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EXECUTIVE SUMMARY

This document is a user's guide for the Analytical REpository Source-Term

(AREST) code that has been developed by the Performance Assessment Scientific

Support (PASS) program at the Pacific Northwest Laboratory(a). This

development was sponsored by the Office of Civilian Radioactive Waste

Management (OCRWM) of the U.S. Department of Energy. The purpose of the code

is to provide OCRWM with a tool for making preliminary, quantitative

performance assessments of the engineered barrier and near-field systems of a

geologic repository for high-level radioactive waste. These analyses will

provide program guidance and help to identify technical design issues that

require resolution. This effort is complementary to other U.S. (O'Connell

and Drach 1986; Pigford and Chambre' 1987) and foreign (KBS 1983; LeNeveu

1986; Sharland, Tasker, and Tweed 1987) efforts for developing models and

codes for engineered-barrier and near-field performance assessment.

The AREST code is divided into three parts: the Waste Package Containment

(WPC), the Waste Package Release (WPR), and the Engineered System Release

(ESR) components. This user's guide describes the code's organization, as well

as the execution procedure. Configuration of the present version of the AREST

code is based on the PASS computing network at Pacific Northwest Laboratory

(PNL); implementation on other computer systems may necessitate additional

modifications.

To assess waste package performance, the AREST code relies on input arrays

of environmental parameters. These are typically supplied by chemical,

hydrological, thermal, mechanical, and radiological support codes that are

separate from the formal AREST code. There are several available, well-

documented codes in each of these areas; the flexibility to choose among these

codes is left to the user. An example set of default values for these

parameters, taken for a postulated configuration of a waste package in an

unsaturated tuff geologic setting, are tabulated in this guide and within

this version of the AREST code.

(a) Pacific Northwest Laboratory is operated for the U.S. Department of Energy
by Battelle Memorial Institute under Contract DE-AC06-76RLO 1830.
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A modular structure was designed into the AREST code in order to permit

updating and revision to the code as new data or performance models become

available. Specific instructions for modifying the code are provided in this

guide. Expectation of and accommodation for future revisions is vital,

especially for a code such as AREST, which will evolve from its preliminary

stage of development. As new barrier materials or repository environments

are proposed and studied, code modification must follow. In addition,

continuing peer review may reveal the need to abandon or modify existing

performance models. It is hoped, therefore, that this initial, documented

version of the AREST code will serve as a focus for expanded participation by

groups with constructive comments regarding realistic and defensible models

that can be incorporated for waste package performance analysis.

I
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1.0 INTRODUCTION

The AREST code, which implements the Analytical REpository Source-Term

(AREST) model for the evaluation of radionuclide release from an engineered

barrier system containing spent nuclear fuel, has been developed for the Office

of Civilian Radioactive Waste Management (OCRWM) by the Performance Assessment

Scientific Support (PASS) program. The performance models and assumptions

for the AREST code have already been described in detail (Liebetrau et al.

1987a; Liebetrau et al. 1987b). This document will deal only with the

implementation, user modifications, testing, and running of the AREST code.

The purpose of this user's guide is to show the reader how to use the

AREST code. Specific instructions for modifying and running the AREST code

on the PASS program MicroVAX system at the Pacific Northwest Laboratory (PNL)

are given. The AREST code is currently running on a MicroVAX II, from Digital

Equipment Corporation, and is written in Fortran 77. The AREST code was

written using most of the Fortran 77 standards, with non-standard features

described in Appendix T. Sample runs, argument lists and test plans for major

modules of the code are also provided. The AREST code has been designed in a

modular fashion in order to make changes and updates to the code relatively

easy.

This report consists of six sections which describe the AREST model and

its implementation and several appendices which describe major modules of

the code and sample runs. An overview of the AREST code is contained in

Section 2.0. The logic flow of the AREST code and its three major components

are described in Section 3.0. Section 4.0 discusses the input process of the

AREST code. Output from the AREST code is described in Section 5.0. Future

developments to the AREST code are described in Section 6.0.

Appendix A contains default data files and a description of how to run

the AREST code. Appendix B shows the results of a run using the default data

files from Appendix A. The default data have been described in other reports

(Apted, Liebetrau, and Engel 1987; Apted and Engel 1988). The remaining

appendices describe the major modules that make up the AREST code. Each

appendix contains a description of the module, the arguments that are passed

to and from it, the routines it calls, the logic flow, and a test plan. The

1.1
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appendices provide an in-depth description of the AREST code and can be used,

along with the actual code, to make modifications to the AREST code. The

final appendix (Appendix T) describes the user-supplied routines that are set

up in the AREST code. They are designed to be easily implemented and used

for modeling corrosion and release rates.

1.2



2.0 OVERVIEW OF THE AREST CODE

The AREST code is broken into three major components plus an input module.

The three components consist of the Waste Package Containment (WPC), the Waste

Package Release (WPR), and the Engineered System Release (ESR).

2.1 CODE INPUT

The input to the AREST code includes the values assigned to spent fuel

waste package, and repository design variables, and to variables that describe

the physical and chemical environments of the repository near-field and waste

package. The actual input occurs in the module ARESTIN (Appendix C).

Input values can be supplied to the AREST code by means of input data

files or interactively by the user. The input process is described in more

detail in Section 4.0; sample input data files are supplied in Appendix A.

2.2 WASTE PACKAGE CONTAINMENT

The WPC component describes the containment performance of an individual

waste package from the time of repository closure to the time of containment

failure. Containment performance is simulated by using mechanistic models of

corrosion and degration processes. Alternatively, users can supply a

hypothetical containment failure distribution of their choice.

The mechanistic models of corrosion and degradation processes may be

supplied by the user or they may be chosen from a list of preprogrammed models

that are supplied with the AREST code. The WPC component contains preliminary

models for uniform corrosion, stress corrosion, pitting corrosion, fractures,

and uniform corrosion of Zircaloy cladding of spent nuclear fuel.

2.3 WASTE PACKAGE RELEASE

Upon containment failure, the present WPR component describes the release

of radionuclides from spent fuel and their migration outward through the waste

package. The WPR component consists of separate modules for each of four

radionuclide sources from spent fuel the U02 matrix, the gap, the surface

layer/crud, and cladding (Liebetrau et al. 1987a, Appendix D). Each of these

2.1
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modules (RMATRIX, RGAP, RCRUD, and RCLAD) are described in one of the

appendices. Modification of the WPR module for analysis of release from
borosilicate glass waste forms is in progress.

2.4 ENGINEERED SYSTEM RELEASE

The ESR component integrates (sums) the releases calculated from

successive waste package simulations. Both the average release from the
repository for each radionuclide and the total radionuclide release are

calculated by the ESR component.

2.2



3.0 LOGICAL STRUCTURE OF THE AREST CODE

3.1 GENERAL STRUCTURE

The AREST code has been configured in a modular fashion so that it is

easy to modify. The logical flow of the AREST code is provided, Table 3.1.

In Table 3.1 the name in capital letters in the column to the right is the

name of the module that performs the task described. Major variables (e.g.,

iwp and TFA) and components (e.g., WPC, WPR, and ESR) occur in parentheses in

the description.

TABLE 3.1. Overall Logic of the AREST Code

Description Module

1. Input repository, waste package, environmental, and
design parameters.

2. Calculate performance for each waste package (iwp).
a. Set up waste package parameters.

1. Simulate Time - Temperature distribution.
2. Calculate time of resaturation.

b. Simulate containment failure (WPC).
c. Set up parameters for post-failure.

1. Calculate temperatures for failure times.
2. Output containment failure information.
3. Set times of failure.

a. Containment failure after resaturation (TFA).
b. Container failure for any environment steam

or water (TFAC)
c. Container failure after resaturation (TFACR).

4. Calculate time-dependent inventories.
5. Obtain groundwater composition.

d. Calculate waste package release (WPR).

