

Recent Results and Future GSI-191 Research

Bruce Letellier Design Safety and Risk Analysis Group

Los Alamos National Laboratory

NEI PWR Sump Performance Workshop Baltimore, Maryland July 30-31, 2003

NEI PWR Sump Performance Workshop July 30 – 31, 2003

Outline

- Future Research Plans
 - Latent Debris Characterization
 - Additional Head-loss Testing
 - HPSI Throttle Valve Blockage
 - Sump Screen Debris Penetration
 - Surrogate Chamber Blockage

Recent Results

- Chemical Test Program
 - Review of Concerns and Test Procedure
 - Review of Previous Results
 - Head-loss from metallic precipitants
 - Low-temperature zinc corrosion
 - Discussion of new Results
 - High-temperature zinc corrosion
 - Corrosion product composition
 - Zinc paint chip leaching
 - Non qualified paint immersion
 - Debris-bed degradation

Future Research Projects (1)

Latent Debris Characterization

– Objectives:

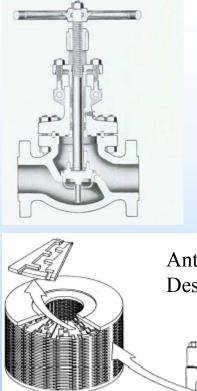
AR REGU

- Plant-wide inventory based on condition assessments
- Physical characteristics
 - fiber/particulate mass ratio
 - size ranges for transportability
- Hydraulic properties
 - specific surface area
 - porosity
- Procedure: (under development)
 - Microscopic physical examination
 - Pre-filter fiber from particulate
 - Surface area measurement by nitrogen condensation
 - Porosity by micro head-loss measurement
- Scope: Approximately 5 samples from 5 volunteer plants
- Status: Preparing to receive samples from first 2 volunteers

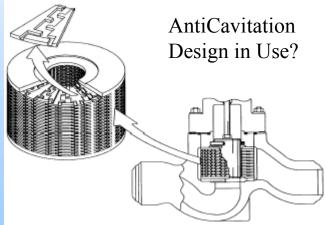
Define a 'recipe' for PWR dirt surrogate that can be produced in quantity for large-loop head-loss testing

Future Research Projects (2)

- Additional Large-Loop Head-loss Tests
 - Fill gaps in earlier Cal-Sil test data
 - High flow rate compression
 - Low flow rate hydraulic parameters
 - Confirm large-loop head-loss properties of surrogate PWR debris
 - Characterization project will provide physical description of a appropriate surrogate test material
 - Identify any discrepancies between PWR surrogate and typical fiber/particulate combinations



Future Research Projects (3)


HPSI Throttle Valve Blockage

- Sump-screen debris penetration
 - Horizontal Flume with typical screen sections and downstream capture system
 - Separate debris types and combinations
- Valve chamber blockage tests
 - Design surrogate valve bodies and/or obtain substandard valves
 - Design pressurized pumping system or charging tank for ? P
 - Introduce 'penetrable' debris in pressurized flow and examine internal blockage mechanisms
 - Geometric and/or Buildup

Basic Globe Valve design may be manual, pneumatic or hydraulic

Variety of seat and seal designs

A REG

NEI PWR Sump Performance Workshop July 30 – 31, 2003

HPSI Valve Operating Conditions

Plant Design Type	HPI Pump Head, psig	HPI Pump Flow, GPM ¹	
$W = 2 \text{ Loop } (\text{low flow})^2$	1170	300	
$W = 2 \text{ Loop (high flow)}^2$	1750	700	
$W = 3 \text{ Loop (low flow)}^2$	2514	150	
W – 3 Loop (high flow) ²	1750	375	
$W = 4 Loop (low flow)^2$	1170	425	
W - 4 Loop (high flow) ²	1235	800	
Commanche Peak $(W - 4 \text{ Loop})^3$	715	650	
$CE - 2 Loop (low flow)^2$	1214	150	
$CE - 2 \text{ Loop (high flow)}^2$	1227	415	
$CE - 3 Loop^2$	2850	150	
$B\&W - 2 Loop (low flow)^2$	2514	150	
B&W – 2 Loop (high flow) ²	1170	500	

