

High-Pressure Separate Effect Test Facility-More than 25 Years in Operation

BENSON Facility

BENSON Facility

– **A** FRAMATOME ANP

Data acquisition and processing

- A FRAMATOME ANP

More than 25 years of experiences

Topic of Investigation	Special Test Features
Fossil-Fired Power Generation	
• Heat transfer and pressure loss in tubes for BENSON and drum boilers	Pressures from 25 to 280 bar, steady-state and transient conditions
Thermal stresses in membrane waterwalls of BENSON boilers	Transient conditions
 Cooldown of hot surfaces (Leidenfrost effect) 	Pressures up to critical pressure (220 bar)
 Wet steam measuring system for improved feedwater control at BENSON boilers 	Combination of venturi tube and gamma densitometer, pressures up to 220 bar
Nuclear Power Generation	
 GAP cooling between debris crust and reactor pressure vessel wall (TMI 2 accident) 	Complex test setup; pressures up to 115 bar; gaps of 1 to 10 mm
 Heat transfer performance of a safety condenser for new pressurized water reactors 	Complex test setup with elevations scaled 1:1; 600 kW/m ² , \leq 40 kg/m ² s, \leq 1.35 bar on secondary side
 Cladding tube temperatures in fuel assembly with various spacer grid designs 	Testing of production-type components under realistic PWR conditions
 Influence of fouling on secondary-side heat transfer in a steam generator 	Testing under realistic conditions; comparisons with archived tube and
tube that has been in service	chemically cleaned tube formerly in service
 Leakage rates from real cracks 	Test object with real cracks (bending stress, fatigue); pressures up to
	160 bar; 0 to 70 K subcooling
Power Plant concepts for Direct Solar Steam Generation	
Heat transfer in absorber tubes	30-m-long test tube
- Forced-flow once-through concept	tube diameters of 50, 65 and 85 mm,
- Injection concept	pressures up to 100 bar
- Recirculation concept	
Thermally Enhanced Heavy Oil Recovery	
Wet steam piping network	Diameters of 25 and 50 mm, up to 100 bar
Robust measuring techniques for application in the field	Gamma densitometer, venturi and pitot tubes
Water Chemistry	
 Formation of protective magnetite layers 	BENSON boiler conditions
 Behavior of protective layers in the event of thermal shocks 	Transient conditions
Material loss due to erosion corrosion	Conditions of fossil-fired boilers and nuclear plant secondary cycles
Other topics	
 Determination of material properties of components made of nickel alloys 	Steam generator tubes made from Inconel 690, Incoloy 800, PWR conditions
 Performance tests for heat exchangers of rail vehicles 	Traction motor heat exchanger for electric multiple unit trains

5

Typical BENSON Steam Generator

Wall temperature and pressure loss in a uniformly heated, vertical, smooth boiler tube

Wall Temperatures in Smooth and Rifled Boiler Tube

- A FRAMATOME ANP

Overview of heat transfer tests for BENSON steam generator tubes

BENSON Facility

Typical test tube

Effect of gravity on heat transfer in inclined and horizontal smooth tubes

BENSON Facility

Effect of the pressure

BENSON Facility

12

Leidenfrost temperature for forced convection as a function of pressure

Transient tests from super- to sub-critical conditions

Two-phase flow multiplieres for smooth and rifled tubes

FRAMATOME ANP

(geysering etc.) crucial for RPV integrity

Gap Cooling Process ; TMI-2 Test Apparatus

- A FRAMATOME ANP

Gap Cooling Process ; TMI-2 Test Apparatus intgrated in the BENSON Facility

Gap Cooling Process ; TMI-2 Time Sequence During the Transition to Boiling Crisis

Critical heat flux in a gap versus decay heat TMI-2

21

Heat Transfer Behavior in Absorber Tubes of Solar Power Plants with Direct Steam Generation

Solar field concepts

Test-setup

Wall Temperature Distribution as Function of Flow Pattern

- A FRAMATOME ANP

Inner wall temperatures parabolic tough like tubes

Qualification of two phase flow measurement equipment

BENSON Facility

- A FRAMATOME ANP

Safety condenser - flow investigations

Wall thinning due to erosion corrosion

Pressure drops in two-phase flow networks

BENSON Facility