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PARTICLE SIZE DISTRIBUTION
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PARTICLE CONCENTRATION (mg/L)

SURFACE AREA (cm?/L)

PARTICLE SIZE FROM COUNTING
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TABLE 3
AVERAGE PARTICLE CONCENTRATIONS IN CIGAR LAKE GROUNDWATERS (1986-1991)

Suspended Sampled
Hole Particles Colloids Zone Depth Comment -
(ng/L) (mg/L) (m)
75 0.63 + 0.14 0.83 &+ 0.26 154-159 upper sandstone
71 1.76 + 0.42 0.73 ¢+ 0.16 243-245 1lover sandstone
80 1.42 0.77 203-205 lowver sandstone
67 1.90 ¢+ 0.21 1.33 + 0.30 346-348 ealtered sandstone
81 9.20 + 2.48 1.77 ¢+ 0.63 438 altered sandstone *
211 1.89 + 0.49 0.81 + 0.17 416-418 altered sandstone
91 4.92 ¢+ 1.48 0.60 ¢ 0.09 407 clay zone *%
134 0.61 0.94 415-417 clay zone
- 197 0.64 ¢ 0.13 0.72 ¢+ 0.19 416-421 ore/clay contact
79 2.23 2 0.67 0.78 &+ 0.15 432 ore
198 2.86 ¢+ 0.98 1.52 ¢+ 0.29 424-426 ore
220 1.87 ¢+ 0.41 1.44 ¢ 0.38 433-439 ore
128 0.74 2.21 463-465 Dbasement
137 0.81 0.03 473-475 Dbasement
199 106 ¢+ 2.3 7.78 ¢ 4.1& 446-452 altered basement
139 1.73 3+ 0.60 0.65 ¢ 0.16 437 inflov south, ***
219 0.83 + 0.15 0.95 ¢ 0.15 414-426 outflov north &«
83 1.27 2 0.41 1.11 + 0.36 18-477 artesian (uncased)
122 1.00 ¢+ 0.19 1.37 ¢+ 0.35 0-200 artesian (uncased)
P3.12 1.75 + 0.08 0.91 &+ 0.24 &-7 overburden
P3.8 18.1 ¢ 1.4 ~13.0 ¢ 4.9 10-22 overburden
P3.7 20.5 + 3.8 10.3 ¢+ 2.7 10-23 overburden
* Located just above the unconformity, near the clay zone. From
the core log, the piezometer is set in altered sandstone, near a

fracture. booe
*k Based on hydrologic observations, this piezometer appears to be
set near a major fracture zone.
Located just above the unconformity.
Located just above the unconformity, beyond the quartz cap.

k%
*kkk

The error values are given for boreholes for vhich more than one
sample vas taken, and are given by the standard deviation divided
by the square root of the number of data points.
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DISSOLVED AND PARTICULATE URANIUM
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URANIUM AND RADIUM
ARE SORBED FROM GROUNDWATER

(B4U/A8U ) parcutate = 1.99 £ 0.36
(MU ) gyoived = 193 & 0.15

(BUBYy),y = 0.8 to 1.0

(2R8/Th )puricies and water > 100



IF IT IS ASSUMED THAT ALL THE
20Th ON PARTICLES HAS INGROWN
FROM #4U, THEN THE OLDEST AGE
OF ANY PARTICLE MAY BE 8000 a



SUMMARY OF FIELD DERIVED DISTRIBUTION
COEFFICIENTS (R;)

Cigar Lake Ry (mL/p)

uranium 2x10° to 2 x 107
thorium 3x108¢ 9 x10°
radium 2x100to 1 x 108

Bl

WRA R, (mLig)

uranium 4:103t02x105
thorium 3x100¢ 7 x 105
radium - 3x108¢ 3 x10°

The wide range in Ry values in groundwaters
from a given formation suggests that U, Th
and Ra associated with -particles mz_tyﬁqgt be
in equilibrium witg groimdwater. e TRy
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THE NATURAL COLLOID CONCENTRATIONS AT

CIGAR LAKE WOULD HAVE A MINIMUM IMPACT ON
Rn TRANSPORT =

UNDERSTAND' PART CLE MIGRATION

- PARTICLE TRANSPORT FROM THE ORE AND CLAY

TO THE SURROUNDING SANDSTONE HAS BEEN
NEGLIGIBLE



MICROBIAL MOBILITY ND METAL UPTAKE PHENOMENA
r'f:‘ L
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'!Presentatlon for the Colloud Conference

May 8 10 1993 in Santa Fe, New Mexnco
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Figure 1. Microbial metabolism

