July 12, 1995

.

0410

Mr. Ronald A. Milner, Frector for Program Management and Integration Office of Civilian Radioactive Waste Management U.S. Department of Energy, RW 30 1000 Independence Avenue, SW Washington, DC 20585

SUBJECT: MINUTES OF THE JANUARY 17, 1995, MANAGEMENT MEETING ON THE ISOLATION DEMONSTRATION STRATEGY

Dear Mr. Milner:

T

÷

Enclosed are the minutes of the January 17, 1995, management meeting between the staff of the Nuclear Regulatory Commission and representatives of the U.S. Department of Energy (DOE). Representatives of the State of NV; Nye County, NV; the Center for Nuclear Waste Regulatory Analyses; and DOE contractors also participated in the meeting. The meeting, held by videoteleconference at DOE Headquarters in Washington, DC, and DOE's Yucca Mountain Site Characterization Office in Las Vegas, Nevada (NV), was requested by NRC staff to gain further understanding of the Isolation Demonstration Strategy (IDS) component of DOE's program approach.

During this meeting, DOE representatives responded to several concerns raised by NRC staff. DOE discussed the changes in the strategy presented in the Site Characterization Plan (SCP) and how these changes, when coupled with the demands of the program approach, have led to developing the IDS. The DOE explained the factors that determined prioritization of tests under the program approach and assured NRC staff that the program approach did not fundamentally change the SCP approach. NRC staff stated that it still expects to see a complete discussion of the tests DOE plans to do, which previously scheduled tests will not be done, and reasons for the differences.

If you have any questions regarding this letter, or the meeting minutes, please contact Pauline Brooks or Mark Delligatti of my staff. Ms. Brooks can be reached at 415-6604 and Mr. Delligatti can be reached at (301) 415-6620.

	Enclos	ure: As	stat	ed		Sin Orig for Jos Hig Div Off a	cerel ginal eph H h-Lev rojec isior ice c nd Sa	ly, Signed Iolonich Vel Wast Sts Brar Of Wast Of Nucle Afeguard	By J n, Ch te and tch ste Ma ste Ma star Ma is	lohn Thoma ief d Uranium Re anagement aterial Safe	covery ty		
 • 14	cc: S Distri Centra JSurme HLURr/ PDR/LP	ee attac bution: 1 Filé ier w/o f DR	hed 1 D M L C	ist WM r/f IFederlin SS NWRA	ne w/c	D Plack t	JAI OS LF Or	ustin S Rs DR n-Site F	Reps	MBell NMSSr/f ACNW	roform		
1	in sma	11 Box o	n "OF	C:" line	ente	r: C =	Cover	E = Cc	ver l	L Enclosure	$\frac{N = NO}{N}$	Сору	
	OFC	HLUR		HLUR	E	HLUR	E	HLUR	E				
	NAME	PBro	oks	MBELOS	atti D	Fhon	na	JHOIO	nich				
	DATE	07/12	/95	07/12/	′95	07/D/	′ 95	07/12	/95				
	S:\DWM	\HLUR\PPI	B\MGT	MTG.117	OF	FICIAL	RECOR	D COPY				102	311
1	A 6	9507140 PDR WA 岆어-11	408 STE	950712 PDI	२							100	NHIE

UNITED STATES NUCLEAR REGULATORY COMMISSION

WASHINGTON, D.C. 20555-0001

July 12, 1995

Mr. Ronald A. Milner, Director for Program Management and Integration Office of Civilian Radioactive Waste Management U.S. Department of Energy, RW 30 1000 Independence Avenue, SW Washington, DC 20585

SUBJECT: MINUTES OF THE JANUARY 17, 1995, MANAGEMENT MEETING ON THE ISOLATION DEMONSTRATION STRATEGY

Dear Mr. Milner:

Enclosed are the minutes of the January 17, 1995, management meeting between the staff of the Nuclear Regulatory Commission and representatives of the U.S. Department of Energy (DOE). Representatives of the State of NV; Nye County, NV; the Center for Nuclear Waste Regulatory Analyses; and DOE contractors also participated in the meeting. The meeting, held by videoteleconference at DOE Headquarters in Washington, DC, and DOE's Yucca Mountain Site Characterization Office in Las Vegas, Nevada (NV), was requested by NRC staff to gain further understanding of the Isolation Demonstration Strategy (IDS) component of DOE's program approach.

