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ABSTRACT

Three approximate methods appear useful for calculating radionuclide discharges fn fractured, porous rock:
(1) a semi-infinite-medium approximation where radionuclide diffusion rates Intc the matrix are calculated
assuming & semi-infinite matrix; (2) a 1inear-driving-force approximation where radionuclide diffusfon rates
into the matrix are assumed to be proportional to the difference between bulk concentratinns in the fracture
fluid and fn the matrix pore water; and (3) an equivalent-porous-medium approximation where radionuclide
diffusfon rates {nto the matrix are calculated assuming that the time rate of change of the hulk radionuclide
concentration in the matrix is proporticnal to the time rate of change of the radionuclide concentration 1n the
fracture flufd. A preliminary evaluation of these approximations was made by considering transport of a single
radionuciide in saturated, porous rock containing uniform, parallel fractures. It was assumed that fluid flow
was one-dimensional, the nuclide existed 2s a single chemical) species, and radioactive decay &nd production af
the nuclide were negligible. Criteria for application of each approximation were derfived in terms of funda-
menta) physicochemical parameters. For parameter values satisfying each of the criteria, the respective errors
in radionuclide discharges calculated using the approximations were examined by comparing those dischargesswith
discharges calculated rigorously. In addition, discharges were calculated with the computer code NWFT/DVM,
which was developed at Sandfa Natfonal Laboratorfes for use in performance assessment calculatfons. Agreement
among results calculated with the analytical exact solution, the analytical linear-drivingforce approximation
and the numerical linear-driving-force approximation was good for a varfety of hydrologicel conditions. The
applicability of each approximation to performance assessment for repositories in basalt, granite, and tuff was

shown using site-specific hydrologic and geochemical parameters.

INTRODUCTION

Performance assessment requires calculating radio-
nuclide discharges for many sets of conditions for
each of several scenarios. General use of rigorous
convective-diffusive transport models would be imprac-
tical for performance assessment of HLW repositories
in fractured, porous rock. While such rigorous calcu-
lations are desirable for demonstrating detatled
understanding of physicochemical phenomena, they
would be unnecessary for risk assessment 1if upper
bounds for radionuclide discharges could be obtained
from approximate models. Three approximate methods
for calculating radionuclide discharges in fractured,
porous rock can be used to minimize the number of
rigorous computations: (1) & semi-infinite-medfum
approximation where radfonuclide diffusion rates into
the matrix are calculated assuming a semi-Infinite
matrix; (2) & Vinear-driving-force approximation
where radionucl{de diffusion rates into the matrix
are assumed to be proportional to the difference
between bulk concentrations in the fracture fluid
and in the matrix pore water; and (3) an equivalent-
porous-medium approximation where radionuclide diffu-
sion rates into the matrix are calculated assuming
that the time rate of change of the bulk radionuclide
concentration in the matrix is proportional to the
time rate of change of the radionuclide concentration
in the fracture flufd.

A preliminary evaluation of each approximation
was made by considering a relatively simple system
involving transport of s single radionuclide in
saturated, porous rock containing uniform, parallel
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fractures. It was assumed that fluid flow was one-~
dimensional, the nuclide existed as a single chemical
species, and radicactive decay and productinn of the
nuclide were negligible. In the discussion helow,
the rigorous transport ecustions for that system are
described. Each approximation 1s discussed; the
corresponding transport equations are given, and
criteria for application of each approximation are
derived in terms of fundamental physica) and chemical
parameters which are amenable to measurement in the
l1ahoratory or field. For parameter values satisfving
each of the criteria, the respective errors in radio-
nucl{de discharges calculated using the approximas~
tions are examined by comparing those discharges with
discharges calculated rigorously. The applicability
of each approximation to performance assessment for
repositories in basalt, granite, and tuff is discussed
using site-specific hydrologic and genchemical
parameters.

THEORY

Radionuclide Transport fn Fractured, Porous Rock

Consider & region of saturated, porous rock con-
taining a system of uniform, parallel fractures which
divide the porous matrix into parallel flat plates
(Fig. 1). Assume that: (1) fluid flow nccurs only
in the x-direction and is negligible In the porous
matrix; (2) effects due to hydrodynamic dispersion
are negligible; () radionuclide concentrations in
the fracture fluid are uniform across the fracture
cross section; (4) Yocal chemical eouilfhriim exists
at the fracture-matrix and pore-water-matrix inter-



PR
+

faces; (5) bulk radfonuclide diffusron in the pore
water occurs only in the z-direction; (6) surface
diffusion of nuclides {n the interfacial regions
between pore water and minera) phases negligitly
affects transport in the porous matrix; (7) radfo-
nuclide sorption {s reversible and can be represented
bty Yinear isotherms; (8) collefidal transport of
nuclides is negligible; (9) radionuclides exist as a
single chemical species; (10) radioactive decay and
production of the nuclide of 1interest are negli-
gible; and (11) diffusion coefficient s a constant.
Then, the material balance for a radionuclide $n the
fracture fluid is

o le
= 1!

