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ABSTRACT

Three approximate methods appear useful for calculating radionuclide discharues in fractured, porous rock:
(1) a semi-infinite-medium approximation where radionuclide diffusion rates into the matrix are calculated
assuming a semi-infinite matrix; (2) a linear-driving-force approximation where radionuclide diffusion rates
into the matrix are assumed to be proportional to the difference between bulk concentrations in the fracture

A-' fluid and in the matrix pore water; and (3) an eauivalent-porous-medium approximation where radionuclide
diffusion rates into the matrix are calculated assuming that the time rate of change of the bulk radionnclide
concentration in the matrix is proportional to the time rate of change of the radionuclide concentration In the
fracture fluid. A preliminary evaluation of these approximations was made by considering transport of a single
radionuclide in saturated, porous rock containing uniform, parallel fractures. It was assumed that fluid flow
was one-dimensional, the nuclide existed as a single chemical species, and radioactive decay and production of
the nuclide were negligible. Criteria for application of each approximation were derived in terms of funda-
mental physicochemical parameters. For parameter values satisfying each of the criteria, the respective errors
in radionuclide discharges calculated using the approximations were examined by comparing those dischargespwith
discharges calculated rigorously. In addition, discharges were calculated with the computer code NWFT/DVMG
which was developed at Sandia National Laboratories for use in performance assessment calculations. Agreement
among results calculated with the analytical exact solution, the analytical linear-drivingforce approximatfon
and the numerical linear-driving-force approximation was good for a variety of hydrological conditions. The
applicability of each approximation to performance assessment for repositories in basalt, granite, and tuff was
shown using site-specific hydrologic and geochemical parameters.

INTRODUCTION

Performance assessment requires calculating radio-
nuclide discharges for many sets of conditions for
each of several scenarios. General use of rigorous

l, convective-diffusive transport models would be imprac-
tical for performance assessment of HLW repositories
in fractured, porous rock. While such rigorous calcu-
lations are desirable for demonstrating detailed
understanding of physicochemical phenomena, they
would be unnecessary for risk assessment if upper
bounds for radionuclide discharges could be obtained
from approximate models. Three approximate methods
for calculating radionuclide discharges in fractured,
porous rock can be used to minimize the number of
rigorous computations: (1) a semi-infinite-medium
approximation where radionuclide diffusion rates into
the matrix are calculated assuming a semi-infinite
matrix; (2) a linear-driving-force approximation
where radionuclide diffusion rates into the matrix
are assumed to be proportional to the difference
between bulk concentrations in the fracture fluid
and in the matrix pore water. and (3) an equivalent-
porous-medium approximation where radionuclide diffu-
sion rates into the matrix are calculated assuming
that the time rate of change of the bulk radionuclide
concentration in the matrix is proportional to the
time rate of change of the radionuclide concentration
in the fracture fluid.

A preliminary evaluation of each approximation
was made by considering a relatively simple system
involving transport of a single radionuclide in
saturated, porous rock containing uniform, parallel

fractures. It was assumed that fluid flow was one-
dimensional, the nuclide existed as a single chemical
species, and radioactive decay and production of the
nuclide were negligible. In the discussion below,
the rigorous transport ecuations for that system are
described. Each approximation Is discussed; the
corresponding transport eouations are given, and
criteria for application of each approximation are
derived in terms of fundamental physical and chemical
parameters which are amenable to measurement in the
laboratory or field. For parameter values satisfying
each of the criteria, the respective errors in radio-
nuclide discharges calculated using the approxima-
tions are examined by comparing those discharges with
discharges calculated rigorously. The applicability
of each approximation to performance assessment for
repositories in basalt, granite, and tuff is discussed
using site-specific hydrologic and genchemical
parameters.

THEORY

Radionuclide Transport in Fractured. Porous Rock

Consider a region of saturated, porous rock con-
taining a system of uniform, parallel fractures which
divide the porous matrix into parallel flat plates
(Fig. 1). Assume that: (l) fluid flow occurs only
in the x-direction and is negligible in the porous
matrix; (2) effects due to hydrodynamic dispersion
are negligible; (3) radionuclide concentrations in
the fracture fluid are uniform across the fracture
cross section; (L) local chemical eouilibritim exists
at the fracture-matrix and pore-water-matrix inter-
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faces; (S) bulk radionuclide diff'arin in the pore
water occurs only in the z-direction; (6) surface
diffusion of nuclides in the interfacial regions
between pore water and mineral phases negligibly
affects transport in the porous matrix; (7) radio-
nuclide sorption is reversible and can be represented
by linear isotherms; (6) colloidal transport of
nuclides is negligible; (9) radionuclides exist as a
single chemical species; (10) radioactive decay and
production of the nuclide of Interest are negli-
gible; and (11) diffusion coefficient is a constant.
Then, the material balance for a radionuclide in the
fracture fluid is

at + v a fa (1)