- Need to know maximum pressure drop when HPSI valve is in use
 - Defines max pressure for debris integrity considerations
 - •Defines safety requirements of test apparatus
- ? P may not be as extreme as available pump head
- Flow volume and turbulence may be more important for some types of debris

¹flow at stated head (rated conditions)

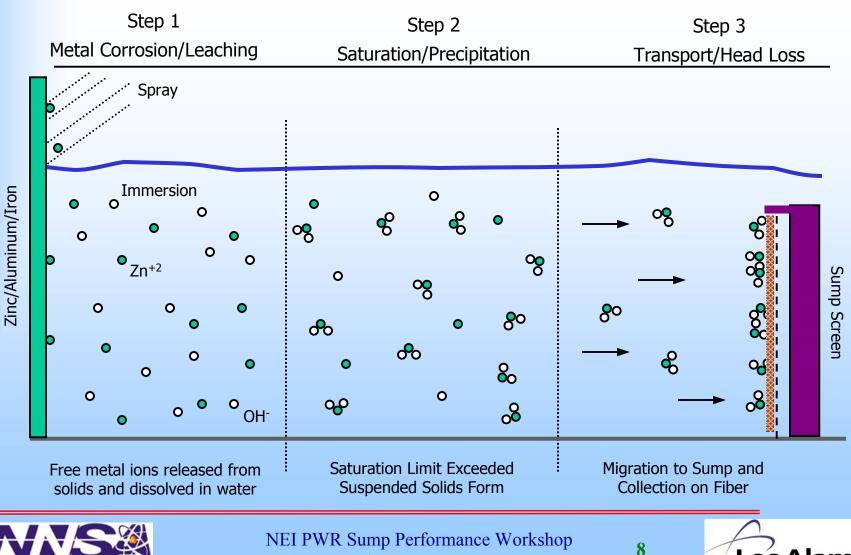
²Source: NUREG/CR-5640, "Overview and Comparison of U.S. Nuclear Power Plants

³Source: Commance Peak Nuclear Plant FSAR

NEI PWR Sump Performance Workshop July 30 – 31, 2003

Chemical Effects Test Objectives

- Motivation:
 - ACRS concern regarding "gelatinous" material reported in TMI containment
 - Estimates of bulk corrosion using previously reported corrosion rates
- Scope potential chemical/temperature induced degradation mechanisms contributing to debris generation and head loss
- Investigation tasks:
 - Review existing literature and establish chemical test conditions
 - Corrosion of metals with precipitation of flocculant
 - Rate of corrosion for iron, zinc, aluminum
 - Head-loss effects of chemical precipitation
 - Chemical degradation of fibrous debris beds leading to slow compaction and increasing head loss (none observed in one pre-immersion fiber test)
 - Degradation nonqualified coatings (none observed in one 6-day test)



National Nuclear Security Administration

Corrosion/Precipitation Concern

July 30 – 31, 2003

O

Summary of Results

- Metal corrosion credible for exposure to borated cooling water
 - UNM tests confirm literature reports at low temp
 - High-temp immersion tests inconclusive
 - Max rate (0.04 g/hr/m²) 4 times higher than low temp rate (0.01 g/hr/m²)
 - MUCH lower than reported max rate of (11.3 g/hr/m^2)
 - Secondary corrosion observed but no precipitation
- Low solubility can lead to precipitation at low concentrations
- Precipitated flocculant can induce significant head-loss in combination with fiber debris beds
- Plant vulnerability depends on:
 - Ultimate formation of the flocculant (not confirmed)
 - Surface area of exposed metal and exposure time
 - Post-LOCA chemical balance

LOCA Chemical Conditions

Parameters	T = 0 sec	T = 10 sec	T = 23	T = 15 min	T = 24 hr	T = 48 hr
Lithium (ppb)	1400	1400	1400	630	115	115
Borate (ppm)	800	800	800	1400	2070	2070
Temperature °C (°F)	40 (104)	124 (255)	128 (262)	118 (244)	63 (145)	63 (145)
рН	7.7	7.0	7.2	8.4	7.9	7.8