and in the porous matrix
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The varfous terms 4n Eqs. (1) and (2) are defined in
Table I. Appropriate initial and boundary conditions
for Eq. (1) are C¢(x,0) = 0, M(x,0) = 0, and C¢(O,t) =
Co = a constant. Appropriate conditions for Eq. (2)
are Cp(x,z,0) = 0. Cm(x.8,t) = C¢(x,t), and
p(x,0,t)/02 = The solution to Eqs. (1) and (2)
is aobtained analogous1y to Rosen's! results for packed
deds of spheres. The fracture fluid concentration
Ce(x,t) 1s given by

‘-xn (5)
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¢ = varfabTe of integration.

The integral 4n Eq. (3) must be evaluated numerically.
However, for large X, say X > 56, C¢(x,t) can be
approximated by:

Y
Celx,t) -1
'c = % 1 + erf X . (4)
0 2 X

Eq. (4) 1s obtained from Eq. (3) using the identity?

e 2 S
{e'a sin(ZnB)d‘Q "f(v)

and noting that K. = (4/3)8% and Hy + 282 as B+ 0.
2
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porous matrix

porosity ¢, porosity ¢, or b/(B+b)
pore water nuclide fluid velocity v
conc. Cy nuclide conc. C,
Fig. 1. Schematic representation of fractured, por-

ous rock. Origin of coordinate system is at
center of block of porous rock.

Approximations

General. The rigorous solution to £qs. (1) and
{(2) can be obtatned using Ouhamel's theorem €
express the term M(x,t) in €q. (1) as ]

o R
M(x,t) = Mffcf(x tLEE) 40, (5)

where H(z,t) is the solution to Eq. (2) when the sur-
face boundary condition 1s replaced by Cp(x,8,t) = 1,
In each of the three approximations, a simpler
expression for M(x,t), or aM(x,t)/at, {s substituted
for Eq. (5), or the corresponding expression for
M(x,t)/at, so that the resulting solution for Cg(x,t)
1s much simpler to obtain than Eq. (3). For conven-
{ence below, let H(t) dencte the volume-averaged
nuclide concentration 4n pore water when surface
concentration 4s unity (see Table 1), and write
Eq. (5) as

t H [
Wx,t) = .mnm{cf(x.t')ﬂﬂ;-{—l U (6)

Semi Infinite Medium. In this approximation, the
basic assumption s that the porous matrix is so large

that the concentration Cp(x,0,t) of the diffusing
nuclides can be considered negligible during the time
interval of interest. The term al/at tn Eq. (6) fis
then obtained from the soclution to the diffusion equa-
tion for semi-infinite, flat plates having unit
surface concentration. For fluid flowing between
parallel plates separated by aperture 2b, the expres-

sfon for Ce(x,t) 1s given by3
-erfc(‘é/ )

. Rx /M,
ct(x t) - erfe ¢ .
% 2bv t-5
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Nomenclature

Definition

half thickness of matrix between fractures
B+d, half spacing between fractures
half of the fracture aperture

radionuclide concentration in the fracture
fluid

radionuclide concentration in the matrix
pore water

molecular diffusion coefficient for the
radionuciide in the matrix pore water

0/aRg
solution to Eq. 2 when the surface boundary
condition is replaced by Cp(x,B,t) =1

B
%f H(z.t)dz, the volume average of H(z,t)
0

b/B, porosity associated with the fractures
matrix porosity

(o) /0,

(4g)/e,

8
R -‘B- fcmdz. the average matrix radio-
0 nuclide cencentraticn

{(1+4mpro), radionuclide retardation
factor for the porous matrix

time

mass-averaged fracture fluid velocity

spatial coordinate in the direction of the
bulk fluid motion

spatial coordinate in the direction of
diffusfon in the porous matrix

tortuosity/constrictivity factor for the
porous matrix

slope of the }inear portion of the
dimensionless.sdrption isotherm (fluid- and

solid-phase concentrations both expressed as
mass or moles per unit volume)
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The relative errors in Cs¢ which result from
using Eq. (7) rather than Eq. (3) are determined by
the corresponding errors in the value for M{x,t),
which in turn depend on the errors in the value of
afi/at. Criteria for using €q. (7) can be developed
as follows. First, consider one-dimensional diffu-
sfon into semi-infinite flat plates such as depicted
in Fig. 1, tet z' « B - 2, and Cp(2z' = 0,t) = 1,
The corresponding expressfons for H(z',t) and K(t)
are given, respectively, b

