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THE ADJOINT METHOD AND LATIN HYPERCUBE SAMPLING IN GROUNDWATER MODELING

Adjoint sensitivity analysis has been used by DOE contractors in

regional groundwater flow modeling for some of the potential HLW repository

sites. The purpose of this note is to briefly describe what the adjoint

method is, what it is used for, and how it compares with other sensitivity

analysis techniques, including Latin hypercube sampling.

Summary

The adjoint method can be classified as an analytic method while Latin

hypercube sampling is a special form of direct sampling used during Monte Carlo

simulation. These methods are summarized in Table 1.

The adjoint method is computationally efficient for calculating the

sensitivities (or sensitivity coefficients) of one performance measure of a

model's output to the entire parameter field. It is much more efficient than

the direct (differentiation) method when the number of parameters of interest

(e.g. porosities) is much larger than the number of performance measures (head

values, for instance). The direct method is more efficient when the number of

parameters in much less than the number of performance measures, for example

when the sensitivities of all head values to one conductivity is desired.

The adjoint method is particularly useful in identifying crucial areas where

additional resolution of the parameter field is warranted. Neither the adjoint

nor direct method generates the actual head values or other performance

measures in the process of calculating the sensitivities. Monte-Carlo

simulation allows estimation of sensitivity coefficients from a large number of

deterministic solutions with different input parameter sets. This technique

generates the distribution of model output (head values) resulting from the
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TABLE 1

COMPARISON OF ANALYTIC AND MONTE CARLO METHODS

ANALYTIC METHODS - Calculating Sensitivities

Direct and Adjoint Methods

o Local sensitivities deterministically calculated from governing
equations

e Sensitivities for only small region of parameter range
o Must be incorporated into numerical model of interest
* Does not generate multiple model outputs
o Does not include any information on parameter ranges or correlations

Direct Method

o Computationally efficient when number of parameters is small

Adjoint Method

a Computationally efficient when number of parameters is large

MONTE CARLO METHODS - Direct Sampling, Latin Hypercube Sampling, Regression

0

0

0

0

0

0

0

Sensitivities estimated from multiple deterministic model output
Sensitivities for entire parameter range
External to numerical model of interest
Generates multiple model outputs
Generates unbiased probability distribution functions
Includes parameters ranges, pdf's and correlations
Computationally burdensome

Latin Hypercube Sampling

° Reduces number of model runs required for statistical accuracy
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range of input parameters. For many problems, Latin hypercube sampling (LHS)

minimizes the number of solutions required by selecting input values from a

partitioned parameter distribution. Parametric sensitivity analysis also

generates multiple model outputs, which directly show changes due to limited

parameter changes and can be used to estimate sensitivities. This technique,

however, involves fewer parameter changes and does not always include important

relationships between parameters. Figure 1 illustrates the different output

from these techniques.

Both analytic and statistical sampling methods are important in

sensitivity and uncertainty analysis. Analytic methods, including the adjoint

method, are useful in parameter identification, local sensitivity calculations,

and stochastic models. Monte Carlo simulations, with direct or Latin

hypercube sampling, generate probability distribution functions for model

output corresponding to the entire range of parameter values with associated

probabilities and correlations.

Sensitivity Analysis

Due to our imperfect knowledge, groundwater flow (and transport)

assessments are uncertain. Areas of uncertainty include field data collection

and interpretation, conceptual model development, model parameter estimation,

and probability estimation. In assessing the impact of this uncertainty, it is

often beneficial to have a quantitative understanding of how the predicted

flow system is affected by errors in individual or groups of input parameters.

For example, how much would the predicted flow velocity change if the

hydraulic conductivity changed? Or, which porosity values are most important

in determining the velocity at a certain location? These questions are



FIGURE 1 OUTPUT FROM ANALYTIC AND MONTE CARLO METHODS
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addressed through sensitivity analysis. Calculating sensitivities is a major

portion (but not all) of sensitivity analysis.

The sensitivity (or sensitivity coefficient) is the first-order partial

derivative of the solution curve with respect to a parameter. For example, if

we plotted the piezometric head at one location versus the hydraulic

conductivity of one unit, the sensitivity would be the slope of that curve.

