

Advanced Alloy Post-Quench Ductility Data

Y. Yan, T. Burtseva and M.C. Billone Energy Technology Division

Review of ANL LOCA and Dry-Cask-Storage Programs Argonne National Laboratory July 16-17, 2003

Argonne National Laboratory

A U.S. Department of Energy Office of Science Laboratory Operated by The University of Chicago

Background on Weight Gain Kinetics From High-Temperature Oxidation in Steam

- ANL Review of Published Data in Mar.-June 2002
 - Data were normalized to the Cathcart-Pawel (CP) model
 - All materials exhibited similar weight gain kinetics at 1100-1500°C
 - Weight gain coefficient for M5 \approx 50% less than Zry-4 at 1000°C
 - More lab-to-lab variation in data than alloy-to-alloy variation
 - Westinghouse data: good agreement between ZIRLO and Zry-4; specific T, t and WG were not given; ramp rate (0.56°C/s) too slow; Could not compare W Zry-4 and ZIRLO directly to Zry-2, M5, E110
- E110 Mystery
 - Weight gain kinetics consistent with CP model based on protective (tetragonal) oxide layer, but hydrogen pickup is high???
 - Seemingly inconsistent results require in-depth review of E110 data

ANL Review of Published Weight Gain Data

ANL Steam Oxidation Data (One-Sided) at 1200°C Archival and High-Burnup Limerick BWR Cladding

Weight Gain Kinetics from Current ANL Program

- Weight Gain Kinetics at 1100°C
 - Zry-4, M5 and ZIRLO data are in agreement with Cathcart-Pawel (CP) model predictions (within ≈ ±10%)
 - Could not get meaningful data from as-received E110 (oxide instability)
 - Data were obtained on polished E110 following ID machining to reduce wall thickness from 0.71 mm to 0.61 mm up to point of oxide instability
- Weight Gain Kinetics at 1000°C
 - Zry-4 and ZIRLO tests are in progress
 - Meaningful E110 data for polished E110 with 0.61-mm wall
 - M5 and polished E110 have similar weight gain (WG) kinetics
- Tests at 1200°C and 1260°C will Follow 1000°C
- No Effects of Quench at 800°C on Weight Gain

ANL Weight Gain Data for All Alloys at 1100°C

ANL and CINOG Weight Gain Data at 1100°C

Zry-4 & ZIRLO Weight Gain Data at 1100°C

ANL vs. CINOG M5 Weight Gain Data at 1000°C

ANL Weight Gain Data for Polished E110 at 1000°C

Pioneering Science and Technology

Post-Quench-Ductility Validation Tests

- **Ring Compression Test Parameters and Methodology**
 - RT screening tests at 2 mm/min (0.35%/s) for 8-mm-long rings
 - Measure off-set displacement (δ_p) vs. CP-ECR (5, 10, 15, 17, 20%)
 - Convert to "nominal" strain ($\varepsilon = \delta_p / D_o$) vs. CP-ECR
 - Record measured ECR from measured weight gain and thickness
 - Data can easily be re-plotted vs. measured ECR

• Validation Results

- Results easier to interpret as ductility $\rightarrow 0$ (e.g., E110)
- Zry-4, M5 and ZIRLO all appear to be ductile for CP-ECR up to $\approx 18\%$
- Results do not appear to be dependent on quench vs. slow cooling
- E110 shows expected embrittlement vs. CP-ECR at 1000°C
- Correlation between E110 hydrogen content and ductility at 1000°C

Validation RT Ring Compression Results for M5

Test	Τ	СР	Data	δ _p	δ_p/D_o
ID	°C	ECR, %	ECR, %	mm	%
MU#0				High	High
MU#10	1100	12	12	1.17	12.3
MU#15	1000	17	12	0.33	3.5
MU#25	1100	17	17.7	0.56	5.9
MU#26 (Quench)	1100	17	17.7	0.61	6.4
MU#12	1100	18	17.8	0.33	3.5

M5 after 18% Measured ECR at 1100°C (No Quench)

M5 after 18% Measured ECR at 1100°C (Quench)

Validation Ring Compression Results at RT

Material	Т	СР	Data	δ _p	δ_p/D_o
	°C	ECR, %	ECR, %	mm	%
Zry-4	1100	18	19	0.292	3.1
ZIRLO	1100	18	20	0.203	2.1