' 2 ~-'a-6
je sin(2taB)d1 m rf(V)

and noting that NH * (4/3)a and Ho * 2B as B o0.
l 2

Porous matri
porosity 0 porosity Of or bJCB.b
pate water nuclide fluid velocity v
Coe . C. nuc-id' cone. 2b

Fig. 1. Schematic representation of fractured. por-
ous rock. Origin of coordinate system is at
center of block of porous rock.

Approximations

General. The rigorous solution to Eqs. (1) and
(2) can be obtained using Duhamel's theorem tr
express the term N(x t) in Eq. (1) as a

and in the porous matrix

&Cm alm2

azC (2)

The various terms in Eqs. (1) and (2) are defined in
Table 1. Appropriate initial and boundary conditions
for Eq. (1) are Cf(x.O) - 0. N(x,0) a 0. and Cf(Ot) -
Co * a constant. Appropriate conditions for Eq. (2)
are Cm(xz,O) - 0. Cm(xB.t) - Cf(x,t), and
aCm(xOet)/az w 0. The solution to Eqs. (1) and (2)
is obtained analogously to Rosen'sl results for packed
beds of spheres. The fracture fluid concentration
Cf(xt) is given by

N(x.t) - B I ffCf (xt) t dt'dz
0 0Cf(x.t) 1 _

C0 2

where X

Ie - H0 (I sin[a, - x1 n(a ]) O

(5)

(3)

DCe6m'm~f "

vS2 v2

where H(z,t) is the solution to Eq. (2) when the sur-
face boundary condition is replaced by C,(x,8,t) - 1.
In each of the three approximations, a simpler
expression for H(xt), or aM(x.t)/at, is substituted
for Eq. (5). or the corresponding expression for
aM(xt)/at, so that the resulting solution for Cf(xt)
is much simpler to obtain than Eq. (3). For conven-
ience below, let i(t) denote the volume-averaged
nuclide concentration in pore water when surface
concentration is unity (see Table 1), and write
Eq. (5) as

- 2 D (t.

H (B) . rsinh(20) - sin(20)1
°l cosh(28) + cos(20)

0(a) -tsinhC2B) + sin(2B11
D 2 cosh(2B) + cos(2B)

B - variab.tie of integration.

The integral i1n Eq. (3) must be evaluated numerically.
However, for large ', say S O 50, Cf(x.t) can be
approximated by:

t )
M(x~t) mm 0. rf axt11"r t dt' (6)

Cf(x.t) Il erf l]
2 ~

Semi Infinite Pedium. In this approximation, the
basic assumption is that the porous matrix is so large
that the concentration Cm(x,O,t) of the diffusing
nuclides can be considered negligible during the time
interval of Interest. The term a/at in Eq. (6) is
then obtained from the solution to the diffusion equa-
tion for semi-infinite, flat plates having unit
surface concentration. For fluid flowing between
parallel plates separated by aperture 2b, the expres-
sion for Cf(xt) is given by3

C 0f c(2 ert) (7)

(4)

Eq. (4) is obtained from Eq. (3) using the identity2



Table I

Nomenclature

b

Definition

half thickness of matrix between fractures

B+b, half spacing between fractures

half of the fracture aperture

The relative errors In Cf which result from
using Eq. (7) rather than Eq. (3) are determined by
the corresponding errors in the value for N(x,t),
which in turn depend on the errors in the value of
Alf/St. Criteria for using Eq. (7) can be developed
as follows. First, consider one-dimensional diffu-
sion into semi-infinite flat plates such as depicted
in Fig. 1. Let z' a B - z, and C(z' Ot) l.
The corresponding expressions for H(z',t) and H(t)
are given, respectively, by4

Cf radionuclide concentration in the fracture
fluid

CM radionuclide concentration in the matrix
pore water

D molecular diffusion coefficient for the
radionuclide In the matrix pore water

De CO&2R,

H(zt) solution to Eq. 2 when the surface boundary
condition is replaced by Cm(x,6,t) - 1