From this illustration, two important points can be made. The first is that

that curve may not necessarily be straight, and hence the sensitivity may not

be constant over the entire range of that parameter. That is, the second-order

derivative may not be zero. Secondly, this curve is developed holding all

other parameters constant. If those other parameters change independently, or

change in response to a change in the parameter of interest, the sensitivity

would change. Thus, combining these points, the sensitivity at a point is a

function of all parameters of the system, including the parameter to which the

sensitivity of the solution is desired.

Sensitivity coefficients are used in several sensitivity and uncertainty

analysis procedures. The actual change in output values can be estimated by

multiplying the calculated sensitivity (first-order derivative) by a step

change in the parameter. This is only an estimate in that the sensitivity

coefficient may not be constant over that step range. The sensitivity can also

be used during model calibration or parameter identification. Part of the

calibration procedure is minimizing error in model output, based on measured

values, by changing parameter values. The sensitivities provide the gradient

in this optimization procedure [e.g. Carrera and Neuman 1984]. Sensitivities

for an entire parameter field indicate the relative importance of different

parameters. This may be very useful in optimizing data collection activities

[e.g. Doctor et al. 1982]. Sensitivities can also be useful in directly
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relating uncertainty in model output to uncertainty in input parameters (e.g.

Sagar and Clifton 1983]. For example, given an estimated uncertainty in

conductivity, the corresponding uncertainty in head calculations and the effect

of that uncertainty on the mean head can be determined. These determinations

require sensitivity coefficients, but also include procedures which are beyond

the scope of this paper [see e.g. Townley 1984].

For many groundwater flow problems which have closed form solutions, the

sensitivity can be evaluated directly. That is, the solution can be directly

differentiated with respect to a parameter. That calculated sensitivity is a

direct function of the parameters input. This exercise can identify important

properties of general flow solutions (e.g. Wilson and Dettinger 1979].

Unfortunately, many real heterogeneous groundwater flow systems cannot be

adequately described with analytical solutions, and we must resort to

numerical solutions.

The general concepts of sensitivity analysis also apply to numerical

models. In this case, rather than having one or two values of hydraulic

conductivity, a system may be modeled with hundreds of different conductivity

values for different areas. As above, it is possible to solve certain

sensitivity problems directly, even for complicated numerical models. The

numerical representation of the solution, typically a set of simultaneous

equations, can be directly differentiated with respect to a parameter.

However, when the sensitivity to a large number of parameters is desired, these

computations can be burdensome. The adjoint method has arisen as an efficient

computational technique for problems where the sensitivities of a single output

value (or a single combination of output values) to a large number of

parameters are desired. Another technique for sensitivity analysis is called

direct sampling or Monte-Carlo simulation, and involves generating numerous
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solutions to the flow equations with ranges of the parameters of interest.

These output are statistically evaluated to estimate sensitivities. Latin

hypercube sampling is a parameter set generation technique which reduces the

number of solutions required for many direct sampling problems. These

techniques are discussed in more detail below.

The Direct Differentiation Method

For discussion, consider a numerical solution to a steady state

groundwater flow problem. This problem is solved using a distributed

parameter technique, such as finite element or finite difference.

Numerically, this problem is the solution of a set of linear simultaneous

equations represented in matrix form by:

_ : (1)

where K is the system stiffness matrix, h is the vector of unknown heads, and

F is the forcing vector. The stiffness matrix contains conductivity and

geometric terms relating the nodal head values to each other. The forcing

vector contains the boundary condition terms, including distributed

recharge/discharge. Equation (1) can be differentiated with respect to a

scalar parameter of interest, Wt, yielding:

,< ok ok i * as (2)

Note that (2) is the derivative with respect to only one parameter. The

forward problem, (1), is solved once, and the sensitivity of all head values to
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the parameter of interest is determined by solving (2). All terms in (2) can

be directly calculated or are available from the solution of (1), except of

course k/. L which are the desired sensitivity coefficients. Calculating

sensitivities directly is appropriate when the number of head values of

interest is much greater than the number of parameters of interest. If

however, sensitivities to several parameters, say the conductivities of 20

elements, are desired, (2) would have be solved once for each element

conductivity.