Zry-4 after 19% Measured ECR at 1100°C (No Quench)

ZIRLO after 20% Measured ECR at 1100°C (No Quench)

RT Post Quench Ductility for 1100°C Samples

RT Post Quench Ductility: 1000°C E110 Samples

RT Ductility vs. H-Content: 1000°C E110 Samples

Room-Temperature Ring-Compression Data

- Tests are in Progress for Zry-4, ZIRLO and M5
 - 1100°C oxidation/quench and ring-compression tests completed
 - 1000°C oxidation/quench tests have been initiated
 - 1200°C tests will follow 1000°C tests; 1260°C follow 1200°C
- Results for 1100°C Tests
 - ZIRLO vs. Zry-4
 - M5 vs. Zry-4

RT Post-QUENCH-Ductility Data for 1100°C Samples

CP ECR, %	Material	Measured ECR, %	δ _p , mm	$\delta_p/D_o,\%$
5	Zry-4	6.2	Ductile	Ductile
	ZIRLO	5.9	Ductile	Ductile
	M5	4.7	Ductile	Ductile
10	Zry-4	10.9	1.693	17.8
	ZIRLO	10.9	Ductile	Ductile
	M5	9.2	1.168	12.3
15	Zry-4	16.3	0.476	5.0
	ZIRLO	16.1	0.483	5.1
	M5	13.9	0.709	7.5
17	Zry-4	18.0	0.381 to 0.559	4.0 to 5.9
	ZIRLO	17.9	0.330	3.5
	M5	16.2	0.381	4.0
20	Zry-4	20.3	0.445	4.7
	ZIRLO	21.1	0.318	3.3
	M5	19.2	0.170	1.8

RT Load-Displacement for Zry-4 after 5% ECR at 1100°C

RT Load-Displacement: Zry-4 after 10% ECR at 1100°C

RT Load-Displacement: Zry-4 after 17% ECR at 1100°C

RT Load-Displacement: E110 after 16% ECR at 1100°C

RT Load-Displacement: Zry-4 after 20% ECR at 1100°C

RT Load-Displacement: ZIRLO after 20% ECR at 1100°C

RT Load-Displacement: M5 after 20% ECR at 1100°C

RT Ring-Compression Ductility of ZIRLO vs. Zry-4 Samples Oxidized at 1100°C and Quenched at 800°C

RT Ring-Compression Ductility of M5 vs. Zry-4 Samples Oxidized at 1100°C and Quenched at 800°C

• Instability of Oxide Layer Confirmed at Low Test Times

- Alloy is more "challenged" at 1000°C than at 1100°C
 - 1100°C: nodular oxidation \rightarrow oxygen + hydrogen embrittlement
 - 1000°C: delamination/spallation \rightarrow hydrogen embrittlement
- Performance at 950°C may be worse than at 1000° C
- Roughness, grooves, TCs, ends are initiation sites for oxide transition (black to white) and instability: disturbance of compressive stress field
- Studies of Surface Roughness and Surface Chemistry
 - Surface polishing significantly improves E110 oxidation performance
 - Etching (HF+HNO₃+H₂O), polishing/etching, and etching/polishing
 Etching as-received E110 significantly degrades initial oxide (due to F)
- Bulk Chemistry, Metallography, SEM, TEM Results
 - In progress: indication of non uniform distribution of Nb-particles

Summary of Post-Quench-Ductility Program

- Current Oxidation/Quench Study: As-Received Cladding
 - Basically oxygen-induced embrittlement of Zry-4, ZIRLO, and M5
 - All 3 alloys retain ductility after 1100°C oxidation to 20% ECR
 - H- and O-induced embrittlement of E110 confirmed at 1000-1100°C
- LOCA Integral Tests of As-Received Cladding
 - Oxygen embrittlement within burst region
 - Hydrogen (up to 3500 wppm) embrittlement of balloon-neck region
 - Test will challenge M5 and ZIRLO, as well as Zry-4 and Zry-2
- Further Study of Hydrogen/Oxygen Embrittlement
 - Consider testing prehydrided advanced alloys
 - Consider testing high-burnup advanced alloys with H from corrosion
 - Compare prehydrided unirradiated cladding to high-burnup cladding