H(z',t) = erfc(—r—) (8)
2 e
and
) “et 172
H(t) = v -;E (9)

As the time interval of interest increases, the value
of H(t) determined from Eq. (9) wil) be 4ncreasingly

in error, as can be seen by inspection of the expres-
sion from the exact solution® for "short times®

ot\ |5 i n B -
fi(t) = 2 = ¢ 22 (-1)Merfef/-224\] . 10
82/ ["* a (,/Det)} * 0o

Let H, and He denote the values of H obtained
from Eqs. (9) and (10), respectively, and Vet Fy =
(aHa/at)/(alg/at). EQ. (6) then can be written as

. t f
' 1 ]aﬂa(t-t‘) [
M(x,t) = omamfc,(x.t )[F‘(t-t')J . at
(]

(1a)
and by the mean value theoremb
ot f‘ (-t
M(x,t) = E-?E:;T Cf(x.t )-—esi-- dt
2 ° (11b)

where 0 < m < t. The term Fg(t-n) = Fy represents
some mean value of Fa(t-t'). By definition

Fa21.
When Fy = 1,
t afi_(t-t*)
M(x,t) = .mnm{cf(x.t')J;t— dat' (12)

and when Fy > 1, the ratio of approximate to exact
values of _M(x,t) is given by Fg. Since Hy, Hg,

3 /at, aHg/at, and Fy are sing‘e-va!ued functions of
t, a one-to-one relat’onship,gzists between F, and
He. Values of Fy as a function of Fg are shown in
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Fig. 2. For He < 0.5, F3 = 1, while for Fe > 0.5, Fy
Ancreases wmonotonically and becomes large for

He > 0.8. The value of Fy will be between zero and
the value of Fa(He) corresponding to time t. For pur-
poses here, it appears reasonable to estimate F, by
the average Fy of Fy with respect to Hy, that is

-~

. R

- - 1 e
F:(K.) - f.(He) = i; ( F.(N)dH {(13)

Values of F, also are shown in Fig. 2. When H, < 0.5,
the values of both F, and F, are about 1.0. When

0.5 < e < 0.7, the value of F, 4s about 1.0, and F

1s 1.2 or less. When 0.7 < Fg < 0.92, the value of F,
is between about 1.0 and 1.2, and Fy s between 1.2
and 2.8. When Mg > 0.92, Fy and especially Fy become
large. Therefore, when He < 0.5, the ratfo of approx-
imate to exact values of M(x,t) from €qs. (12) and (6),
respectively, would be about 1.0. When 0.5 < H, < 0.7,
the ratio would be about 1.0 and would not be greater
than 1.2. When 0.7 < Hy < 0.92, the ratic would be
about 1.2 or less and would not be greater than 2.8.

[ I T T {
3.0 |- -
u® 2.8 -
=)
=
<
w2 -
1.8 -
1.0 l
0.4 1.0
H,
Fig. 2. Values of Fy and F, versus H,.
Criteria for applying the semi-infinite-medium
approximation, that is, calculating W(x,t) from

€qs. (12) and (8) rather than Eqs. (6) and (10), will
depend on the errors which are acceptable in M(x,t)
and in calcuylated radionuclide discharges. when
solving Eq. (1) with either approximate or exact
expressions for M(x,t), those expressions actually
appear as M(x,t - x/v),} since Ce(x,t) = 0 4f t < x/v
and only convective transport occurs fin the
x-direction 1n the fractures. To examine errors
between approximate and exact solutions, the value
for N should correspond to the contact time t* =
t - x/v rather than the elapsed time t. Conditions
under which the semi-inifinite-medium approximation
are useful could be defined in terms of t*. However,
the use of maximum mean radfonucliide contact time
would lead to criteriz which are more restrictive and
conservative.

Let op denote the maximum mean radionuclide
residence time along the flow path of interest. In
which case, 6y corresponds to the fracture fluid
and pore water being in equilibrium with respect to
radionucliide diffusfon. As discussed later, op
is given by ey = (x/v)Rs, where x corresponds to the

| —

flow path length, and R¢ s the radionuclide retar-
dation factor for the fracture fluid and is given by
Rf = 1 + MgenRp. By analogy with t*, define the con-
tact residence time oy as Oy - x/v.

