

Overview of ANL LOCA and Dry Cask Storage Programs

M.C. Billone Energy Technology Division

Review of ANL LOCA and Dry-Cask-Storage Programs Argonne National Laboratory July 16-17, 2003

Argonne National Laboratory

A U.S. Department of Energy Office of Science U.S. Department of Energy Operated by The University of Chicago

Summary of Programs

• LOCA-Relevant

- Advanced alloy post-quench ductility testing (unirradiated)
- Steam oxidation of high-burnup BWR and PWR cladding
- LOCA Integral Tests with fueled BWR and PWR cladding
- Post-quench ductility of high-burnup LOCA Integral Test specimens
- Ramp-to-burst tests with fueled BWR and PWR cladding
- **RIA- and LOCA-Relevant**
 - High and low strain-rate tensile properties: axial and hoop
 - PSU biaxial "plane-strain" tests: limit and failure strains
- Dry Cask Storage
 - Burnup \leq 45 GWd/MTU: PWR rod characterization after 15-y storage
 - High burnup: tensile properties, creep properties, fuel isotopic analysis, annealing, hydride reorientation/redistribution, etc.

Unirradiated Cladding and Fuel Rods at ANL

• Unirradiated Cladding Alloys

- Zry-2: 9x9 (Limerick BWR "archive"); 10x10 (to be provided)
- Zry-4: 15x15 (Robinson "archive"); 17x17 low-Sn (W and [F-ANP])
- ZIRLO: 17x17
- M5: 17x17 (two lots)
- E110: tubing and cladding (etched/anodized or lightly oxidized)
- Irradiated Fuel Rod Segments (see Table)
 - Robinson 15×15 PWR rods (7 for LOCA/RIA + 3 for Dry Cask + 2)
 - Limerick 9×9 BWR rods (7 for LOCA/RIA)
 - TMI-1 15x15 PWR rods (2 for verification/validation tests)
 - Surry 15x15 PWR rods (3 rods dry-cask stored for 15 years)

Commercial LWR Fuel Rod Segments at ANL

Reactor	Burnup	235U	Gd ₂ O ₃	Clad.	React.	Dry-
(Design)	GWd/MTU	wt.%	wt.%		EOL	Stored
Robinson	64-67	2.90	0	Zry-4	1995	No
15×15 PWR	63	3.85	0	Zry-4	1995	No
	47	1.95	10	Zry-4	1995	No
Limerick	54-57	3.95	0	Zry-2	1998	No
9×9 BWR				Lined		
TMI-1	48-50	4.00	0	Zry-4	1997	No
15×15 PWR				Low-Sn		
Surry	36	3.11	0	Zry-4	1881	15 y
15×15 PWR						

Cladding Irradiation Parameters for Correlations

Reactor (Design)	Burnup GWd/MTU	Clad.	Fast Fluence	Oxide	H
(Design)	Gwume		10^{25} n/m^2	pi i i	"ppm
Robinson 15×15 PWR	67	Zry-4	14	≥100	≥750
Limerick 9×9 BWR	57	Zry-2 Lined	11	≈10 + ≈10 crud	≈70
TMI-1 15×15 PWR	49	Zry-4 Low-Sn	9	≥30	≥170
Surry 15×15 PWR	36	Zry-4	7	≥40	≥300

General Approach

- Post Quench Ductility of Unirradiated Advanced Alloys
 - Compare advanced alloys to Zry-4 and Zry-2 using same test methods
- High-Burnup Cladding Oxidation and LOCA Integral Tests
 - Compare oxidation kinetics to archival cladding using same test methods
 - Compare LOCA/Post-LOCA performance to archival cladding
- High-Burnup Tensile and Biaxial Tests
 - Compare results to archival cladding performance
 - Compare irradiated Zry-4 to PSU results for pre-hydrided Zry-4
- Special Dry Cask Storage Tests
 - Compare Surry characterization and creep results to literature data/models
 - Robinson mechanical/creep results: pre-annealed vs. as-received
 - Compare hydride reorientation data to literature data/models

Advanced Alloy Post Quench Ductility

- Receipt of Cladding and Tubing
 - June 2002 June 2003
 - GNF 10×10 Zry-2 and F-ANP Zry-4 to be provided
- Verification and Validation Phase for Oxidation/Quench
 - Initiated in Dec. 2002 with 1-sided oxidation of M5 and E110
 - Modification of test apparatus and methods for 2-sided oxidation
 - Extensive M5 and E110 testing; limited ZIRLO and Zry-4 testing
 - Thermal benchmark tests, metallography, O and H analyses
 - Ring compression validation tests completed in June 2003
- Data for (1000-1260°C) Oxidized/Quenched Samples
 - Completed for all alloys oxidized at 1100°C
 - Completed E110 study with emphasis on oxidation at 1000°C
 - Completion of as-received cladding testing scheduled for Dec. 2003