(ARESTIN)

SENVIR)
TRESAT)
CORRODE)

(ENVIR)
OUTCOR)

(CTINV)
IGRDH20)

3. Store and output repository release information (ESR).

3.2 WASTE PACKAGE CONTAINMENT

The logical flow of the WPC component of the AREST code is shown in Table

3.2. The WPC module is called from the AREST code to return the time of

container (TFAC) and containment (TFA) failures. The term container failure

refers to the failure, or breaching of the outside container wall. Where the

term containment failure refers to the total loss of containment capability.

3.1



E�

This refers to failure of the container wall plus the failure of the zircaloy

cladding.

TABLE 3.2. Logical Flow of the WPC Component

Description
1.
2.

Simulate prefailures.
If container did not prefail, then simulate containment
performances.
a. Simulate via user-supplied distribution or
b. Simulate via corrosion models.

1. Determine initial environmental values and
corrosion rates.

2. For each time step,
a. Update environmental values (e.g., temperature,

groundwater, composition).
b. If container failure has not occurred, then

simulate modes of corrosion other than uniform
corrosion.

c. If container failure has occurred, then
simulate cladding corrosion.

d. Simulate uniform corrosion.
e. If containment failed, failure is indicated,

proceed to WPR component.

Module
(PREFAIL)

DISTRIB)
MODEL)
PHASE, ENVIR,

INITCUM)

(PHASE, ENVIR
GRDH20)

(NONUNIF)

(CLADDNGJ
MUIFORM)

3.3 WASTE PACKAGE RELEASE

Following containment failure, radionuclide release rates are calculated

in the WPR component of the AREST code. The logical flow of the WPR component

is shown in Table 3.3.

TABLE 3.3. Logical Flow of the WPR Component

Description Module
1. calculate release for each nuclic

a. Matrix Model
1. Set parameters involvec
2. Calculate U02 solubilil
3. Calculate precipitation

le.

I in
:y.
I of

4. Calculate release.
b. Gap/Grain Boundary Model

1. Set release parameters for
2. Calculate release.

c. Surface Layer/Crud Model
1. Set release parameters for
2. Calculate release.

d. Cladding Model
1. Set release parameters for
2. Calculate release.

release calculation.

uranium.

individual nuclide.

individual nuclide.

individual nuclide

RPARAM)
SOLUB)
SXPPT, SCPPT,

STPPT)
(RMATRIX)

(RPARAM)
(RGAP)

(RPARAM)
(RCRUD)

(RPARAM)
(RCLAD)

3.2



3.4 ENGINEERED SYSTEM RELEASE

The logical structure of the ESR component is shown in Table 3.4. The

ESR component is not a separate module like the other major components (WPC

and WPR) but is contained in the main part of the AREST code. It takes the

results from the WPC and WPR components to calculate the average fractional

release rate (parts/year) for the repository and also the total release

(grams/year) from the repository.

TABLE 3.4. Logical Flow of the ESR Component

Description Module

1. For each waste package sum releases and store particular
rates for distribution of releases. (RSUM)

2. Calculate average repository release for each nuclide.

3. Calculate total repository release amounts for each nuclide. (CUMARR)

4. Output release (rates and amounts). (OUTREL)

3.3



4.0 AREST CODE INPUT

The bulk of the AREST code input data is read from'files. However, the

AREST code allows for editing of data prior to use. Changes to the data may

be saved for later use. This section describes the general format of the data

files and the use of the AREST code's data editor.

4.1 DATA FILE FORMAT

A primary goal in designing the input file was to make it easy for the

user, as well as computers, to read. For the user, the file should contain

comments and the data should be in a relatively flexible format. For

computers, however, the format should be fairly consistent so that data is easy

to find and read.

The AREST code satisfies both requirements by using a line-oriented data

format. By imposing only a few format restrictions, AREST can differentiate

between data and comments, assuming that the calling routine provides

information about the number and type of data items expected. Perhaps the

clearest way to explain these restrictions is to describe what the AREST code

looks for in an input file.

The AREST code distinguishes between two types of data lines, numeric and

character, on the basis of the first data item of the line. When the AREST

code searches for a numeric data line, it looks for a line which has a numeric

character (digit, sign, or decimal point) in the first column. Any lines

found before such a line are assumed to be comment lines.

Example:

This doesn't start with numeric data; it's treated as a comment.

3.1416 This is the data line.

4.1
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When searching for a character data line, the program first looks for a

line ending in a colon. The next line found with a non-whitespace (i.e., not

a space or tab) character in the first column is assumed to be the data line.

Example:

When the program is looking for character data, it expects
to first find one or more comment lines (four in this example).
These comment lines can even go into the first column like

this. The only requirement is that they end with a colon:

These comment lines and the blank lines around the comment
are assumed not to be the desired data line, since the
first character in each line is whitespace.

This is the desired character data line!

The AREST code can be used to read multiple lines (a block) of similar

data. The first data line, either numeric or character, is found as described

above. Reading continues until a line starting with whitespace is found (a

blank line will do). All intervening lines are assumed to be data.

Example:

This is a comment line:

Nuclide Half Life (These lines are comments, but
the ones that follow are data.)

C-14 5.73e+03
Tc-99 2.15e+05
Np-237 2.14e+06

This line servers as a delimiter.

To summarize, the following rules apply:

1) All data begins in column 1.

2) Numeric data is assumed to start with a digit, sign, or decimal point.

3) Character data must be flagged by a line ending with a colon.

4.2



4) Multiple lines of similar data should be delimited by a line starting

with whitespace.

The current version of the AREST code uses both primary and secondary data

files; the above format rules apply to both types. The existing data files

are in the correct format and may be edited using the AREST code's data editor

or a text editor.

4.2 THE DATA EDITOR

Although it is possible to use a text editor to edit data files, the

AREST code provides a data editor which can be used for most changes to the

input data set.

When running the AREST code, the user will be prompted for the name of the

primary input file. Primary input is always assumed to be from a file. If the

file is not found, the prompt will be repeated. Upon finding the specified

file, the AREST code will ask if the data needs to be edited. If the answer

is yes ('Y' or 'y'), the data editor is invoked. Otherwise, the AREST code

simply reads in the data in preparation for corrosion and release simulations.

The data editor is menu-based, each menu holding one or more data lines,

each line holding one or more data items (values). To edit items, in the

AREST code, selections are made by indicating the row letter and the item

number. The row letter is simply the letter at the start of the row. Rows

are lettered consecutively, beginning with 'A'. The easiest way to define

"item number" is by example.

Example:

C) U-238 4.51e+09 3.10e+06

In the above line

'C' is the row letter

'U-238' is the first item (item number = 1)
'4.51e+09' is the second item (item number = 2)
'3.10e+06' is the third item (item number = 3)

Thus, an item is any contiguous group of non-whitespace characters, and

the item number is the relative position of that item within the line. To

4.3
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select an item, specify the row letter followed immediately by the item number.

The item number can be omitted for the first item in the line (i.e., the

default item number is 1).

Example:

For the same data line as the last example

to select 'U-238', enter 'CI, or 'C'

to select I4.51e+09', enter 'C2'

to select '3.10e+06', enter 'C3'

Once a selection is made, the AREST code will display the current value

of the item, then prompt for the new value. If it is decided not to replace

the item, press RETURN; otherwise, enter one or more items. Items in the

selected line will be replaced by typed entries in a one-to-one correspondence.

AREST will attempt to preserve the left-justification of the original items,

but if necessary will move an item to the right to prevent it from running

into the previous item.'

In addition to item replacement, there are several commands which can be

invoked. The most often used commands will probably be the MENU and NEXT

MENU commands:

Enter '?' to have the current menu redisplayed.

Press RETURN to go to the next menu.

WARNINGI The AREST code processes the data file sequentially, and

cannot backtrack to a previous menu. Be sure to finish with the

current menu before going to the next one.

The other general purpose commands are GOTO, HELP, QUIT, and UNDO. In all

cases, these commands can be shortened to their first two letters. (In fact,

the AREST code does not check beyond the second letter.) The commands can be

shortened to one letter provided there is no conflict with a menu row letter.

A summary of these commands appear in Table 4.1.

Entering 'GOTO' in response to the menu prompt brings up the GOTO menu.

