Sandia National Laboratories WM DOCKETSCONTROL, New Mexico 87185 CENTER

85 JUL 15 A11:30

July 12, 1985

3Ñ

Distribution:

olly

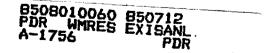
WM Project 10,11,16 Docket No. _ PDR Joan-ticlet 5411/ (Return to WM, 623-SS)

Mr. Walton Kelly U.S. Nuclear Regulatory Commission Mail Stop 623-SS Washington, DC 20555

Dear Mr. Kelly:

Enclosed is the monthly report for FIN A-1756, Geochemical Sensitivity Analysis for June 1985.

Please feel free to contact me if you have any questions or comments.


Sincerely,

1. Crawrell

R. M. Cranwell Supervisor Waste Management Systems Division 6431

RMC:6431:jm

Enclosure

Mr. Walton Kelly

.

.

¢

July 12, 1985

. .

Copy to: Office of the Director, NMSS Attn: Program Support Staff Robert Browning, Director Division of Waste Management Malcolm R. Knapp Division of Waste Management John Starmer Division of Waste Management Office of Research, NRC Document Control Center, Division of Waste Management 6400 R. C. Cochrell 6430 N. R. Ortiz 6431 R. M. Cranwell 6431 M. D. Siegel 1500 W. Herrmann 1510 J. W. Nunziato 1512 J. C. Cummings 1512 K. L. Erickson

PROGRAM:	Geochemical S Analysis	ensiti	vity		FIN#:	A-1756
CONTRACTOR:	Sandia Nation Laboratories	al	BUD	GET PERI		01/84 - 30/85
DRA PROGRAM	MANAGER:	W. R.	Kelly	BUDGET	AMOUNT:	235K
CONTRACT PRO	GRAM MANAGER:	R. M.	Cranwell	FTS PHO	DNE: 844	-8368
PRINCIPAL IN	VESTIGATOR:	M. D.	Siegel	FTS PHO	ONE: 846	-5448

PROJECT OBJECTIVES

of this project is to provide technical The objective NRC in determining the sensitivity assistance to the of far-field performance assessment calculations to uncertainties geochemical and hydrological input data and in in the representation of geochemical processes in transport models. Task I, the error in model calculations of integrated In radionuclide discharge due to speciation, kinetic and sorption effects will be evaluated. In Task II, the potential importance of organic molecules and colloids will be examined. SNLA will assist the NRC in determining how geochemical processes should be represented in transport models under Task Short-term technical assistance will be carried out under III. Task IV.

ACTIVITIES DURING JUNE 1985

Task I Uncertainty in Integrated Radionuclide Discharge

Subtask IA. Speciation Effects (M. Siegel, R. Guzowski, S. Phillips)

An assessment of the error in speciation and solubility calculations due to the use of the Davies equation in place of "Pitzer equations" (specific interaction) to calculate activity coefficients in saline brines was initiated. In this study, a comparison of activity coefficients calculated with the two methods will be made for several radionuclides in ionic strengths of up to 3.0 M. The results of this study will provide guidance in the selection of the most appropriate geochemical codes for sensitivity studies for HLW repository sites in salt formations.

Coordination of NRC-sponsored projects which involve compilations of thermochemical data was discussed at recent meetings between NRC staff and M. Siegel. It was suggested that efforts at Pacific Northwest Laboratory (S. Peterson) should be coordinated with similar efforts at Lawrence Berkeley Laboratory (S. Phillips). As of July 1, no definitive action had been taken by the NRC towards achieving this goal.

It was also suggested that the data in the LBL/NRC/BES data base currently being compiled at Lawrence Berkeley Laboratory should be periodically compared to thermochemical data compiled by DOE for each of the HLW repository sites. The resources for this additional effort will require supplemental funding in FY86 and FY87. This subject is discussed in more detail under the section entitled "Travel-Informal Meetings with NRC staff."