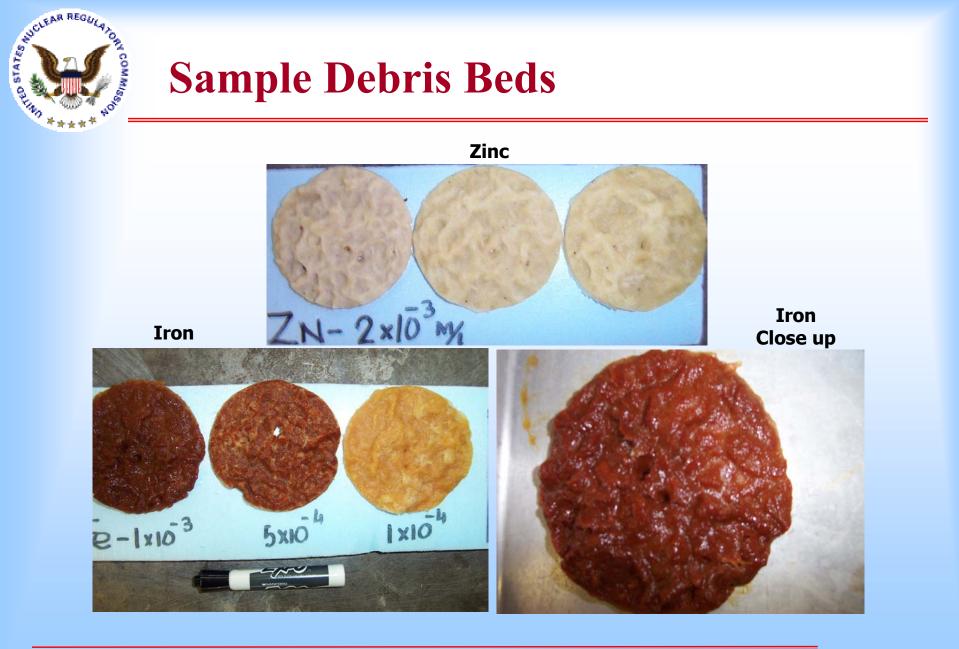
• Radiolytic and thermal decomposition products evolved in severe accident scenarios *not* considered as precursor to sump failure

• Phosphate baskets designed for iodine sequestration not utilized in all plants, so not considered for test chemistry

Head-loss Test Apparatus

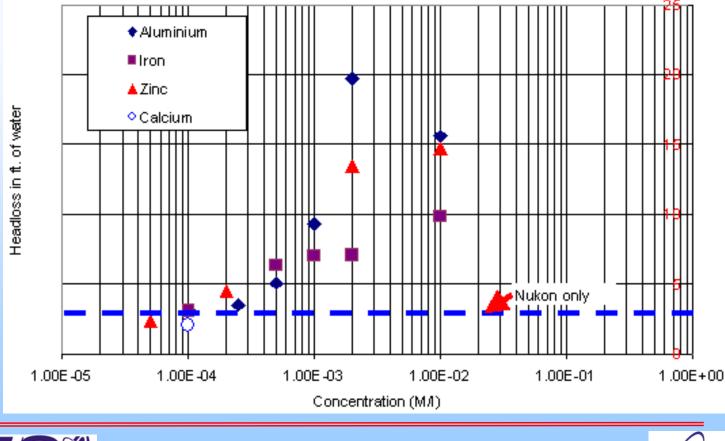
- Diameter 1/3 of large setup
- Flow meter has 20gpm max
- 10 liter total volume
- Online temperature probe
- Flow valve in the pump outlet
- Continuous pH control
- Pump heats water to ~47 °C
- Replicate measurements with tap water and fiber confirm same response between large and small loops

NEI PWR Sump Performance Workshop July 30 – 31, 2003



Head Loss in Different Chemical Environments

- Tests done in deionized water supplemented by strongly buffered stock solution of boric acid and lithium hydroxide (some Calcium hydroxide [Ca(OH)₂] added to simulate concrete ablation)
- Fiber bed established
- Metallic salts (representative concentrations) used to <u>artificially</u> induce precipitation
 - Iron nitrate nanohydrate [$Fe(NO_3)_3 \cdot 9H_2O$]
 - Aluminum nitrate nanohydrate [$Al(NO_3)_3 \cdot 9 H_2O$]
 - Zinc nitrate hexahydrate [$Zn(NO_3)_3 \cdot 6H_2O$]
- Head loss measurement