R(t, if H(zt)dz, the volume average of H(zt)
0

H(z',t) - erfc(~L. (6)

and

Hm(t) - e (9)

As the time interval of interest increjses, the value
of H9(t) determined from Eq. (9) will be increasingly
in error, as can be seen by inspection of the expres-
sion from the exact solutions for *short times'

*f b/B, porosity associated with the fractures

Om

Mf

matrix porosity

(1 -+f) /f

lo~/2 ~
R1(t) - 2I\1I la 2 zi (-I)nierfc1 "a \

n-i

P
a 4 (1 0)

%i (1-*)IoO

K OmR¢(B)m fC dz, the average matrix radio-
( 0 nuclide concentration

Rm (lrmro), radionuclide retardation
factor for the porous matrix

Let Ra and 'e denote the values of I obtained
from Eqs. (9) and (10). respectively, and let Fa a
(aRHa/at)/(a1e/at). Eq. (6) then can be written as

tI
N (X.t) - *m~m f Cf(X , xti Fi-,1 at

0 +~-"S'~
dt'

(Ila)
t time

v mass-averaged fracture fluid velocity

x spatial coordinate in the direction of the
bulk fluid motion

z spatial coordinate in the direction of
diffusion in the porous matrix

,2 tortuosity/constrictivity factor for the
porous matrix

rO slope of the 1inear portion of the
dimensionless.sorption isotherm (fluid- and
solid-phase concentrations both expressed as
mass or moles per unit volume)

Dm +x

e2V2

and by the mean value theorem6

H6mxM t F 1 CfOt-t') dt'N(x~t) U Fa t w )Cf(X stl) a d

(1lb)

where 0 < q < t. The term F,(t-'n) v Fa represents
some mean value of Fa(t-t'). By definition
Fa I 1.

When Fa a l,

t
SH (1:41)

N(x.t) C. #mRm f Cf (X't at dt'
0

(12)

20 (t-x/v)
and when Fa > 1, the ratio of aproximate to exact
values of "(x,t) is given by F Since fa. Hee
*T/at. aHe/at and Fa are singtc-valued functions of
t, a one-to-one relatlonship pxists between Fa and
ie. Values of FS as a function of Re are shown in



Fig. 2. For e ' O.S. F. .l, while for h, > 0.5,
increases monotonically and becomes large foi
He > 0.8. The value of F; will be between zero *r
the value of Fa(Ie) corresponding to time t. Fgr
poses here it appears reasonable to estimate Fa I
the average Ta of Fa with respect to Re. that is

He

F*(He) " ra(le) -Fa()dH

Values of Ia also are shown in Fig. 2. When We <
the values of both *a and Fe are about 1.0. When
0.5 < Fe _ 0.7. the value of F. is about 1.0. and
is 1.2 or less. When 0.7 Re 0.92. the value c
is between about 1.0 and 1.2. and Fa is between 1.
and 2.8. When He ) 0.92. Ta and especially F bec
large. Therefore, when Ire < 0.5. the ratio of app
imate to exact values of N(x.t) from Eqs. (12) ant
respectively, would be about 1.0. When 0.5 < Re !
the ratio would be about 1.0 and would not be grea
than 1.2. When 0.7 He 0.92, the ratio would t
about 1.2 or less and would not be greater than 2.

Fa flow path length, and Rf is the radionuclide retar-
dation factor for the fracture fluid and is given by

id Rf * 1 + mfmRm. By analogy with t*, define the con-
pur- tact residence time e0 as Gm - x/v.

First, consider cases where t* < e. From
Table 1I. He < 0.5 when Oet*/B2 c 0 2. W < 0.7 when
Det*/ 2 < 0.4, and He 4 0.92 when Det/8 Z 1.0. If
Gm 0I 22/0D then em S 0.2 B2/De for all x, and
perturbations in radionuclide concentrations would be

(13) exposed to an essentially semi-infinite porous matrix
for which F a 1.0 a Fa throughout. Radionuclide
discharges then could be obtained from Eq. (7). If
0.2 < e,(62/De) < 0.4, perturbations in radionuclide

0.5, concentrations would be exposed to a porous matrix
for which Fa < 1.2 and 'F a 1 0o Again. radionuclide

Fa. discharges could be obtatned from Eq. (7); however,
If Fe as t and Gm approach 0.482/0e, small relative errors
.2 in N(x t) and, therefore. in values of Cf/Co should
come be expected since F1 will be greater than 1.0 for
prox- some values of x. If 0.4 ' Om/(B2/0e) < 1.0. pertur-
1 (6), bations in radionuclide concentrations would be
c0.7. exposed to a porous matrix for which Fa 2.9 and
iter Ta c 1.2. The relative errors in radionuclide dis-
Io charges obtained from Eq. (7) would correspond to rel-
B. ative errors In the value of N(xt) which are of the

order of 20 percent as t and em approach l.082/De.
. . . .

s.o _

la
el.