A wide diversity of metabolic capabilities exists between species of
microorganisms. This figure also shows some of the extreme environ-
mental conditions in which microorganisms can survive. .
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Figure 2, Microbial capacity to leach metals from ores

This figure shows the metal content of the effluent stream from a
biomining operation. Specific species of microorganisms are used
commercially to leach copper and uranium from ore deposits. The

majority of the solubilized metal content of this effluent is a result

of microbial metaboliec activity on sulphide ore.
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Figure 3. Blosorptions capacity of a microbial species

Microorganisms can 2lso accumulate metal ions many fold above the liquid
gradient in which they live. Some organisms have been shown to accumu-

late uranium and other radionuclide isotopes of metallic elements. The
metals then migrate with the organism.
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Figure 4. Metaliothioneiné

The biomolecules involved in biosorption are either polysaccharides or
proteins. Metallothionein proteins are unique in thig regard and each
peptide can bind 7-10 atoms of a variety of transition metals. Poly-
saccharide molecules liave been shown to accumulate actinides.
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Figure 5. Petri plate containing colo

nies of

organisms isolated from vadose zones 65 feet

below the surface.

Similiar isolations have been seen from samples
hundreds of feet below the surface. This
demonstrates the subsurface is not sterile as
once thought. ‘




Figure 6. Laboratory demonstration

The petroleum industry in their attempt to use secondary recovery
methods needed ways to plug thief zones and channels. Berea sandstone
has good porousity but traps and holds large quanities-of crude oil.
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Figure 7. Lab demonsttation (§9$§if%?
Well nourished organisms plugged areas close to the well casing.

Pressurization from the water injection system would overcome the
shallow plugs and very little oil recovery would result.
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Figure 8. Lab demonstration (Cont.)

By starving organisms and forming ultramicro bacteria (UMB), the
organisms could be made to move great distances. Adding nutrients
would then allow the organisms to grow, multiply and execrete exopoly-
meric substances which forms a plug in the channels sufficient to
prevent flow. ‘
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Figure 9. A sem photo of berea sandstone

Side A, berea sandstone without any microorganisms attached.
Side B, crushed berea sandstone with a covering of microorganisms.
The covering is extengive and completely covering the pores

. between the particles.
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Figure 10. Laboratory column containing glass beads

Glass beads were ‘used to pack a column. The pore diameters averaged 26
micron. The average diameter of a microorganism 1s 1 micron. Expecta-
tion was that mictobes would quickly move through the pore spaces and

exist the column. i

’«.1 aét o -\
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Figure 11. Subsequent time interval following Figure 10

Sequence of events on the glass beads shortly after the organisms were
introduced to the column cells began to stick and form a biofilm on the
surfaces of the beads.
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Figure 12. Subsequent time interval following Figure 11

The biofilm continued to develop covering the surfaces of the beads and
spanning the pore spaces.




Figure 13. Final SEM picture of the well developed biofilm

The actively growing cells, although small in size, on contact with a
surface, demonstrate their ability to adhere and form an extensive bio-
film at least on the initial surfaces. This prevents the movement of
organisms extensively through the matrix.



Figure 14. Microbial presence in ocean waters

Previous research has ghown a vigorous microbial population exists imn
shallow waters both as planktonic (free) and sessile (attached) cells.
However, at great depths, no cells could be found using microscopic
techniques. If nutrients were supplied, bacterial growth would be
observed. This was an initial observation that bacteria when starved
did not die but shrunk in size from 1.0 micron to 0.3 micron. This
size is below the resolving power of the light microscope and therefore
the UMBs went undetected.
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Figure 15. Nourished cells under going size
reduction

This special series of slides shows the bacteria
under starvation conditions becoming UMBs. The

" time sequence 1s about 24-4B hours.
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Figure 16. UMB 'Technology . .

The péetroleum industry 'using UMBs can pump them down the well. The
small UMBs will not stick to surfaces and move through the pores of
; the berea sandstone. Pulsing nutrients after the UMBs have traveled,
; will cause a revival to a full size bacterium followed by population
increases and adsorption to surfaces causing a deep plug.
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Figure 18. Ano'l:her i;djbterﬁnean UMB i:eéhnique

An advancing plume of metal/radionuclide ions or hazardous organics
could be detained by placing a biobarrier shead of it. This could
prevent the harmful affects of the plume contaminants in reaching the
accessible environment.