NEI PWR Sump Performance Workshop July 30 – 31, 2003

Head-Loss Observations

Headloss with chemical concentration at pH=7

NEI PWR Sump Performance Workshop July 30 – 31, 2003

14

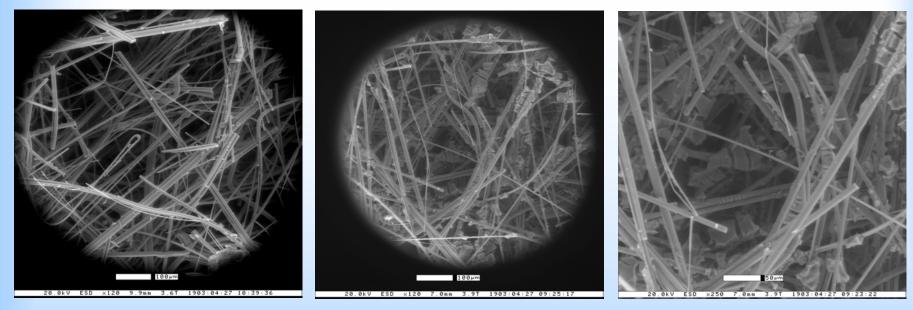
Los Alamos

NATIONAL LABORATORY

Engineering Chemistry Facts

- Atomic Weights:
 - Al = 27 g/mole
 - Fe = 56 g/mole
 - Zn = 65 g/mole
- 10⁻⁴ M (moles/liter)
 - Al = 23 lb/10⁶ gal
 - Fe = $47 \text{ lb}/10^6 \text{ gal}$
 - Zn = 55 lb/10⁶ gal

- Threshold of measurable ΔP increase at 10⁻⁴ M
- 7 to 10 ft of additional head loss at 10⁻³ M
- 10⁻³ M (moles/liter)
 - Al = 0.27 g/10 liter
 - Fe = 0.56 g/10 liter
 - Zn = 0.65 g/10 liter
- Thresholds for precipitation *may not* be independently additive
- Poor solubility of metals reaches saturation at low concentration
- Aluminum nitrate commonly used as water clarity coagulant
- Head-loss *much* more severe than equal mass of particulate
- Electrochemical binding of water molecules displaces large volume



ESEM Images of Dry Samples

Pure Fiber

Iron Bed

Iron-bed Close Up

Apparent adhesion of amorphous material may not permit application of NUREG 6224 head-loss correlation

NEI PWR Sump Performance Workshop July 30 – 31, 2003

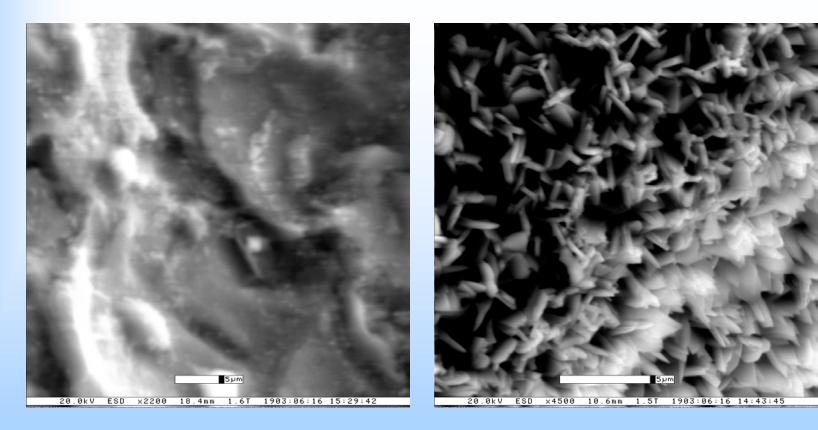
CHIRD *****

Dissolved Metal Source Terms (Leaching Tests)

