

Thermal Creep of Dry-Cask-Stored PWR Cladding and High-Burnup PWR Cladding

Hanchung Tsai (htsai@anl.gov)

Review of ANL Cladding Performance Program July 17, 2003

Argonne National Laboratory

A U.S. Department of Energy Office of Science Laboratory Operated by The University of Chicago

- Presentation Outline
 - Creep testing methodology
 - Creep test results
 - Dry-cask-stored Surry
 - High-burnup H. B. Robinson (vis-à-vis Surry to explore burnup and hydrogen effects)
 - Summary and Conclusions

- Why studying creep?
 - Creep is the dominant cladding deformation mechanism under normal conditions of dry storage. The core issue, however, is cladding integrity.
- Test objectives
 - Determining creep ductility and steady-state creep rate
 - Generating samples to study hydride reorientation and post-creep mechanical properties

- Creep Test Specimen
 - 76-mm-long segments of defueled cladding
 - Cavity filled with Zr-702 pellets to reduce stored energy
 - Welded end fittings no mechanical connection to pressure line in heated zone

- Test Chamber
 - Inert-gas purged to preclude sample oxidation during test

- Pressurization Systems
 - Specimens pressurized with argon gas from 6000-psi cylinders (~ 270 MPa hoop stress max.)
 - No pumps.
 - Improved safety, costs, and space utilization.
 - Pressures regulated with individual microprocessorcontrolled regulators, to <±10 psi (0.5 MPa hoop).
 - Five systems for concurrent testing.

Thermal Creep Tests – Typical Performance

- Good pressure and temperature control
- Periodic shutdowns for dimensional measurements

- Laser Profilometry
 - Measurements made off-line at room temperature
 - Diameters measured at multiple axial and azimuthal locations to within ±2x10⁻⁵ in. (0.005% strain)
 - Length measured to $\pm 10^{-3}$ in. to evaluate creep anisotropy.

Laser Profilometry – Typical Results

Midplane crosssectional profiles of a sample at 0, 335, 671, 1028, and 1820 h. (Dimensions in inches.)

Surry Test Matrix

	Sample	Temp. (°C)	Stress (MPa)	Purpose
Completed	C3	360	220	Primary/secondary creep
Completed	C6	380	190	Primary/secondary creep
Completed	C8	380	220	Residual creep strain
Completed	С9	400	190/ 250	Residual creep strain
On-going	2-C9	400	160	Primary/secondary creep, ISG-11(Rev. 2)
To be initiated	C10	400	220	Residual creep strain, ISG-11(Rev. 2)

Surry Summary Results

Sample	Temp.	Stress	A	Sample		
	(°C)	(MPa)	Hours	Avg. e	Intact?	Disposition
C3	360	220	3305	0.22	Yes	DE ⁽¹⁾
C6	380	190	2348	0.35	Yes	DE ⁽¹⁾
C8	380	220	2180	1.10	Yes	Bend Test
C9	400	190	1873	1.03	Yes	
		250	693 ⁽²⁾	5.83	Yes	Bend Test
2-C9	400	160	286 ⁽³⁾	0.22	Yes	tbd

- (1) DE: Destructive examination, for hydride orientation determination. For this, the final shutdown was done with sample pressurized.
- (2) Incremental hours
- (3) On-going

Thermal Creep Tests – Surry C9

- 400°C, 190/250 MPa engineering hoop stress, 2566 h
- 5.8% average hoop strain, no rupture

13

Commission

Thermal Creep Tests – Surry C9

- Deformation uniform even at high strain (5.8%)
- No signs of imminent failure
- Additional creep ductility likely

Thermal Creep Tests – Surry C9

 No apparent creep anisotropy based on sample length measurements

- Temperature Dependency

16

- Temperature Dependency

- Stress Dependency at 380°C

18

- Stress Dependency at 400°C

19

Secondary Creep Rates

Test Purpose	Sample	Temp. (°C)	Stress (MPa)	SS De/D t ⁽¹⁾ (%/h)
PSC	C3	360	220	[~] 1.6 ⁻¹⁰⁻⁵
PSC	C6	380	190	[~] 8.6 ⁻ 10 ⁻⁵
RCS	C8	380	220	~ 4.6 ⁻ 10 ⁻⁴
RCS	C9	400	190 250	~ 4.9 ⁻ 10 ⁻⁴ ~ 4.9 ⁻ 10 ⁻³

(1) e (avg). Values are approximates. Effects of wall thinning and diameter increase on hoop stress not included.

Robinson Test Matrix (6/03)

		Stress (MPa)					
		100	160	190	220	250	
Temp. (℃)	420		1				
	400		1	C14 C15	1		
	380		1	C16	C17		
	360			1	1		
	320						

21

H. B. Robinson Cladding

- Significant corrosion and H uptake from extended operation to high burnup
 - Oxide thickness:
 - ~100 μm max.
 - Hydrogen uptake: ~800 wppm max.
 - Hydrides: circumferentially oriented
- What are the effects of increased hydrogen and radiation damage on creep?

- At 400°C, secondary creep rate of H. B. Robinson appears to be comparable to that of Surry at the onset of test. Rate appears to be greater afterwards.
- C14 was terminated at 2450 h at 3.6% e.

- C15 developed a rupture during the final shutdown, which stipulated cool-down first before depressurization to study hydride reorientation. (In comparison, C14 was depressurized first in the final shutdown.)

24

- Shutdown history of C15
 - Sample intact at the end of run at 400°C.
 - Rupture occurred when temperature decreased to 205°C.

Status of C15

- The rupture caused substantial contamination of the hot cell in spite of the following provisions:
 - Sample defueled (by acid dissolution) and filled with Zr pellets
 - In-line pin hole in the pressurization system to restrict flow
 - Solenoid valve to shut off pressure
 - Down-stream HEPA filter.
- Condition of the sample could not be readily determined until the cell is cleaned up.
 - End-plug weld failure or rupture due to hydride reorientation are two possible causes.
 - If latter, extensive examination will be conducted to characterize the hydride effects.

Robinson C14 Sample shows good creep ductility: >3.6 % at 400°C and 190 MPa.

- Deformation still azimuthally uniform at end of test
- Additional creep life likely

Cross Sectional Profile HBR A/G611C14 at 2.1 in. from top

27

- Temperature Dependency

- Creep rate of H. B. Robinson appears to be smaller than that of Surry at the lower temperature of 380°C.

Summary and Conclusions

- Significant residual creep ductility has been demonstrated for Surry cladding (36 GWd/MTU) after 15 years of dry-cask storage
 - No hydride reorientation in storage.
 - Findings support NRC ISG-11 (Rev. 2)
- Steady-state creep rates of Surry cladding show strong temperature and stress dependency in the regime tested
 - Useful for model development and code benchmarking
- Early data on Robinson cladding suggest creep rate at 400°C to be comparable to that of Surry
 - Because radiation damage has saturated? Annealing/recovering during tests? Negligible H effect as long as there is no reorientation? Fundamental differences in materials?

-

Summary and Conclusions (cont'd)

- Unexpected rupture of the H. B. Robinson C15 sample during the final shutdown (under pressure) requires further investigation
 - Was hydride reorientation the cause?
 - If yes, could it occur in real fuel rods? (Note: C15 with full pressure was a significant over-test for actual fuel rods.)
- Post-creep characterization to be performed
 - Hydride morphology/hydrogen migration
 - Bend or other mechanical tests.

