

1

PBMR Core Design

Presentation to the US DOE 7 August 2003 Johan Slabber

400 MWt Core Analysis

- Neutronics
- Thermohydraulics
- Source Term Analyses

General Engineering Specifications

Description	Units	Values
Design parameters		
Thermal power rating	MW	400
Fuelling regime		Multiple pass (6 x average)
Fuel		Low Enriched Uranium (LEU)
Assumed He bypass flow	%	19.4
Number of fuelling points		3
Primary coolant temperatures (in/out)	°C	482.4/900
Primary system pressure	kPa	8 952
Pebble bed packing fraction	-	0.61

Specification

P B M R

Description	Units	Value
Core thermal power	MWt	400
Maximum fuel temperature under normal operating	°C	1 130
conditions (bypass flows included)		
Maximum fuel temperature in an LBE (nominal or	°C	1 500
best estimation)		
Load follow capability (Xenon override)	% power	100 – 40 – 100
Maximum power production per pebble	kW	4.5
Reactivity shutdown margin at 100 °C (RSS alone)	%∆k	≥ 1
Number of control rods (upper position)		12
Number of control rods (lower position when inserted)		12
Effective length of control rods (both upper and lower)	m	6.5
Number of RSS positions in centre reflector		8
Uncertainty addition on reactivity demand	%	5%
Uncertainty subtraction on control units worth	%	5%

Neutronics VSOP Geometry Model

RCSS Position: Inserted

Presentation: US DOE - J Slabber

Fuel Specifications

Description	Units	Values
Fuel spheres		
Pebble radius	cm	3
Thickness of fuel free zone	cm	0.5
Density of graphite in matrix/fuel free zone	g/cm ³	1.73
Enrichment of uranium (the result of VSOP	%	9.6
equilibrium calculation)		
Coated particles		
Particle diameter	μm	920
Coated particle density	g/cm ³	10.4
Coating material		C/C/SiC/C
Layer thickness	μm	95/40/35/40
Layer densities	g/cm ³	1.05/1.90/3.18/1.90
Enrichment	%	9.6
Heavy Metal Content	g	9
Design Burn-up	MWd/t	95 000

Isodeltic Temperature Coefficients of Reactivity

Temperature Coefficients at		
Operating Conditions	Unit	Value
Fuel (Doppler coefficient of ²³⁸ U)	∆k/°C	-3.30E-05
Moderator	∆k/°C	-3.36E-05
Central graphite reflector	∆k/°C	1.48E-05
Outer reflectors	∆k/°C	1.76E-05
TOTAL	∆k/°C	-3.42E-05

Reactivity Balance at Cold Conditions (100°C) for RSS Only

	After 4 days
Description	%∆k
Requirement	
Xenon decay	4.31
Operating temperature down to 100 °C	2.79
Uncertainties (5%)	0.36
Total requirement	7.46
Capability	
Eight RSS inserted	9.87
Uncertainties (5%)	-0.53
Total Capability	9.34
Reactivity reserve margin	
(Capability – Requirement)	1.88

P B M R

Reactivity Balance at Cold Conditions (100°C) for RCS Only

	After 4 Days
Description	%∆k
Requirement	
Withdrawal of RCS	1.3
Xenon decay	3.01
Operating temperature down to 100 °C	2.79
Uncertainties (5%)	0.36
Total requirement	7.46
Capability	
12 Top rods inserted	4.62
12 Bottom rods inserted additionally	5.01
One rod removed	
Uncertainties (5%)	-0.48
Total capability	9.15
Reactivity reserve margin	
(Capability – Requirement)	1.69

P B M R

Reactivity Balance at Cold Conditions (100°C) for RCS and RSS Combined

	After 4 days
Description	%∆k
Requirement	
Xenon decay	4.31
Operating temperature down to 100 °C	2.79
Uncertainties (5%)	0.36
Total requirement	7.46
Capability	
12 Top rods inserted	4.62
12 Bottom rods inserted additionally	5.01
Nine RSS inserted	10.78
Uncertainties (5%)	-1.02
Total Capability	19.39
Reactivity reserve margin	
(Capability – Requirement)	11.93