COLLOID DISTRIBUTION
AT THE KOONGARRA
URANIUM DEPOSIT

Tim Payne

Australian Nuclear Science
and Technology Organisation

Yucca Mountain Colloid Workshop
(May 3-5, 1993)
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THE ALLIGATOR RIVERS
ANALOGUE PROJECT (ARAP)

An international project sponsored by
the OECD/NEA. Participants in -
agreement:
ANSTO (Australia)
JAERI (Japan)
PNC (Japan)
SKI (Sweden)
UKDoE (U.K))
USNRC (U.S.A)

Work was carried out by these
organisations, together with
universities, national-research
institutions, and other laboratories.

A series of 16 reports covering the
project (1987-1993) will soon be
available.




THE BASIS OF THE KOONGARRA
ANALOGUE

* uranium transport started when
the weathering front (which is
moving downwards) intersected the
orebody

* the rate of downward movement
of the weathering front is estimated
to be 15 - 30m / million years

* groundwater mo’\'/ihg in the
weathered zone has re-distributed
uranium in the system

* a uranium "dispersion fan"
extending for 200 m has developed
over about 1.5 million years




THE KOONGARRA ANALOGUE‘

GROTND
* SURFACE

Fault

A. PRIOR TO WEATHERING OF
PRIMARY ORE

Fault

B. PRESENT DAY
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Borehole

Depth
Date

pH

Eh (mV)
EC (rS/em)
Mg*

ca*

Fe*

GROUNDWATER CHEMISTRY

PHA49
28-30 m
May 1688
6.74
+130
236

26.4

39

0.8

0.7

1.4

8.9

154

‘8.7

0.2

0.310

2

274

1.5




MAIN CHARACTERISTICS OF
PH49 GROUNDWATER:

. pH near neutral

. low conductivity

. Mg® is the dominant cation

. HCOy' is the main anion

. elevated concentrations of U and
U-series radionuclides

. low levels of TOC: :

. slightly oxidising with respect to
UIv)/uvi)

. Si is present at significant levels




GROUNDWATER CHEMISTRY AT
KOONGARRA AND YUCCA MOUNTAIN

KOONGARRA | YUCCA
pH 6.5-7.4 6.7 - 7.7
Eh (mV) +100 - +300 | +000 - +400
| (mmol/L) :
Mg?* 1.09 0.07
Ca* 0.10 0.29
K* 0.02 0.14
Na* 0.06 - 1.96
Si 0.32 1.07
HCO, 2.52 2.34
Cr 0.10 0.18
F 0.01 _ 0.11
PO~ 0.003: -
SO,* 0.021 0.19
(meq/L)
2 Cations 2.48 2.82
< Anions 2.63 2.82

The range of pH and Eh are for typical samples.
Other data are for Koongarra PH49 and
Yucca J-13 (from LA-1088-MS [1984]).

Charge balance only includes major ions.
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" OBJECTIVES OF KOONGARRA
COLLOID STUDY

1. To sample colloids (< 1.0 um)
and particles in groundwater

2 Physical and chemlcal )

i feharactensatlon-»-v; . E

3 Determme size dlstnbutlon of
radionuclides (pamcularly U
and Th) ~

. Evaluate significance of colloids
in radionuclide transport




Can results from Koongarra help us

'to_evaluate whether co

loids will

significantlvy _increase radionuclide

release to the accessib

e

environment at Yucca Mountain?'

=TI

. Have colloids p!ayed a sngn‘facant

role at Koongarra‘?~

To what extent aré results fiom~
Koongarra transferable to Yucca
Mountain?

s Koongarra a worst case

scenario?




MAJOR SAMPLING PROBLEMS

1. TRANSFORMATIONS OF
SAMPLES

Strategy adopted:
In-field separatlon of colloids - no -
time elapsed prior to. ultrafrltratron'
step
Closed system ultrafiltration with
oxygen free atmosphere
(N, / CO,)

- samples sealed from atmosphere
until analysis

2. ACCURATE PARTICLE SIZE
CUT-OFF OF FILTERS

Strategy adopted:
selected Nuclepore filters with
well-defined pore size of 1.0 um
as upper size limit of colloids
electron microscope examination
of filters subsequent to sample
collection




Hollow fibre ultrafiliration system

(10000 M.W. ultrafilter membrane
S5um and 1.0um pre-filters)

Tangential

canridge
(16000 MW)




Stirred cell ultrafiltration system
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PARTITIONING OF CATIONS IN ‘;‘l‘_;ﬁm-FILTERED GROUNDWATER BETWEEN
COLLOID CONCENTRATE (CC), l'jl;.-,TFlAFIL‘!’FlA’l‘E (UF) AND ULTRAFILTER
- " BAGKFLUSH (BF)
(Hollow Fibre Ultrafiltration Experiments)