.$ _-

Fe

Values of R (t) Versus Det/8 2

Table II

2.0

1.6.

get/B 2

0.0001
0.001
0.003
0.005
0.008
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08

11(t)

0.01
0.04
0. 06
0. 08
0.10
0.11
0.16
0.20
0.23
0.25
0.28
0.30
0.32

a t/B2

0.09
0.10
0.20
0.30
0.40
0.SO
0.60
0.70
0. o
0.90
1.00
1.50
2.00

V

He(t)

0.34
0.36
0.50
0.61
0.70
0.76
0.el
0.96
0.89
0.91
0.93
0. 98
0.99

I.U

0.4 0.6 0.a 1.0

H.

Fig. 2. Values of Fa and Fa versus Re.

Criteria for applying the semi-infinite-medium
approximation, that is. calculating N(x t) from
Eqs. (12) and (9) rather than Eqs. (6) and (10), will
depend on the errors which are acceptable in N(x t)
and in calculated radionuclide discharges. When
solving Eq. (1) with either approximate or exact
expressions for N(xt) those expressions actually
appear as N(x t - x/v),1 since Cf(xt) - 0 if t < x/v
and only convective transport occurs in the
x-direction in the fractures. To examine errors
between approximate and exact solutions, the value
for N should correspond to the contact time t* -
t - x/v rather than the elapsed time t. Conditions
under which the semi-inifinite-medium approximation
are useful could be defined in terms of t*. However,
the use of maximum mean radionuclide contact time
would lead to criteria which are more restrictive and
conservative.

Let Om denote the maximum mean radionuclide
residence time along the flow path of Interest. In
which case, e corresponds to the fracture fluid
and pore water being in equilibrium with respect to
radionuclide diffusion. As discussed later, q
is given by em * (x/v)Rf. where x corresponds to the

Next, consider cases where t* > em For a given
ratio of %e/(B2/0e), values of Fa will be larger than
when t* < %m Relative errors in N(xt). and the
corresponding errors in radionuclide discharges, also
should be larger. However, the radionuclide flux,
-DoaH(0,t)/az, is proportional to 1i, which follows
from Eq. (8). Therefore, while the relative error
associated with the semi-infinite-medium approxima-
tion increases, the relative amount of the radio-
nuclide diffusing into the porous matrix decreases,
thereby reducing the overall effect that those errors
have on radionuclide discharges. In examples given
later, it Is shown that when t* > e, the relative
errors in radionuclide discharges do not increase
appreciably beyond those corresponding to t* * Om

If only small relative errors in calculated radio-
nuclide discharges are acceptable, the criterion for
applying the semi-infinite medium approximation is
Gm a (x/v)Rf ' 0.2 82/oe or.
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D*Rf x
vBRfx <0.2
v83

and for nm > 3600 the function is given approximately
by

Often, +f o 1. and # > +f. Under those condi-
tions, Rf a Of"R since U, >. 1. Then, the
criterion for applying the approximation can be
written as

,Demf*mRmx , 2)fm
l sma 2 at 2 a a p

when only small relative errors are acteptable.

.1(n'm) t I. Crfc(vi V/1) (17)

In these analyses, the term aS/at in Eq. (6) was
approximated using a linear-driving-force expression
for diffusion into flat plates having unit surface
concentration, that Is

(14a)

Ldt-ka (I - R (18)

However, it seems reasonable to define a less
restrictive criterion. Parameter values in the
expression for N(x.t) may often involve uncertainties
of 20 to 30 percent or greater, which result from
inherent variations in the physical and chemical
properties of geomedia. If the criterion em -
(x/v)Rf < 92/oe is used, relative errors in N(x.t)
would be on the order of 20 percent for t < emand are
similar to, or less than, possible uncertainties in
parameter values. Hence

For H(O) - 0.

A - 1 - exp(-katt)

and

dH - kam exp(-kamt)

Substituting Eq. (20) into Eq. (6) gives

(19)

R nDemf*MRMx mALL--
v2 v82 -

(20)

(14b)
r

a

when relative errors of about 20 percent in N(x,t)
and the corresponding errors in calculated discharges
are acceptable.