This menu allows the user to jump forward in the data file to the next section

4.4



TABLE 4.1. Summary of the Input Commands for the Data Editor of AREST

Command Description

? Reprint Menu

Dn Delete Menu Line n

In Insert Before Line n

Goto Go Forward to Another Menu

Quite End Editing, Read the Rest of
the Input from the File

Undo Restore to Previous File

<Return> Next Menu

which may require editing. There are a limited number of preset points

(called "stops") to which the user may jump. If it is decided not to skip to
another section, press RETURN. To select a stop, enter a menu row letter.

The program still has to read the skipped data, so there may be a delay before
the next menu appears.

Entering 'HELP' in response to the menu prompt causes the help file to

be displayed. The help file contains a summary of item replacement and

available editor commands.

Entering 'QUIT' in response to the menu prompt indicates that no further

data will be edited. Again, there may be a delay while the program reads in

the remaining values.

Entering 'UNDO' in response to the menu prompt causes AREST to restore

the previous contents of the last edited line (of the current menu).

Two other commands, INSERT and DELETE, can be used when editing a block

of data, i.e., multiple lines of similar data.

DELETE is used to remove a data line. The'syntax for this command is

'D' followed immediately by the menu row letter. The items in the selected

line will be replaced by minus signs. Note that these minus signs are treated

as items and can be edited in the same manner as other items.
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INSERT is used to add data lines. The syntax is II' followed by a row

letter. Insertion will occur before that row. For inserting after the last

row, use the next letter of the alphabet for the row letter. After indicating

the insertion location, the user will be prompted for the number of lines to

insert. (Enter 0 if it is decided not to insert any lines.) The AREST code

places no limit on this number. However, only one set of insertions can be

made before a given row, so care must be taken so that all necessary insertions

are made at the same time.

After entering the number of insertions desired, the insertion menu will

appear with dummy values in the data lines. The new values are entered by

editing these dummy values. Editing is done in the same way as for the

regular menus, and applicable commands can still be used.

When the data editor is exited (either by a RETURN on the last menu or

by a QUIT), the AREST code will prompt the user for file names for storing the

revised input data. Pressing RETURN in response to a prompt indicates that

particular revision will not be saved.

4.6



5.0 AREST OUTPUT

The output from AREST is in the form of data files, see Appendix B for

an example. The output is accomplished by writing to specific unit numbers

(15, 16, 40, 41, 42, and 43). On the system that the AREST code is implemented

(MicroVAX II), writing to unit 15 creates a data file "FOR015.DAT." The first

data file, FOROI5.DAT (Unit 15), contains the input information for the WPC

component. The next data file, FOR016.DAT, contains the information for the

WPR component. This includes the container dimensions, parameters that affect

release, and information for each nuclide being used.

The third data file, FOR04O.DAT, contains the information about individual

waste package containment. It consists of the time, temperature, and mechanism

by which the container and containment failed for each waste package simulated.

The last three files contain the release for each nuclide at each time

step. The first file, FOR041.DAT, contains the fractional release rates

(parts/year) for the first failed waste package. The time in this file is

the time since containment failure. The next file, FOR042.DAT, contains the

average repository fractional release rates from each release model (matrix,

gap/grain boundary, surface layer/crud, and cladding). The last file,

FOR043.DAT, contains the total release from the repository (in grams/year).

The time in the last two files, is time after repository closure.
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6.0 FUTURE DEVELOPMENTS

The version of the AREST code that is documented here corresponds to the

AREST model that has been previously reported (Liebetrau et al. 1987a). Since

the release of that document, some new features have been incorporated into the

AREST code that were not previously described. These new features include

uranium precipitation and a new release model for a partially saturated media.

The effects of precipitation using the AREST code have been reported previously
(Apted and Engel 1987). The new release model calculates steady-state release

based on rates of matrix dissolution, diffusion, and convection (Reimus et

al. 1988).

The modeling of the effects of decay chains and the graphical display of
the results are performed external to the AREST code. These two features are

currently being added to the AREST code.

Future developments for the AREST code consist of a spatial capability of

the repository and additional models for corrosion and release.
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APPENDIX A

DEFAULT INPUT VALUES

Input to the AREST code is primarily done through the use of data files.

The standard practice is to edit a data file to reflect a specific run, or

the data editor can be used to modify input, as described in Section 4.0. A

sample of a primary data file is listed in Table A.1. Note that all of the

data lines start in column one, and that the order in which the data is input

must remain fixed, unless the ARESTIN module is modified, see Appendix C.

All of the variables in Table A.1 are described briefly either by the

comment line before the variable or on the same line after the value. Many of

the parameters do not vary from run to run or are simply not used for each

run, so modification of the file is generally not necessary. For instance,

the corrosion parameters, for modeling corrosion, are specific to the corrosion

mechanism and models being used. An example is the molecular weight of the

metal (the first parameter in the corrosion section) which is used only by

one of the existing corrosion models in AREST, the PNL pitting corrosion model.

If this model is not used, there is no need to worry about modifying this

variable.

The release section of Table A.1 contains three tables of parameters

describing the individual nuclides. A nuclide is used in the analysis if a

(Y or y) is in the first column of the nuclide in all three tables. Otherwise

the nuclide is not used.

The data file containing the time, reference temperature, and the minimum

repository temperature is one of the input parameters in Table A.1 (Time-

Temperature Data, TIMETEMP.DAT). The default time-temperature file is shown

in Table A.2, where the data again must occupy the first column. Also, to act

as a delimiter, a blank line must be present at the end of this data file. The

heat loading values and their cumulative probabilities are shown in Table

A.3. A blank line must also be the last entry in the heat loading data file.

The use of the files contained in Tables A.2 and A.3 are discussed briefly

in Appendix D (ENVIR MODULE). The files are read into AREST using the INENVIR
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routine. This routine is discussed in Appendixes C (ARESTIN MODULE) and T

(USER-SUPPLIED ROUTINES). There is an additional file read into the AREST

code, which is not listed in this Appendix. The file contains the time/

temperature dependent ground water composition and is discussed in Appendix E

(GRDH20 MODULE).
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TABLE A.I. Sample Primary Input Data File

Run Identification:
TUFF

Time-Temperature Data:
timetemp File name

Heat Load and Cumulative Probability Data:
heatl File name

Miscellaneous Time-Temperature and Heat Load Data:
100 Temperature of resaturation (integer)
29 Ambient temperature (integer)
187.67 Heat load conversion factor (real)

Corrosion Control Data:
1. Type of simulation (O=model, 1=distribution)

1 0.0 0 2. Prob. of prefailure
3. Number of prefailures

Corrosion Parameters (for modeling):

55.8
7.86
5E-6
2
-1
3.3E-3
.5
19.1000
-.02
6.8
1.0
120000
0.0044
60000.0
5.0
0.00016133
4.0
5.0
2.362
5.0
5.0
.0 4.0
2
0.4
-276.OE3
-6.78E4
0.24
0.005

Molecular weight of metal (g/mol) (real)
Density of metal (g/cm3) (real)
Ionic diffusivity of metal cation (cm2/s) (real)
Proton charge on metal cation (equiv/mole) (integer)
Proton charge on agressive anion (equiv/mol) (integer)
Empirical parameter A for PNL Pitting (real)
Empirical parameter N for PNL Pitting (real)
Chloride concentration (mg/l) (real)
Potential drop along pit length (V) (real)
pH (real)
Oxygen concentration (mg/l) (real)
Average number of pits per container (integer)
Surface area of each pit (cm2)
Waste container surface area (cm2)
Waste container thickness (cm)
% total surface area that constitutes failure
Allowable corrosion depth UNIFORM cm)
Allowable corrosion depth STRESS cm)
Allowable corrosion depth (PITTING P[Z > KF])
Allowable corrosion depth (FRACTURE cm)
Allowable corrosion depth (CLADDING cm)
a and b from oxide formula MaOb
Valency of metal cation
EH
Free energy for formation of corrosion film (delta Gc) (J/mol)
Free energy for dissolution of metal (delta Gd) (J/mol)
Empirical parameter alpha for PNL UNIFORM
Empirical parameter beta for PNL UNIFORM
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0.156 Empirical parameter 81 for PNL UNIFORM cm-K/yr)
38000.0 Empirical parameter 82 for PNL UNIFORM joules/mole)
1.43E7 Empirical parameter C1 for PNL UNIFORM cm-deg K)/yr
-3.629E5 Empirical parameter C2 for PNL UNIFORM joules/mole)
0.1 Empirical parameter PH20 for PNL STEAM MPa)
1.7 Empirical parameter ALPA for PNL STEAM