St
Hole Fraction K Na Mg Ca Al Fe Mn sl
ko2 |UFmgn) | o065 | 169 | 455 | o0.92 <002 | 114| 0037 | 125 ‘
CC (mgh) 0.63 163 | ~ f"’u;‘l" - 0.70 0.02 1.06 0.027 0.8 |
BF* . . . . 0.1%) | 0.8% -l - |
PHss | UFmgn) | 107 | 188 | 174 1.28 «©002]| 077] o067 | 125
CC (mgh) 1.11 | '1.62 18.2 138 0.02 0.80 0070 | 126
BF* - t . . ©os%) | o5% | .| -
PH14a UF (mghL) 0.71 1.49 1.7 2.29 0.04 0.43 0.36 92
CC (mgN) 074 | 144 | 222 238 <002| o048 037 | 90
BF* - - - - (0.15%) 1.4%
PH14b UF (mg/L) 0.65 1.36 19.8 1.50 0.02 0.14 0.20 9.5
CC (mgh) 0.69 1.37 18.2 1.43 <002 | 013 0.17 2.0
BF* . - . ©02%) | 1.1% -] -
PHA49 UF (mg/L) 0.58 1.12 24 1.60 0.02 0.40 0.13 83
CC (mgh) 0.60 1.09 23 1.60 <0.02 0.46 0.13 8.0
BF* . - - - (0.4%) 1.1%

* Percentage of total found in ultrafilter backflush. In cases not assigned a numeric value,
ultrafilter retention was below 0.03%. Data for Al in BF fraction are bracketed because the
Al values were close to detection limits.
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Figure 3.5.23. Uranium particles (U(Fe)) from PH49 28-30 m colioid
concentrate (bar = 0.2 um).
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Figure 3.5.18. Kaolinite-like particles (crystalline, Al, Si). a) PH96 colloid
concentrate (bar = 0.2 um), b) PH49 < 28 m colloid concentrate (bar = 0.2 um).
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Figure 3.5.20. Chilorite-like particle (Si, Al, Mg, (Fe)), PH49 28-30 m colloid
concentrate (bar = 0.5 um).
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DISTRIBUTION OF SOME COLLOIDS DETECTED
IN KOONGARRA GROUNDWATERS



PARTITIONING OF #°U AND *°Th IN 1 um-FILTERED GROUNDWATER

(Hollow fibre ultrafiltration experiments)

Borehole 2% 2'Th
UF (ppb) Colloid - UF (mBqg/L) Colloid
KD2 0.079 1.8% <0.007 -
PHS55 0:40 2.5% 0.073 33%
PH14(a)* 87.7" 1.4% 0.160 12%
PH14(b)* 205 1.1% 0.062 27%
PH49 178 1.4% 0.053 82%

* There were two colloid sampling experiments at PH14.




__SURFACE DOH3
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Comparison of U concentratidns and minsral
abundances. Uranium concentrations (ppm) along
the DDH 3 core are shown with & schematic repre-
sentation of the ~relative abundances of chiorite,

® - vermiculite, and kaolfinlte (and smectits).

T. Murakami, H. Isobe, R.Edis,
, _ Hat Res Soc Symwp Froc 212 , 1991
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URANIUM ASSOCIATED WITH COLLOIDS

(Stirred Cell Experiments)

Hole | SamplingDepth | U, | U, | % of Uon

_ (m) ppb | ppb Colloid
wi 23-25 m 0.24 61 0.4
W4 13-15m 2.6 470 0.5
W4 - 2325 m 1.0 300 0.3
M1 2729 m 0.52 | 620 0.1
PH49 18-20 m 0.60 | 110 0.5
M2 . 42-44 m 0.12 46 0.3
W5 23-25 m 021 | 3.0 6.5

U, - uranium on collolid.
U, - uranium in ultrafiltrate.




If the b.f. includes adsorbed
species then the calculated
colloidal #*U and #*°Th should be
considered to be upper limits.

If this material is excluded from the
calculation, then:

colloidal #°Th is 5 - 35%
colloidal #8U is 0.1 - 0.4%

Whilst these figures are
significantly lower, the colloidal
23gI'h is significant and remains
greater than is the case for **°U.