- STUK reports Zn corrosion rates between 0.01 g/m²/hr and 11.3 g/m²/hr under mixed temps and pH
- UNM 11-day immersion tests of zinc granules and bulk coupons confirms lower rate at room temp, pH 7
 - Measured sample mass before and after with immersion time averaging
 - Analytic concentration measurement of solution confirms dissolution
 - Never reached saturation limit
- UNM 11-day immersion tests of zinc granules and primer chips at 80°C, pH 7 were inconclusive (max average corrosion rate 0.04 g/m²/hr)
 - All Zinc samples turn black and gain mass
 - Primer chips discolored gain mass (water retention or reaction with paint?)
 - Concentration measurement of solution confirms dissolution/leaching
 - Rapid dissolution suspected to reach solubility limit
 - Hard crystalline particulate formed on surfaces (frangible)
 - Secondary reaction products different from precipitation in form
 - Daily test intervals unsuccessful to isolate corrosion rate
 - Composition of crystalline product and formation process uncertain

Samples Before/After Immersion

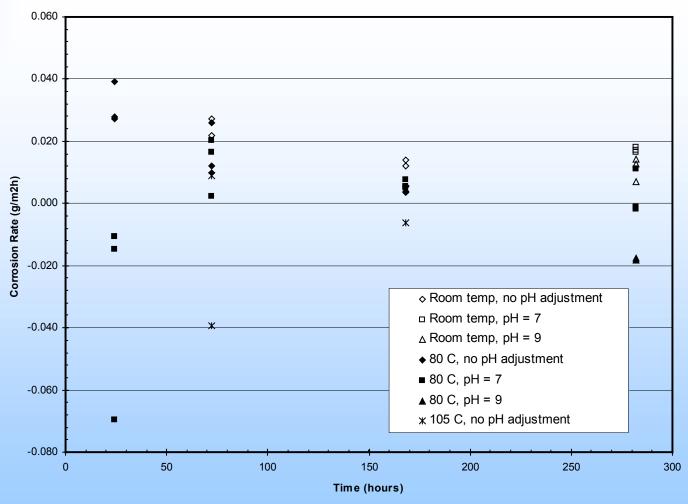
Unqualified Alkyde Paint


NEI PWR Sump Performance Workshop July 30 – 31, 2003

ESEM of Secondary High-Temp Surface Reaction/Deposition

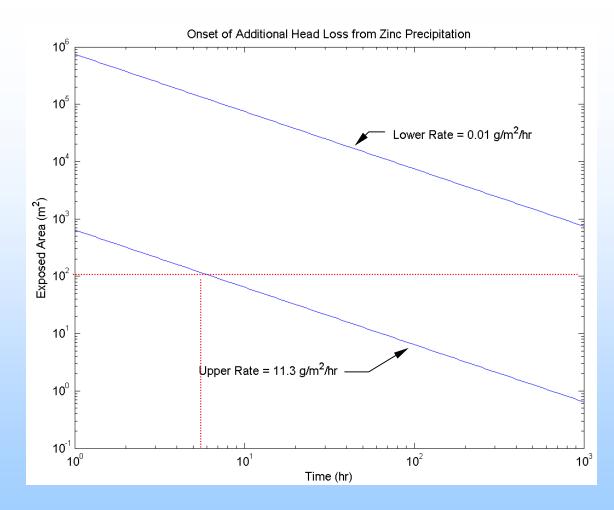
Clean Zinc Granule

Corroded Zinc Granule



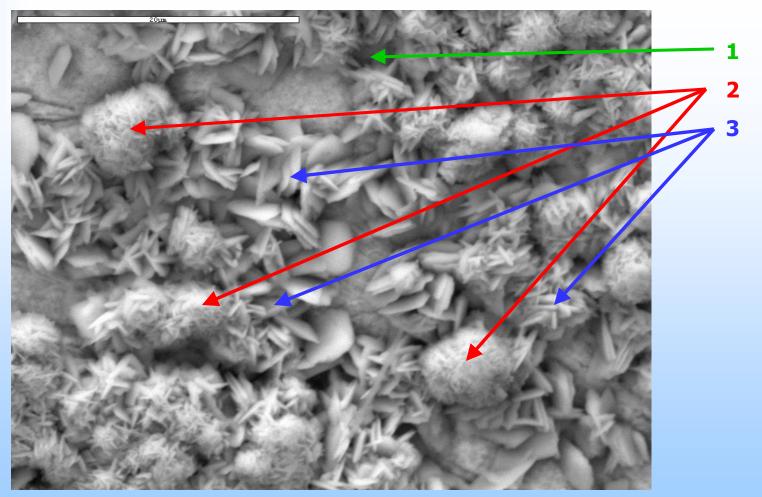
NEI PWR Sump Performance Workshop July 30 – 31, 2003