Linear Driving Force. In the usual form of this
approximation, the radionuclide flux into the porous
matrix is assumed to be proportional to the differ-
ence between the surface and average matrix concen-
trations. and the approximation expressed as

dMdt a kam(#mRmCf -N)(1

t
N(xt) - +mRm f Cf(x,t')(kam exp[-kam(t - t')lldt'

0
(21)

and it can be verified by differentiation that
Eq. (21) satisfies Eq. (15) when N(x.0) a 0. so that
the solution for Cf~xt) from Eqs. (1) and (21) is
given by Eqs. (16) and (17).

To evaluate the mass transfer coefficient k,
; substitute for R(t) the 'long-time infinite series

solutions given by

where am is the surface area of the porous matrix
contacting the fracture fluid per unit volume of
matrix, and k is a constant mass transfer coefficient
which is evaluated analytically below. When Eqs. (1)
and (15) are solved, the resulting expression for
Cf(xt) is

A(t) .l -i a8
no(2n+l) Vr

exp e
L 4B2 J (22)

The resulting expression for N(x.t) is

Cf~ t) J(n,m) x i.- .1 -

C0 0
(16)

where am a i

m a -(t _ x)

B y

and 8 is again a variable of integration. Values of
the function J(n.m) have been tabulated extensively,

t 20 D (2n+1)2w2t
I(xt) - Oe. fCixt 2 dt'

(23)

Now, let k u 2y0,/B, where Y is a numerical constant.
and note that am - 1/n. Comparing Eqs. (21) and (23).
it can be seen that for an appropriate value of y.
on the order of I to v2/6, Eq. (21) should provide a
reasonable approximation for Eq. (23) when Oet/8 2 is
large enough so that the series in Eq. (23) can be
truncated after the first tem. A value for the
constant Y can be obtainec as follows.



Let Ub and We denote the values of h obtained
from Eqs (19) and (22), respectively; let

Fb ' t ;

at

and again apply the mean value theorem to Eq. (6).
The ratio of approximate to exact values of N(xt)
from Eqs. (21) and (23). respectively, is given by
the term F* defined analogously to F: above. For
very small bet/92. corresponding to small Re Fb a 0.
As °et/B2 Increases, and IF approaches unity, Fb will
increase to some finite value which depends on the
constant y.

For a given value of y. it appears reasonable to
estimate Fb by the average Tb of Fb with respect to
'Re, that is

Fb - f Fb(H)dH
e 0

Values of Fb as a function of I are shown on Fig. 3
for Y - 1.0, 1.25, 1.50, and 2.8. Since the values
of Fb corresponding to y - 1.5 show the least average
relative deviation about 1.0. the value for y was
taken as 1.S. from which k - 210e/B - 30e/S.

criteria, it is initially assumed, and later veri-
fied, that when the linear-driving-force approxima-
tion applies, the mean radionuclide residence time is
given approximately by the maximum mean residence
time Om defined above. Again, let t* a t - x/v
and e - x/v. First, consider cases where

t >% From Fig. 3 (y - 1.5), Tb - 1.0 when
Re > 0.7 or Det*/B2 t OS (Table II). If radionuclide
residence times do not vary greatly about Om, and if
eh > 0 592/0 perturbations in radionuclide concen-
trations would be exposed to a porous matrix through-
out which Tb . 1.0. For some cases, radionuclide
residence times will vary significantly about the
mean. If only small errors in radionuclide dis-
charaes are acceptable, a more conservative criterion
is e,| > 62/Oe or

vS2

mf, x

(24a)

It seems reasonable to also define a less restric-
tive criterion since, as mentioned previously, param-
eter values in the expression for N(x,t) may often
involve uncertainties of 20 to 30 percent. From
Fig. 3. Tb > 0.7 when W, > 0 36 or Det*/B2 t 0.1
(Table II). Therefore, II em > 0.182 ?De. perturba-
tions in radionuclide concentrations would be exposed
to a porous matrix throughout which 0.7 < b a< Pi °
The relative errors in K(x,t) would be similar to or
less than uncertainties in parameter values. Again,
allowing for variations in radionuclide residence
times about Om, a reasonable criterion would be
8 - 0.2B2/De or

1.2

1.0

0.6

- Oemf*mlmx
Vs,

f2 ,fx
v2 > 0. 2 (24b)

Fb 0.6

0.4

0.21

0 0.4 0.8
H.