DISTRIBUTIONS OF %% AND #°Th AMONGST COLLOIDS, PARTICLES (>1 ©m)

AND ULTRAFILTRATES
Ultrefiltrate Colloid &s
. as Percentage
Experiment Percentage of Totat*
of Totat
=y
PH14(g) 87.4 1.26
PH1 4(b) 70.2 0.76
PH48 64.8 0.1
Th
PH14(a) 0.48 0.07
PH14(b) 0.08 0.03
PH48 0.007 0.032

! * The total includes ultrafiltrate and p
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DISTRIBUTIONS OF U AND %°Th AMONGST COLLOIDS, PARTICLES (>1 pm)

AND ULTRAFILTRATES

(Hollow Fibre Ultrafiltration Experiments)

Particles | Particles Colloids Ultrafiltrate Ultrafiltrate Colloid as

Experiment >5 pm 1-5 um <1 pm as Percenage
*pe (mBal) | (mBan) (mBal) (mBq/) Percentage of Totat*
. of Tolal*

=y
PH14(a) 60.7  81.0° 7 | 157 1090 87.4 1.26
PH14(b) 547 s07' ‘| 275 2550 702 0.76
PH49 722 452 31.0 2220 64.8 0.91
°Th
PH14(a) 128 20.5 0.022: 0.160 0.48 0.07
PH14(b) 64.3 16.0 0.023 0.062 0.08 0.03
PHA49 445 348 0.250 0.053 0.007 0.032

* The total includes ultrafilrate and particles in all'size ranges.




250 unfiltered
200 4
% ‘ _ uttrafiltered
150 -
=3 |__ .4
n: 100 -
&
50
L) L L
Sum 1pm 10000 MW
filter pore size
unfittered
2°Th 80 ;
m -
g .
& 30 .
©
f
10 4 ,
uttrafitered

L ]
Sum 1um 10000 MW -

filter pore size

Effect of filtration on radionuclide levels in groundwater
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é’ler.gy(MeV) 6

Thorium alpha-spectrum for PH14 samples retained by:
a) 1 pm Nuclepore filter
b) colloid filter




THORIUM ALFPHA SPECTRUM
KOONGARRA CORE SAMPLE

Energy (MeV)



CONCLUSIONS

Uranium migrates mostly as
dissolved species

Thorium and actinium are mostly
associated with larger particles
(> 1.0 um)

Only a small amount of colloidal
material is present

Colloids reflect the mineralogy of
the solid phase ,_
Colloids carry measurable
amounts’ of 2°Th, 28U, Z'Ac, and
Fe

In 1.0pm-filtered groundwater,
5-82% of #°Th and 0.1-2.5% of
238U are associated with colloids
Colloidal transport is of greatest
significance for Ac and Th
Colloids are relatively unimportant
- in transporting radionuclides at
Koongarra




Formation ana Physicc-chemical
Properties of Radiocotloids

David E. Morris

Spectroscopy and Biochemistry Group
Los Alamos National Laboratory

Yucca Mountain Site Characterization Project
Colloid Workshop
May 3 - 5, 1993
Santa Fe, New Mexico
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Operational Definition

e Radiocolloids are composed
exclusively of hydrolyzed
radionuclides

e There is no sorbing substrate
involved



RADIOCOLLOID FORMATION PROCESS

Hydrolysis:
M 4+ 3H,0 =& M(OH)g* +3H*

Condensation: | -
« [HO\ _JOH
2 M(OH)3+ $ ; ,M_o_M\ + H20
HO" OH
Oligomerization: = 1 !
. n+

COLLOIDS ‘_[/M\o/”'< M’]+ n HoO

Maiti et al. Nucl, Tech. 84, 82 (1989)



Candidéte RadionuClides

Considerations:
1) Partof PA's inventory
2) High charge/radius ratio for accessible
oxidation state
3) Concentration in inventory

-

e Wb .

I. Plutonium

Il. Americium, Thorium,
Protactinium

Ill. Uranium, Neptﬁuﬂnium', Actinium,
Lead, Tin

IV. Radium, Nickel, Strontium

llllllllllllll
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" Philosophy for
Radiocolloid Studies

i

Studies are comparable to other
radionuclide speciation studies

.'_.;'_:“. a—*-z-“'" *,;r rs* 4.' > o ﬂ';"* *4“

characterlzations are needed
to assess traﬁ'sport potential
e to undersfand and correlate
reactivity =
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- Philosophy for
- Radiocolloid Studies

Chemical Properties

¢ Synthetic Conditions

e Stoichiometry &
Molecular Structure

* Trends in Reactivity

'Physical Properties
e Particle Size

* Particle Density |
e Bulk Particle Charge

llllllllllllllll
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FORMATION, CHARACTERIZATION, AND STABILITY
OF PLUTONIUM(IV)-COLLOID!