First, consider cases where t* < ep. From
Table II, e < 0.5 when D t*/B2 < 0.2, W, < 0.7 when
Det*/B2 < 0.6, and A < 0.92 when Dot*/B¢ < 1.0. 1f
en < 0.282/0,, then 6 < 0.2 B2/0, for al1 x. and
perturbations in radionuclide concentrations would be
exposed to an essentially semi-infinite porous matrix
for which Fy » 1.0 » F, throughout. Radionuclide
discharges then could be obtained from Eq. (7). If
0.2 < 6n(B2/D,) < 0.4, perturbations in radionuclide
concentrations would be exposed to & porous matrix
for which F, < 1.2 and Fy « 1.0. Again, radionuclide
discharges could be obtained from £q. (7); however,
as t and 6y approach 0.482/0,, small relative errors
in M{x,t) and, therefore, in values of C¢/Cp should
be expected since F; will be greater than 1.0 for
some values of x. If 0.4 < e;/(B2/0,) < 1.0, pertur-
bations in radionuciide concentrations would be
exposed to a porous matrix for which F3 < 2.8 and
Fa € 1.2. The relative errors in radionuclide dis-
charges obtained from €q. (7) would correspond to rel-
ative errors in the value of M({x,t) which are of the
order of 20 percent as t and €y approach 1.082/0,.

Table 1II .
.
Values of ﬁe(t) Versus n.t/az .
p_t/8? (1) o_t/82 A (1)
e e ¢ e
0.0001 0.00 0.09 0.34
0.001 0.04 0.10 0.36
0.003 0.06 0.20 0.50
0.005 0.08 0.30 0.63
0.008 0.10 0.40 0.70
0.01 o.Nn 0.50 0.7¢
0.02 0.16 0.60 0.81
0.03 0.20 0.70 0.86
0.04 0.23 0.80 0.89
0.05 0.25 0.90 0.91
0.06 0.28 1.00 0.93
0.07 0.30 1.50 0.98
0.08 0.32 2.00 0.99

Next, consider cases where t* > en. For a given
ratic of en/(B2/D,), values of Fy will be larger than
when t* < 6. Relative errors 1in M{x,t), and the
corresponding errors in radionuclide discharges, also
should be larger. However, the radionuclide flux,
-DgaH(0,t)/3z', 1s proportional to 14/t, which follows
from €q. (8). Therefore, while the relative error
associated with the semi-infinite-medium approxima-
tion Iincreases, the relative amount of the radio-
nuclide diffusing into the porous matrix decreases,
thereby reducing the overall effect that those errors
have on radionuclide discharges. In examples given
later, it is shown that when t* > ep, the relative
errors in radionuciide discharges do not increase
appreciadly beyond those corresponding to t* = 6p.

1f only small relative errors in calculated radio-
nuclide discharges are acceptable, the criterion for
applying the semi-infinite medium approximation is
om = (x/v)R¢ € 0.2 82/D, or,
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Often, ¢f << 1, and ¢y > ¢f. Under those condi-
tions, Rf = MeemRpm Since Ry 2 1. Then, the
criterion for applying the approximation can be

written as
<g5>Mf°m'
< 0.2

2

% o mfomkmx .

{(14a)
sz vB

when only small relative errors are acceptadle.

However, 1t seems reasonable to define g less
restrictive criterion. Parameter values 4n the
expression for M{x,t) may often {nvolve uncertainties
of 20 to 30 percent or greater, which resylt from
inherent wvariztions in the physical and chemical
properties of geomedia. If the criterion oy =
(x/V)R¢ < 82/D 1s used, relative errors in M(x,t)
would be on the order of 20 percent for t < ép,and are
similar to, or less than, possible uncertainties in
parameter values. Hence

Lm
‘ ! ¢_X
. °e”f’m“mx . 2/ f'm <

(14b)
vaz v82

when relative errors of about 20 percent in M(x,t)
and the corresponding errors in calculated discharges
are acceptable.

Linear Oriving Force. In the usual form of this

approximation, the radicnuclide flux intc the porous
matrix §s assumed to be proportionz) to the differ-
ence between the surface and average matrix concen~
trations, and the approximation expressed as

g% ~ ka (6 R Cp - M) Qas)

where an is the surface are2 of the porous matrix
contacting the fracture fluid per unit volume of
matrix, and k is 2 constant mass transfer coefficient
which is evaluated analytically below. When Eqs. (1)
and (15) &re solved, the resulting expresston for
Ce(x,t) is

Colx.t)
Co

n
. )(n,m) =. "-'e'“ffe’alo(zﬁ)as (16)
()

where -

i

k¢ R m
fe ‘ma% [

(-

and B 1s again a varfable of integration.? values of
the function J(n,m) have been tabulated extensively,

~—
:nd for nm > 3600 the function s given approximately
y

Hn.m) = 1 erte(f -vm) . an

In these analyses, the term aH/at 1in Eq. (6) was
approximated using a Vinear-driving-force expression
for diffusion into flat plates having unit surface
concentration, that f{s

Berg0 -0 . (e
For H(0) = 0,
He=?- exp(-ka_t) (19)
and
9 - ke exp(-kagt) . (20)
’
Substituting Eq. (20) into EQ. (6) glves ]

t
M(x,t) = omkm{cf(x.t')(kam exp[-ka (t - t')]1de’
(21)

and it can be verified by differentiation that
Eg. (21) satisfies €g. (15) when M{x,0) = 0, so that
the solution for Ce(x,t) from Eqs. (V1) and (21) is
given by £Eqs. (16) and (17).