Subtask IB. Sorption Effects (M. Siegel, J. O. Leckie, D. Kent)

Compilation of fundamental thermochemical data and review of experimental studies of sorption of radionuclides by natural and synthetic materials continued during June. The results of this work will be a review of the state-of-the-art of theoretical modeling of radionuclide sorption, an assessment of the error resulting from the assumption of linear sorption isotherms in calculations of integrated discharge, and an evaluation of the feasibility of using phenomenological models of sorption in performance assessment studies.

All of the empirical Kd data published by Los Alamos National Laboratories for tuff has been entered into the dBase III system and have been checked for accuracy and redundancy. Supplemental statistical software for the data base was used to calculate descriptive statistics for sorption ratios of different tuff lithologic types and stratigraphic sorption These summary tables (see Attachment 1) will be intervals. in the report <u>Repository Site Data Report for</u> included Unsaturated Tuff, Yucca Mountain Nevada (funded by FIN The data will also be used in setting up conceptual A-1158). models of a tuff site for system-scoping studies under Subtask IA.

A copy of the dBase III data base was delivered to the NRC for use by staff geochemists. Future efforts under this subtask will include development and documentation of additional supplemental software to create a user-friendly sorption data base for the use of the NRC.

Subtasks IC, and ID, Kinetic and Dynamic Effects (M. Siegel, K. Erickson, J. O. Leckie)

Most of the effort under these subtasks during June was directed toward the completion of two papers. The first paper, entitled "Geochemical Sensitivity Analysis for Performance Assessment of HLW Repositories: Effects of Speciation and Matrix Diffusion" was discussed in the May Progress report. The second paper, entitled "Approximate Methods to Calculate Radionuclide Discharges for Performance Assessment of HLW Repositories in Fractured Rock" is scheduled to be presented at the 1985 MRS symposium on the Scientific Basis for Nuclear Waste Management. Approval for the travel of K. Erickson to the meeting and to meetings with scientists at the Swedish Royal Institute of Technology has been requested from the NRC.

Task II Evaluation of Error Due to Organics and Colloids

No activity during June 1985.

Task IV Short Term Technical Assistance

M. Siegel attended meetings with NRC staff in Washington during the week of June 10-14, 1985.

A letter report discussing the role of radionuclide speciation/solubility calculations in sensitivity analyses is under preparation.

Travel

Informal meetings with NRC staff:

During the week of June 10-June 14, Malcolm Siegel (6431) met with members of the Offices of Nuclear Material Safety and Safeguards (NMSS) and Nuclear Regulatory Research (RES) of the Nuclear Regulatory Commission (NRC). Meetings like these are being requested by the NRC to allow the staff of Division 6431 obtain a clear understanding of the concerns to and constraints of the NRC. Many of the discussions dealt with geochemical aspects of waste management. The NRC staff were particularly interested in the data management systems for thermochemical and experimental sorption data that are being compiled under the Geochemical Sensitivity Analysis Project (FIN A-1756). It was determined that Dr. Siegel will work with NRC geochemists in setting up simple conceptual models of repository sites for sensitivity studies. During the meetings. it became apparent that many NRC staff members were not familiar with the products of the SNLA contracts. This fact is significant because many of the concerns of the NRC could be addressed by ongoing SNLA projects.

Several changes in the structure and schedule of FIN A-1756 were discussed with the NRC Program Manager. A revised milestone schedule is included as Attachment 2 to this progress report. It was agreed that a major focus of the project should be the writing, documentation and transfer to the NRC of a suite of user-friendly computer code data bases for geochemical sensitivity analyses. It was also agreed that the peer review of the products and approach of the project which is included under Task 3 should be an on-going effort and should not be deferred to the last year of the project as originally planned. The review should include systematic comparisons of the data in the thermochemical data base compiled under Task I with similar data bases being produced by DOE. These changes to the project cannot be acommodated within the current level of funding. In order to support these additional efforts, supplemental funds equivalent to one-half FTE (full-time equivalent) will be requested for the fiscal years 1985, 1986 and 1987. A formal request for the additional funding will be sent to the NRC under a separate cover.