David E. Hobart, David E. Morris, and Phillip D. Palmer

Isotope and Nuclear Chemistry Division
Los Alamos National Laboratory
Los Alamos, New Mexico 87545 USA

ABSTRACT

Several actinide elements are known to form colloids under environmental groundwater
conditions. It is imperative to study the physico-chemical properties of these colloids
(particularly plutonium colloid) as pertains to high level nuclear waste isolation and
storage. In the event that a nuclear repository containing plutonium is breached by near-
neutral pH groundwater, it is most likely that, as discussed in this report, the plutonium
will form colloidal Pu(IV).

This report provides a thorough literature review (to June 1987) relevant to pertinent
aspects of the chemistry and physics of Pu(IV)—colloid. In addition, the results of a
oumber of experiments performed in our laboratories are presented which provide new
data to characterize further the physico-chemical properties of Pu(IV)—colloid. These
new experimental data include a detailed comparison of the electronic spectra (absorption
and diffuse reflectance) of Pu(IV)-colloid and numerous other Pu(IV) complexes. On the
basis of this spectral comparison, it is concluded that Pu(IV)-colloid is structurally very
similar to finely divided crystalline PuO;. “This is in agreement with conclusions drawn
from other experimental results including X-ray and electron diffraction studies. Recent
results are also presented concerning the redox reactivity of Pu(IV)—colloid. It has been
determined that the colloid can be reduced to aquated Pu(II) by either zinc amalgam or
electrochemically at & mercury electrode. The electrochemical reduction shows a strong
potential dependence with an abrupt increase in the rate of colloid reduction at ~ -1.0
V vs SCE. The colloid can also be oxidized electrochemically to PuO3* at a platinum
electrode. In this case, significant oxidation rates do not occur until ~ +1.4 V vs SCE.
Finally, this report concludes with a brief summary of the proposed future direction of the
Pu(IV)-colloid investigation.

1 Nevada Nuclear Waste Storage Investigation Interim Report No. R718



Some Pu(lV) Collmd
Formation Reactions

 Dilution of acidic solutions of
[Pud+]aq
[Ockenden and Welch J. Chem. Soc. 3358 (1956)]

* Precipitation of Pu(lV) hydrous
oxide and peptlzatlon in dllute
acid
[Costanzo et al. J. Inorg. Nucl. Chem. 35, 609 (1973)]

» Extraction of nitric acid from
Pu(lV) solution with n-hexanol
[Lioyd and Haire Radiochim. Acta 25, 139 (1978)]

e Auto-oxidation of Pu(ill) stock in
dilute acid
[Morris et al. YMP Milestone Report M367]
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Drip tests done with spent fuel show surprising radionuclide
distribution patterns (compared to saturated tests) and also
REE and actinide-bearing colloids.

Drip Tests (g/L) _ Saturated Tests (g/L)

Filtered
Unfiltered (50 nm) Unfiltered
Am-241 2E-4 1E-6 1E-10
Cm-244 4E-4 ' 1E-6 -
Cs-137 2E-4 - 2E-3

pH 4-6 . ~8



(a) Micrograph of agglomerated colloids from spent
fuel leachate. The individual particles are around 50-
100 nm in diameter and (b) SAED analysis suggested
the phase was the uranium hydrate schoepite.




The compositional analysis: U, O, Si, and REE

EELS was used to identify the REEs; La, Ce, Pr, Nd, and Smin the
schoepite colloid
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" Colloids
Summary

As the waste form reacts, it strongly influences the
distribution of radionuclides to solution. It is possible to
identify the colloidal species, the size distribution, and the
radionuclide content.

e Primary collolds form directly from glass and UOZ

due to spallation of material from the glass, contain
concentration Pu/Am phases, remain suspended in .
solution.

e Pseudocolloids - form as glass and spent fuel
dissolution products nucleate in solution (J-13 > DIW) -
the distribution in solution depends on the ionic
strength of the leachate. '



Y o 7 - N\
COLLOID FORMATION FROM SPENT FUEL DISSOLUTION

Walter J. Gray

Senior Scientist

Pacific Northwest Laboratory (PNL)
Richland, Washington

Yucca M'o"u'ntain Site Characterization Project
Colloid Workshop

May 3-5, 1993

Santa Fe, New Mexico
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INFORMATION SOURCES

‘e C.N. Wilson, Results from NNWSI Series 2 Bare Fuel Dissolution Tests,
PNL-7169, 1990.

e C. N. Wilson, Results frbm NNWSI Series 3 Spent Fuel Dissolution Tests,
PNL-7170, 1990.

