BWR Vessel and Internals Project

BWR Reactor Pressure Vessel Shell Weld Inspection Recommendations (BWRVIP-05)

Prepared by
BWR Vessel and Internals Project Beltline Team
Structural Integrity Associates
VECTRA Technologies, Inc.
GE Nuclear Energy

NON-PROPRIETARY VERSION

This report contains the non-proprietary information that is included in the proprietary version of this report. The proprietary version of this report contains proprietary information that is the intellectual property of BWRVIP utility members and EPRI. Accordingly, the proprietary report is available only under license from EPRI and may not be reproduced or disclosed, wholly or in part, by any Licensee to any other person or organization.
BWR Vessel and Internals Project
BWR Reactor Pressure Vessel Shell Weld Inspection Recommendations (BWRVIP-05)

The Boiling Water Reactor Vessel and Internals Project (BWRVIP), formed in June 1994, is an association of utilities focused exclusively on BWR vessel and internals issues. This report, the fifth in a continuing series, provides an evaluation of the current inspection criteria for BWR vessel welds, formulates recommendations for alternative inspection requirements, and provides a technical basis for these recommended requirements.

BACKGROUND Events in 1993 and 1994 confirmed that intergranular stress corrosion cracking (IGSCC) is a significant issue for BWR internals. US BWR executives formed the BWRVIP in June, 1994, to address integrity issues arising from service-related degradation of the vessel internals.

Over the past few years, the in-service inspection requirements for welds in nuclear pressure vessels have become increasingly rigorous. This significant increase in inspection criteria has raised a number of important issues concerning the inspection of reactor pressure vessels (RPVs).

OBJECTIVES To provide an evaluation of the current inspection requirements for BWR RPV shell welds, formulate recommendations for alternative inspection requirements, and provide a technically justified basis for these recommended requirements.

APPROACH The project team investigated a number of issues related to BWR reactor pressure vessel integrity. Based on the results of this investigation, they recommended alternative inspection requirements which would significantly reduce the extent of volumetric in-service inspections currently required on BWR reactor pressure vessel shell welds.

RESULTS Results of the evaluations performed in this report demonstrate the inherent safety and integrity of BWR RPVs. The report also concludes that the amount of in-service inspections currently required could be reduced while still meeting NRC safety goals by a significant margin. The report recommends in-service inspections requirements that focus inspections on the most appropriate vessel welds while eliminating those inspections which have a negligible effect on plant safety. Revised criteria for the performance of successive and additional inspections are also recommended.

EPRI PERSPECTIVE The cost benefit study performed to compare the existing vessel shell weld inspection requirements with the recommended inspection criteria verified that performing the RPV inspections recommended in this report represents a substantial savings in cost and radiation exposure at BWR facilities. The results of
the evaluations demonstrate that even with a significant reduction in the extent of inspections required, the integrity of the RPV is assured and greatly exceeds NRC safety goals.

PROJECT
RPB302-01
Project Manager: W. Bilanin
Nuclear Power Group
Contractors: BWR Vessel and Internals Project Beltline Team
Structural Integrity Associates
VECTRA Technologies, Inc.
GE Nuclear Energy

For ordering information about this report, call the EPRI Program Manager at (415) 855-2340.
BWR Vessel and Internals Project

BWR Reactor Pressure Vessel Shell Weld Inspection Recommendations (BWRVIP-05)

TR-105697
Research Project B302-01
Final Report, September, 1995

Prepared by:
BWR VESSEL AND INTERNALS PROJECT BELTLINE TEAM

STRUCTURAL INTEGRITY ASSOCIATES
3315 Almaden Expressway, Suite 24
San Jose, Ca. 95118-1557

VECTRA TECHNOLOGIES, INC.
215 Shuman Blvd, Suite 200
Naperville, IL. 60563

GE NUCLEAR ENERGY
175 Curtner Ave.
San Jose, Ca. 95125

Prepared for
BOILING WATER REACTOR VESSEL & INTERNALS PROJECT and
ELECTRIC POWER RESEARCH INSTITUTE
3412 Hillview Ave.
Palo Alto, California 94304
DISCLAIMER OF WARRANTIES AND LIMITATION OF LIABILITIES

This report was prepared by the organization(s) named below as an account of work sponsored or cosponsored by the BWR Vessel and Internals Project (BWRVIP) and the Electric Power Research Institute, Inc. (EPRI). Neither BWRVIP, EPRI, any member of EPRI, any cosponsor, the organization(s) named below, nor any person acting on behalf of any of them:

(a) makes any warranty or representation whatsoever, express or implied, (i) with respect to the use of any information, apparatus, method, process or similar item disclosed in this report, including merchantability and fitness for a particular purpose, or (ii) that such use does not infringe on or interfere with privately owned rights, including any party's intellectual property, or (iii) that this report is suitable to any particular user's circumstance, or

(b) assumes any responsibility for any damages or other liability whatsoever (including any consequential damages, even if BWRVIP, EPRI or any EPRI representative has been advised of the possibility of such damages) resulting from your selection or use of this report or any information, apparatus, method, process or similar item disclosed in this report.