To evaluate the mass transfer coefficient k,
substitute for H(t) the "long-time® infinite series
solutiond given by

Aty =1 -y —E > exp (22)

n.°(2n+1) - 48

-0, (241 )212t]
)

The resulting expression for M(x,t) is

t - 2.2
20 -D_(2n+1)°n’t
H(x,.t) = ¢man{c,(x.t')l;f?:-oexp[—!—‘T-—]}at' )

(23)

Now, let k = 2yDya/B, where y is a numerical constant,
and note that ay, = 1/8. Comparing Eqs. (21) and (23),
it can be seen that for an appropriate value of vy,
on the order of 1 to v2/6, £q. (21) should provide a
reasonable approximation for €q. (23) when o,t/B2 is
large enough so that the series in Eq. (23) can be
truncated after the first term. A value for the
constant y can be obtained as follows.
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Let Ky and Fg denote the values of H obtatned
from Eqs. (19) and (22), respectively; let

g

ﬂ
oW
at

and again apply the mean value theorem to Eq. (6).
The ratio of approximate to exact values of M(x,t)
from Eqs. (21) and (23), respectively, is given by
the term Fp defined analogously to Fa above. For
very smal) 0,t/62, corresponding to small F,, Fp = O.
As 0.t/82 increases, and W, approaches unity, Fp will
increase to some finite value which depends on the
constant y.

For a given value of v, it appears reascnable to
estimate Fy by the average Fp of Fy with respect to
He, that 1s

Fe g }.‘r(i)aﬁ
b F;o b

values of Fp as a function of H, are shown on Fig. 3
for vy = 1.0, 1.25, 1.50, and 2.0. Since the values
of Fp corresponding to y = 1.5 show the least average
relative deviation adbout 1.0, the value for y was
taken as 1.5, from which k = 2yDe/B = 304/8.

0 ] ! ] |

° 04 _ 0.8
He

Fig. 3. Values of Fy versus Hy (numbers on curves
are values for numerical constant y).

Criteria for applying the linear-driving-force
approximation, that 1s calculating WM(x,t) from
£q. (21) with k = 3D,/8, will depend on the errors
which are acceptable in M(x,t). To define those

—

criteria, 1t 1s initially assumed, and later veri-
fied, that when the Yinear-driving-force approxima-
tion applies, the mean radionuclide residence time s
given approximately by the maximum mean residence
time op defined above. Again, let t* =t - x/v
and Op = 6y - x/v. First, consider cases where
t* > 6y. From Fig. 3 (y = 1.5), Fy » 1.0 when
Fie 2 0.7 or Det*/B2 2 0.5 (Tadle I?). If radionuclide
rssidence times do not vary greatly about &, and {f
6 2 0.582/0,, perturbations in radfonuclide concen-
trations uousd be exposed to & porcus matrix through-
out which F = 1.0. For some cases, radionuclide
residence t?mes will vary significantly about the
mean. 1If only small errors in radionuclide dis-
charges are acceptable, & more conservative criterion
Om

1s oy > B2/D, or
Lan
o.mé R x 2 Pebn*
x.-tloe —21 . (242)
v8 vB

It seems reasonable to aV1s¢ define a less restric-
tive criterion since, as mentioned previously, param-
eter values 1n the expression for M(x,t) may often
involve uncertainties of 20 to 30 percent. From
Fig. 3, Fp > 0.7 when He > 0.36 or Det*/82 > 0.1
(Table I1). —Therefore, 1f & > 0.182/0g, perturba-
tions in radionuclide concentrations would be exposed
to a porous matrix throughout which 0.7 < Fp < =#.0.
The relative errors in M(x,t) would be similar tea or
Tess than uncertainties in parameter values. Again,
allowing for variations 4n radionucliide residence
tlmes about ey, & reasonable criterion would be
en > 0.282/0, or

'
_ Demfomnmx 2 Rl
-—-—-2——-—%-—2-—30.2 . (24b)
vB vl

when errors of 20 to 30 percent in M(x,t) and the
corresponding errors in C¢/Cg are acceptable.