MAJOR TEST DIFFERENCES

e Series 2 tests employed-fused silica vessels, 25°C
e Series 3 tests employed stainless steel vessels, 25°C and 85°C
e Test results were similar at 25°C

e Generally lower releases and fewer colloids were observed at 85°C



SOLUTION LEVEL
(250 ml J-13 WATER)

—FUSED SILICA
] TEST VESSEL

FUSED SILICA
RODS :

SPLIT CLADDING
~ HULLS

FUEL PARTICLES

V

A

H——FUSED SILICA
BASKET WITH BAIL

§ 38807013.14

EJGURE 2.1. Series 2 Bare Fuel Test Configuration

2.2




| Composition of J-13 Well Water

Component Concentration (mg/L)

Ca 13

K 4.9
Mg | . 2.0
Na 44
Si | 30

Cl - 6.7
F .23
NO, 9.0
SO, ‘ o 19
HCO, ’ 126
Organic Carbon 1.8 |

pH 8.4




SAMPLING SCHEDULE

Periodically (every few weeks) collect water sample (10 to 30 mL)
Filter and analyze
Replenish water

Approx. every 8 months replace entire water volume and begin new cycle
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239+ 240py, in Solution Samples

104,

103

10!

109

I 1 { | V 1 1 L] | L | ] ) 1 | i
Cycle 1 Cycle 2 Cycle 3 Cycle 4

O HBR Unfiltered @ TP Unfiltered
O HBR 0.42«11 Filtered | W TP 0.4-um Filtered
O HBR 18-A Filtered A TP 18-A Filtered
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FIGURE 3.2. Activities of 2394280py peasured in Solution Samples
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241am in Solution Samples

ry .
10 LB i I | ) | i ) | |} I 1 | | | ' B ! 1
Cycle 2 Cycle 3 Cycle 4 —10-5 HBR INV—1]
O HBR Unfiltered @ TP Unfiltered N
O HBR 0.4-um Filtered | @ TP 0.4-um Filtered _
A HBR 18-AFiltered | A TP 18-A Filtered —10-6 TP INV—

10

x —-J
o | I: : : pa
3 b/ .
B Cycle b ]

‘oﬁ i L1 | [ ] 1 i | | I | | i [ { [ [} ] | | |
0O 650 100 160 200 O 60 100 160 200 O &O 100 160 200 O 60 100 160 200 O 5O 1300 150 200 250
Days ' 33807013.2

FIGURE 3.3. Activities of 281pn Measured in Solution Samples
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244Cm in Solution Samples
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EJGURE 3.4. Activities of 244Cm Measured in Solution Samples
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237Np In Solution Samples
2T T T T 1 T T T | I I — S — —
Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle &
18 O HBR Unfiltered
O HBR 0.4-um Filtered
1.6 |- A HBR 18-A Filtered =
1.4 - ' @ TP Unfiltered _
’ @ TP 0.4-um Filtered
A TP 18-A Filtered
1.2 - -
E
L -
1
08 |- —10—5 HBR INV—
0.6 |- -
04 |- -
o2 |- —10-6 TP INV—
0 A 1 [l ! 1 d 1 | . 1 | } 1 [l ] 1 | | | 1 1
0 50 100 150 200 0 G650 100 160200 O 60 100160 200 ©¢ 60 100 160 200 O &0 100 150 200 250
Days 338070136

EIGURE 3,.5. Activities of 237Np Measured in Sclution Samples



Annual Release Rates (including "colloids") at 25°C in J-13 Water
as Fraction of 1,000-Year Inventories

Actinide log(Release Rate)’ % Colloids
U 86 -0
Np , -8.8 ~0
Pu | 90 20 to 60
Am . ., 9.1 >90
Cm -8.0 >90

* Assumes water flow rate of 20 L/Yr per waste package containing 3140 kg
of 33 MWd/kgM PWR fuel.




Organic Materials(continued)

The formation and stability depends on:

Note that characterization of immiscible organic liquids is lackihg._

Type of adsorbed ions
Type of organic matter
lon concentration
Organic concentration
pH

lonic strength
Temperature

Oxidation state

O Tnroduced phodestals: Corsidurations v \bid Fnmahon — Annemarre. theike Lz



Are the consequences of Introduced Materials Significant?

CONSIDER:

» SCP DESIGN INCLUDES 560,000 m3 of shotcrete in the
emplacement drifts alone.