Xe Reactivity Requirement for 100-40-100% Load Following

Neutronics Radial Distribution of Neutron Flux

Fluxes at 326 cm from top of core

Volume Average Neutron Flux in Core

	Units	Value
Average Thermal Flux (< 1.86 eV)	n/cm2.s	7.90E+13
Average Fast Flux (> 0.1 MeV)	(n/cm2.s)	3.26E+13

Fast Flux Fluence (> 0.1 MeV) on Graphite Structures

Description	Units	Value
Fuel spheres	$10^{21}/cm^{2}$	2.65
Maximum upper reflector edge (35 EFPY)	10 ²² /cm ²	0.21
Maximum outer reflector side (35 EFPY)	10 ²² /cm ²	3.85
Maximum inner reflector side (35 EFPY)	10 ²² /cm ²	4.73
Maximum lower reflector edge (35 EFPY)	10 ²² /cm ²	0.53

Thermohydraulics

Presentation: US DOE - J Slabber

Thermohydraulics

Thermohydraulics

Temperature of Fuel, Core Barrel and Reactor Pressure P B M R Vessel for Normal Operation, DLOFC and PLOFC

Maximum Fuel Temperature °C (Operation)	1079
Maximum Fuel Temperature °C (DLOFC)	1534
Maximum Fuel Temperature °C (PLOFC)	1380
Core Barrel °C (Operation)	428
Core Barrel °C (DLOFC)	654
Core Barrel °C (PLOFC)	589
RPV °C (Operation)	280
RPV °C (DLOFC)	506
RPV °C (PLOFC)	452

Operational Source Term Analyses

Expected Metal Release Data

	¹³⁷ Cs	¹³⁴ Cs	^{110m} Ag	⁹⁰ Sr
Release rate (atoms/s)	6.53 x 10 ¹²	1.92 x 10 ¹¹	1.08 x 10 ¹¹	1.83 x 10 ⁸
Activity released (Bq/s)	4 750 Bq/s	2 050 Bq/s	3 470 Bq/s	0.138 Bq/s

Design Values for Metal release

	¹³⁷ Cs	¹³⁴ Cs	^{110m} Ag	⁹⁰ Sr
Sensitivity Factor*	5	5	21	13
Release rate (atoms/s)	3.27 x 10 ¹³	9.60 x 10 ¹¹	2.27 x 10 ¹²	2.38 x 10 ⁹
Activity released (Bq/s)	23 800 Bq/s	10 300 Bq/s	60 500 Bq/s	1.46 Bq/s

* Sensitivity Factor to allow for uncertainties

Operational Source Term Analyses

Expected R/B Values and Coolant Gas Activities

	⁸⁵ Kr	⁸⁸ Kr	⁹⁰ Kr	¹³³ Xe	¹³¹
R/B values	2.18 x 10 ⁻⁶	1.84 x 10 ⁻⁷	2.29 x 10 ⁻⁸	2.67 x 10 ⁻⁷	3.03 x 10 ⁻⁷
Out of Core			1.01 x 10 ¹⁰		
Activity (Bq)	6.23 x 10 ¹⁰	6.33 x 10 ¹⁰		2.27 x 10 ¹¹	1.18 x 10 ¹¹
Coolant Gas			1.01 x 10 ¹⁰		
Activities	8.23 x 10 ⁹	6.33 x 10 ¹⁰		2.27 x 10 ¹¹	9.35 x 10 ⁵

Design Values for Noble Gas and Halogen Release

	⁸⁵ Kr	⁸⁸ Kr	⁹⁰ Kr	¹³³ Xe	¹³¹
Sensitivity	4		4		
Factor		4		4	4
Out of Core			4.04 x 10 ¹⁰		
Activity (Bq)	2.49x 10 ¹¹	2.53 x 10 ¹¹		9.08 x 10 ¹¹	4.72 x 10 ¹¹
Coolant Gas			4.04 x 10 ¹⁰		
activities	3.29 x 10 ¹⁰	2.53 x 10 ¹¹		9.07 x 10 ¹¹	3.74 x 10 ⁶

* Sensitivity Factor to allow for uncertainties