During this meeting, DOE representatives responded to several concerns raised by NRC staff. DOE discussed the changes in the strategy presented in the Site Characterization Plan (SCP) and how these changes, when coupled with the demands of the program approach, have led to developing the IDS. The DOE explained the factors that determined prioritization of tests under the program approach and assured NRC staff that the program approach did not fundamentally change the SCP approach. NRC staff stated that it still expects to see a complete discussion of the tests DOE plans to do, which previously scheduled tests will not be done, and reasons for the differences.

If you have any questions regarding this letter, or the meeting minutes, please contact Pauline Brooks or Mark Delligatti of my staff. Ms. Brooks can be reached at 415-6604 and Mr. Delligatti can be reached at (301) 415-6620.

Sincerely,

John O. Thomas for

Joseph Holonich, Chief High-Level Waste and Uranium Recovery Projects Branch Division of Waste Management Office of Nuclear Material Safety and Safeguards

Enclosure: As stated

cc: See attached list

LIST FOR LETTER TO R. MILNER DATED July 12, 1995

- cc: R. Loux, State of Nevada
 - J. Meder, Nevada Legislative Counsel Bureau
 - W. Barnes, YMPO

7

- C. Einberg, DOE/Washington, DC M. Murphy, Nye County, NV
- M. Baughman, Lincoln County, NV
- D. Bechtel, Clark County, NV
- D. Weigel, GAO
- P. Niedzielski-Eichner, Nye County, NV
- B. Mettam, Inyo County, CA
- V. Poe, Mineral County, NV
- W. Cameron, White Pine County, NV
- R. Williams, Lander County, NV L. Fiorenzi, Eureka County, NV
- J. Hoffman, Esmeralda County, NV
- C. Schank, Churchill County, NV
- L. Bradshaw, Nye County, NV W. Barnard, NWTRB

- R. Holden, NCAI

- A. Melendez, NIEC S. Brocoum, YMPO R. Arnold, Pahrump, NV
- M. Stellavato, Nye County, NV

JANUARY 17, 1995, MANAGEMENT MEETING ON THE ISOLATION DEMONSTRATION STRATEGY

Staff from the U.S. Nuclear Regulatory Commission and representatives of the U.S. Department of Energy (DOE) met via video-teleconference at DOE headquarters in Washington, DC and at DOE's Yucca Mountain Site Characterization Project Office in Las Vegas, Nevada (NV) to discuss the Isolation Demonstration Strategy (IDS) of DOE's program approach. This meeting was requested by the NRC staff so that it could gain a clearer understanding of the IDS, which is an important component of the DOE program approach. Representatives from the State of NV: Nye County, NV: the Center for Nuclear Waste Regulatory Analyses; and DOE contractors were also present. Attendance lists are included as Attachment 1 to these minutes.

In their presentation (Attachment 2), the representatives of DOE discussed DOE's understanding of how the strategy described in the Site Characterization Plan (SCP) has changed. Among the factors which the representatives of DOE believe have changed or matured since the SCP are: an increased recognition of potential for fast flow paths; the potential role of thermal load on performance; the advent of the multi-purpose canister as a component in the repository system; in-drift emplacement; and the increased role of the saturated zone under a dose-based standard. Changes to the SCP strategy, along with the exigencies of the program approach. led to the development of the IDS which has five key elements. These are: a favorable environment for waste package provided by unsaturated rock; robust waste packages to address near-field uncertainties; limited mobilization of radionuclides with waste packages; slow release of radionuclides through engineered barriers; and slow migration of radionuclides in the geosphere.

The NRC staff raised several concerns which echoed the comments made in the November 29, 1994, Bernero-Dreyfus letter providing the staff's comments on the DOE Five Year Plan. Of particular interest to the staff was the way in which testing had been prioritized as part of the implementation of the program approach. The DOE representatives indicated that prioritization was based on information needs, resources, availability of staff and equipment, and site access.