Fig. 3. Values of Tb versus R (numbers on curves
are values for numerical constant y).

Criteria for applying the linear-driving-force
approximation, that Is calculating N(xt) from
Eq. (21) with k a 30D/B, will depend on the errors
which are acceptable in N(xt). To define those

when errors of 20 to 30 percent in N(xt) and the
corresponding errors in Cf/Co are acceptable.

Now consider cases where t* < G. For a given
ratio °e4/B2, the values of Tb will decrease as
Dt*/B2 becomes less than 0.5 . while the relative
errors in M(xt) and the corresponding errors in
Cf(x,t)/CO will increase. If 0 em/B2 is large, those
errors will occur when Cf/CO 8, since for a reason-
able variation in radionuclide residence times about
Om. Cj/C0 will be negligible when t* << G. If
Gee;/B is of the order of 1 or less, relative errors
in N(xt) and Cf(x.t)/Co will occur when values of
Cf/CO Ire significantly greater than zero. Therefore,
when %q is large, the criteria given by Eqs. (24a)
and (24b) should be applicable for any value of t.
When D Om/B is of the order of 1 or less, the criteria
are aaso pplicable, but the errors in radionuclide
discharges calculated using the approximation will
increase substantially as Det*/82 becomes less than
about 0.2.

Eouivalent Porous Medium. In this approximation,
it is assumed that relaxation times, denoted by tr.
for perturbations in radionuclide concentrations In
the porous matrix are small relative to the time scale
of interest. This assumption implies that the frac-
ture fluid and porous matrix are in local equilibrium
with respect to radionuclide diffusion. In which
case, htt) in Eq. (6) approaches unity during a time
interval which is less than the time required for



tf(x.t) to change appreciably, and N(xt) .
RRmCf(x.t). which is obtained by integrating by parts

in Eq. (6) and noting that Cf(xO) - 0 a U(O) for
x '> 0. Eqs. (1) and (2) reduce to a single equation
involving only Cf

1A'.

o

at Rf ox
(25)

a
dCie

0

��_=
.6 - a

I

.9

.4

.2

0
12 1 1

o.
which has the solution

Cf(x.t) * Cos -_ )

0 2 4 6 a

(26)

where S(t) denotes the Heaviside unit step function.

The validity of the equivalent-porous-medium
approximation depends on the relaxation time tr
and the mean radionuclide residence time. Define t*
and a as above. Again, assume that the mean radio-
nuclide residence time is approximately the maximum
residence time am If tr << i4. then perturbations
in radionuclide concentrations would be exposed to
fracture fluid and porous matrix near equilibrium.
For purposes here, take tr as the time required for
H(t*) to become approximately unity. From Table II,
tr w 2I2/De, and a criterion for applying the
equivalent-porous-medium approximation is e -
(x/v)(Rf-l) "> tr a 2B2 /De. Allowing for perturba-
tions in concentration and heterogeneity in the sys-
tem, a reasonable criterion would be9

Fig. 4. Comparison of radionuclide discharges cal-
culated from approximate and exact solutions
when I - 0.2 (e, 1, and s denote results for
exact solution, linear-driving-force approxi-
mation, and semi-finite-medium approximation,
respectively).

CC 0

-X a eMf*mlmx
vS2

2 mfMx
a 2 50
vB

(21)

0 4 8

Provided that the above criterion is satisfied, the
mean radionuclide residence time does correspond to
the maximum residence time Om since the porous
matrix and fracture fluid essentially are near
equilibrium. The actual errors in Cf(xt) which
result from applying the equivalent-porous-medium
approximation are discussed below.

EVALUATION OF CRITERIA AND APPROXIMATIONS

To evaluate the above approximatiOns dimension-
less breakthrough curves, Cf/CO versus 4/T were cal-
culated using each of the three approximations. The
approximate curves were then compared with the exact
solution given by Eq. (3). The infinite integral In
Eq. (3) was evaluated numerically using the method
discussed by Rasmuson indCNeretnieks.9 Results for
T - 0.2, 1.O. and 50 are shown on Figs. 4 through 6,
respectively. For convenience in discussing these
results, note that it - xfv)/(B 2 /O ) V/2 and
(OM - x/v)/(842Ie) * X; therefore IFi A
2(t - x/v)/(e, - x/v) a 2t*/4.