* ESF North Portal Facility estimated usage for FY 1993 includes:
~ 24,000,000 gal. water
- 250,000 gal. diesel fuel
- 10,000 Ibs. of rockbolt resin
- 1,800 ft.2 extruded polystyrene
- 50 yd.3 bentonite clay
- 250 gal. cable lubricant

EB-000N-AMNM-10




Organic Materials L]

COLLOID FORMATION:
e Degradation of greases, wood, other introduced organic matter

« Degradation of less soluble materials as a resuilt of elevated
temperature and chemical, microbial and/or radiolytic attack of:

- Plastics
- PVC

- Cellulose
- Rubber

- Polyethene
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Oxyhydroxides | C

Sources are not only container materials, but also other introduced
materials such as stainless steel fixtures and rebar.

Adsorption and transport effects are specific to the metal
and oxyhydroxide species.

Potential aspects of introduced materials involvement.

e Fulvic acid and,éi concentration
 Elevated pH

* Reaction path

* Increasing adsonjt?ate concentration
* Increasing ionicgs’t'rengths |

* S§04 concentration

o Sorption of organic acids on goethite varies
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Cementitious Materials L]

~ Grouts, cements and shotcrete are sources of
calcium silicate hydrate (CSH) colloidal gels:

e Known effects:
- Ash and silica fume can produce pseudocolloids at high pH

- Low concentrations of salts, aliphatic aromatics and
saccharides can influence transformation rate

e Unknowns:

Cement additives (superplasticizers, curing compounds...)
Presence of otherions

Presence of organic material within or close to the cement
Aggregate and pozzolan chemistries

Effect of Eh gradient

Effect of pH gradient

ES540083-ANM-1
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Possible colloids derived from introduced materials Lng

COMPOSITION:
* Oxy(hydr)oxides
e Clays
e Organic particles
* Polysilicates
SIZE:

* Very small (< 10 nm), eg. hydrated metal ions, small organic
particles, polyhydroxo-complexes, polysilicates, fulvic acids...

e Medium sized (10 -100 nm), eg. clays, metal-hydroxides

* Large (> 1um), eg. inorganic and organic particles
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Examples of introduced materials that may affect adsorption and transport:

* Inorganic complexants (acid, batteries)
* Organic complexants and nutrients for microbes (e.g. aicohol,
. antifreeze, bituminous materials, diesel fuel, diesel soot,
f some gases, clothes, Iubncants, plastlc, wood .) |'

» Groundwater pH modlf‘ iers (acids, concrete, grout, lime, plaster...)




Ex_pected Gradients Caused by Intrdduced Materials |®

e pH
* Jonic composition
e Eh

CO2 partial pressure,
 Temperature |
-+ Radiation

» Bacterial activity g

i.e. The repoSitory cannot be viewed as a homogeneous system



Waste Packages and the Cement Issue C

Temperature °C
. adh
3

To far field _ s
and accessible 0 Time .10,000 yrs
environment?
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Influences on formation, transport and stability o

COLLOID CHARACTERISTICS:

* Physical size

Bulk charge
Density :
Chemical reactivity
Chemical structure
Sorption potential

ENVIRONMENTAL CHARACTERISTICS: |

pH (cement)

Redox potential (cement, metal)

lonic strength

Competing ions

Organic matter (peanut butter and jelly sandwiches)
Temperature

Microbial activity

Radiolysis

GRADIENTS in environmental chacteristics (space, time)



» Colloid transport
~ ¢ 'Adsorption mechanisms

e Formation of naturally occuring colloids
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Goal of Coliloid Studies within the

Man-made materials Task

Ideniify introduced material sources and their significance
with respect to:

o Colloid formation
* Adsorptive capacity modification
¢ Natural colloid enhancement

OBJECTIVE: Provide ‘information for the development of policies
with regard to introduced materials:

e Removal
* Minimized usage

» Special measures during emplacement and use
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Goal of Man-made materials Task U

DETERMINE THE CHEMICAL CONSEQUENCES OF INTRODUCED
MATERIALS IN THE POST-EMPLACEMENT ENVIRONMENT |
Examples

« WATER (drilling fluids, dust control, emplacement of cement)

* [nsoluble metals (stainless steel): measurement devices,
electrical accessories... ~

* Insoluble organic solids (neoprene, plastic): packer, rubber...
» Soluble inorganic solids (LiBr, LiCl, NaBr): tracers
 Inorganic liquid (water with tracgrs)

 Miscible orgarlic liquids (ethylene-glycol): antifreeze,
fluorescein dye.....

e Immiscible organic liquids (petroleum based oils): brake fluids,
lubricants, oils, paints, grease, fuels...

» Organic gases: Hy, Ny, 05, CO, CO5, CoH»
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Other Introduced Materials:
Considerations for Colloid Formation

|

Annemarie Meike
Task Leader, Man-made Materials

Lawrence Livermore National Laboratory

May 3, 1993
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