A DOE representative responded to the NRC staff's concerns about the place of performance allocation in the program approach (Attachment 3). In this presentation, it was explained that the basis for the technical elements of DOE's program approach was the performance allocation tables from the SCP. Furthermore, the DOE representative assured the staff the program approach did not fundamentally change the SCP approach to safety or compliance strategies. At the conclusion of this presentation, the NRC staff noted that it still expects to see a complete description and discussion of which tests DOE plans to do during site characterization, which previously scheduled tests will not be done, and the reasons for the differences.

noul

7

Mark S. Delligatti, Senior Project Manager High-Level Waste and Uranium Recovery Projects Branch Division of Waste Management Office of Nuclear Material Safety and Safeguards U.S. Nuclear Regulatory Commission

Priscilla Bunton Regulatory Integration Division Office of Civilian Radioactive Waste Management U.S. Department of Energy

Enclosure

DOE/NRC MANAGEMENT MEETING WASTE ISOLATION DEMONSTRATION STRATEGY JANUARY 17, 1995

7

.

NAME	ORGANIZATION	PHONE NUMBER
Priscilla Bunton	DOE	202-586-8365
Mark Delligatti	NRC\HLUR	301-415-6620
Malcolm Knapp	NRC\NMSS	301-415-7437
Joseph Holonich	NRC\HLUR	301-415-7238
Patty Reyes	R. F. Weston	202-646-6668
Sue Gagner	NRC\PA	301-415-8200
Robert Johnson	NRC\HLUR	301-415-7282
Lester Berkowitz	M&O\TRW	202-488-2309
Dave Fenster	M&O\WCFS	703-204-8866
Chris Einberg	DOE\HQ	202-586-8869
Larry Rickertsen	M&O	703-204-8587
Bob Andrews	M&O	702-794-7380
John Russell	CNWRA	703-416-1129
John Thoma	NRC\HLUR	301-415-7293
Michael Bell	NRC\ENGB	301-415-7286
John Trapp	NRC\ENGB	301-415-8063
Ray Wallace	USGS\HQ	202-586-1244
Paul Krishna	M&O\TRW	202-488-2303
Richard Goffi	R. F. Weston\Jacobs	202-646-6743
Christopher Kouts	DOE/HQ	202-586-9761

ATTACHMENT 1

لحرك

DOE/NRC MANAGEMENT MEETING

UPDATE ON WASTE CONTAINMENT AND ISOLATION STRATEGY

PRESENTED BY DR. STEPHAN BROCOUM ASSISTANT MANAGER FOR SUITABILITY AND LICENSING

JANUARY 17, 1995

ATTACHMENT

Outline of Presentation

 Role of waste containment and isolation strategy in the Program Approach

1

Implementation of the strategy

Role of Waste Containment and Isolation Strategy in the Program Approach

Role of Waste Containment and Isolation Strategy in Overall Program

- Overall licensing strategy is broader than waste containment and isolation
- Testing must address complete suite of data needs:
 - Waste containment and isolation
 - Detection of unsuitable site features or conditions
 - Compliance with preclosure NRC criteria
 - Testing to support design development
 - Testing to support other tests
 - Scientific confidence

Top-Level Strategy 1988 Site Characterization Plan

(Section 8.0, pgs. 4-9)

- The strategy places primary reliance on low flux conditions, slow water movement, and long radionuclide transport times in the unsaturated zone
- Low-probability, potentially disruptive processes and events that could have significant impacts on performance of the repository will be identified and characterized
- Preclosure repository designs will incorporate appropriate seismic design criteria

STATECG.BFR/1-28,29-88

Schematic of Top Level Strategy (SCP Section 8.0, pgs. 4-6)

