Computational Fluid Dynamics (CFD) Analysis of ANL Out-of-Cell LOCA Experiments

Presented by Kent Welter NRC/ANL (Visiting Scientist)

Argonne National Laboratory July 16, 2003

Outline

- 1. Introduction
- 2. Modeling
- 3. Results
- 4. Summary
- 5. Future Work

1. Introduction

• Background:

- Independent evaluation of thermal hydraulic data from ANL outof-cell LOCA experiments.
- Small variations in circumferential and axial cladding surface temperatures at 1200°C can lead to significant variations in oxide layer thickness.

• Approach:

- Utilize a detailed (CFD) approach to calculate cladding surface temperatures.
- Perform parametric study by varying the steam flow rate, enclosure size (steam volume), and cladding profile (balloon and burst).

1. Introduction

• ANL LOCA Experiment

- Limerick Zry-2 tubing (30.5 cm long, 11.2 mm OD and 0.715 mm wall) filled with zirconia pellets
- Internal sample pressure: ~8.3 MPa gauge (He)
- 100 °C steam flow: 0.286 m/s
 (Re ~ 186)
- Radiative heater: 1.15 μm at 2500 K (short wave)
- Total transient: ~20 min

1. Introduction

• Typical Transient

• Radial Temp Profile (Classical Solution)

Axial Temp Profile (Classical Solution)

Heat Transfer Considerations

- Step 1: solve radiation problem to obtain axial cladding temp profile.
- Step 2: *input* temp profile from radiation solution.
- Step 3: solve convection/conduction problem.

- Material Considerations
 - Zry-2 cladding: ϵ = 0.81 (weak dependence on oxide layer thickness in the 1200°C zone) *MATPRO*
 - Quartz tube: $\varepsilon = 0.9$, $\rho = 0.1$
 - Steam: non-participating medium (radiation)
 - Zirconia pellets: Zr0₂ material properties

• 3D Computational Mesh (Section View)

• 2D Section Slice

Office of Nuclear Regulatory Research

13/21

• Axial Temperatures

Axial Position	T _{calc}	T _{data}	ΔΤ	% Diff.
- 5 cm	1197	1224	27	2.2
mid-plane	1201	1201	0*	0*
+ 5 cm	1242	1216	26	2.2
+ 10 cm	1084	1084	0**	0**

*Control thermocouple **Input temperature

	Calc	Data
ΔT (mid-plane to +5 cm), °C	4	23
ΔT (-5 cm to mid-plane), °C	41	15

• Steam Velocity

• Steam Cross-flow Temperature

4. Summary

- Additional experiments were run at ANL to determine steam flow rate and quartz tube temp. as a function of control temp.
- Cladding surface emissivity is constant ($\epsilon = 0.81$) for 5, 10 and 20 min. 1200°C oxidation (MATPRO, Rev. 2).
- 3D mesh created in STAR-CD for ballooned/simple burst test section.
- 2D simulations run at 1200°C with ballooned/simple burst profile.
- STAR-CD calculations predicted thermocouple data to within ± 2%.
- STAR-CD predicted a *relatively flat* axial temperature profile from -5 cm to +5 cm, consistent with thermocouple data.
- STAR-CD predicted a ± 12°C (0.8%) variation in cladding surface temperature when steam inlet velocity was varied by ± 20%.
- STAR-CD calculations may be improved by refining the radiation heat transfer solution.

5. Future Work

- Refine radiation solution to improve accuracy of STAR-CD calculations.
- Run STAR-CD simulations of "fish mouth" and "dog bone" burst profiles.
- Perform a parametric study of circumferential cladding temperatures using multiple (0°, 90° and 180°) 2D profile meshes.

5. Future Work (continued)

• 3D Burst Model (un-meshed/PRO-E)

