlich,
Langmuir isotherms) whose parameters can be measured by
simple batch laboratory experiments. Thus it is not surprising
that many investigations to date have invoked the local equi-
librium assumption. However, as is evident from the partial
list of laboratory column experiments given in Table 1, models
based upon LEA do not always accurately simulate sorbing
solute transport. If local equilibrium is not attained, LEA-
based models will predict a breakthrough response that occurs
too late and exhibits too little dispersion. For hazardous sol-
utes, such miscalculations could have grave consequences.

Considering the large number of transport models that have
been formulated utilizing either equilibrium or kinetic reaction
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submodels, it is surprising that there have been so lew investi-
gations into the conditions under which LEA breaks down. In
an interesting study, James and Rubin [1979] performed lab-
oratory column experiments over a range of secpage velocities
and found that the equilibrium theory failed at the higher
fluxes (see Table 1). By using the model of Glueckauf [1955],
James and Rubin concluded that the local equilibrium as-
sumption applies when the ratio of the hydrodynamic disper-
sion coeflicient to the molecular diffusion coefficient is “near
unity.” However, Table 1 does indicate several investigations
where equilibrium models proved successful under conditions
where hydrodynamic dispersion was significantly greater than
molecular diffusion (10~ % cm?/s is a typical value of molecular
diffusivity). Bolt [1979] studied the criterion for LEA validity
by performing a theoretical analysis of solute movement
through an aggregated soil; however, his analysis neglected
the effect of hydrodynamic dispersion. Palciauskas and Dome-
nico [1976] studied only steady state conditions in their theo-
retical examination of diffusion-controlled carbonate dissolu-
tion. More recently, Jennings and Kirkner [1984] performed a
numerical simulation of one-dimensional multispecies trans-
port governed by a kinetic form of the competitive Langmuir
isotherm. By repeatedly executing the simulation model under
a variety of conditions, they were able to identify ranges of
parameter values for which the computed concentration pro-
files were indistinguishable from those generated by a LEA-
based model. In a recent review article, Rao and Jessup [1983]
present several commonly utilized nonequilibrium transport
models, and they discuss the significance of nonequilibrium
indices which arise when the transport equations are nondi-
mensionalized. In the work here we will show that the validity
of LEA depends upon several parameters in addition to Rao
and Jessup’s nonequilibrium indices.

The purpose of this paper is to elucidate the conditions for
which local equilibrium is a valid assumption for modeling the
transport of sorbing solutes through homogeneous soils. In
order to accomplish this objective we consider three common-
ly used models of sorbing solute transport through a one-
dimensional, homogeneous soil column. In two of the models
the sorption rate is controlled by diffusive solute transfer be-
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TABLE 1. Review of Experimental Studies of Solute Transport in Saturated Soil Columns
Seepage Dispersion
Porous Velocity, Coefficient,
Reference Medium Solute cm/s cm?/s Results
Kay and Elrick {1967] Honeywood Organic 32 x 1074 - 36 x 107 - evidence of nonequilibrium
silt loam pesticide 6.8 x 1074 1.1 x 107+ behavior at higher velocity
(lindane)
Lai and Jurinak [1972} Yolo loam Na, Ca 10x 1073 - 79 x 1073 - evidence of nonequilibrium
20x10°? 26 x 1074 behavior
Gupta and Greenkorn [1974) Otawa sand plus PO, 25x 1072 37 x 1072 LEA valid
5% clay
van Genuchten et al. [1974] Norge loam Organic 1.6 x 1074 — 1.7 x 1073 — evidence of nonequilibrium
herbicide 1.7x10°? 1.3 x 1074 behavior at higher velocity
(picloram)
Hill and Lake [1978] Berea Na, Ca, Mg 3S5x 1074 - 64 x 1073 - LEA valid
sandstone 70 x 1074 20 x 1074
van Beek and Pal [1978] Synthetic ion- Na, Ca 29 x 1074 10 x 1073 LEA valid
exchange resin
James and Rubin [1979] Delhi sand, Ca L7 x 1073 — 30x 107 — evidence of nonequilibrium
Oakley sand 17 x 1072 35 x 1072 . behavior at higher velocity
Persaud and Wierenga [1982] Synthetic Na, Li, Cs 42 x 1074 ~ 22 %1073 — LEA valid
ion-exchange 21 x107? 1.6 x 1074
resin
Reynolds et al. [1982] Fine sand Sr, Cs 1.5x 1072 - 53 %1073 - evidence of nonequilibrium
L1 x 1072 3.6 x 1074 behavior observed for all
. conditions
Nkedi-Kizza et al. [1983) Tone oxisol 34,0, ¥Q 14 x 1074 — $5x 1073~ evidence of nonequilibrium
. : 30x10°% 24 x 1073 behavior at higher velocity

tween mobile and stagnant fluid zones, while in the. third
model all of the pore fluid is mobile and the overall sorption
rate is governed by the rate of reaction at the soil-solution
interfaces. Closed-form analytical solutions to these models
are not easily available. Rather than resorting to numerical
solutions as did Jennings and Kirkner [1984], we utilize a
methodology due to Aris [1958] ta.derive expressions for the
time morments of the solute breakthrough curve. Comparison
of the kinetic and equilibrium moment formulas then provides
a basis for quantifying the validity of LEA. These results illus-
trate that the distinction between equilibrium and kinetics de-
pends significantly upon transport system dynamics (e.g., seep-
age velocity, dispersion coefficients, boundary conditions).