Corrosion models (from list):
For each model:
0 = User supplied
1 = Not used
2+= Predefined

Steam:
2 = PNL
3 = BWIP

1

Uniform:
2 = BWIP
3 = DTP
4 = Westerman
5 = Brookhaven
6 = PNL

1

Stress:
1

Pitting:
2 = PNL
3 = DTP

1

Fracture:
1

Cladding (steam):
2 - PNL

1

Cladding (aqueous):
2 = PNL

1

Distribution and Parameters for Corrosion Data
1, Time, 0 -- > Point
2, Min, Max -- > Uniform
3, Mean, Standard Deviation -- > Normal
4, Min, Lambda -- > Exponential

Data:
3 1000 200
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Release Control:
0 Simulating only corrosion? (O=no, 1=yes)

Release Models:

Steam Release Model for Cladding from List:
0 -- > User supplied subroutine
1 -- > Not using Steam Release
2 -- > Instantaneous Release to outer barrier

1

Matrix
0
1
2
3

2

Release Model from List:
-- > User supplied subroutine
-- > Not using matrix release
-- > Pigford & Chambre'
-- > PNL TUFF model

Gap Release Module from List:
0 -- > User supplied subroutine
1 -- > Not using gap release
2 -- > Pigford & Chambre'
3 -- > PNL TUFF model

2

Grain Release Module from List:
0 -- > User supplied subroutine
1 -- > Not using grain release

Cladding Release from List:
0 -- > User supplied subroutine
1 -- > Not using cladding release
2 -- > Pigford & Chambre'
3 -- > PNL TUFF model

2

U02 Solubility
0 -- > Not
1 -- > Use
2 -- > Use

1

Function from List:
being used
reference temperature
temperature at failure

Assuming congruent release of U02?
0 -- > No
1 -- > Yes

1
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Release Input Data:

5E-1
1E-5
34.0
400.0
3.0
1
0.5.
0.1
10.3
92715.0
957014.0
7
1.29
2.33
60.0

Diffusion coefficient in steam, (cm*2/sec)
Diffusion coefficient in water, (cm*2/sec)
Cylindrical waste form radius cm)
Cylindrical waste form length: (cm)
Packing thickness, (cm)
0 -- > into packing 1 -- > into host rock
Porosity of packing
Porosity of host rock
Gap width, (cm)
Gap surface area, (cm**2)
Gap volume, (cm**3)
Number of PWR assemblies per waste package
Bulk density of packing (g/cm**3)
Bulk density of host rock (g/cm**3)
Percent saturated

Distribution Type and Parameters for Simulating Release:
0, 0, 0 -- > No simulation
1, Min, Max -- > Simulate Uniform
2, Mean, Standard Deviation -- > Simulate Normal

0
0
0
0

0.2 0.5
0.002 0.02
0 0
0 0

Porosity of packing
Porosity of host rock
Retardation coefficient in packing
Retardation coefficient in host rock i

0
1

Number of percentiles
Using vector approach

on output
(0 --> No 1 --> Yes)

Percentages of Radionuclides in Matrix, Gap, Grain, Cladding:

Use ELEM MATRIX GAP

y
n
n
n
n
n
n
y
y

U-238
U-236
U-234
Am-241
Cs-135
1-129
Pu-240
C-14
Zr

100.
100.
100.
100.
98.
98.

100.
35.

100.

0.
0.
0.
0.
2.
2.
0.
1.
0.

GRAIN

0.
0.
0.
0.
0.
0.
0.
0.
0.

CRUD

0.
0.
0.
0.
0.

* 0.
0.
1.
0.

CLAD

0.
0.
0.
0.
0.
0.
0.

63.
0.
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Matrix Release Data:

Use Eleem
T-1/2

(yrs)
INVEN SOLUB
(Ci/l000MTU) (g/m**3)

KD1
(ml/gm)

KD2
(ml/gm)

SP.ACT.
(Ci/a)

y
n
n
n
n
n
n
y
y

U-238
U-236
U-234
Am-241
Cs-135
I-129
Pu-240
C-14
Zr

4.51E+09
2.39E+07
2.47E+05
4.58E+02
3.OOE+06
1.59E+07
6.58E+03
5.73E+03
O.OOE+03

3.20E+02
2.30E+02
7 .80E+02
3.50E+05
2.70E+02
3.30E+01
4. 10E+05
6.90E402
5.11E+09

5.OOE+01
5.OOE+01
5.OOE+01
1.45E-03
8.10E+05
7.74E+05
1.20E-01
1.40E+00
4.60E-05

1.80E+00
1.80E+00
1.80E+00
1.20E+03
2.90E+02
O.OOE+0O
6.40E+01
O.OOE+00
O.OOE+00

1.80E+O0
1.80E+0O
1.80E+OO
1.20E+03
2.90E+02
O.OOE+O0
6.40E+01
O.OOE+0O
O. OOE+O0

3.33E-07
6.34E-05
6.18E-03
3.24E+00
8.82E-04
1.74E-04
2.26E-01
4.45E+0O
4.45E+0O

Matrix Release Data (cont):

Use Elem

y
n
n
n
n
n
n
y
y

U-238
U-236
U-234
Am-241
Cs-135
1-129
Pu-240
C-14
Zr

Diffusion
(cm**2/s)

1.OOE-05
1.OOE-05
1.OOE-05
1.OOE-05
1.OOE-05
1.OOE-05
1.OOE-05
1.OOE-05
1.OOE-05

Shared
Csat flag

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

1000
0
1
0

Number
Trace?
Output
Output

of waste packages to simulate
(O --> No 1 --> Yes)

release? (O -- > No 1 -- > Yes)
U02 solubility? (Csat(U02) (0-->No, 1-->Yes)

A.7



TABLE A.2. Input Time-Temperature Data File

Time
(years)

0.005
0.27
1
5
10
20
30
40
50
70
100
200
300
400
500
1000
2000
6000
10000
100000

Ref Temp
(1c7)

179.99
179.99
216.67
248.01
249.04
242.74
233.21
224.02
213.50
197.39
183.03
157.00
143.00
132.00
126.00
110.00
90.00
58.00
47.00
47.00

Min Temp

29.00
39.79
50.14
73.27
86.74
101.32
109.13
113.44
115.02
115.25
114.40
111.19
107.96
106.19
104.70
98.09
83.52
54.23
45.90
45.90

-I

TABLE A.3. Input Heat Loading Probability Function

Heat
Load
(kw/MTU)
0.2
0.5
1.0
1.2
1.5
2.0
2.5

Cum
Prob

0.11
0.57
0.82
0.96
0.99
1.0
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APPENDIX B

SAMPLE RUN

The results of running the AREST code using the data described in Appendix

A are shown in Tables B.1, B.2, B.3, and B.4. These tables list a sample of

the actual data files that the AREST code writes.

Table B.1 shows the containment information for the first ten simulated

waste packages. This file, FOR04O.DAT, was created by writing to unit 40.

The three data files created by the AREST code that contain the release

rates (FOR041.dat, FOR042.DAT, and FOR043.DAT) look very much alike. For

each nuclide being used, several release parameters are written to each file.

The release parameters are 1) the half life, T1/2, 2) the concentration at

the waste form surface, Csat, 3) the retardation coefficient in the packing,

Kl, 4) the retardation coefficient in the host rock, K2, 5) the porosity in

the packing, El, 6) the porosity in the host rock, E2, 7) the 1000-year

inventory, INVEN, and 8) the distribution of the nuclide in the release models

(matrix, gap, grain boundary, crud, and clad). The time steps in these three

files are initialized in the the routine RTIME. To modify the time steps

refer to Appendix T.