Corrosion Rate Data (Defined by Mass Change Averaging)



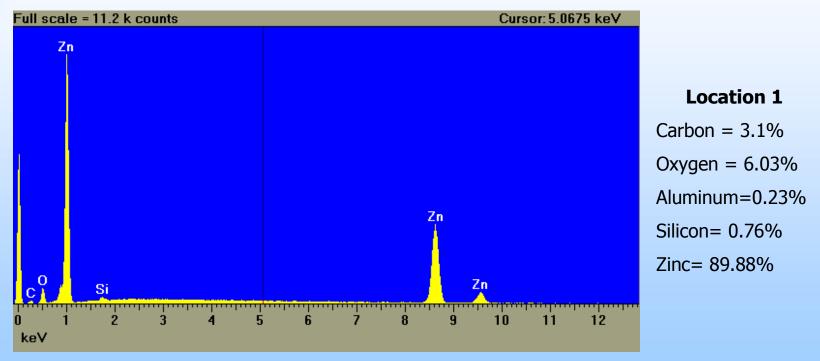
NEI PWR Sump Performance Workshop July 30 – 31, 2003

Preliminary Vulnerability Ranges for Zinc Corrosion



NEI PWR Sump Performance Workshop July 30 – 31, 2003

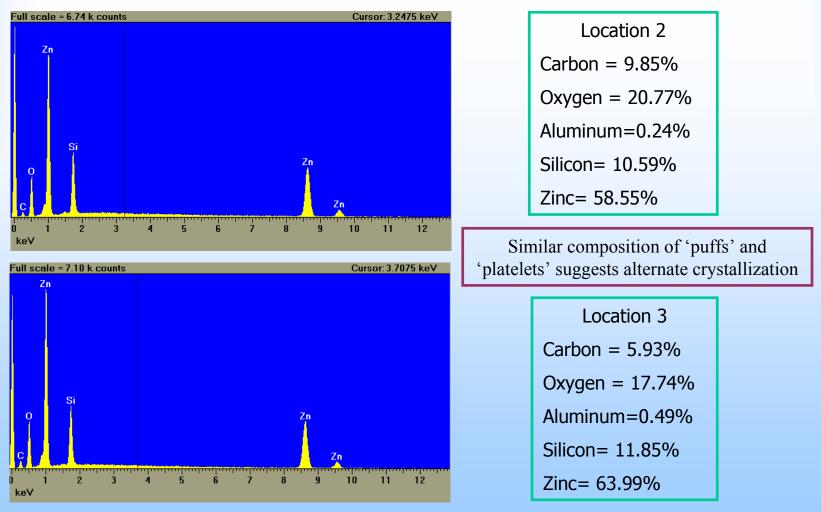
Surface Corrosion Features



NEI PWR Sump Performance Workshop July 30 – 31, 2003

Surface Corrosion Composition (1)

- Environmental Scanning Electron Microscopy (ESEM) collects reflected beam to image the surface
- Electron beam also excites nuclear transition states that decay by x-ray emission at characteristic wavelengths


AR REGUI

NEI PWR Sump Performance Workshop July 30 – 31, 2003

Surface Corrosion Composition (2)

NEI PWR Sump Performance Workshop July 30 – 31, 2003

24

OS

NATIONA

Remaining Work on Chem Effects

- Experimentation essentially complete
- Further study of corrosion composition and mechanism
 - Two hypotheses:
 - Dissolution quickly reaches saturation and deposits as crystals
 - Implies very high corrosion rate
 - Quiescent beaker samples atypical of pool immersion?
 - Heterogeneous surface reaction
 - Mass balance corrosion rates are misleading
 - Metal in solution may reach saturation more slowly
 - Large quantities of additional particulate formed
- Practical correlation of head loss to debris-bed mass
- Documentation of findings in forthcoming NUREG
- Forthcoming peer review