The models to be analyzed in this.work are described in the
next section; these models are well established in the literature
and have been detailed by numerous.investigators. This paper
does not attempt to assess the relative merits of any particular
nonequilibrium model. Our goal is to describe a simple tech-
mque for deriving LEA criteria that can be apphed to any
given kinetic formulation. T

TRANSPORT EQUATIONS

A kinetic-based submodel of sorpt:on requires a mathemat-
ical description of the microscopic processes that transport the
dissolved species to and from the surface where sorption
occurs. As was explained by Rubin [1983], such a description
is typically based upon a phenomenologically oriented formu-
lation that links macroscopic and microscopic quantities; one
popular and successful formulation assumes the reacting inter-
faces are within a porous “pellet,” aggregate, or particle.
Weber [1972), Vermeulen et al. [1973), Helfferich [1962), and
others have conceptually described the important microscopic
rate mechanisms. Based upon this approach, the sorption sub-
model involves a diffusion equation describing the microscop-
ic concentration profile within the sorbent particle along with
an adsorption rate expression and an equation linking the
microscopic concentration at the particle boundary to the
magcroscopic aqueous concentration. The sorbent particle ge-

ometry is most commonly assumed to be spherical. This type
of formulation has long been used with great success in the
chemical process industry and in the ficld of wastewater treat-
ment [Vermeulen et al., 1973; Weber, 1972).

As was rcviewed by van Genuchten and Cleary [1979] and
Rao and Jessup [1983], most models of nonequilibrium ad-
sorption of solutes during flow through soils and aquifers have
been based upon assuming that only one of the microscopic
mechanisms is rate limiting. These models are usually grouped
into two classes: (1) physical nonequilibrium models and (2)
chemical nonequilibrium models. In the first group the overall
sorption rate is controlled by the rate at which the solute is
transported to and from the reacting soil surfaces. In the
sccond group the time dependence of the microscopic trans-
port steps is neglected and the overall sorption rate is equal to
the rate of reaction at the soil-solution interfaces.

Physical Nonequilibrium

In this group of models the fluid inside the porous aggre-
gate is assumed stagnant, and thus the total liquid phase is
partitioned into mobile (interaggregate) and immobile (in-
traaggregate} zones. Rao and Jessup [1983), van Genuchten
and Cleary [1979], Rao et al. [1980q, b], artd others in the sail
science field have presented the conceptual foundations of
these models. These investigators [see also van Genuchten et
al, 1984; van Genuchten, 1985; Nkedi-Kizza et al., 1982] give
the following governing transport equation for the case where
a certain fraction of the sorption sites can be in contact with
the mobile region and where equilibrium sorption in both
regions is governed by a linear isotherm:

-aa +0.R,, = ooa =_gp%n

uua az -_a; (l)

0.R
where the subscripts m and im refer to parameters for the
mobile and immobile regions, respectively, .c is the aqueous
species concentration, 8 is porosity, R is the retardation factor,
D is the hydrodynamic dispersion coefficient, v is the seepage
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velocity, x is distance, and ¢ is time.\"m/sphcrical aggregate
geometry,

= 55 f c(x, r, O)r? dr Q)
o

where ¢, is the local aqueous phase concentration inside the
aggregate, r is the radial coordinate, and a is the aggregate
radius. Continuity of solute concentration at the aggregate
boundary is assumed,

X, t) =c(x, a, 1) 3

Fick’s Law along with the assumption of linear equilibrium
sorption gives the mass balance equation inside the sphere as

de, 1 4 de,

Rt =Pz (’ ar) @
where D, is an effective molecular diffusion coefficient within
the aggregates.

Equations (1) through (4) constitute one of the basic trans-
port models to be analyzed in this paper; henceforth these
equations will be referred to as the diffusion physical none-
quilbrium model. It will be more convenient to consider the
dimensionless form of (1) through (4). The following dimen-
sionless variables are defined [see van Genuchten et al., 1984;
van Genuchten, 1985]:

D

T-1% ®
X=7 ©
P=% ™
(= ®
1= o
- o

where T is a dimensionless time equivalent to the number of
pore volumes leached through a soil column of length L, P is
the Peclet number, 8 = 0, + 0,, is the total porosity, and R is
the total retardation factor defined by 6R = 6,R, + 0, R
Note that R can also be defined in the standard fashion as
R =1 + pk, /6, where p is the total bulk density of the porous
medium, and k, is the distribution coeflicient. Given the above
definitions, (1) through (4) becomes

aC dc tm

BRoT+U PR =33%7 ~ox (an
1
X, T)=13 J; cX, & T d¢ (12)
X, )= (X, 1, T) (13)
de, 1 ¢/,
“_ﬁ)RE'F {155(5 ac) (14)

For simplicity, the subscript m will be dropped from c,
throughout the rest of this paper.
Rao and Jessup [1985] note that y is a dimensionless rate
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parameter and Mmidcred to be a nonequilibrium
index; for “large enough” y, the diffusion physical nonequili-
brium model reduces to

o 1 % dc
Ror=Pax: 2x (13

which is the familiar form of the solute transport equation
when LEA is valid. Later in this paper it is shown that the
applicability of (15) depends upon other parameters in addi-
tion to y.

In order to avoid geometrical specification of the stagnant
region and to simplify the mathematical formulation, several
investigators have proposed approximate first-order type rate
equations to account for mass exchange between mobile and
immobile zones [Coats and Smith, 1964; Baker, 1977; van Ge-
nuchten and Wierenga, 1976]. In this approach, (1) is solved
along with

(16)

where « is an empirical mass transfer coefficient that depends
in some way upon aggregate geometry and the diffusion coef-
ficient. Rao et al. [1980a) and van Genuchten [1985] have
derived expressions for « for certain idealized aggregate
shapes.