Table B.2 lists the release rates for C-14 from the first simulated failed

waste package. The times in this file (FOR041.DAT) are the time after

container failure for the crud model, the time after container failure after

resaturation for the clad model, and the time after containment failure after

resaturation for the remaining models (matrix and gap/grain boundary). These

release rates are used to calculate the release for the other simulated waste

packages if the vector approach is chosen (specify 1 in the using vector

approach option Table A.1) in the input file. This means that the AREST code

calculates the release for only one waste package and uses this release

profile, augmented with the failure time, to get the release for the remaining

waste packages. This option is recommended, because of the run time it saves,

if there are no time-temperature dependent variables in the release

calculations other than inventory and solubility.
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The average release rate for the repository, in parts/year, is output to

the FOR042.DAT data file with C-14 of the file shown in Table B.3. The time

in this file is the time since repository closure. The average release rate

is calculated by summing the release rates for the individual simulated waste

packages and dividing this result by the number of waste packages. Note that

the release from the crud occurs much sooner than the-release from any of the

other release models. This happens because crud exists on the outer surface

of the zircaloy cladding and can be released as a gas. The other sources of

release do not occur until resaturation of the waste form.

Table B.4 contains the total amount released from the repository

(FOR043.DAT). The amount released is calculated by summing the release rates

for all the different release models, integrating this total average release

from the repository, in parts/year, and multipling this result by the total

inventory of the nuclide in the repository. The results are displayed in

several different units.

TABLE 8.1. Waste Package Containment

Waste Claddinq Failure Container Failure
Package Time Mechanism Temperature Time Temperature

1 9.17E+02 Normal d. 114.94 9.17E+02 114.94
2 8.41E+02 Normal d. 132.42 8.41E+02 132.42
3 9.80E+02 Normal d. 115.03 9.80E+02 115.03
4 8.86E+02 Normal d. 121.58 8.86E+02 121.58
5 1.1OE+03 Normal d. 111.88 1.1OE+03 111.88
6 9.54E+02 Normal d. 117.70 9.54E+02 117.70
7 1.38E+03 Normal d. 102.23 1.38E+03 102.23
8 9.31E+02 Normal d. 120.05 9.31E+02 120.05
9 9.70E+02 Normal d. 112.17 9.70E+02 112.17
10 1.OlE+03 Normal d. 115.30 1.01E+03 115.30
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TABLE B.2. Individual Waste Package Release

C-14

T1/2
(yrs)

5.73E+03

Csat
(g/m**3)

1.40E+00

K1 K2 El E2 Inven
(g/pack)

1.OOE+00 1.OOE+00 5.00E-01 1.00E-01 5.01E-01

% Gap % Grain % Crud % Clad
1.OOE+00 O.OOE+00 l.OOE+00 6.30E+01

WP # % Matrix
1 3.50E+01

Time
(vrs)

0.020
0.030
0.040
0.050
0.060
0.070
0.080
0.090
0.100
0.200
0.300
0.400
0.500
0.600
0.700
0.800
0.900
1.000

10.000
100.000

1000.000
10000.000

100000.000

Matrix
(1/yr)

3-.66E-1-0
1.03E-07
1.20E-07
1.31E-07
1.35E-07
1.34E-07
1.30E-07
1.25E-07
1. 19E-07
1.13E-07
7.33E-08
5.58E-08
4.64E-08
4.05E-08
3.64E-08
3.34E-08
3.10E-08
2.91E-08
2.75E-08
9.22E-09
3.82E-09
2.17E-09
6.17E-10
7.82E-15

Matrix
(cm**3/s)
4.15E-12
1.17E-09
1.36E-09
1 .48E-09
1.53E-09
1.52E-09
1.48E-09
1.41E-09
1.35E-09
1.28E-09
8.31E-10
6.33E-10
5.26E-10
4.59E-10
4.13E-10
3.78E-10
3.51E-10
3.30E-10
3.12E-10
1.05E-10
4.33E-11
2.46E-11
6.99E-12
8.87E-17

Gap

2.27E-05
4.57E-03
4.31E-03
4.17E-03
4.OOE-03
3.90E-03
3.77E-03
3.64E-03
3.57E-03
3.47E-03
2.98E-03
2.59E-03
2.30E-03
2.07E-03
1.87E-03
1.54E-03
1.42E-03
1.31E-03
1.22E-03
7.75E-05
3.03E-06
8.83E-08
9.43E-10
5.57E-16

Crud
-(1/yr)

8.31E-05
4.53E-05
2.94E-05
2.11E-05
1.60E-05
1.27E-05
1.04E-05
8.72E-06
7.45E-06
2.63E-06
1.43E-06
9.31E-07
6.66E-07
5.07E-07
4.02E-07
3.29E-07
2.76E-07
2.35E-07
7.40E-09
2.18E-10
1.60E-12
9.17E-13
8.43E-17

Clad
(1/vr)

l.7UE-14R
3.50E-12
3.07E-12
2.68E-12
2.37E-12
2.14E-12
1.97E-12
1.83E-12
1.71E-12
1.62E-12
1.15E-12
9.56E-13
8.44E-13
7.69E-13
7.14E-13
6.72E-13
6.38E-13
6.09E-13
5.86E-13
2.90E-13
2.OOE-13
1.68E-13
4.73E-14
8.54E-19

Cumulative
(1/yr)

7.05E-03-
4.65E-03
4.36E-03
4.20E-03
4.03E-03
3.92E-03
3.78E-03
3.65E-03
3.58E-03
3.48E-03
2.98E-03
2.59E-03
2.30E-03
2.08E-03
1.87E-03
1.54E-03
1.42E-03
1.31E-03
1.22E-03
7.75E-05
3.04E-06
9.05E-08
1.56E-09
8.47E-15
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TABLE B.3. Average Release Rate from the Repository

C-14

T1/2
(yrs)

5.73E+03

Csat
(g/m**3)

1.40E+00

K1 K2 El E2 Inven
(g/pack)

1.OOE+00 1.OOE+00 5.00E-01 1.OOE-01 5.O1E-01

WP I % Matrix % Gap % Grain % Crud
1000 3.50E+01 1.OOE+00 O.OOE+00 1.00E+00

% Clad
6.30E+01

Time
(YrS)

Matrix
(l/yr)

Gap
(1/yr)

Grain
(1/yr)

Crud
(1/yr)

Clad
(1/yr)

500.000
600.000
700.000
800.000
900.000

1000.000
1100.000
1200.000
1300.000
1400.000
1500.000
1600.000
1700.000
1800.000
1900.000
2000.000
3000.000
4000.000
5000.000
6000.000
7000.000
8000.000
9000.000

10000.000
100000.000

O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
0.OOE+OO
O.OOE+00
5.78E-10
8.63E-10
2.23E-09
3.02E-09
3.72E-09
5.55E-09
5.09E-09
4.25E-09
3.64E-09
3.01E-09
2.36E-09
2.06E-09
1.79E-09
1.55E-09
1.35E-09
1.17E-09
1.02E-09
8.91E-10
5.68E-15

O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
1.14E-05
1.56E-05
5.46E-05
6.66E-05
7.15E-05
9.33E-05
5.06E-05
1.89E-05
1.03E-05
7.47E-07
5.78E-08
2.13E-08
1.08E-08
6.43E-09
4.17E-09
2.85E-09
2.03E-09
1.49E-09
1.68E-16

O.OOE+O0
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+O0
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE400
O.OOE+00
O.OOE+00
0.00E+O0
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+O0
O.OOE+00
O.OOE+00

6.46E-09
8.89E-08
2.43E-07
8.24E-07
1.94E-06
7.65E-06
1.68E-06
2.38E-06
5.32E-06
2.19E-06
1.02E-06
1.51E-08
1.07E-08
6.54E-09
4.61E-09
3.49E-09
8.76E-10
3.56E-10
1.89E-10
1.14E-10
7.49E-11
5.19E-11
3.78E-11
2.81E-11
3.13E-17

0.OOE+00
O.OOE+00
O.OOE+O0
O.OOE+00
O.OOE+00
O.OOE+00
1.12E-14
2.12E-14
5.51E-14
8.99E-14
1.29E-13
1.82E-13
1.93E-13
1.93E-13
1.88E-13
1.83E-13
1.55E-13
1.33E-13
1.14E-13
9.87E-14
8.58E-14
7.50E-14
6.57E-14
5.77E-14
5.49E-19