[POS	STCLOSURE	PREC	LOSURE
	COMPONENT	OBJECTIVES	COMPONENT	OBJECTIVES
E B N A G R I R	UNSATURATED ROCK/AIR GAP	LIMIT THE WATER AVAILABLE TO CONTACT AND CORRODE CONTAINERS AND DISSOLVE WASTE	SURFACE AND UNDERGROUND FACILITY CONSTRUCTION	PROVIDES BENEFICIAL OR NO IMPACT ON POSTCLOSURE SYSTEM PERFORMANCE
NI	CONTAINER	SERVE AS PRINCIPAL CONTAINMENT BARRIER DURING EARLY RADIATION AND HEAT PEAK	SURFACE AND UNDERGROUND FACILITY OPERATION	SAFE OPERATION UNDER NORMAL AND ACCIDENT CONDITIONS
ERS ED D	WASTE FORM	LIMIT DISSOLUTION AND LEACHING OF RADIONUCLIDES DUE TO LIMITED WATER CONTACT		
	·			
N B A A T R U R I R I	COMPONENT UNSATURATED ROCK UNIT BELOW THE REPOSITORY	OBJECTIVES S ACT AS BARRIER TO RADIONUCLIDE TRANSPORT BY PROVIDING LONG RADIONUCLIDE TRAVEL TIMES		
A E L R S	SATURATED ROCK BELOW THE UNSATURATED ROCK	EXTEND THE TOTAL TRAVEL-TIME OF RADIONUCLIDES		
		······································	L	STATECG.BFR/1-28,29-88

Details of Top-Level Strategy Have Matured Since Site Characterization Plan

- Increased recognition of potential for fast flow paths
- Potential role of thermal load on performance
- Multi-purpose canister as component in repository system
- Large, robust waste packages
- In-drift emplacement and new backfill/airgap options
- Increased role of saturated zone under a dose-based standard
- Consideration of extended performance-confirmation testing period
- Consideration of extended retrievability period

Implementation of Program Approach

- Testing prioritized to support milestones, to measure progress toward those milestones, and to manage resources
- Early emphasis on Technical Site Suitability Evaluation
- Increased emphasis on near-field environment and substantially complete containment for 2001 License Application
- Testing after 2001 will provide increased confidence about long-term performance and may support higher thermal load for 2008 update to License Application

Key Elements of Waste Containment and Isolation Strategy

Favorable environment for waste package provided by unsaturated rock

- 2 Robust waste packages to address near-field uncertainties
- Limited mobilization of radionuclides within waste packages

Slow release of radionuclides through engineered barriers

Slow migration of radionuclides in the geosphere

1.11

ź

Implementing the Waste Containment and Isolation Strategy

- Establish key uncertainties in the elements of the strategy and the approaches to address them
- Review uncertainties in three areas:
 - Nominal, undisturbed conditions
 - Thermal effects
 - Effects of disruptive features, events, and processes

Implementation of the Strategy

Barriers and Elements of the Waste Containment and Isolation Strategy

12

Relative Roles of Barriers and Strategy Elements

- Strategy utilizes multi-barrier approach to increase confidence in postclosure performance
- Near-field elements contribute as a system-unsaturated environment and engineered barriers equally important in this system
- Far-field barriers add confidence that waste isolation will be achieved
- Uncertainties in all these elements and barriers must be addressed

Overview: Waste Containment and Isolation Strategy

Element or Barrier	Key Uncertainties	Approaches to Address Uncertainties
Waste Package Environment	 Extent of perched water and seeps Flow mechanisms within drifts Travel times to repository Focusing/channeling of flux Water chemistry 	 Infiltration monitoring Observations from deep boreholes Observations in ESF Water chemistry Isotopic analyses Behavior of seeps Site and drift-scale hydrogeologic modeling Analysis of fracture-matrix coupling
② Waste Package Performace	 Pitting corrosion Corrosion-resistant inner barrier Zircaloy cladding Extent of microbiologically-induced corrosion 	 Modeling & testing of pit corrosion processes Analogs for material durability Test materials for resistance to microbial-induced corrosion

Overview: Waste Containment and Isolation Strategy

(Continued)