First consider the semi-infinite-medium approxi-
mation. Fig. 4 shows that for a * 0.2. the approxi-
mation provides an excellent estimate for the exact
solution when /X is less than 3, and at larger
values of VA the relative errors in Cf/CO due to the
approximation are small. Therefore, the more restric-
tive criterion given by Eq. (14a) appears valid, and
as previously predicted, the errors resulting from
using the approximation are not significant until

Fig. S. Comparison of radionuclide discharges calcu-
lated from approximate and exact solutions
when I - 1.0 (e, l, and s denote results for
exact solution, linear-driving-force approxi-
mation, and semi-finite-medium approximation,
respectively).

v /I

Fig. 6. Comparison of radionuclide discharges calcu-
lated from approximate and exact solutions
when ' - SO (e, 1, and s denote results for
exact solution, linear-driving-force approxi-
mation, and semi-finite-medium approximation,
respectively).



t 3 OM (t - Gm when Y/X - 2). Fig. 5 shows that for
X a l.0 the approximation provides an excellent
estimate for the exact solution when K K 1. As V/K
approaches 2 (or t/%m - 1), the relative error between
approximate and exact solutions is about 20 to
30 percent, which is consistent with the errors
previously predicted. Furthermore, the relative error
does not Increase appreciably as V/K (or t/6) becomes
large. Therefore, the less restrictive criterion
given by Eq. (14b) appears valid, provided that the
resulting errors in N and Cf/Co are acceptable. For
TV > 1, Cf/CO is underestimated because K is over-
estimated. Fig. 6 (I - 50) shows that as I becomes
large, the semi-infinite-medium approximation becomes
unacceptable.

Next, consider the linear driving force approxi-
mation. Figure 4 shows that for I - 0.2. the approxi-
mation provides a reasonable estimate for the exact
solution when Vh is about 0.4 or greater, and the
less restrictive criterion given by Eq. (lSb)
appears valid, provided that V/ > 0.4 (or
t*/(B2 /De) ' 0.08). Figure S shows that when
X * 1, the linear-driving-force approximation
provides a very good estimate for the exact solution
when V/I is again about 0.4 or greater. At lesser
values of Vi. the relative error between approximate
and exact solutions increases substantially, but the
actual concentrations Cf/CO from either solution
are small. Therefore, the more restrictive criterion
given by Eq. (l5a) should be generally applicable
provided that small concentrations at early times
need not be estimated accurately. On Fig. 6 (1 - 50),
the curves for the linear-driving-force approximation
and exact solution essentially coincide, which shows
that the approximation provides an excellent estimate
for the exact solution at large values of X

Also, from Figs. 5 and 6. it can be seen that at
large X, the ean radionuclide residence time is
essentially L.le As I becomes small, the deviation
in residence times about the mean increases, but the
mean residence time remains on the order of 0m.

Finally, consider the equivalent-porous-medium
approximation. In Figs. 4-6, the approximate solu-
tion given by Eq. (26) corresponds to a vertical line
at V/X a 2 (or t - 6m). The errors associated with
equivalent-porous-medium approximations have been
discussed previously.9 The essential features of
those errors can be seen on Figs. 4-6. In partic-
ular, as breakthrough occurs (Cf/CO becomes nonzero),
the exact solution appears to be Odispersed' about
the solution for the equivalent porous medium. As I
becomes large, that apparent dispersion becomes
smaller, and at sufficiently large I and VI, would
have negligible effect on cumulative radionuclide
discharges. For example. when Y - 50, the error in
cumulative radionuclide discharges calculated using
the equivalent-porous-medium approximation will be
small provided that Y/J-ts about 2.6 or greater.
Therefore, the criterion given by Eq. (27) appears
valid provided that the time period of interest cor-
responds to Y/X less than about 1.4 or greater than
about 2.6.

APPLICATIONS

Approximate methods for calculating radionuclide
transport can be very useful in performance assess-
ment studies. The approximations described above can
easily be incorporated into transport codes and used
to obtain realistic estimates of radionuclide
releases.

transport for performance assessment studies. The
program represents s known velocity field as a simpli-
fied network of one-dimensional transport segments.
It can model the transport of radionuclide decay
chains of any length, with isotopes having different
retardation factors, and with various types of source
terms. A new version of NWFT/DVN 11 treats flow and
transport through fractured, porous media. Advection
is assumed to take place in a set of parallel frac-
tures and radionuclides diffuse Into the adjoining
rock matrix. both the linear-driving-force and the
equivalent-porous-media approximations are available
in this version of the code. The analytical solutions
derived in the previous sections were used to bench-
mark the linear-driving-force approximation of this
computer code.