K
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TABLE B.4. Total (Cumulative) Release from the Repository

C-14

T1/2
(yrs)

5.73E+03

Csat
(g/m**3)

1.40E+O0

K1 K2 El E2 Inven
(g/pack)

l.OOE+00 l.OOE+00 5.OOE-01 1.00E-01 5.01E-01

% Gap % Grain % Crud % Clad
1.OOE+00 O.OOE+O0 1.OOE+O0 6.30E+01

WP # % Matrix
1000 3.50E+01

Time
(yrs)

500.000
600.000
700.000
800.000
900.000

1000.000
1100.000
1200.000
1300.000
1400.000
1500.000
1600.000
1700.000
1800.000
1900.000
2000.000
3000.000
4000.000
5000.000
6000.000
7000.000
8000.000
9000.000

10000.000
100000.000

Amount

7.78E-03
4.79E-02
8.03E-02
2.57E-01
3.61E-01
9.30E-01
1.74E+00
3.46E+00
6.52E+00
9.94E+00
1.38E+O1
1.81E+01
2.05E+01
2.11E+01
2.14E+01
2.15E+01
2.16E+01
2.16E+01
2.16E+01
2.16E+01
2.16E+01
2.16E+01
2.16E+01
2.16E+01

Amount
(Ci/lOOOMTU)
8.34E-04
1.07E-02
6.61E-02
1.11E-01
3.54E-01
4.97E-01
1.28E+00
2.40E+O0
4.77E+00
8.98E+00
1.37E.01
1.90E+01
2.50E+01
2.83E+01
2.91E+01
2.94E+01
2.97E+01
2.97E+01
2.97E+01
2.97E+01
2.97E+01
2.97E+01
2.97E+01
2.97E+01
2.98E+01

Amount
(mol/cm**2)
4.66E-10O
5.99E-09
3.69E-08
6.19E-08
1.98E-07
2.78E-07
7.17E-07
1.34E-06
2.67E-06
5.02E-06
7.66E-06
1.06E-05
1.40E-05
1.58E-05
1.63E-05
1.65E-05
1.66E-05
1.66E-05
1.66E-05
1.66E-05
1.66E-05
1.66E-05
1.66E-05
1.66E-05
1.66E-05

Amount
(mol)I

4.132E-05
5.56E-04
3.42E-03
5.74E-03
1.84E-02
2.58E-02
6.65E-02
1.25E-01
2.47E-01
4.66E-01
7.10E-01
9.84E-01
1.29E+00
1.47E+00
1.51 E+00
1.53E+00
1.54E+00
1.54E+00
1.54E+00
1.54E+00
1.54E+O0
1.54E+00
1.54E+00
1.54E+00
1.54E+00
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APPENDIX C

ARESTIN MODULE

PURPOSE

ARESTIN is the main input module of AREST. ARESTIN reads data from the

primary and secondary data files, and provides a user-interface for editing

the data. The module also allows the user to save modified data sets.

DESCRIPTION

The ARESTIN module was designed to be flexible in that it could be easily

adapted to a wide range of input requirements, without major changes to input

routines and without unduly constraining the format of input files. The basic

idea used in the implementation of ARESTIN is to read data into strings,

process the strings, and read values from the strings. This method provides

the needed flexibility, whereas directly reading the values does not.

ARESTIN is highly structured; it consists of numerous subroutines, the

most important being those that are application-independent, in the sense

that no assignments are made to variables that get used outside of ARESTIN.

These assignments are instead made in higher-level routines, typically after

calls to application-independent input/editing routines. In effect, the

application-independent routines are used as a "toolbox" from which

application-dependent routines can be constructed with minimal effort. This

also provides flexibility.

Because ARESTIN is designed to be flexible, the implementation is probably

best described in terms of how the various mechanisms are typically used,

rather than in terms of the specific calling sequences currently used in AREST.

Consider the overall process. First, the data must be read in. Since

ARESTIN allows the user to have comments (i.e. non-data) in the data files,

these comments must be separated from the data and saved. The data is then

edited and otherwise processed. Finally, the non-data and revised data are

recombined and saved.
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Next, consider the process of reading the data. ARESTIN distinguishes

between two types of data lines, numeric and character, on the basis of the

first data item on each line. Also, as mentioned above, non-data lines are

allowed. ARESTIN searches for data using the following rules:

1) All data lines must begin in the first column.

2) Numeric data is assumed to start with a digit, sign, or decimal

point.

3) When searching for character data, ARESTIN first looks for a line

ending in a colon. The next line with a character in the first column

is assumed to be the character data line.

4) Multiple lines of similar data (e.g., a series of temperature

values), where the exact number of lines are not known beforehand,

must be consecutive and must be delimited (terminated) by a blank line.

Such groups of lines are referred to in this appendix as "blocks".

5) Any lines encountered during the search that do not match the

descriptions set forth for the desired type of data line are

assumed to be comments and are ignored. However, all comment

lines are reproduced in the file used for the revised data set.

The data structures used for input are fairly simple. Data lines are

written to the DATALIN 80-character string array. A parallel array, ENTRIES,

is used to keep track of the number of data items in each DATALIN entry.

Non-data lines are stored in a temporary file. Data and non-data are separated

as they are read.

Typically, one of two routines, GETDATA (for single data lines) or DOBLOCK

(for blocks), is called for both reading and editing. These two routines

handle most common data configurations. In this respect, they are the most

important toolbox routines and merit closer examination.

SUBROUTINE GETDATA (GETLIN, N, PERLINE, FORM)

This routine is used to read/edit non-block data. GETLIN is a variable

which contains the name of the subroutine used to get individual data lines:

GETLIN equals GETSTR for character data lines, and GETNSTR for numeric data
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lines. N is the number of data lines to process, and cannot exceed the ARESTIN

constant, MAXEDRM (currently 20). PERLINE is the number of data items per

line, and is used to fill the ENTRIES array, so the number should be the same

for all data lines in the current read. If the number of items per line

varies, ENTRIES is initialized, and GETDATA is called with PERLINE = 0. FORM

is the number of the format statement used by the MENU subroutine to display

the data.

SUBROUTINE DOBLOCK (GETLIN1, PERLINE, FORM, COUNT)

This routine is used to read/edit block data. GETLINI is the name of

the routine (either GETSTR or GETNSTR) used to locate the first line of the

block. PERLINE, again, is the number of data items per line, but, in this

case, must be constant throughout the block. FORM is the format number to

use. COUNT returns with the number of lines in the block (after editing).

There is no limit on this number.

Now, consider the editing process. As mentioned above, GETDATA and

DOBLOCK are called for both reading and editing. These routines store each

data line in the DATALIN array, which is common to all of ARESTIN. While the

calling sequence varies between the two routines, both eventually cause the

DATAED subroutine to be invoked. DATAED is the driver for all editing; if

calls other routines to display the data in a menu and it executes editing

commands, and perform those commands. Each command is implemented by a single

subroutine which, in most cases, calls still other subroutines or functions.

Some of these routines perform data transfers which aid in reconstructing the

revised data set. Most others involve string manipulations of the data; e.g.

individual data items are edited by substring replacement.

After editing, the data is ready for use by the calling routine. GETDATA

leaves the data in the DATALIN array. DOBLOCK deposits its edited data in

the INRESLT file.

Finally, we should consider the numerous data transfers which occur in

ARESTIN. While the overall paths of these transfers can be complicated, and

may vary greatly, these paths are broken into a series of steps, each of which

consists of relatively simple i/o. Most of these transfers are controlled by

the toolbox routines. An important exception concerns the subroutine KILLBLK.
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DOBLOCK creates the INRESLT file from which the calling routine reads and

processes block data. After the data is processed, INRESLT is expendable, and

KILLBLK should be called to delete it.

This concludes a simplified description of ARESTIN. Some additional

detail is listed below in the Modifications section. The interested reader

can also consult the source code, which is well documented.