Now consider cases where t* < en. For a given
ratio 0.6n/82, the values of Fp will decrease as
Det*/82 becomes less than 0.5, while the relative
errors in M(x,t) and the corrssponding errors in
Cf(l.t)/t? will increase. If D.6;/B2 is large, those
errcrs will occur when C¢/Co = 5. since for a reason-
able variation in radionuc1?de residence times about
Oms Cilco will be negligible when t* << op. If
0e6n/B¢ 1s of the order of 1 or less, relative errors
in M(x,t) and C¢(x,t)/Cg will occur when values of
C¢/Co are significantly greater than zerc. Therefore,
when oy s large, the criteria given by Eqs. (242)
and (24b) 3hou1¢ be applicable for any value of t.
When Dgo0n/B21s of the order of 1 or less, the criteria
are afsa applicable, but the errors in radionuc)ide
discharges calculated using the approximation will
increase substantially as Dot*/B2 becomes less than
about 0.2.

Equivalent Porous Medium. 1In this approximation,

it 1s assumed that relaxation times, denoted by tp,
for perturbations in radionuclide concentrations in
the porous matrix are small relative to the time scale
of interest. This assumption implies that the frac-
ture fluid and porous matrix are in local equilibrium
with respect to radionuclide diffuston. In which
case, F(t) in €q. (6) approaches unity during & time
interval which 1s less than the time reguired for
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Cs(x,t) to change appreciably, and M(x,t) =
oRaCe(x,t), which is cbtained by integrating by parts
in Eq. (6) and noting that Cg(x,0) = O = R(0) for
x>0. Eqs. (1) and (2) reduce to a single equation
involving only C¢

ac ac
gt
it tR ™ 0 (25)
which has the solution
R.x
- D g
cf(x.t) cos(t v ) (26)

where S(t) denotes the Heaviside unit step function.

cre,

Fig. 4, Co?paris:n of radio?uc\ide discharqeslcal-
The validity of the equivalent-porous-medium culated from approximate and exact solutions
approximation depends on the relaxation time t, when X = 0.2 (e, 1, and s denote results for
and the mean radionuclide residence time. Define t* exact solution, linear-driving-force approxi-
and o as above. Again, assume that the mean radic- ”‘t‘°""'“$ semi-finite-medium approximation,
nuclide residence time 1s approximately the maximum respectively).
residence time 1f t, << 6n, then perturbations
in radionuclide concentrations would te exposed to
fracture fluid and porous matrix near equilibrium, 1.0 T ———T T T —
For purposes here, take t, as the time required for
H(t*) to become approximately unity. From Table II,
t, = 282/D,, and a criterion for applying the o8 - -
equivalent-porous-medium approximation is oy = a
(x/v)(Rg-1) >> tp = 2B2/D,. Allowing for perturba- o6k of .
tions in concentration and heterogeneity in the sys- ’ s .
tem, a reasonable criterion would bed C/C,
0.4f .
o R=1
% ] lnfomnmx 2 Mot s 50 - o.z-' -
. = -s————-z = —&_—-2 > . ) ..
vB vB |
0 1 1 1 i 1 —
0 2 ¢ 6 8
Provided that the above criterion is satisfied, the YIx
mean radionuclide residence time do:s correspond to
the maximum residence time since the porous
matrix and fracture fluid eggentiaIIy are near Fig. S. go:g:r:::: :f ::::°":°‘1d: "’2:"’:‘t§';°“'
equilibrium. The actual errors in Ce(x,t) which vhen K oo e e denote re te
result from applying the egquivalent-porous-medium en 1 " ("]1' anc s dencte resuiis for
approximation are discussed below. exact solution, near-driving-force approxi-
mation, and semi-finite-medium approximation,
EVALUATION OF CRITERIA AND APPROXIMATIONS respectively).
To evaluate the above approximations, dimension- 10 T T T T
Tess breakthrough curves, Cyg/Co versus f/i were cal-
culated using each of the three approximations. The esk 4
approximate curves were then compared with the exact
solution given by Eq. (3). The infinite integral in
Eq. (3) was evaluated numerically wusing the method e 'l Ny
discussed by Rasmuson and- Neretnieks.® Results for &
X = 0.2, 1.0, and 50 are shown on Figs. 4 through 6, sl -
respectively. For convenience 4n discussing these
results, nots that (t - x/v)/(82/0,) = ¥/2 and w2h -
(6 ~ x/v)/(8S/0¢) = X; therefore VA -
2(t - x/v)/(6y - 2/¥) = 2t*/6y. . - , \ \
[ ] L [ ] [ ]
First consider the semi-infinite-medium approxi- 754
mation. Fig. 4 shows that for X = 0.2, the approxi-
mation provides an_excellent estimate for the exact Fig. 6. Comparison of radionuclide discharges calcu-

solution when Y/X 1s less than 3, and at larger
values of Y/ the relative errors in C¢/Cq due to the
approximation are small. Therefore, the more restric-
tive criterton given by Eq. (14a2) appears valid, and
as previously predicted, the errors resulting from
using the approximation are not significant until