Equations (1) and (16) constitute the second of the basic
transport models to be analyzed in this work; these equations
will be referred to as the first-order physical nonequilibrium
model. The dimensionless form of (16) is

0Cine
(1-pR T e =€) (1n
where @ = aLf(v,) is 2 dimensionless mass transfer parame-
ter. Hence (11) and (17) constitute the dimensionless form of
the first-order physical nonequilbrium model. For large w, the
first-order model approaches the LEA model given by (15).

Chemical Nonequilibrium
In this class of models, no distinction is made between
mobile and stagnant liquid regions. Thus the governing solute
transport equation is
as dic dc
FAIE AL SLE
where s is the sorbed species concentration, p is the bulk
density of the porous medium, and other parameters are as
defined previously. We assume here that the overall sorption
rate (9s/0t) can be described as a first-order linear kinetic ex-
pression

(18)

Js

19
where k, and k, are the forward and reverse rate cocflicients
for the heterogencous sorption reaction. Jennings and Kirkner
[1984] have recently studied a formulation where (19) is re-
placed by a nonlinear, Langmuir-type rate expression. The
dimensionless form of (18) and (19) is

dc pds 1 e

arTear " PaxT " ax (20
& = F(k s) (21)
T «
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g (? The nth central moment is given as
; | (T - wrax. Tdr
x=0 X ", = SRR (25)

Schematic representation of solute breakthrough resulting
from a pulse input of mass.

Fig. 1.

where X and P are given by (6)and (7). respectively. T i1s given
by (5) which reduces to T =t L. since 8, =t k; =k, k, is
the distribution {i.e.. equilibrium) coefficient: and F is a dimen-
sionless rate parameter defined by

F=kLv {22)
Equations (20) and (21} constitute the hnal transport model we
will study in this paper: we will refer to these equations as the
linear chemical nonequilibrium model.

Nkedi-Kizza et ul. [1984] describe a two-site chemical none-
quilibrium model where sorption on “type 17 sites is governed
by linear equilibrium and sorption on “type 2" sites is gov-
erned by a first-order rate expression analogous to (19). The
two-site model 15 not explicitly analvzed in this work; how-
ever, Nhedi-Kizza et al. [1984] have shown that the two-site
model is mathematically equivalent to the first-order physical
nonequilibrium model given by (1) and (1 7).

TIME MOMENT ANALYSIS

Although the previously presented models can be solved
analvtically, the solutions are frequently in the form of inte-
grals that are relatively difficult to evaluate [e.g. Rasmuson
and Neretnieks. 1980: Rosen. 1952]. Despite these analytical
problems. it is relatively easy to use a method originally de-
scribed by Aris [1958] to derive expressions for the time mo-
ments of the concentration breakthrough curves that would
result from any arbitrary pulselike input of mass. Time mo-
ments provide useful and physically meaningful descriptors of
the concentration breakthrough: for example. the first three
time moments would describe the mean breakthrough time,
the degree of spreading. and the degree of asymmetry of the
concentration response curve. respectively. Time moment
analysis is a standard chemical engineering procedure to de-
termine dispersive and rate parameters for packed bed reac-
tors [Turner. 1972:. Suzuki und Smith, 1971; Fahim and
Wakao. 1982]. Here we use the moment analysis as a tool to
characterize the differences between nonequilibrium and equi-
librium models of sorbing solute transport.

As is shown schematically in Figure L. if a soil column is
subjected at its influent end to a pulselike input of mass, then
the distribution of concentration versus time at any down-
stream location will also be pulselike. Such a concentration
distribution can be described by its absolute moments, defined
as

n
m, =
+0

T'a X, T dT (23)
where X and T are the dimensionless distance and dimension-
less time. respectively. The amount of mass passing any lo-
cation X 1s proportional to m,: thus the nth normalized abso-
lute moment can be defined as

| dX. T dT
<O

Although the moments can be formally computed if the solu-
tion ¢(X. Tyis known, Aris [1938] has shown that under very
general conditions '

. d"
m, =(—1) lim |: - & X, p]] (26)
p=o LdP
where (X p) is the Laplace transform of ¢t X, T). that is,
aX.pr=| e PTaX. TV dT (27)

JU

The power of Aris’ method is that it enables computation of
the moments from the concentration solution in the Laplace
domain. which is often easy to obtain.

Results

The Laplace domain solutions for the previously presented
nonequilibrium models are derived in Appendix A. The solu-
tions assume a semi-infinite domain and a Dirac impulse input
of mass at the soil column inlet: the initial and boundary
conditions are thus

AX. T = 0)' =5t X. T=0=¢cX.T=0)=0 (28)
AX > x. =X+ x. N=¢ (X—=x. TV =0 (29)
PR ) = AKT) (30)

(( PiX/livao

In (30). (T} is the Dirac Delta function and 4 = M (6L).
where M is the mass input per unit column cross-sectional
area. since. by definition.

- 0

M= J (rl),,,c _pv, f—")! dt
0 (X/ x=0

For the linear chemical nonequilibrium model. 8,, in (31} is
equivalent to 0.

