Mechanical Property Testing NRC-EPRI Program for High Burnup Cladding Performance

Rob Daum, Jakub Dobrzynski, Saurin Majumdar, and Mike Billone

Argonne National Laboratory

A U.S. Department of Energy Office of Science Laboratory Operated by The University of Chicago

Objective of Mechanical Property Testing

- Determination of stress-strain, deformation, and fracture behavior of Zircaloy-2 and Zircaloy-4 irradiated to high fuel burnups using ringstretch and axial tensile specimens and biaxial burst specimens relevant to RIA and LOCA transients and dry cask storage conditions.
- Develop a database of engineering and constitutive stress-strain properties and critical strains for inclusion into fuel modeling codes.

Cladding Type	Condition	Avg. Fast Fluence (E > 1 MeV) (10 ²² neutrons/cm ²)	Rod Avg. Fuel Burnup (GWd/MTU)
Zircaloy-4	Cold-Worked, Stress-Relieved	0	0
Surry Zircaloy-4	Cold-Worked, Stress-Relieved	0.7	36
TMI-1 Zircaloy-4	Cold-Worked, Stress-Relieved	0.9	50
HBR Zircaloy-4	Cold-Worked, Stress-Relieved	1.4	67
Zircaloy-2	Recrystallized-Annealed	0	0
Limerick Zircaloy-2	Recrystallized-Annealed	1.1	57

Experiment-Model Interface

Overview

Mechanical Testing Plans & Procedures

- Testing Plans
- Engineering and Constitutive-based Properties
- Critical Strain-based Properties

Irradiated Specimen Preparation & Testing (to-date)

- Machining & Dimensional Measurements
- First Irradiated Test
- Facility Upgrades
- Future Schedule

Non-irradiated Testing Plan

Reference: IPS-263-Rev.3

Regulatory

Commission

Irradiated Testing Plan

Uniaxial Properties – Zr-4

Published in the proceedings of the 4th Symposium on Small Specimen Test Techniques, Reno, NV, January 23-25, 2001

Determination of transverse (hoop) stress-strain **Optimization of Loading** response $[f(T, \varepsilon)]$ using the following procedure: **Grip Geometry to Limit Bending and Friction Effects** Longitudinal **Transverse** Load (P) vs. Displacement (d) Load (P) vs. Displacement (d) **Design of Uniaxial Ring-stretch** Response Response **Specimen to Optimize Uniform Distribution of stress-strain Simple Calculation of Finite Elemental Analysis** Longitudinal S vs. e using ABAQUS **FEA Development of** Iterative Calculations of Loading Grip Geometry and Transverse σ vs. ε Assumes degree Effects of Friction & Lift-off to match Transformation to of anisotropy Transverse P vs. d Longitudinal σ vs. ε based Longitudinal Data **Analysis of Stress-strain Distribution in Plane-strain Final Determination of Ring-stretch Specimen** Transverse σ vs. ε **Extrapolate to Final** Transformation to **Engineering Stress-strain** Transverse S vs. e Response Plane-Strain RST Uniaxial RST

Uniaxial Properties

Transverse (Hoop) Properties (Finite Element Analysis)

Nuclear

Regulatory

Commission

Biaxial Properties – Zr-4

Biaxial state of stress for mapping Yield and Rupture Loci

Critical Strain-based Properties

- True hoop plastic strains measured using microhardness indent arrays
- Used to:
 - Measure hoop cladding ductility
 - Supplement RST uniform elongation analysis

Critical Strain Definitions

Critical Strain Results

 Determine the influence of localized (layered) hydride precipitation on <u>plane-</u> <u>strain</u> ductility relevant to postulated RIA conditions.

Published in the proceedings of the International Conference on Hydrogen Effects on Material Behavior and Corrosion Deformation Interactions, Moran, WY, September 22-27, 2002

Irradiated Specimen Preparation

• Specimen Inventory (End of July 03):

- 12 RST and 4 Plane-Strain (TMI-1)
- 7 Axial (5 Surry and 2 HBR)

Sectioning	Completed					
Defueling	Completed					
Oxide Removal	Completed					
Endcap Welding	Completed					
EDM	On-going					
Testing	Not Complete					
Post-test Analysis	Not Complete					

First Irradiated Test – TMI-1 Uniaxial RST

 Successfully completed July 2002

ALARA assessment

- Engineering barriers sufficient during test but significant contamination present during disassembly - HOLD POINT
- Develop better contamination containment

 Recommendation for radiological glovebox system

Testing Facility Upgrades

Radiological Glovebox

- Primary purpose is contamination control
- ANL ALARA Funding (\$150K)
- Conceptual design & operations
- DOE Mandated Reviews
 - Design
 - Experiment Safety
 - ALARA
- Construction
- Validate concept of operations

Testing Facility Upgrades

Testing Facility Upgrades

Automated Indentation System

- Training
- Modification
- Installation into glovebox
- Validate concept of operations
- Experiment Safety & ALARA Reviews

Schedule for Re-starting Irradiated Testing

Major Activity	Jul '02	Aug '02	Sep '02	Oct '02	Nov '02	Dec '02	Jan '03	Feb '03	Mar '03	Apr '03	May '03	Jun '03	Jul '03	Aug '03	Sep '03
Mechanical Testing Facility Upgrad		V									-			\sim	
ANL Funding Allocation														1	
Conceptual Design & Operations				1 											
Procurement				-											
Design Review				2											
Experiment Safety Reviews														-	
ALARA Reviews														<u> </u>	
Construction														<u> </u>	
Leak-testing & Readiness Testin														1	
Validate Concept of Operations															
Validate Experimental Procedure															
Final Authorization															
														-	
Specimen Preparation														_	
Defueling & Decontamination Op															
AGHCF Maintenance & Repair S					1										
Endplug Welding (axial only)									.						
Oxide Removal															
EDM-cutting															
Transfer Specimens into Gloveb														1	
Dimensional Analysis					_										
-														-	
Re-start Irradiated Testing															.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~															T







# **Questions?**

#### Argonne National Laboratory



A U.S. Department of Energy Office of Science Laboratory Operated by The University of Chicago





# **Backup Slides**

#### **Argonne National Laboratory**



A U.S. Department of Energy Office of Science Laboratory Operated by The University of Chicago



## **RST Procedure based on 'Isotropic' 304SS**

- Assumes isotropic plasticity of 304SS tubing.
- Uniaxial RST data indicates 0<μ<0.05.</li>
- FEA is used to correct for effects of loading grips & friction, as well as, an "effective" gauge length as a function of plastic displacement.





## Hoop Strain-rate Sensitivity







## **Near Plane-strain Condition**



Nuclear

Regulatory

Commission



## Hydrided Specimen Plasticity vs. Cracking







## **Hydrided Specimen Ductility**



- Ductile-to-brittle transition occurs at approximately:
  - 100 μm for 26°C
  - 140 μm for 300°C
  - >270 μm for 375°C





## **Correlation of H Content to Hydride Layer**







## **HBR Hydride Distribution**







## **Irradiated Specimen Preparation**

- Sectioning rod into 3 to 6-inch long segments
- Defueling in nitric acid bath
- Partial removal of OD
  oxide for electrical
  continuity
- Welding endcaps for axial tensile specimens
- Machining of gauge sections using EDM



After oxide partially removed (as-polished)







## Irradiated Specimen Preparation