Funding Breakdown for June

 Task I
 75%

 Task IV
 25%

Attachment I

• ·

.

•

.

Summary of Sorption Data for Yucca Mountain, Nevada

from Tien, P., Siegel, M. D., Updegraff, C. D., Wahi, K. K., and Guzowski, R. V., Repository Site Data Report for Unsaturated Tuff, Yucca Mountain, Nevada, SAND84-2668, NUREG/CR-4110

Element	Devitrified tuff	Devitrified tuff with clay/glass	Vitric tuff <u>+</u> clay	Zeolitized tuff
Am	2975 <u>+</u> 1240 ⁸	(2.80 <u>+</u> 0.93] ^b	1430 <u>+</u> 450	[3.18 ± 0.32]
	4, N ^C	4, L	4, N	10, L
	1200:4000 ^đ	130:13000	920:2000	490:5500
* Ba	[3.00 + 0.37]	[2.92 <u>+</u> 0.44]	1155 <u>+</u> 766	[4.56 <u>+</u> 0.60]
	17, L	29, L	6, N	33, L
	340:1400	140:10000	420:2100	1170:250000
Ce	817 <u>+</u> 427	332 <u>+</u> 293		[3.52 <u>+</u> 0.72]
	13, N	5, N		19, L
	297:1630	82:730		100: 59000
* Cs	596 <u>+</u> 237	[2.94 <u>+</u> 0.45]	[2.64 <u>+</u> 0.67]	[3.94 <u>+</u> 0.40]
	17, N	29, L	5, L	31, L
	290:1100	120:13300	120:5800	1160:42000
* Bu	1154 <u>+</u> 614	[3.04 ± 0.44]	111 <u>+</u> 68	[3.43 <u>+</u> 0.45]
	15, N	29, L	4, N	29, L
	68:2250	90:5600	38:190	200:15000
lp	⁵ .7 <u>+</u> 0.8		2.1 <u>+</u> 0.1	6.5 <u>+</u> 3.5
	5, N		2, N	6, N
	4.9:7.0		2.0:2.2	4.0:11
Pu	224 <u>+</u> 110	[2.24 <u>+</u> 0.56]	325 <u>+</u> 85	{1.66 ± 0.32}
	7, N	4, L	4, N	12, L
	64:420	90:1200	210:410	19:250

. •

Table 5-4. Comparison of sorption ratios for tuff lithologies (ml/gm)

 \bigcirc

.

.

•

•

• •

Element	Devitrified tuff	Devitrified tuff with clay/glass		Zeolitized tuff
Se	10.0 <u>+</u> 7.1	[0.72 ± 0.46]	3.7 <u>+</u> 3.1	5.7 <u>+</u> 4.0
	2, N	5, L	3, N	5, N
	5:15	2:25	1:7	1.8:11
Sr	86 <u>+</u> 50	111 <u>+</u> 77	[1.85 <u>+</u> 0.49]	[3.76 <u>+</u> 0.68]
	16, N	26, N	5, L	34, L
	30:195	41:280	24:280	148:81000
Tc	0.40 <u>+</u> 0.32	0	0.02 <u>+</u> 0.02	0.01 <u>+</u> 0.01
	7, N	1	6, N	3, N
	0:0.81	-	0:0.04	0:0.02
U	14 <u>+</u> 26	3.4 <u>+</u> 4.0	5 <u>+</u> 10	6.2 <u>+</u> 3.1
	4, N	8, N	4, N	7, N
	0:54	0:10	0:20	2.5:11

Table 5-4.	Comparison	of	sorption	ratios	for	tuff	lithologies	(mL/gm)
	continued							

a mean + standard deviation for assumed normal distribution

b [mean <u>+</u> standard deviation] in log₁₀ units for assumed lognormal distribution

c number of values, distribution assumed (N = normal; L = lognormal)

d minimum value : maximum value

* data for deionized water and water from well UE25p-1 are included in the means for vitric and zeolitized tuffs for Ba, Cs, and Eu.