Characterization of Irradiated Fuel and Cladding

- Gamma Scanning (see Limerick Rod F9 and J4)
 - Determines integrity of fuel column, location of grid spacers, etc.
 - Results used to select uniform-burnup axial regions for specimen prep
- Fuel Characterization (as-need basis to support tests)
 - Metallography: microstructure, macro-micro cracks, fuel-clad. bond
 - Limited SEM and EMP to determine radial profile of U, Pu, etc.
 - Actinide and fission product isotopic analysis for dry cask storage
- Cladding Characterization (as-need basis to support tests)
 - Metallography: oxide thickness, hydride orientation/distribution
 - LECO: oxygen and hydrogen concentrations

Gamma Scan Results for Limerick BWR F9

Gamma Scan Results for Limerick BWR Rod J4

Limerick Rod J4 (A/G 573) Composite Gross Gamma Scan Profile

- Oxidation Kinetics Studies (1000°C, 1100°C, 1200°C)
 - Limerick (10-µm oxide, 70-wppm H) completed (see NSRC papers)
 No significant difference observed for irradiated vs. unirradiated Zry-2
 - Robinson (100-µm oxide, 750-wppm H) to begin in October 2003
 - If oxide and hydrogen have significant effect on weight gain, repeat tests for lower elevation samples (50-µm oxide, ≈400-wppm H)
- LOCA Integral Tests (1204°C for 5 minutes)
 - Limerick ramp-to-burst and oxidation tests completed (Sept. 2002)
 Non-destructive results show more similarities than differences between unirradiated (with pellets) and irradiated (with fuel) Zry-2
 Determination of axial profiles for H and O are in progress
 - Run Limerick test with quench (August 2003)
 - Initiate Robinson (100-µm oxide, 750-wppm H) tests in Sept. 2003

LOCA-Relevant Tests (Cont'd)

- Post-Quench Tests with High-Burnup LOCA Specimens
 - Four-point-bend test: uniform moment along high O and H regions
 For 1204°C, expect O-embrittled burst region to fail for Limerick
 Robinson burst region may be more brittle due to O and H
 - Ring compression tests of H-embrittled regions away from burst
 - Decrease test time (<5 min.) and ECR if both tests indicate 0 ductility
- Additional Robinson LOCA Integral Tests
 - Repeat Robinson tests for lower elevation samples with 50-µm oxide layer and 400-wppm H if first Robinson sample has no ductility
 - Consider running tests at lower hold temperature (e.g., 1100°C)
- Number of Tests in Test Matrix
 - 3 for Limerick (ramp-to-burst, 5-min.-oxidation, quench)
 - 6 for Robinson (all with quench, vary ECR, H-content, hold T??)

• Tensile Tests for Robinson Samples

- Recent progress made on characterizing unirradiated 15×15 Zry-4
- TMI-1 (July 2002) ring test emitted significant contamination
- Robinson axial tensile samples are 3R/h on contact (ALARA issue)
- Elaborate glovebox built around Instron in Irradiated Materials Lab
- Initiate axial tensile tests in August (RIA/LOCA & Dry Cask Storage)
- Initiate hoop (RIA/LOCA) & PSU biaxial tests (RIA) in August
- Defer Mechanical Properties of Limerick BWR Cladding
 - Interesting: more radiation-induced embrittlement, << H-embrittlement
 - Should we be concerned about dry-cask-stored BWR Zry-2???

• Dry-Cask-Stored Surry PWR Cladding (36 GWd/MTU)

- Phase 1 completed and documented in NUREG report
- New creep test initiated at 400°C and 160 MPa; followed by 220 MPa
- Hydride-reorientation/redistribution study (July 2003)

• High-Burnup PWR Dry-Cask Storage

- Initiate axial tensile tests in August 2003
- Thermal creep tests: 2 completed at 400°C, 2 more initiated at 380°C
- Fuel isotopic/burnup analysis (actinides and fission products)
 1 Limerick BWR sample completed at meas./calc. 64 GWd/MTU
 2 Robinson samples will be completed in July-August
 7 more Robinson samples planned (depends on usefulness of data)
- Need to define mechanical tests to address transportation concerns

Summary of Near-Term Efforts

- **In-Cell LOCA Integral Testing & Oxidation**
- **Mechanical Properties of High-Burnup PWR Cladding**
- **Effects of Annealing & H-Reorientation/Redistribution**
- **Thermal Creep of High-Burnup PWR Cladding**
- **Post-Quench Ductility of Advanced Alloys**
- **Isotopic Analysis of High-Burnup PWR Fuel**