Element or Barrier	Key Uncertainties	Approaches to Address Uncertainties
3 Radionuclide Mobilization	 Oxidation state of spent fuel Surface area of waste matrix exposed Dissolution in presence of limited water Colloid existence/stability Bounding Np/Tc solubilities Probability of criticality 	 Conservative assumptions for cladding performance Lab testing of waste form dissolution Colloid investigations Np and Te solubility experiments Probabilistic analyses of criticality potential
4 Release through EBS	 Fraction of waste package surface degraded Potential for liquid film to support diffusive release Diffusion rates in backfill material Advective flow in engineered barriers 	 Monitor seeps in ESF Lab measurements of diffusion rates Drift-scale thermohydrologic sensitivity analyses

15

Overview: Waste Containment and Isolation Strategy

(Continued)

Element	Key	Approaches to
or Barrier	Uncertainties	Address Uncertainties
Radionuclide Migration in Geosphere	 Magnitude of infiltration flux Fracture-matrix coupling Dispersion due to heterogeneity Nature/role of steep gradient Dilution in saturated zone 	 C-well tracer tests Investigate steep gradient Bounding analysis for mixing depths Sensitivity analysis for UZ/SZ flow and transport models Regional-scale aquifer testing Ages of seeps from ESF and boreholes

External Effects On Barriers and Elements

17

External Effects On Elements/Barriers

Effects on Strategy Elements/Barrier	Key Uncertainties	Approaches to Address Uncertainties
Thermal Effects	 Effect on rock mass stability Effect on near-field humidity Effect on corrosion rates Effect on radionuclide mobilization rates Effect on release from EBS Effect on moisture distribution in unsaturated rock Effect on minerals along flow paths 	 Short-term heater tests in ESF Long-duration coupled testing in ESF Lab tests of corrosion rates for range of temperature/humidity Lab tests of waste form dissolution and solubility for range of conditions Rock properties testing
Future Climate Changes	 Potential increases in infiltration Potential changes in UZ moisture content/flux Potential increases in recharge Changes to water table elevation Changes to ground-water velocities 	 Model future climates Determine relationship between climate/hydrologic conditions Estimate effects on infiltration rates Estimate effects on saturation profiles Evaluate saturated zone response

External Effects On Elements/Barriers

(Continued)

Effects on Strategy Elements/Barrier	Key Uncertainties	Approaches to Address Uncertainties
Tectonics	 Effect on EBS Impact on fault permeabilities Potential for water table rise 	 Constrain Quaternary fault displacement histories Characterize seismic sources Evaluate alternate tectonic models Evaluate ground motion attenuation with depth Model water table response to earthquakes
Voicanism	 Direct effects on repository/waste package Effects on water table 	 Drill magnetic anomalies in Crater Flat Study basaltic volcanism patterns Establish probability of basaltic volcanism Bound secondary volcanic effects Evaluate consequences of volcanism

External Effects On Elements/Barriers

(Continued)

Human Interference• Direct intrusion by exploratory drilling• Evaluate resource potential • Establish probability of exploratory drilling• Introduction of fluids• Model consequences	Effects on Strategy	Key	Approaches to
	Elements/Barrier	Uncertainties	Address Uncertainties
	Human Interference	 Direct intrusion by exploratory drilling Introduction of fluids 	 Evaluate resource potential Establish probability of exploratory drilling Model consequences

4

Scientific Confidence vs. Significance of Uncertainties

- Characterize features and conditions to address uncertainties
 - Rigorous review of assumptions
 - Testing of alternative conceptual models
 - Develop confidence in underlying process models
- Evaluate significance of uncertainties with respect to waste containment or isolation
 - Through iterative performance assessments
 - Realistic representation of effects in assessments

"DOE Should Specify as Early as Possible the Barriers to be Relied on and the Level of Performance Sought from each Barrier"

September, 1985 NRC White Paper

- Design goals would be the minimum performance goals needed to ensure compliance with regulatory provisions
- Expected performance goals based on optimistic but realistic expectations of barrier performance
- Performance allocation would clearly state that any values within the range would produce acceptable repository performance
- Designate selected barriers to be held in reserve
- Provisions for redundancy would ensure that regulatory requirements will be met and provide a basis for revising the performance allocation through periodic iterations