Sorption	Element							
Interval	Am	Ba, Ra	Cs	Eu				
Host Rock	3350 <u>+</u> 354	575 <u>+</u> 332	515 <u>+</u> 163	84 <u>+</u> 23				
	2, N	2, N	2, N	2, N				
	3100:3600	340:810	400:630	68:100				
Zeolite 1		3400	855	160000				
Basal	1110 <u>+</u> 269	1585 <u>+</u> 690	390 <u>+</u> 57	165 <u>+</u> 35				
Vitrophyre	2, N	4, N	2, N	2, N				
• •	920:1300	640:2100	350:430	140:190				
Vitric Zone	1750 <u>+</u> 354	357 <u>+</u> 250	108+58	[2.56 <u>+</u> 1.45]				
	2, N	3, N	3, N	3, L				
	1500:2000	82:570	45:160	38:17000				
Zeolite 2	[3.18+0.32]	[4.66+0.43]	[3.9 <u>+</u> 0.2]	[3.74 <u>+</u> 0.43]				
	10, L	23, L	19, L	21, L				
	490:5500	6180:150000	3660:17000	1340:100000				
Central Prow	4700	[2.92 <u>+</u> 0.64]	[2.81 <u>+</u> 0.41]	878 <u>+</u> 598				
Pass		11, L	11, L	9, N				
		162:1400	184:3650	110:1900				
Zeolite 3	4300	[4.46 <u>+</u> 0.71]	[4.02 <u>+</u> 0.59]	[3.17 <u>+</u> 0.27]				
		15, L	12, L	12, L				
		1170:250000	1160:42000	779:5600				
Central Bull	372 <u>+</u> 309	[2.70 <u>+</u> 0.37]	[2.75 <u>+</u> 0.36]	[2.99 <u>+</u> 0.43]				
rog	2,N	16, L	15, L	12, L				
	153:590	140:3040	120:2020	340:5500				
Ceolite 4		63000	7700	200				
leep Zone		7427 <u>+</u> 5685 10, N	[3.52 <u>+</u> 0.39] 10, L	[3.22 <u>+</u> 0.54] 9, L				

. .

.

Table 5-5. Summary of sorption data for stratigraphic sorption intervals

.

. . .

• •

٠

. .

.

•

Sorption	Element							
Interval	Np	Pu	Sr	Tc	U			
Host Rock	5.1 <u>+</u> 0.3	287 <u>+</u> 84	46 <u>+</u> 22	0.44 <u>+</u> 0.38	5.0 <u>+</u> 7.1			
	4, N	4, N	2, N	4, N	2, N			
	4.9:5.4	240:420	30:61	0:0.81	0:10			
Zeolite 1			260		0			
					2			
					0:0			
Basal		365 <u>+</u> 64	121 <u>+</u> 112		0			
Vitrophyre		2, N 320:418	2, N 42:200		2			
		320:418	42:200		0:0			
Vitric Zone	2.1 <u>+</u> 0.1	285 <u>+</u> 106	22<u>+</u>11	0.03 <u>+</u> 0.02	10 <u>+</u> 14			
	4, N	2, N	3, N	5, N	2, N			
	2.0:2.2	210:360	10:32	0:0.04	0:20			
Zeolite 2	6.5 <u>+</u> 3.5	[1.66 <u>+</u> 0.32]	[3.86 <u>+</u> 0.52]	0.01 <u>+</u> 0.01	7.2 <u>+</u> 3.3			
	6, N	12, L	24, L	3, N	3, N			
	4:11	19:250	1760:81000	0:0.02	5.3:11.0			
Central Prow	6.4	77	[1.73 <u>+</u> 0.34]		28 <u>+</u> 36			
Pass			10, L		2, N			
			22:194		2.4:54			
Zeolite 3	9	230	[3.50 <u>+</u> 0.88]	0.18 <u>+</u> 0.04	6.0 <u>+</u> 3.8			
•			12, L	2, N	3, N			
			148:56000	0.15:0.21	2.5:10			
Central Bull		85+7	[1.94 <u>+</u> 0.29]		1.0 <u>+</u> 0.9			
rog		2, N	13, L		3,N			
		80:90	41:280		0:1.7			
Zeolite 4			42000					
Deep Zone			[2.93 <u>+</u> 1.02]		2.15 <u>+</u> 2.33			
			11, L		2, N			
			68:13200		0.5:2.33			