Tated from approximate and exact solutfons
when X = 50 (e, 1, and s denote results for
exact solution, Vinear-driving-force approxi-
mation, and semi-finite-medium approximation,
respectively).
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t > 6y (t = 6y when Y/X « 2). Fig. 5 shows that for
X = 1.0, the approximation provides an excellent
estimate for the exact solutfon when ¥/K < 1. As ¥/X
approaches 2 (or t/éy = 1), the relative error between
approximate and exact solutions 4s about 20 to
30 percent, which is consistent with the errors
previously predicted. Furthermore, the relative error
does not tncrease appreciably as Y/X (or t/ey) becomes
Jarge. Therefore, the less restrictive criterion
given by £q. (14b) appears valid, provided that the
resulting errors in M and C¢/Cp are acceptadble. For
¥/X > 1, C¢/Co is underestimated because M is_over-
estimated. gig. 6 (X = 50) shows that as X becomes
large, the semi-infinite-medium approximation becomes
unacceptable.

Hext, consider the linear driving force approxi-
mation.
mation provides a reasonable estimate for the exact
solution when ¥/X 1s about 0.4 or greater, and the
less restrictive criterion given by Eq. (15b)
appears valid, provided that ¥/X > 0.4 (or
t%/(B2/Dg) > 0.08). Figure 5 shows that when
X =1, the Vinear-driving-force approximation
provides a very good estimate for the exact solution
when 7/X 4s again about 0.4 or greater. At lesser
values of Y/X, the relative error between approximate
and exact solutions increases substantially, but the
actual concentrations Cg/Cq from efther solution
are small, Therefore, the more restrictive criterion
given by Eq. (15a) should be generally applicable
provided that small concentrations at early times
need not be estimated accurately. On Fig. € (X = S0),
the curves for the linear-driving-force approximation
and exact solution essentially coincide, which shows
that the approximation provides an excellent estimate
for the exact solution at large values of X.

Also, from Figs. 5§ and €, 1t can be seen that at
large X, the wean radicnuclide residence time is
essentially em.‘ As X becomes small, the deviation
in residence times about the mean increases, but the
mean residence time remains on the order of 6.

Finally, consider the equivalent-porous-medium
approximation. In Figs. 4-6, the approximate solu-
tion given by Eq. (26) corresponds to & vertical line
at ¥/X = 2 (or t = o). The errors associated with
equivalent-porous-medium approximations have been
discussed previously.9 The essentia) features of
those errors can be seen on Figs. 4-6. In partic-
ular, as breakthrough occurs (C¢/Co becomes nonzero),
the exact solution appears to be "dispersed® about
the solution for the equivalent porous medium. As X
becomes large, that apparent dispersion becomes
smaller, and at sufficiently large X and ¥/X, would
have negligible effect on cumulative radionuclide
discharges. For example, when X = 50, the error in
cumulative radionuclide discharges calculated using
the equivalent-porous-medium approximation will be
small provided that ¥/X-is about 2.6 or greater.
Therefore, the criterion given by Eq. (27) appears
valid provided_that the time period of interest cor-
responds to Y/X less than agbout 1.4 or greater than
about 2.6.

APPLICATIONS

Approximate methods for calculating radionuclide
transport can be very useful in performance assess-
ment studies. The approximations described above can
easily be incorporated into transport codes and used
to obtain realistic estimates of radionuclide
releases. :

The NWFT/OVM computer codel0 was developed at
Sandia National Laboratories to simulate contaminant

figure 4 shows that for X = 0.2, the approxi-

, .
transport for performance assessment studies. The
program represents & known velocity field as a simpli-

“fied network of one-dimensional transport segments.

It can wmodel the transport of radionuclide decay
chains of any length, with isctopes having different
retardation factors, and with various types of source
terms. A new version of NWFT/DVM! treats flow and
transport through fractured, porous media. Advection
is assumed tc take place in a set of parallel frac-
tures and radionuclides diffuse into the adjoining
rock matrix. Both the Vinear-driving-force and the
equivalent-porous-media approximations are available
in this version of the code. The analytical solutions
derived in the previous sections were used to bench-
mark the linear-driving-force approximation of this
computer code. .

Dimensionless breakthrough curves were calculated
with NWFT/DVM for several values of X using the
1inear-driving-force approximation. Parameter values
used in the calculations are 1isted in Tadble III.