MODIFICATIONS

One of the main goals of this appendix is to provide information which

will aid in adapting the ARESTIN routines for use with an updated AREST data

configuration. To do this the programmer must know how to use the main toolbox

routines, the global control variables, and the menu system.

The main toolbox routines, GETDATA and DOBLOCK (in conjunction with

KILLBLK), have already been described. The sequence of calls to these routines

depends, of course, on the contents of the input files.

To control data flow, ARESTIN uses several COMMON variables: INFILE,

OUTFILE, HEADFIL, EDITING, EDSIZE, MENUID, and NXTMENU. INFILE and OUTFILE

designate the current input and output files. HEADFIL indicates where header

information in the input file is to be copied. EDITING is .TRUE. iff editing

is enabled. EDSIZE differentiates between block and non-block data. MENUID

differentiates between two similar menu subroutines. Finally, NXTMENU is the

number of the next menu to display. The majority of these are set

automatically by the toolbox routines. The most important exceptions are

INFILE and OUTFILE which the programmer must set in the calling routines,

enabling switching between primary and secondary data files if the user

chooses. These files must also be opened and closed in calling routines.

Menus must be designed or redesigned to accomodate new data

configurations, so knowledge of the menu system is necessary. First, menus

are identified by their format numbers (in the MENU subroutine). On each call,

MENU is passed the number of lines in DATALIN and the menu identification

number. The DATALIN strings are then displayed, one string per menu option,

with options being labelled with consecutive letters (A, B, C, etc.).

I

L
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Menu identification numbers increase in order of appearance. This

convention is used in implementing the GOTO editing command. Recall that

GOTO allows the user to specify a menu for ARESTIN to display. This is

accomplished by setting NXTMENU equal to the targeted number. The menus are

still processed in order, but those with numbers less than NXTMENU are not

displayed.

To add a menu, one must define a MENU subroutine format statement using

A, B, C, etc., and assign it a number based on when it appears. To add a

GOTO stop, one must change the PARAMETER and DATA initialization in the SETJUMP

procedure.

It should be possible to make most necessary modifications using the

information in this appendix. However, it must again be noted that this is a

fairly cursory explanation of ARESTIN; for more detail, the user is urged to

examine the commented source code.

ARGUMENT LIST

Flags passed as arguments are all of the form O=false/l=true, and are

described in terms of the true value.

IFSCF is a flag which is true when corrosion is to be simulated by a

distribution, the alternative being simulation by a model.

PFAILO is the probability of prefailure for a single package.

NIFAIL is a limit on the number of prefailures.

MIC is an array of flags indicating if the particular corrosion

model is used.

MSIMCF indicates the distribution type used to simulate corrosion

(when applicable):

1 = point
2 = uniform

3 = normal

4 = exponential

SIMCF1,

SIMCF2 are coefficients for the MSIMCF distribution.
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IFCO is a flag indicating when only corrosion (no release) is to be

simulated.

MIR is an array of flags indicating which release models are being

used.

IFSOLF is a flag for using the U02 solubility function.

IFCONG is a flag for assuming congruent release of U02.

ISIM is an array indicating the distribution type used to simulate

releases:

0 - not used

1 - uniform

2 - normal

PSIM is an array of coefficients used with ISIM distributions.
NPERC is the number of percentiles to use in the output

IFMATR is a flag indicating use of a array to store releases

(in which case the releases are assumed to be

time-independent).

NRAD is the number of radionuclides being considered.

NUMWP is the number of waste packages being simulated.

IFOREL is a flag for printing release figures on the output.

IFOU02 is a flag for printing U02 solubility figures.

NTCUM is the number of cells in the release cumulation array.

IPPT indicates which precipitation parameter to solve for:

1 - XPPT, 2 = CPPT, 3 - TPPT

NPPT is the number of (XPPT, CPPT, TPPT) sets read.

XPPT is the packing distance percentage at which

precipitation will occur.

CPPT is the concentration (in % of surface concentration)

at which precipitation will occur.

TPPT is the time at which precipitation will occur.

ROUTINES CALLED .

INENVIR, ASSIGNS, INCOR, GETREL, GETDATA, RADION, RTIME, INPPT, SKIPALL,

RENAME, UPCASE, and TRUELEN are called directly by ARESTIN. GETDATA, DOBLOCK,

GETSTR, GETNSTR, KILLBLK, DATAED, MENU, and SETJUMP are only called indirectly, II
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but are included here for completeness since they are referred to elsewhere

in the appendix.

INENVIR reads the environmental/temperature data. Modifications to this

routine are discussed in Appendix T (USER-SUPPLIED ROUTINES).

ASSIGNS sets some constants.

INCOR reads corrosion data.

GETREL reads release data.

GETOATA reads and edits single lines of data.

RADION reads radionuclide data.

RTIME initializes the time arrays.

INPPT reads precipitation data.

SKIPALL reads and duplicates any comment lines remaining in the input

file.

RENAME renames or deletes files.

UPCASE returns the uppercase version of a character.

TRUELEN returns the length of a string, not counting any blanks padding

the string end.

GETDATA is used to read and edit non-block data.

DOBLOCK is used to read and edit block data.

GETSTR gets a character data line.

KILLBLK deletes the INRESLT temporary file.

DATAED is the driver for all editing, calling other routines to display

and edit the data.

MENU displays the current editing menu.

SETJUMP displays the GOTO menu, gets a selection, and uses that selection

to set the next displayed editing menu.

TEST PLAN

The ARESTIN module has been tested as a whole, using typical AREST input

data sets. The testing was done by matching the input to the output. The

basic testing procedure for a given data set is as follows:

1. Use ARESTIN to input the data set.

2. Issue a series of ARESTIN commands, including each type of

legal command (edit, insert, delete, etc.) as well as illegal

commands (to check error flagging).
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3. Check echo files (produced by ARESTIN) to see that the resultant
data is as expected.

This test procedure has been used for a number of test runs. Similar
tests have been performed for the case where the data is used "as is", i.e.,
without editing.
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APPENDIX D

ENVIR MODULE

PURPOSE

The ENVIR module is composed of the subroutines ENVIR, SENVIR, PHASE,

and TRESAT, and the function TEMPF. These subroutines, in the order listed

above, perform the following tasks: 1) calculate the time-dependent

environmental parameters (such as temperature), 2) calculate the temperature

vector for a simulated heat loading, 3) return the environmental phase, steam

or water, and 4) calculate the time of resaturation (or wetting for an

unsaturated repository). The function TEMPF calculates the temperature for

the current time step.

DESCRIPTION

Subroutine ENVIR adjusts the temperature for the current time by calling

the function TEMPF.

Subroutine SENVIR simulates the time-temperature vector for a given heat

load. The subroutine calls function RANDOM to return the uniform random

deviate [0,1). SENVIR then uses the heat loading information and the initial

temperature, to compute the time-temperature distribution(a).

Subroutine PHASE determines whether the current environment is steam or

liquid. If the current time is greater than the time of resaturation or

wetting, then the current environment is liquid. Otherwise, the current

environment is steam.

Function TEMPF calculates the temperature at the current time step. If

the current time is not in the TIMES array, the subroutine uses linear

interpolation to compute the temperature for the current time.

(a) Liebetrau, A. M., M. J. Apted, D. W. Engel, M. K. Altenhofen, D. M.
Strachan, C. R. Reid, C. F. Weindisch, R. L. Erikson, and K. I. Johnson.
1987. The Analytical Repository Source-Term (AREST) Model: Description
and Document. PNL-6346, Pacific Northwest Laboratory, Richland, Washington.
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Subroutine TRESAT calculates the time of resaturation or wetting. This

subroutine assumes a minimum 300-year containment. The only limitation to

this code is that if the temperature of resaturation is very large, i.e. 500,

then the time of resaturation is zero.

ARGUMENT LIST

Subroutine ENVIR:

TIME is the current time.

ITIME is the array index for the current time.

IPHASE is the current environment.

If IPHASE - 0 then steam environment.

If IPHASE = 1 then liquid environment.