RCPERFA.PPT.129.MDV/1-17-95 1

Performance Allocation

Performance allocation should be developed as early as possible in order to guide development of plans for site characterization. It should specify:

- 1. The particular barrier which will be relied upon to provide waste isolation
- 2. The level of performance sought from each barrier
- 3. The level of confidence with which DOE will demonstrate that this level of performance is achieved

The performance allocation should be revised periodically to reflect SC test results

NRCPERFA.PPT.129.MOV/1-17-95 2

Performance Allocation - SCP

- DOE developed and applied a performance allocation methodology that met intent of agreements
- The SCP annotated outline was based on derivation of test programs through an issue resolution strategy

202-194-182.

LHN

/5

SIVI NO.UVI F.UC

NRCPERFA.PPT.129.MDV/1-17-95

- DOE has addressed NRC SCA concerns related to the SCP
- DOE has reported program changes in the SCP Progress Reports and worked with the NRC to improve this vehicle

SCP Issue Resolution Strategies

The issue resolution process was intended to be iterative

- On the basis of the engineered system designs and the site characteristics and conditions, performance assessment calculations will be made
- Information acquired during site characterization may cause revision to earlier plans and strategies
- Changes to issue resolution strategies and plans will be reported in progress reports

By acquiring data to support resolution of the performance and design issues the DOE will systematically establish the information to support demonstrations of compliance with requirements

SCP Issue Resolution Strategies

The steps in this process are to conduct the investigations dictated by the testing strategies in the SCP, to analyze the results of these investigations, and to check that the information obtained satisfies the information needs in these strategies

- A full performance assessment cannot be conducted after each study to determine if the information obtained is sufficient to resolve issues
- It is expected that some of the conceptual models for the site will be modified as a result of the site characterization, and that the strategies may need to change
- It may be discovered that site characteristics are actually much different than originally thought; new strategies could be developed, consistent with the new information

NRCPERFA PPT.129.MOV/1-17-05 \$

10:

94-1822

Z

Ç,

Ē

ē

¢

Schematic of Top Level Strategy (SCP Section 8.0, pgs. 4-6)

	PC	DSTCLOSURE	PRE	CLOSURE
	THEROPHON	QBJECTIVES	COMPONENT	QBJECTIVES
	UNSATURATED ROCK/AR GAP	LINT THE WATER AVAILABLE TO CONTACT AND CORRODE CONTAINERS AND DISSOLVE WASTE	SURFACE AND UNDERGROUND FACILITY CONSTRUCTION	PROVIDES BENEFICIAL OR NO IMPACT ON POSTCLOSURE BYSTEM PERFORMANCE
NI	CONTAINER	DURING EARLY RADIATION AND NEAT PEAK	SURFACE AND UNDERGROUND FACILITY OPERATION	SAFE OPERATION UNDER NORMAL
er RS E D	WASTE FORM	LINIT DISSOLUTION AND LEACHING OF RADIOHUCLIDES DUE TO LIBITED WATER CONTACT		
NBARRURAR NBARRURAR NBARRAL	COMPONENT UNSATURATED ROCK UM BELOW THE REPOSITORY SATURATED ROCK BELOT THE UNSATURATED ROCI	GBJECTIVES TS ACT AS BARRIER TO RADIONUCLIDE TRANSPORT BY PROVIDING LONG RADIONUCLIDE TRAVEL TIMES W EXTEND THE TOTAL TRAVEL-TIME OF K RADIONUCLIDES		
	1		·	STATECG.8FR/1-28,29-88

Plans to Revisit the Performance Allocation Tables were Predicated on Evaluation of Progress

UIN

Ę

大

E

 $\mathbf{\tau}_{\mathbf{i}}$

Progress in Site Characterization

נויילח

ළි

702-794-182

LHN

/ 🤄

0:04 NO.001

.U: (UZ-194-182

Development of Program Approach

- Basis for the technical elements of the Program Approach was the performance allocation tables of the SCP
- The Program Approach did not fundamentally change the SCP approach to safety/compliance strategies
 - It did change the DOE plans for getting information in front of the NRC
- OMB Five Year Plan
 - Plans for test sequences and cost were developed to address data needs for the technical elements
 - Program was sequenced to address the four part Program Approach strategy