Twe sets of calculations were carried out to deter-
mine the effect of flow velocity on the breakthrough
curves generated. In order to simulate breakthrough
for different values of X, discharges were calculated
for several values of path length x. Representative
results are compared to the exact analytical solution
Eq. (3) and the analytical solution for the linear-
driving-force assumption Eq. (16). The numerical
sclution of NWFT/DVM agrees well with the analytical
solutfons for both the high and low velocity cases
for X = 1 and X = 50 (Figs. 7-9). 1In addition, the
numerical Yinear-driving-force approximation of ¥
NWFT/0VM agrees well with the exact analytical s®lu-
tion for X = 0.2 when ¥/X > 2. .

Table 111
Parameter Values for NWFT/0VM Calculations

Fracture Aperture 2b 100 ym
Fracture Spacing 2(B+b} Case 1: 10 cm
Case 2: 50 cm
Fracture Porosity ef Case 1: 10-3
Case 2: 2x10-4
Matrix Porosity em 0.01

Tortuosity a2 10
Molecular Diffusion
Coefficient D 1.6x10-5 em2/s
Matrix Retardation Factor Ry 1.0
Fluid velocity v Case 1:
. Case 2:

10 cm/day
0.75 cm/day

Eqs. (242), (24b), and (27) were used to identify
geochemical and hydrological conditions under which
the semi-infinite-medium, Vinear-driving-force, and
equivalent-porous-medium approximations are valid.
Fig. 10 11lustrates the applic?tion of these criteria
to site-specific data for tuffi2.13 *nd basaltl4,15
and generic data for granite.16.17,18 The plotted
points bracket ranges of hydrological and geochemical
parameters that are representative of these medis.
The parameter values used in constructing the plots
have been tabulated by Erickson and others.19 Lines
representing X values of 0.2, 1, and 50 divide the
graph into regions within which at least one of the
approximations will provide acceptable results. It
can be seen that for tuff, the equivalent-porous-
medium approxtmation should usually be valid even for
relatively thin beds (x = 30 m). For basalt and
granite, the semi-infinite-medium approximation or
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Fig. 7. Comparison of radionuclide discharges calcu-
lated with analytical exact solution and
1inear-driving-force approximation when X =
0.2. For case 1, the fluid velocity =
10 cm/day and the distance from the source,
x, s 36cm. For case 2, fluid velocity =
0.75 cm/day and x = 14 cm. (See Tadle III.)
.8 T -y T

Ler0
[ ¥ ¥ 3 F
[ X} 3 r
e
(%
(733 o 4
D -— RXACY ANALYVICAL
we= LINEAR-DRIVING PORCE ANALYTICAL
» » LINEAR-ORIVING PORCE RWFT/DOVM,
R e CASE 1
:'l = e&::ltm PORCE NWFT/DVM,
.0 1:. lf. I:l :;: .:O ‘:. 1:. .8

Fig. 8. Comparison of radionuclide discharges calcu-
lated with analytical exact solution and
14near-driving-force approximation for X =
1.0. For case 1, x = 180 ¢m; for case 2, x =

" 68 em. See Table 111 for other parameter
values.
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Fig. 9. Comparison of radionuclide discharges calcu-
lated with analytical exact solution and
Vinear-driving-force approximation for

X = 50. For case 1, x = $0.5 m; for case 2,
x=34 m. See Table II1 for other parameter

values.

the linear-driviﬁE:force approximation may be required
for most calculations.

1m0 "0 108 0t
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10" s0t 1 0

100
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Fig. 10. Application of criteria to representative
site-specific data for granite, basalt, and
tuff. WNumbers on lines are values of X.
Areas below 1lines marked ‘0.2’ and 'S0’
correspond to conditions under which linear-
driving-force and porous-medium approxima-
tions, respectively, apply. The semi-
infinite-medium approach applies in the area
above the line marked '1'. Solid and open
symbols refer to transport distances ofex =
2000 m and x = 30 m, respectively. .

CONCLUSIONS AND RECOMMENDATIONS

The results above are encouraging and indicate
that the semi-infinite-medium, linear-driving-force,
and equivalent-porous-medium approximations could be
useful for performance assessment of HLW repositories
in fractured, porous rock. The radionuclide dis-
charges calculated by the 1inear-driving-force approx-
imation used in the finite-difference code NWFT/DVM
agree well with those calculated using an exact
analytical solution for & range of hydrological
paramaters. Furthermore, the equivalent-porous-
medium approximation could extend the results from
Sandia‘'s Geochemical Sensitivity Analysis Program to
systems involving fractured, porous rock. However,
additional evaluation is necessary. Cases must be
examined in which the radionuclide material balances
include terms for chemical reactions, radicactive
decay, and production of nuclides. 1In addfition, an
assessment should be made of the sensitivity of the
approximations to heterogeneities in fracture
spacing, aperture and geometry and the presence of
fracture-f111 minerals.
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