Organization(s) that prepared this report:

BWR VESSEL & INTERNALS PROJECT BELTLINE TEAM
STRUCTURAL INTEGRITY ASSOCIATES
VECTRA TECHNOLOGIES, INC.
GE NUCLEAR ENERGY

ORDERING INFORMATION

Requests for copies of this report should be directed to the BWRVIP Program Manager, 3412 Hillview Ave., Palo Alto, Ca. 94304. (415) 855-2340.
ACKNOWLEDGMENTS

The editor of this report would like to acknowledge the BWRVIP Beltline Team members listed below whose efforts led to the successful completion of this document:

James Agold Southern Nuclear Operating Co.
Frank Ammirato EPRI
Warren Bilanin EPRI
Tom Caine GE Nuclear
Robin Dyle Southern Nuclear Operating Co.
Scott Kulat VECTRA Technologies
Pete Riccardella Structural Integrity Associates
Jim Stanley PECO Energy
Larry Steinert EPRI
Jerry Whitman Commonwealth Edison Co.

In addition, the BWRVIP Beltline Team would like to express our thanks to the many utility representatives who responded to the Reactor Pressure Vessel ISI Survey, or otherwise provided input for this report.
BWR Reactor Pressure Vessel Shell Weld Inspection Recommendations

Table of Contents

<table>
<thead>
<tr>
<th>SECTION</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Executive Summary</td>
<td>S-1</td>
</tr>
<tr>
<td>1.0 Introduction</td>
<td>1-1</td>
</tr>
<tr>
<td>2.0 Objectives and Scope</td>
<td>2-1</td>
</tr>
<tr>
<td>3.0 Reactor Pressure Vessel History</td>
<td>3-1</td>
</tr>
<tr>
<td>4.0 Inservice Inspection Survey</td>
<td>4-1</td>
</tr>
<tr>
<td>5.0 Operational Issues</td>
<td>5-1</td>
</tr>
<tr>
<td>6.0 RPV Degradation Mechanisms</td>
<td>6-1</td>
</tr>
<tr>
<td>7.0 Current Inspection Technology and Practice</td>
<td>7-1</td>
</tr>
<tr>
<td>8.0 Probabilistic Fracture Mechanics</td>
<td>8-1</td>
</tr>
<tr>
<td>9.0 Recommended New Inspection Criteria and Scope</td>
<td>9-1</td>
</tr>
<tr>
<td>10.0 Cost Benefit Study of Existing vs. Recommended Inspection Criteria</td>
<td>10-1</td>
</tr>
<tr>
<td>11.0 Summary of Results and Conclusions</td>
<td>11-1</td>
</tr>
</tbody>
</table>

Appendix

A Vessel ISI Survey Responses
Tables A-1 through A-14
EXECUTIVE SUMMARY

The objectives of this report were to evaluate the current inspection requirements for the reactor pressure vessel shell welds in Boiling Water Reactors (BWRs), formulate recommendations for alternative inspection requirements, and provide a technically justified basis for these recommended requirements. To accomplish this objective, a number of issues related to BWR reactor pressure vessel integrity were investigated, including fabrication practices, in-service inspection data, operational issues, degradation mechanisms, non-destructive examination capabilities and probabilistic fracture mechanics analysis results. Based on the results of this investigation, alternative inspection requirements are recommended which would significantly reduce the extent of volumetric in-service inspections currently required on BWR reactor pressure vessel shell welds.

An evaluation of vessel fabrication practices, construction examinations and preservice inspections established that reactor pressure vessels were constructed to very high standards which maximized the initial quality of the vessels. The results of in-service inspections performed to date support the conclusion that vessel seam welds are free from unacceptable fabrication defects, and that no flaws have developed during operation. In order to substantiate non-destructive examination capabilities, a detailed review of current criteria and technology verified that the industry's ability to ultrasonically locate and size flaws in vessels is highly reliable. A review of operational issues including loadings and irradiation provided evidence of the inherent integrity of BWR reactor pressure vessels. This point was further supported by an evaluation of potential degradation mechanisms which concluded that there are presently no known degradation mechanisms which challenge vessel weld integrity. Finally, a probabilistic fracture mechanics analysis was performed to quantify these observations. This analysis concluded that the probability of vessel failure was extremely low and well within NRC safety goals, even with a proposed reduction in the level of in-service inspections. In addition, this probabilistic analysis determined that the risk of either vessel leakage or failure from circumferential shell welds is orders of magnitude less than that associated with longitudinal shell welds.

Results of the evaluations performed in this report clearly demonstrate the inherent safety and integrity of BWR reactor pressure vessels. Furthermore, it was concluded that the amount of in-service inspections currently required could be reduced while still meeting NRC safety goals by a significant margin. Therefore, this report recommends in-service inspection requirements that focus inspections on the most appropriate vessel welds while eliminating those inspections which have a negligible affect on plant safety. The recommended requirements are to perform in-service inspections on 50% of the reactor pressure vessel longitudinal shell welds, and eliminate the inspection of circumferential shell welds. Revised criteria for the performance of successive and additional inspections are also recommended. Finally, a cost benefit study was performed to compare the existing vessel shell weld inspection requirements with the recommended inspection criteria. The results of this study verified that performing the reactor pressure vessel inspections recommended in this report represents a substantial savings in cost and radiation exposure at BWR facilities.