Phasing the Site Characterization Plan Strategies

- 1. Develop logical breakdown considering compliance arguments
- 2. Identify products that can be defended for suitability, EIS, and licensing
- 3. Ensure sufficient information at each step to demonstrate that health and safety can be protected appropriately

TRW

5

Program Approach to Increasing Confidence

NOVENES COR 1894-36-94

MDVGRAPH.CDR.129/12-28-94

Synopsis of Program Approach for MGDS Performance Allocation

	TSS/DEIS - 1998	LA/CA - 2001	CA - 2004	ULA/R&P - 2008	L/R&P - 2010	Perf. Confirm.
NAT.BAR.EVAL						
GWTT	Bounded	Sub. Finished		Final		
Scenarios	Bounded	Roundad		Sub. Finished		Final
Subsystem Analyses	Bour			Finat		Updated
TSPA Source Term	Bound	<u> </u>	-	Complete		Confirmed
Post CI. TSPA	Во	Eleme	ents	Tinished		Final
		Refle	ct			
REPOSITORY DESIGN	AL				Title II1	Title III
Backfill/Seals	*	N Part 6	0 Perform	nance T		Decision
Materials Intern	Bounded	Bounded Objective and Additional				
Retrievability		, Desia	n Require			
Ar. Pwr. Den.	Bounded					Final APD
Emplace. Mode		Dorfo	monoo A	lloostian		
Preci. P.A.	Bounded	Tehler		nocation		1
Lag Storage	ACD		5.			
Rail Spur	cr			· · ·	Tide III	
WASTE PKG. DESIGN	ACT	Progr	am Appro	ach 🚛	Tide III	Oper'ns Cont.
Sub Cmp Con	-	/ Consi	derations			
Criticality Con.	\equiv /			Jated	*************************************	t
Contr. Rel.	Bot 🖌			Complete		
Materials	Conc.			Test Complete		Model Confirmed
Waste Form		arce rem Bnd'd		Final Sroe Term	······································	
EBS Thermal	Concepts	Bounded				

A E

Ī

טייט אט.

MDVGAF1.COR.129/1-17-95 12

L H N

18

TRE

10:

702-794-10-2

Details of Top-Level Strategies Have Matured Since Site Characterization Plan

Components

Increased recognition of potential for fast flow paths

Potential role of thermal load on performance

Multipurpose canister component in repository

Large robust waste packages

In-drift emplacement and new backfill/air gap options

Increased importance of saturated

zone under a dose based standard

Consideration of extended performance confirmation period

Consideration of extended retrieval period

Program Requirements

High priority on Ghost Dance Fault access; perched water dating

System studies, test phasing, ranges of design

Indrift emplacement; potential for high thermal loads

Increased reliance on EBS performance

Backfill considerations; design alternatives

Increased emphasis on mixing in saturated zone

Increasing reliance on long term information

More importance in phased approach

Studies Required to Support Expected Information

EEIDOMOV.129.MOV.COR/5-17-94 15

えて

Ś

ĉ.

ç

Conclusions

- DOE has worked with NRC to refine:
 - Requirements documents and flow down
 - Issue resolution process and the LA-AO
- SCP approaches are evolving due to focus of Program Approach
 - Continued reliance on multiple barriers
 - Increased reliance on EBS performance
- Changes to components of the SCP compliance strategies respond to the Program Approach and new site information

Conclusions

- Intent of SCP was to revise allocations as issues were resolved
- DOE will continue to allocate performance to assess regulatory compliance priorities
 - Consistent with other program priorities
- DOE is evaluating the most appropriate vehicle to report revisions to strategies and the allocations
 - (eg: Tables; Requirements Documents, LA-AO; Progress Reports; Regulatory Compliance Plan)

NRCPERFA.PPT.129 MDV/1-17-05 17