The results of the direct method are the solution of the flow problem (1),

and the sensitivities of each head value to the single parameter of interest.

This technique does not result directly in different solutions of the flow

problem. That is, it does not actually calculate heads which would result

from different values of the parameter of interest. Sagar and Clifton (1983]

use direct differentiation techniques in a stochastic flow model. This model

results in the mean head solution, and the variance of the mean solution due

to variance in the conductivity field.

The advantages of the direct method are that sensitivities are calculated

directly from the governing equations rather than estimated from model output

data, and the method is efficient when the number of parameters is less than

the number of performance measures. Directly calculated sensitivities are

required for some sensitivity and uncertainty analysis techniques, such as

stochastic models. Sagar and Clifton (1983] also compute second order

derivatives directly in their stochastic flow model. The disadvantages of the

direct method are that the distribution of model output is not computed, the

method is computationally burdensome when the number of parameters is much

greater than the number of performance measures, and the computed sensitivities

may apply to only a small region of the parameter range. Numerical
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implementation of the direct method is internal to any particular computer

program; it cannot be applied a posteriori.

The Adjoint Method

When the number of parameters of interest is larger than the number of

performance measures of interest, the adjoint method may be appropriate.

First, a performance measure for the forward problem (1) is defined. For

example, that function may be:

j2..5 ~.dcIV 5 JV (3)

where P is the scalar performance measure, h is the vector of heads, j& is a

vector of weighting functions, and f is the weighted head, a function of

location. The integral is over the entire domain. The weighting functions

simply specify how the model ouput is combined to form a scalar performance

measure. For a simple case, , could contain a I at one node and O's at all

other locations. For this case, P would equal the head value at the node of

interest. The performance measure could include several heads, or even

velocities. The sensitivity of this performance measure to any one parameter

is calculated from [INTERA 1983a]:

+ Y (4)

a \ - boiTb 7 VV~~~~~~~~)d

1- O4 r 0 ; - V tm
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Terms in (4) are defined by IFNTERA [1983a]. Suffice to say that (4) contains

only known terms and derivatives which can be calculated directly, except for

h, which is the solution to the forward problem (1), and 4f, which is called

the adjoint state, or the adjoint state sensitivity, or an importance

function. The adjoint state, 'P, "represents the change in the value of the
performance measure caused by a unit volume influx of water at any point x in

the domain" [INTERA 1983a]. Plotting the adjoint state for an entire area

shows the numerical impact of additional influx at each location on the

performance measure. Solving (4) for a particular sensitivity does not require

solution of simultaneous equations. The adjoint state vector, lop, is

determined by solution of the adjoint problem:

K (5) - _(

which is a system of simultaneous equations. However, equation (5) is solved

only once for a given performance measure, and then the sensitivity of that

performance measure to any parameter can be calculated from (4). When the

sensitivities of one performance measure to many parameters are desired, this

is much more efficient than solving (2), which is a system of simultaneous

equations, for each parameter.

The numerical values of sensitivity calculated using the direct method

(equations (1) and (2)) and those calculated using the adjoint method are

identical. There are no simplifying or approximating assumptions made in the

adjoint method for calculating first-order derivatives. It is simply an

efficient calculation technique for problems with a large number of parameters
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of interest. Of course, if the performance measure (3) changes, the adjoint

problem (5) must be re-solved, and this method loses its attractiveness.

The advantages of the adjoint method are that sensitivities are

calculated directly from the governing equation and the method is efficient

when the number of parameters is much greater than the number of performance

measures. Calculated sensitivities are required for some sensitivity and

uncertainty analysis techniques, such as stochastic models. The disadvantages

of this method are the same as the direct method (see above), except that the

adjoint method is not efficient when the number of performance measures is

larger than the number of parameters. The adjoint method computes the

sensitivity of one performance measure to all parameters. Each time the

performance measure is changed (for example, head at a different location), the

adjoint problem must be resolved. Harper [1983] argues that the major

disadvantage of the adjoint method is the required familiarity with the

computer code which is to be 'adjointed'. Thomas [1982] considers the direct

and adjoint methods as "analytical methods" and finds them "superior to the

statistical sampling method in logical rigor and numerical accuracy." These

comparisons are made on the basis of calculating sensitivity coefficients, and

not on the basis of use of the methods in a comprehensive sensitivity and

uncertainty analysis.