Several investigators have demonstrated that the solutions
derived in Appendix A do not directly apply to solute con-
centrations measured in the effluent of a column leaching ex-
periment [Brigham, 1974; Kreft and Zuber, 1978; van Genuch-
ten et al., 1984; Purker and van Genuchten, 1984]). These stud-
ies have shown that a proper description is obtained by apply-
ing a mass balance condition at the end of the soil column
X=0n

3D

32)

The variable c, is usually denoted the flowing or flux con-
centration, whereas ¢ is termed the in situ or resident con-
centration. The flux concentration can be defined at any lo-
cation in the soil column and can be interpreted as the ratio of
the solute mass flux to the fluid volume flux (specific dis-
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TABLE 2 Time Moment Formulas for Equilibrium and Nonequilibrium Models, Dirac Input
Physical Nonequilibrium Chemical
Locui Nonegquilibrium.
Moment  Equilibrium Diffusion First Order Linear
a, YR XR XR XR
2XNR° 2YRT 2 Xl - fFR? JXRT 22X~ p°R° JXR® 2NiIR- 1)
P T , P o P T F
[2YRY I2XRY 4N - BFRY 12XRY O 12XiL - PR OIZYRY O IXXRIR - D
P* pr s P p: Pe) p: PF
3 X - H'R? 6Xi11 — )°R" 6XIR - 1)
- — + -
105 3" F-

chargel. Applyving (32) to the diffusion physical nonequilibrium
solution 1A 13} gives

xXp;, /4 Ve
CAX. pt = Aexp {’T" 1 —( 1 - P {fRp + G(pl)) ):I

s

(33

where G(p) 1s defined by (A12). Likewise. the Laplace trans-
form of the flux concentration for the tirst-order physical non-
equilibrium model (A18)1s

- XP 4 3
CJIX.pr= Atexp -;'( 1 —( ] -——f;i{pr:»H(p))
(REY

where Hip) i1s defined by (A17) and for the linear chemical
nonequilibrium model (A19) s
F(R— 1y \)‘ ')
P F /), J

(35)

C,,(.\'.p!::lexp[‘—\;—P(]_(1-%(1

The subscript ¢ will be dropped. since only flux concentrations
are considered in the remainder of this paper. In the limit. as
the appropriate rate parameters (;. . F) get large. the none-

quilibrium solutions approach
1 2%
) )] (36)

which is the Laplace domain solution of the LEA model (15).
The Laplace domain solutions. {33) through (36). can be
differentiated according to (26) in order to compute the time
moments of the concentration breakthrough curve at any ar-
bitrary location X. The details of this differentiation and limit-
ing procedure are straightforward but become tedious for the
higher order moments: these details are not reported here.
The final expressions for the first three central moments are
given 1n Table 2. These results tend to corroborate the find-
ings of previous theoretical studies and laboratory column
experiments: namely. that sorption rate limitations are gener-
allv manifested by an enhanced spreading and tailing tie.
increased second and third central moment) of solute break-
through curves. The expressions in Table 2 demonstrate that
at least for the models postulated in this study. nonequili-
brium does not influence the mean breakthrough time of the
solute pulse Table 2 also shows a striking similarity among
the time moment expressions for the various nonequilibrium
models: this suggests that the general shape of solute break-

cdX.pr=dexp [-¥ (’] - (/11 + 4—}5—

through curves is not very sensitive to the form of the kinetic
submodel.

The expressions in Table 2 provide a basis for quantifving
the effects of rate limitations and evaluating the validity of
LEA. since nonequilibrium and equilibrium breakthrough
curves will be essentially indistinguishable from one another
when their respective moments are approximately equal. As is
expected from Table 2 and the mathematical formulation of
the kinetic submodels. the nonequilibrium breakthrough
curves approach the equilibrium breakthrough curves when
the dimensionless rate parameter increases. This 1s demon-
strated for the linear chemical nonequilibrium model in Figure
2 which compares the equilibrium and nonequilibrium break-
through curves at X' =1 for the case with P =10and R = 4.
The equilibrium breakthrough curve is given by the inverse of
(36) which is reported by DeSmedt and Wierenga [1979] and
Kreft and Zuber [1978] as

. “PR VT f_PR; T\
CX. Ty={——= Xexps——{(N-— 137
' (4::T" SPTIT ( R)j :
where Ct.X. T)is a relative concentration defined as
< ¢
(C=—= {38
A

M (oL

The quantits M (L) 1s the dissolved solute concentration that
would be attained if the total mass input were uniformly dis-
tributed throughout the soil column pore volume: the defini-
tion {38) 15 commonly utilized 1n chemical engineering studies
tsee. for example. Levenspicl and Bischoff [1963]). In the stud-
ies of DeSmedt und Wierenya {1979] and van Genuchten
[1981]. 135115 imverted analytically. and the result is presented
as an integral involving modified Bessel functions. However.
the analvtical inverse was found to vield anomalous results for
large values of F: consequently. the nonequilibrium results in
Figure 2 were calculated by numerically inverting the Laplace
transform (35). To enhance the reliability of the calculated
results. two different inversion algorithms were utilized. one
due to Durbin [1974]. the other due 10 Stehfest [1970]. The
latter algorithm has been recently applied to solute transport
problems by Moench und Ogyara [1981]. For the curves pre-
sented in this paper the two methods gave results that gener-
ally agreed to within a few percent. The curves displayed in
Figure 2 clearly illustrate that LEA becomes more applicable
as F increases for fixed values of P and R. For most practical
purposes we could say that LEA is certainly valid when
F > 100 for the conditions of Figure 2.

The differences among the curves in Figure 2 are logically
reflected in the computed values for the moments: the values
for u, and u, as computed from the appropriate formulas of
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Comparison of equilibrium and linear chemical nonequilibrium breakthrough curves at X =1 for P = 10 and

R = 4 Mass input at X = O is a Dirac impulse.

