Recent results from LOCA study at JAERI

Fumihisa Nagase Japan Atomic Energy Research Institute

> ANL Review Meeting July 16 – 17, 2003

- Burnup extension
- Lack of database on high burnup fuel behavior under LOCA conditions

To accumulate data for regulatory judgment corresponding rationally to high burnup fuel

Behavior under LOCA conditions

Ballooning (Wall thinning), Rupture, Double-sided oxidation, Secondary hydriding induced by inner surface oxidation

- -> Embrittlement of cladding
- → Possible spilt failure or fragmentation on quenching when severely embrittled

Key items to be examined related to high burnup fuel behavior under LOCA conditions

Comparing with fresh cladding tested on establishment of ECCS acceptance criteria

Cladding embrittlement

- Corrosion

 Metal-wall thinning
 and oxygen absorption
- Hydriding
- Neutron irradiation
- New alloys

Separate effects of hydriding on cladding behavior under LOCA conditions

High temperature oxidation

Pre-hydriding may enhance oxidation, but the extent is negligible for the realistic hydrogen concentration and time ranges.

Rupture behavior

Increase of hydrogen concentration causes decrease of rupture temperature and shift of phase structure boundaries, resulting in decrease of burst strain.

Hydrogen effect on burst strain

Increase of hydrogen concentration causes

- Decrease of burst temperature
- Shift of phase structure boundaries
- Consequent decrease of burst strain

Separate effects of hydriding on cladding behavior under LOCA conditions

Failure under LOCA-simulated conditions

The influence of pre-hydriding was obviously seen on the failure threshold value under restraint conditions, while it was not seen under non-restraint condition.

Integral thermal shock test

Restraint load control under integral thermal shock tests

Hydride effect on failure boundary Results from the tests under restraint condition for artificially hydrided (unirradiated) Zircaloy-4 cladding

10

Integral thermal shock tests with claddings irradiated in commercial reactors

- 48 GWd/t PWR cladding (low-Sn Zircaloy-4)
- 55 GWd/t PWR cladding (ZIRLO[™], MDA, NDA) MDA developed by Mitsubishi, NDA developed by NFI
- 71 75 GWd/t PWR cladding (ZIRLO[™], MDA, NDA)
- 63 GWd/t BWR cladding (Zircaloy-2)

Three tests have been performed out of planned 10 tests.

Test No.	1	2	3
Sample No.	ALOCA 3-1	ALOCA 1-2	BLOCA L-3
Reactor	Takahama unit 3 (KEPCO)		
Fuel Type	17×17		
Rod Average Burn up (GWd/t)	43.9		39.1
Fuel Cladding	Low tin Zircaloy-4		
Sampling Span No. from Top	4	2	2
Initial Oxide Layer Thickness (µm)	20	25	18
Zircaloy Thickness Remained (µm)	558	554	629

LOCA Quench Test Procedure for Irradiated Cladding

Thermo-Couples Spot-welding Apparatus

Four TCs are welded at different axial and circumferential positions.

LOCA Quench Test Apparatus for Irradiated Cladding

JAERI

Summary of test results

Test No.	1	2	3
Sample No.	ALOCA 3-1	ALOCA 1-2	BLOCA L-3
Initial Internal Pressure (MPa abs)	5.0		
Hearing Rate (K/sec)	10		
Burst Temperature (K) [(°C)]	1053 [780]	1053 [780]	1083 [810]
Burst Strain (%)	14.1	27.7	24.3
Oxidation Temperature (K) [(°C)]	1453 [1180]	1465 [1192]	1430 [1157]
Exposure Time during High Temperature (sec)	486	120	200
Equivalent Cladding Reacted (%ECR)	30.0*	17.9*	16.4*
Failed / Intact	Failed	Intact	Intact
Load at Failure (N) [(kgf)]	498 [50.8]		

*: Estimated values by Baker-Just equation taking account of double sided oxidation and wall thinning by ballooning.

LOCA Quench Test Results

LOCA Quench Test Results

Microstructure of fuel cladding after integral thermal shock test

48GWd/t PWR cladding

1453K, 486sec, 30.0%ECR

1465K, 120sec, 17.9%ECR JAERI

Pre-hydrided unirradiated cladding

1428K, 425sec, 28.7%ECR, 148ppmH

1463K, 134sec, 20.4%ECR, 311ppmH

Objective and limits of ECCS acceptance criteria

To maintain coolability of reactor core

Criteria to define performance (to quantify "remarkable embrittlement") →Independent of burnup

<1200°C, <15%ECR (US <2200°F, <17%ECR) Determined for fresh Zircaloy

Applicable to High burnup fuel cladding? (Burnup dependence?)

Code Development for the Analysis of Fuel Behaviors in LOCA

FURBEL [FUel Rod BEhavior in LOCA]

- 1. Prediction of stress in cladding generated on quenching (under non-restraint and restraint conditions).
- 2. Basic structure has taken over that of the fuel performance code FEMAXI-6. Cladding consists of 8-layer finite element in the radial direction.
- 3. Experimental analysis and evaluation is in progress.

JAERI

Analytical System taken over from FEMAXI-6 for FURBEL

JAERI

FURBEL Model in detail

A Preliminary Result of Experimental Analysis by FURBEL

Cladding temperature measured in Quench-after-Oxidation test as input data for FURBEL analysis and comparison of axial load between measured (blue) and calculated (brown dots) values.

The difference of axial loads suggests that the evaluation of cross section area of cladding generating the axial force is to be improved.

JAERI

Summary

- With a view to accumulating data for regulatory judgment corresponding rationally to high burnup fuel, LOCA-related experiments are conducted at JAERI with non-irradiated and irradiated cladding tubes.
- Hydrogen effects on high burnup fuel behavior under LOCA conditions have been especially examined and clarified.
- The tests have been started with irradiated claddings and preliminary results were obtained for 48 GWd/t PWR fuel claddings.
- Further investigations including computer code analysis will be done to establish performance-based criteria.