The adjoint method has been used at the SALT HLW sites [INTERA 1983a,

1984a, 1984c]. The adjoint method was developed in the nuclear engineering

field [Oblow 1978a, 1978b] but has received little attention outside that

field.
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Monte Carlo Methods

Monte Carlo simulation techniques are related to parametric sensitivity

analysis. As stated above, one objective of sensitivity analysis is to

quantitatively assess the change in model output due to changes in model

input. A simple procedure for assessing this impact would be to actually

re-solve the model equations using the new parameter set of interest. These

results could then be directly compared with results using the initial

parameter set. The sensitivity could then be estimated by dividing the change

in model output by the change in model input. Running a model with different

parameters is called a parametric sensitivity analysis and has been used in

both the HLW [Ertec 1983; INTERA 1983b, 1984b] and LLW [e.g. Oztunali et al.

1983] programs.

Monte Carlo techniques are an extension of parametric sensitivity

techniques. However, Monte Carlo techniques are much more powerful because

they incorporate parameter sets representing the entire range of

possibilities, and because they incorporate the probabilistic and

interdependent nature of real properties. Each parameter of interest is

defined by a probability distribution function. In addition, the relationship

between parameters can be defined by covariance functions. Multiple parameter

sets are generated, choosing each parameter randomly. The word 'random' here

means that the actual value used for each model run is not known a priori, but

is picked from the available distribution at random. It is also implied that

the technique for picking these random values results in parameter values for

the entire set of multiple simulations which correspond to that parameter's

probability distribution function, and to applicable correlations with other

parameters. This results in a multitude of model outputs corresponding to

'realizations' of the parameter set which reflect the statistics of the
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individual parameters. These output can then be statistically analyzed to

determine sensitivities. In addition, these output directly show the ranges of

model outputs.

The advantages of Monte Carlo simulation are that actual output values

are calculated which directly show effects of different parameters over the

entire parameter range, that deterministic models of any process can be used

(the Monte Carlo technique is external to the particular simulation model),

and that all relationships between parameters and output, including

nonlinear effects, are incorporated. The disadvantages of this technique are

computational burden (often hundreds of simulations are required to assure

statistical accuracy), sensitivities are estimated by statistical analysis of

the model output as opposed to directly calculated, and results may not be

directly reproducible. That is, since the technique incorporates

parameter selection using, typically, some sort of random number generator,

and since the results analysis may be performed with different statistical

tools, results may not be identical from computer to computer. This latter

point may be especially important to regulatory actions. Townley [1983, 1984]

compares results from Monte Carlo simulation and from stochastic flow models

using adjoint sensitivity. He considers the Monte Carlo simulation as the

'correct' result and relates the observed differences in the results to

nonlinear or higher order effects which are not included in his stochastic

model.

Latin Hypercube Sampling

Latin hypercube sampling (LHS) (Iman et al. 1980a] reduces the

computational burden of Monte Carlo simulation by partitioning the probability

distribution for each parameter into smaller ranges. For example, when
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generating two parameter values using LES, one value will be chosen (randomly)

from each half of that parameters distribution. Using this technique, the

statistics of the model output converge to a constant value with lower numbers

of parameter sets, and hence solutions. Monte Carlo simulation with LES has

been used extensively by Sandia [e.g. Iman et al. 1980b] and by the staff in

its rationale for Part 60 [NRC 19831. Strictly speaking, LES is only the

generation of the parameter sets which are used in the Monte Carlo simulation.

It does not includes the statistical analysis (regression) of the model

output [see Iman et al. 1980; Iman and Conover, 1982].
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