Table 2 are also given in Figure 2. Defining &,, the fractional
change in the nth central moment, as
#X ~ "

£ =
" Hat

(39

where the superscripts K and E refer to the kinetic (i.e.. none-
quifibrium) and equilibrium models, respectively, we can com-
pute ¢, = 0.02 and ¢, = 0.02 for the F = 100 breakthrough
and ¢, = 0.19 and ¢, = 0.21 for the F = 10 breakthrough. In
the context of the time moment analysis, the question of LEA
validity gives rise to two fundamental issues: first, how does ¢,
depend upon system parameters, and second, how large can ¢,
be before the solute breakthrough exhibits severe deviations
from local equilibrium. The latter issue is beyond the scope of
this paper; however, it could possibly be addressed by inter-
preting the solute breakthrough curve as a probability density
function and subsequently applying one of the well-known
series expansions of an arbitrary density function in terms of
its moments [see Kendall and Stuart, 1977, chapter 6]. These
series expansions have been applied to solute transport prob-
lems by numerous investigators, including Gelhar et al. [1979],
Kucera [1965), Wiedemann et al. [1978], and Razavi et al.
[1978].

The former issue, the effect of system parameters upon &,,
can be easily addressed with the time moment formulas of
Table 2. Substituting the appropriate expression from Table 2
into (39) yields for the linear chemical nonequilibrium model

PR-1
F R?

s PER=D( P
" F R F2R
The corresponding results for the diffusion physical nonequili-
brium model are

{40)

£y =

@

(1-p? 42

g, =

~ |

1
v 15

_P1 s PO1=p
6’—;-15“ 5)(1*'? T ) (43)
and for the first-order physical nonequilibrium model are
P
g=—(1-p? {44
w
P Pl -
ey =—{(l —B)‘(l +-(————Q) (45)
w w 2

Since solute breakthrough will exhibit greater deviations from
equilibrium conditions as ¢, increases, the preceding equations
describe the influence of system parameters upon LEA validi-
ty. The results (40)45) are consistent with the previously
noted fact that equilibrium is approached as the dimensionless
rate (F, 7, w) increases for fixed values of P, R and f. however,
these equations indicate that the approach to equilibrium also
depends upon the porous medium’s dispersive (P} and equilib-
rium sorptive (R. ff) properties. As an example. the results
specify the crucial role played by the ratio P/F for the linear

I T TS NS S S H

0 5 0
P/F

Dependence of &, upon P, F, and R for the linear chemical
nonequilibrium model and a Dirac input.

Fig. 3.
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Comparnson of equilibrium and linear chemical nonequilibrium breakthrough curves at X =1 for P = 10 and

R = 20. Mass input at X = 0 is a Dirac impulse.

chemical nonequilibrium model: for fixed R values P F is an
index of nonequilibrium behavior. This is demonstrated in
Figure 3. which is a plot of (40). The key point is that the
question of whether or not LEA 1s valid does not have a
simple answer: the answer depends upon all system parame-
ters as well as upon the assumed form of the nonequilibrium
submodel.

The hnear chemical nonequilibrium model can be used to
illustrate some of the above-mentioned parameter influences.
Figure 4 shows the equilibrium and nonequilibrium break-
through at X =1 for P =10. F = 10. and R = 20: these re-
sults were obtained with the previously discussed numerical
Laplace transform inverters. Comparison with the F =10
curve in Figure 2 dramatically shows the influence of increas-

=

ing the retardation factor: increasing R from 4 to 20 decreases
&, from 0.19 to approximately 0.05 (see also Figure 3). The
deviation between the equilibrium and F = 10 curves in
Figure 4 is thus significantly smaller than in Figure 2.

Figure § shows the breakthrough results for P = 100 and
R = 4. the nonequilibrium curves lor F = 1000 and F = 100
have the same P F ratios as the F = 100 and F = 10 curves in
Figure 2 where P = 10. Hence the ¢, and ¢, values for
F = 1000 in Figure S are identical to those for F = 100 in
Figure 2. A similar equality applies between F = 100 in Figure
S and F = 10 in Figure 2. Comparing the F = 100 curves in
Figures 2 and 5 demonstrates that the linear chemical none-
quilibrium model approaches local equilibrium as P decreases,
for fixed F and R.

° P=100 R=4
H2 My
- EQUIL 0.32 0.0768
o] A F=1000 0.326 0.0783
a 0O F=100 0.38 0.093
w
OP_
o
:)o
m
r
»
—f
(S
< o
Mmw
(2]
o
z
5o
~w
(=]
o] /
@
’o T T T T ]
2. 00 2.50 3. 00 3.50 4 00 450 5 00 s 50 6. 00 6 50
T {DIMENSIONLESS TIME)

Comparison of equilibrium and linear chemical nonequilibrium breakthrough curves at X' = | for P = 100 and

R =4 Mass input at X = 015 a Dirac Impulse.
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Figure 5 also illustrates that the solute breakthrough curves
become more symmetrical as P increases. This feature is con-
sistent with the moment formulas in Table 2 which show that
an increase in P will generally cause u, {skewness) to diminish
with respect to u, (variancel. It is possible to demonstrate
theoretically that the LEA breakthrough curve described by
{37y approaches a Gaussian distribution with mean XR and
variance 2XR" P as P increases (see, for example, Turner
[1972] and Suury [1980]1. For dimensionless rate values that
are not “too small” the nonequilibrium breakthrough will also
be approximately Gaussian. This suggests the possibility of
using analytical propertics of the normal probability function
to develop quantitative criteria for LEA validity. As is stated
above, the solute breakthrough curves for large P values can
be approximated as

. (46}

. | —{T — XR¥
CX. T >~ TS exp

tomu,) - TR

where 1, is given in Table 2. The maximum solute con-

centration will thus occur at a time T = XR and be equal to

12150 ' 2 In analogy to (39), the fractional change in the

maximum solute concentration can be defined as

. Cm-xE - Cmux ".‘E L
o = B = L= (0

max

47

where the superscripts E and K refer to the equilibrium and
kinetic models. respectively. Equation (47) can be combined

with (39) to yield
! 1 12
Emax = ! —(l +€2)

where &; is given by (400, (42), or (44). The result (48) repre-
sents one way to quantitatively describe the influence of pa-
rameter values upon deviations from local equilibrium. As an
example. for the linear chemical nonequilibrium model (48}
can be used to answer the question, How small can F be
before ¢,,, becomes greater than some specified tolerance?
The validity of (48) can be tested with the results in Figure §
despite the fact that the curves displayed there are not precise-
ly Gaussian. For F =100, P = 100, and R = 4, ¢; = 0.19 (see
Figure 3); hence (48) predicts ¢,,,, = 0.083. The numerical data
used to plot Figure 5 reveals C,,, £ = 0.72 and C,,,* ~ 0.66
yielding a computed ¢,,, = 0.083. which is identical to the
value predicted by (48).