.. •

.

,

•

,

Attachment 2

• •

•

., .

.

REVISED MILESTONE SCHEDULE FOR FIN-1756

Report on status of thermochemical data and criteria for data selection Updates: M.P.R.* and A.P.R.*	First report: 1/30/85 included in Q.P.R.* and published in LBID-977
Scoping calculations for colloids:	
Scoping calculations for contoins.	
Particle migration in fracture	11/16/84 A.P.R. for FY84
Interim report on capacity and formation rates of pseudo- and true colloids	Included in A.P.R. FY85
Final report on colloid calculations (included in interim report on system scoping calculations)	12/85
Letter report on kinetics/speciation and experimental design	11/84 A.P.R. for FY84 revised 10/85
NRC/DOE conference paper due (effects of speciation and matrix diffusion)	7/1/85
MRS paper due (transport in fractured rock)	8/1/85
Draft report on chemical transport simulator (TRANQL)	9/15/85 included in M.P.R. for August 1985
Annual Progress Report for FY 1985	10/30/85
Interim report on system calculations for speciation, non-linear sorption, and colloids	12/85
Progress reports on choice and modifi- cations of codes for modeling	Reported in M.P.R.'s, A.P.R. for FY85 and interim reports
Progress reports on reaction pathways for modeling	Reported in M.P.R.'s and interim reports
First BES/NRC data base available	2/86
Updates to data base	Reported as available in M.P.R.'s
Second BES/NRC data base published	T.B.D.
Interim report on contaminant transport in fractured rock	3/86

\sim \bigcirc	\smile \bigcirc
Interim report on uncertainties related to speciation and sorption (Tasks IA and IB)	8/86
Annual Progress Report for FY 1986	10/30/86
Interim report on uncertainties related to kinetics (Task 1C)	12/86
Interim report related to coupled effects (Task 1D)	3/87
Draft Final Topical Report (Task 3A) 1. Data bases 2. Theory 3. Computer Codes	6/87
Report on Peer Review Workshop and Final Report (Task 3B) included in Annual Report for FY 1987	10/87

.

•

*Q.P.R. = Quarterly Progress Report; M.P.R. = Monthly Progress Report; A.P.R. = Annual Progress Report

 \smile \bigcirc

[•] A-1756 1646.010 June 1985

THIS IS AN ESTIMATE ONLY AND MAY NOT MATCH THE INVOICES SENT TO NRC BY SANDIA'S ACCOUNTING DEPARTMENT.

		Current <u>Month</u>	Year-to-Date
Ι.	Direct Manpower (man-months of charged effort)	1.4	12.0
II.	Direct Loaded Labor Costs Materials and Services ADP Support (computer) Subcontracts Travel Other	13.0 0.0 0.0 10.0 1.0 <u>0.0</u>	118.0 3.0 2.0 115.0 6.0 <u>0.0</u>
	TOTAL COSTS	24.0	244.0

Other = rounding approximation by computer

III. Funding Status

Prior FY	FY85 Projected	FY85 Funds	FY85 Funding
Carryover	Funding Level	Received to Date	Balance Needed
67.6K	302.60K	235K	