Dimensionless breakthrough curves were calculated
with NWFT/DVN for several values of X using the
linear-driving-force approximation. Parameter values
used in the calculations are listed in Table III.
Two sets of calculations were carried out to deter-
mine the effect of flow velocity on the breakthrough
curves generated. In order to simulate breakthrough
for different values of ', discharges were calculated
for several values of path length x. Representative
results are compared to the exact analytical solution
Eq. (3) and the analytical solution for the linear-
driving-force assumption Eq. (16). The numerical
solution of NWFT/DVN agrees well with the analytical
solutions for both the high and low velocity cases
for K * 1 and I - SO (Figs. 1-9). In addition, the
numerical linear-driving-force approximation of "
NWFT/DVM agrees well with the exact analytical s~lu-
tion for X a 0.2 when V/ h 2.

Table III

Parameter Values fvr NWFT/CVH Calculations

Fracture Aperture 2b
Fracture Spacing 2(6tb)

Fracture Porosity #f

Matrix Porosity Om
Tortuosity *2
Molecular Diffusion

Coefficient 0
Matrix Retardation Factor Rf
Fluid Velocity v

lOO Vm
Case 1: 10 cm
Case 2: 50 cm
Case 1: 10-3
Case 2: 2x10-4
0.01
10

1.6x0- 5 cm2/s
1.0
Case 1: 10 cm/day
Case 2: 0.75 cm/day

Eqs. (24a), (24b). and (27) were used to identify
geochemical and hydrological conditions under which
the semi-infinite-medium, linear-driving-force, and
equivalent-porous-edium approximations are valid.
Fig. 10 illustrates the application of these criteria
to site-specific data for tuffl2.13 and basalt 14'15

and generic data for granite.l6 l7,18 The plotted
points bracket ranges of hydrological and geochemical
parameters that are representative of these media.
The parameter values used in constructing the plots
have been tabulated by Erickson and others.19 Lines
representing X values of 0.2, 1, and 50 divide the
graph into regions within which at least one of the
approximations will provide acceptable results. It
can be seen that for tuff, the equivalent-porous-
medium approximation should usually be valid even for
relatively thin beds (x a 30 m). For basalt and
granite, the semi-infinite-medium approximation or

The NWFT/OVM computer codel 0 was developed at
Sandia National Laboratories to simulate contaminant
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Fig. 7. Comparison of radionuclide discharges calcu-
lated with analytical exact solution and
linear-driving-force approximation when X
0.2. For cast 1, the fluid velocity
10 cm/day and the distance from the source.
x, is 36cm. For case 2, fluid velocity a
0.75 cm/day and x - 14 cm. (See Table 1II.)

the linear-driving-force approximation may be required
for most calculations.
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Fig. 10. Application of criteria to representative
site-specific data for granite, basalt, and
tuff. Numbers on lines are values of I.
Areas below lines marked '0.2' and 'SO'
correspond to conditions under which linear-
driving-force and porous-medium approxima-
tions, respectively, apply. The semi-
infinite-medium approach applies in the area
above the line marked '1'. Solid and open
symbols refer to transport distances ofrx
2000 m and x a 3D m,respectively. *
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Fig. S. Comparison of radionuclide discharges calcu-
lated with analytical exact solution and
linear-driving-force approximation for ? -
1.O. For case l, x - 180 cm; for case 2, x -
68 cm. See Table III for other parameter
values.

The results above are encouraging and indicate
that the semi-infinite-medium, linear-driving-force,
and equivalent-porous-medium approximations could be
useful for performance assessment of HLW repositories
in fractured, porous rock. The radionuclide dis-
charges calculated by the linear-driving-force approx-
imation used in the finite-difference code NWFT/DVY
agree well with those calculated using an exact
analytical solution for a range of hydrological
parameters. Furthermore, the equivalent-porous-
medium approximation could extend the results from
Sandia's Geochemical Sensitivity Analysis Program to
systems involving fractured, porous rock. However,
additional evaluation is necessary. Cases must be
examined in which the radionuclide material balances
include terms for chemical reactions, radioactive
decay, and production of nuclides. In addition, an
assessment should be made of the sensitivity of the
approximations to heterogeneities in fracture
spacing, aperture and geometry and the presence of
fracture-f11 minerals.
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- 50. For case 1, x - 90.5 ; for case 2,
x-34 a. See Table III for other parameter
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