The normal probability distribution is completely specified
by two parameters, the mean and the variance. Therefore if
the nonequilibrium breakthrough curves shown in Figure 5
are approximately Gaussian, then they can be described by an
advection-dispersion type of equation. That is. an additional
set of kinetic submode] equations is not required. This point is
discussed further in the following section.

48)

An Effective Dispersion Approach

The models described in this paper consist of an advection-
dispersion equation for transport along the soil column plus
an additional equation explicitly accounting for solute transfer
between the aqueous and sorbed states. However, Passioura
{1971}, Baker [1977]. and others studying the problem of
nonreactive solute movement through media containing dead-
end pores have shown theoretically that the additional kinetic
equation is not required to described breakthrough from fong
soil columns. provided that the dispersion coeflicient is modi-
fied to reflect the source-sink effects of mass transfer into and

e BB et o 19800 a0 DS s
4 y applied this effective dispersion
coefficient approach to tracer movement in saturated and un.
saturated laboratory columns. Pickens e al. {1981] compared
field breakthrough curves for nonreactive and reactive solutes
and observed that nonequilibrium effects could be modeled
with a modified dispersion coeflicient. These observations are
consistent with Figure 5 which demonstrates that the solute
breakthrough curves become Gaussian as P increases.

The time moment analysis explicitly shows the effect of pa-
rameters upon the variance of the solute breakthrough curve.
Therefore it 1s a simple task to utilize the expressions in Table
2 10 derive effective dispersion coefficients. Modifying the re-
sults of Aris [1958] and Turner {1972] for the dimensionless
variable definitions used in this paper. we can show that

Yery

t
3 SR . PR
r 4 ()

L _Ddf_l(i CERTEN7AY
Pe/f- L _: \Um uI’ v

where the moments are those listed in Table 2. (Note that

(49)

(50)

" =0, for the linear chemical nonequilibrium model). Thus

solute transport through long soil columns (large P) is gov-

erned by an advection-dispersion equation with an effective

velocity given by (49) and an effective dispersion coelflicient

given by (501 Table 2 indicates that the equilibrium and none-

quilibrium models have the same v, .
v 0

s =% —t;! (5D

whereas the equilibrium model has

D¢
JIERD (52)
the diffusion physical nonequilibrium model has
Da, (1 = Biard,)?
=R T T1sD,R00,, (33
the first-order physical nonequilibrium model has
Do, (I =pHo.?
TR0 Rad (54)
and the linear chemical nonequilibrium model has
D VVIR=D 1
D, ,==+{= - 55
eff R + (R) R f {35)

Analytical solutions to the advection-dispersion equation
with the above noted effective velocity and dispersion coef-
ficients have been compared to linear chemical nonequili-
brium breakthrough curves computed by numerical inversion
of (35). The two solutions agree very closely over a wide range
of F values. provided P is large enough: in this work,
P > 1000 proved sufficient. This P value is in the same range
as that reported by Baker [1977) and DeSmedt and Wierenga
[1984].

Non-Dirac Inputs

As previously noted. LEA is generally valid when the rate of
change of solute mass due to the microscopic sorption pro-
cesses is much faster than that due to the bulk flow process.
Therefore LEA validity should depend upon the time vari-
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Companison of equilibrium and linear chemical nonequilibrium breakthrough curves at X = 1 for P = 100 and

R = 4 Massinput at X = 0 is « symmetrical triangular function with base. T*. equal 1o § and height equal 1o 2 T*.

ation of the mass input function as well as the relative mag-
nitude of the seepage velocity. dispersion coefficient. and sorp-
tion rate parameters. The time moment analysis can be easily
extended to cases of non-Dirac pulse inputs of mass. For this
case. the boundary condition (30 becomes

= AT (56)

—
|
~<i—
B

i |

As In the Dirac input situation. 4 = M (6L). where M is the
total mass input per unit column cross-sectional area. Accord-
ing 1o (56). the total mass is input over time according to the
function f(T). In order for the solute breakthrough curve to be
pulselike. f{T) must also have the general form of a pulse: that
1s. {1T) must rise from zero and return to zero after some finite
ume (see Figure 1). Mass balance arguments also show that
11Ty must satisfy

J HT)YdT =1 (57)
O

The Dirac input condition (30) can thus be viewed as a special
case of the gencral pulse input condition (56).

Expressions for the time moments of the solute break-
through curves resulting from a mass input described by (56)
can easily be derived from the expressions previously defined
in Table 2 for a Dirac input. It is shown in Appendix B that
the time moments of solute breakthrough for the two different
inputs are related by

(58)
(59)

, o
=t e

I‘n, = #n" + ¥, n=213

where the f and o superscripts refer to the general pulse input
and the Dirac input. respectively: v, is the first absolute
moment (mean) of the input function f(T): and v, is the nth
central moment of /(T} (see equations {23125). Therefore the
genera) pulse moments are given by the expressions in Table 2
plus the appropriate moment of the input function.

In order to examine the implications of non-Dirac inputs.

we will take f(T) to be a symmetrical triangular function with
base width equal to T*. This simple functional form has mean
(ry) equal to T* 2. variance (v,) equal to T*° 24, and skew-
ness {v,) equal to zero. Hence the values of u, and u, for both
the equilibrium and nonequilibrium models are increased by
these amounts: that is. the equilibrium breakthrough curve
has

JXR? T*?

+ 60)
P 24 (

iy =

and the linear chemical nonequilibrium breakthrough curve
has

_XR® XIR-1) T "
H2="p F T h

Thus spreading of the breakthrough curve will reflect the ef-
fects of the non-Dirac input function as well as the parameters
P. R. and F. As before. we can use differences between the
equilibrium and nonequilibrium moments as an index of LEA
validity. By using definition (39), we find the linear chemical
nonequilibrium model has

_P/R-1 | PT‘Z)'l
7F ( R: )( T BXRT,

Comparing (62} with the result (40) for the Dirac input. we
conclude that deviations from local equilibrium behavior
should become less significant as the solute mass is input
gradually over longer and longer time intervals. As is demon-
strated in (62). the importance of a nonzero T* depends upon
the magnitude of P. X. and R.

The effects of non-Dirac mass inputs can also be visualized
by examining solute breakthrough curves resulting from the
symmetrical triangular input. These breakthrough curves can
be computed with the previously mentioned numerical La-
place transform inversion algorithms. The Laplace domain

(62)




N

solution for the linear chemical nonequilibrium model is (see
Appendix B)

AX.p) = Af(p

xp( p/  FR- n)‘ ‘ 2\}
.exp[T(\l—(l+P(l+ p*r”/) (63)

/

where f{p) is the Laplace transform of the triangular input
function. With the aid »of Abramowitz and Stequn [1972. p.
1025]. we can calculate fip) as

4 | T‘p) B
= —— — tanh | —e Tepy
fip) i an ( ry e

The inverse of (63) is plotted in Figure 6 as relative con-
centration versus T at X =l for T* =35 P = 100. and R = 4.
The equilibrium breakthrough curve was computed by using
very large F values in (63). Comparison of Figures 6 and $§
show that deviations from local equilibrium for the Dirac
input are much more pronounced than those for the triangu-
lar input. This agrees with (62) which shows that ¢, for the
F = 100 curve decreases from 0.19 for the Dirac input (Figure
5) to 0.045 for the triangular input (Figure 6).

(64)

Discussion AND CONCLUSIONS

It is generally recognized that LEA is valid when the rate of
change of solute mass due to the microscopic sorption pro-
cesses is “much faster™ than that due to the bulk flow pro-
cesses. This study shows that this qualitative statement can be
quantified for any given kinetic formulation. By analyzing ex-
pressions for the time moments of sorbing solute break-
through curves, we derived criteria for LEA validity in one-
dimensional, steady flow through homogeneous soils. These
criteria are given by (40) through {45). Even for the simple
models postulated here, the issue of LEA validity depends
upon a complex interplay between macroscopic transport
properties (seepage velocity., hydrodynamic dispersion. time
variation of mass input) and microscopic sorption properties
(e.g.. mass transfer coeflicient, aggregate size, distribution coef-
ficient). The results derived in this paper depend additionally
upon the assumed nonequilibrium submodel. Also, as was
noted by Rubin [1983], the distinction between equilibrium
and kinetics is pragmatic rather than fundamental. Figures 2
through S5 demonstrate that kinetic breakthrough curves
smoothly approach the LEA curve as appropriate parameters
change in the proper fashion: the point at which LEA is
deemed “valid™ depends upon some subjective assessment of
permissible error. This allowable level of error is likely to be
larger in a practical field problem than in a theoretical labora-
tory experiment.

The time moment methodology utilized in this study is a
powerful tool for characterizing the behavior of mathematical
models of sorbing solute transport. Because analytical solu-
tion of the coupled differential equations that typically com-
prise such models is not necessary, the method can be readily
applied to a wide variety of nonequilibrium formulations. For
example, Kucera [1965] has used the time moment method to
analyze a very general model accounting for film diffusion,
internal diffusion within a porous spherical aggregate, and
kinetically controlled adsorption onto the internal aggregate
surfaces. However, the time moment analysis is restricted to
linear problems, since it relies upon the Laplace transform of
the model solution.

Although we have only analyzed one-dimensional. steady

ALITY OF Locat EQUILIBRILM ASSUMPTION N

N u

?;)r:e t&r{::ﬁl:i;;oir;oiezc:pus :onl colu'mns.‘ our results have
el e 1plic {ons lor practical field problems. For
ple ¢ a kinetic sorption model may be necessary for
nearly mstgntaneous contaminant inputs (é.gA. a spill), LE-\
il Mhrs o s o 8 T, i
. 3 nput more gradually
over time. ’
In conclusion. it should be noted that the LEA criteria
developed in this study are strongly dependent upon the form
of the hypothesized kinetic model. In order for the derived
criteria to be practically useful. the conceptual model of the
nonequilibrium processes must have a sound scientific basis so
that the sorption parameters are physically meaningful and
mcasurable.

APPENDIX A: TRANSPORT MODEL SOLUTIONS
IN THE LapLace DoMmalN

Diftusion Physical Nonequilibrium

The basic ditfusion physical nonequilibrium model is given
by 111) through {14). which are subject to the initial and
boundary conditions (28) through (30). The definition of the
Laplace transform given by {27) can be used in (11), (12), and
(14) to give

1 d* _  dé . ~

Fm( —K—[lkpt—-(l—[f)Rpc,_—O (A1)

1
G =13 J ¢, d: (A2)

0

1 d de,
| —BRpé, =7 = —1| 3 a) A

{ ’ PCy i ::1 d: (5 d:/ t 3)

respectively. The boundary conditions {29) and (30) will trans-
form to

aX-x=.p=0 (A4)
. lde
(-5l
and condition (13) will transform to
AX.py=ciX. I =1 p} (A6}

Equation (A3) can be combined with (AJ) to yield an ex-
pression for ¢,,, which when substituted into (A1} gives

U d de 3
1L & prpe - 3-,-(‘“') =0  (AD)

Pdx? dx d:

=1

Next, the aggregate mass balance equation {A3) can be written
as

(A8)

where z = 3(py)! ? and 7" = 7.[R(] — §)]. Equation (A8) pos-
sesses solutions in the form of modified spherical Bessel func-
tions [Abramowitz and Stegun, 1972]. The solution that is
finite at 7 = 0, when combined with the condition (A6) will
yield

dax, p)

NCICREGH

clX, &,




EYRY \

() w

where /, , is the modified spherical Bessel function of the first
kind. From the solution (A9) we can calculate

12 1.2
cosh ,(E) sinh ;(B)
:(B)l 2

dc, X, p)

o ((2)7)

where we have used the identity

EANE __sinh
(:) I,;‘-"—_ -

2 P
&=
1

(A10)

When (A10) is evaluated at = 1 and substituted into (A7) the

result is
| d%¢ dcé
—_— = R =
Pax: Ix [BRp + Gtp)]c =0 (A1)
where
/'p 12 p 12
Glp) = 1,(—) coth (—) -1 (A12)

The solution of (A1) satisfying the boundary conditions (A4)
and (A5} is

24

1 + {1 + % [BRp + Glpp]}I :

xp 4 12
exp[ (I—(1+F[ﬂRp+G(P)]) )] (Al3)

First-Order Physical Nonequilibrium

aX.p)=

This model consists of (11) and (17) subject to the con-
ditions (28) through (30). Taking the Laplace transform of (11)
and (17) yields

S — o= BRp¢ —(1 — fIRpE,, =0 (A14)

(1 = PIRPG,, = A — ¢,,) (A15)

respectively. When (A15) is substituted into (A14), the result is

1 d*¢ dé
FW—E-lBRp + Hipnc =0 (A16)
where
1 — AR
Hip) = PiRwop (A17)

(1 -PRp+w

The solution of (A16) subject to boundary conditions (A4) and
{AShis

24

4
1 + [l -+ P 1fRp + H(pn]

al X. ]7, = ]
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exp| (] - (1 +
Linear Chemical Nonequilibrium

This model is given by (20} and (21). Proceeding as in the
previous analyses, the appropriate Laplace domain solution is
found to be

4 N1
= (BRp + H(pn) )] (A18)

24

[ 4p [ F(R—l)\)12
L+t +—(1+—
P( p+F

4
-exp[iﬁ(l—(l-o——ﬁp(l

ax.py=

_ 12
+ FR-1D “)) )] (A19)
p+ F

APPENDIX B: RELATION BETWEEN TIME MOMENTS FOR
DirRAC INPUT AND GENERAL PULSE INPUT

From Appendix A, the general Laplace-domain solution to
the nonequilibrium models can be expressed in the form

&X, p) = Be*o

where B is an arbitrary constant fixed by the boundary con-
dition at X = 0. For a Dirac input, boundary condition (30)
for ¢ transforms to (A5) for é. thus giving B = 41 — Ai(p), P].
Equation (B1) can thus be written

(B1)

o A}( )euplx (B2)
1 — “n

P

where the superscript é denotes the Diract input solution.
For a general pulse input, the Laplace transform of bound-
ary condition (56) is

=Af(p) (B3)

X=0

where f(p) is the Laplace transform of the input function f(T).
When (B3) is used to specify the constant in (B1), the result is

o = Af.U’(L) P = F(p)e?

1 - =

P

(B4)

where the superscript f/ denotes the general pulse input solu-
tion.

The Laplace-domain solutions are related to the solute
breakthrough time moments by (26). Therefore

d*é
mJS =(=1" lim[ I—J
p—0 dpn

The relation between ¢/ and & given by (B4) and the general
form of the chain rule given by Abramowitz and Stegun [1972,

p. 12] will yield
dn =/ n i - du 2 dr =5 dn(:\!
T =Tay (L 2T
dp" i dp"~" dp’ dp
{B6)

(BS)

"

where (?) is the binomial coefficient defined as n!/[r!(n — r)!].
Substitution of {B6) into (B4) will yield after some algebraic



. LN
N

manipulation

’

mﬂ[ = z ’ n‘)rl‘r’""’

r=0 r,

{B7)

where r, denotes the nth absolute moment of the input func-

tion f(T),
Uy = f TAT)dT = (—1)" lim [d—{]
0

(B8)
p—0 dp

Because of the mass balance condition (57) on f(T). my/ =
mg®. Dividing (B7) by m, will give the following relationship
between the normalized moments for the general pulse and
Dirac input solutions:

~ /n
=3 ( )v. TR
=0 r

Equation (B9) can be used in conjunction with the well-known
relationship between absolute and central moments {Kendall
and Stuart, 1977, p. 58]

n n . .
Hp = Z (r)“n—r(—“l )

r=0

(BS)

to give the following useful expressions for the first three mo-
ments:

W=+, {B10}
prl =t vy (B1])
wyl =’ + vy (B12)

where v, is the nth central moment of f(T).
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