Subroutine PHASE:

TIME is t

IPHASE is t

If I

If I

Function TEMPF:

TIME is t

ITIME is t

TFRAC is t

TEMP is t

TIMES is t

NST is t

he current time.

he current environment.

PHASE - 0 then steam environment.

PHASE = 1 then liquid environment.

he

he

he

he

he

he

current time.

array index for the current time.

fraction of temperature.

temperature array.

time array.

number of time steps.

LOGIC

ENVIR

1. Adjusts temperature for this time step.

(TEMPF)

PHASE

1. Initialize variable IPHASE=0 (steam environment).
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2. If current time TIME is greater than the time of resaturation (TSAT)

then IPHASE = 1 (liquid environment).

3. Set the current environment IPHASE.

SENVIR

1. Calculate uniform random deviate [0,1) (Function RANDOM).

2. Find heat loading.

3. Get initial temperature.

4. Compute time-temperature distribution.

TEMPF

1. Get the time and temperature at the current time step.

2. If the current time is not equal to the current time step, then

do the following:

a. Search the time array (TIMES) for the first time at or past the

current time.

b. Use linear interpolation to compute the temperature at the

current time.

TRESAT

1. Initialize temporary variables.

2. Read time array (TIMES) and temperature array (TEMPS) until the current

temperature from TEMPS is less than or equal to the temperature at

resaturation or wetting, and the current time from TIMES is greater than

or equal to 300, assuming a minimum 300-year containment.

a. If previous temperature from TEMPS is not equal to the current

temperature from TEMPS then calculate FRAC.

b. If FRAC is negative, set to 0.

c. Calculate the time of resaturation using linear interpolation or

wetting.

3. If time of resaturation or wetting is negative, set to 0.

TEST PLAN

To test ENVIR, which calls TEMPF to calculate the current temperature,

the following cases were run:
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1. If the current time (TIME) was equal to the current time step

(TIMES(ITIME)), then the temperature at the current time is equal to

the value in the temperature array at the current time step

(TEMP(ITIME)).

2. If the current time (TIME) is not equal to the current time step

(TIMES(ITIME)), then the temperature at the current time is calculated

using linear interpolation. This was verified with a hand calculation.

Subroutine PHASE determines and returns the current environment. This

subroutine was tested as follows:

1. Set the current time (TIME) less than or equal to the time of

resaturation. The current phase (IPHASE) is equal to 0, for the steam

environment.

2. Set the current time (TIME) greater than the time of resaturation.

The current phase (IPHASE) is equal to 1, for the liquid environment.

SENVIR simulates a temperature vector for a given head load. SENVIR

first calls function RANDOM to return the uniform random deviate. The testing

of function RANDOM is documented in Appendix H. SENVIR was run with a typical

data set, and the following was calculated and tested by hand calculations:

1.

2.

3.

heat loading information,

initial temperature,

time-temperature distribution.

Subroutine TRESAT calculates the time of resaturation or wetting, TSAT.

This code assumes a 300-year containment. The code was tested as follows:

1. The calculation for the time of resaturation (TSAT) was verified

by a hand calculation.

2. The following additional tests cases were run:

a. TSAT is negative. TSAT is set to 0.0.

b. TSAT is positive. TSAT is not changed.
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APPENDIX E

GRDH20 MODULE

PURPOSE

The GRDH20 module contains two subroutines, INGRDH20 and GRDH20. The

subroutine INGRDH20 loads groundwater composition data from an input data

file into a table. The GRDH20 subroutine uses linear interpolation to

calculate the groundwater composition for a simulated temperature.

DESCRIPTION

Subroutine INGRDH20 reads the groundwater composition variables(a) from

the data file ENVSOL.DAT, and stores them in array SWATER that is stored in

the common block WATER. The variables in the data file are read using a set

format. Table E.1 shows the variables and units required; these are listed

in the order in which they are stored in the array SWATER. In other words,

the temperature is stored in row 1, pH is stored in row 2, Eh is stored in

row 3, and so on. Variable names are read from columns one to six, while the

concentrations are read from columns 16 to 25. A different groundwater

composition is read in for each different temperature in the input file. The

variables for temperature, pH, and Eh must exist for each groundwater

composition or the program will stop. Blank lines between records are

arbitrary, since the routine reads a given data set (one set of data for each

groundwater composition) until it finds the next occurence of the variable

TEMPERATURE.

Subroutine GRDH20 calculates the groundwater composition for the

simulated temperature, TEMP. The groundwater composition is calculated using

linear interpolation of the tabled values. If the simulated temperature is

(a) Liebetrau, A. M., M. J. Apted, D. W. Engel, M. K. Altenhofen, D. M.
Strachan, C. R. Reid, C. F. Weindisch, R. L. Erikson, and K. I. Johnson.
1987. The Analytical Repository Source-Term (AREST) Model: Description
and Document. PNL-6346, Pacific Northwest Laboratory, Richland, Washington.
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TABLE E.1. Sample Input Data File (ENVSOL.DAT)

TEMPERATURE
PH
EH
CL-
P04---
S04--
C03--
N03-
02
HC03-
BR-
F+
SI
ZN++
SR+
MG++

CA++
K+
NOs

25.00
7.20000
0.79300
0. 2012D-03
0.1500D-09
0.18050-03
0.20030-05
O.OOOOD+00
O.OOOOD+00
0.22100-02
O.OOOOD+00
O.OOOOD+00
O.OOOOD+00
O.OOOOD+00
O.OOOOD+00
O.OOOOD+00
O.OOOOD+00
O.OOOOD+00
O.OOOOD+00
0.00000+00

degrees celsius

volts
molal
mol al
mol al
mol al
mol al
mol al
molal
mol al
mol al
molal
molal
mol al
mol al
molal
molal
molal
mol al

conc
conc
conc
conc
conc
conc
conc
conc
conc
conc
conc
conc
conc
conc
conc
conc
conc

less than all temperatures in the table (array SWATER), then data for the
lowest temperature in the table is used. Similarly, if the simulated

temperature is greater than all temperatures in the table, then the data for
the highest temperature in the table is used.

ROUTINES CALLED

Subroutine INGRDH20 uses Function CONVCTR to convert character variables

in the input file (ENVSOL.DAT) to real numbers.

ARGUMENT LIST

TEMP is the temperature being simulated.

LOGIC

GROH20

1. Find the two temperatures from the table (array SWATER) that

- surround the simulated temperature (TEMP).

a. Retrieve the simulated temperature.
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b. See if stored temperature is greater than simulated temperature.

2. If simulated termperature TEMP is greater than the last value in the

table, then use the maximum values in the table.

3. Use linear interpolation to calculate the groundwater composition.

INGRDH20

1. Open data file ENVSOL.DAT. If file is not found, stop run.

2. Read file until 'TEMPERATURE' is found. If no temperature is found,

stop run.

3. Store initial temperature.

4. Initialize temporary variables.

5. Read rest of file and store concentrations for each temperature.

a. If Eh and pH were not entered for each temperature, stop run.

b. Store groundwater compositions for each temperature into SWATER.

TEST PLAN

The testing of GRDH20 included checking the following cases by hand

calculations:

a. If TEMP is less that the lowest temperature in SWATER, then the

groundwater composition for TEMP is equal to the groundwater

composition for the lowest temperature in SWATER.

b. If TEMP is equal to a temperature in SWATER, then the groundwater

composition for TEMP is equal to the groundwater composition for

that temperature in SWATER.

c. If TEMP is between two temperatures in SWATER, then the groundwater

composition is calculated using linear interpolation as follows:

LOWTEMP = the lower of the two temperatures surrounding TEMP

HIGHTEMP = the higher of the two temperatures surrounding TEMP

DIFFTEMP = HIGHTEMP - LOWTEMP (the difference between the two

temperatures surrounding TEMP)

SLOPE = (TEMP - LOWTEMP)/DIFFTEMP.

Then, for each composition:

LOWCOMP = the composition at LOWTEMP

HIGHCOMP = the composition at HIGHTEMP

COMPOSITION = LOWCOMP + SLOPE * (HIGHCOMP - LOWCOMP).
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d. If TEMP is greater than the highest temperature in SWATER, then the

groundwater composition for TEMP is equal to the groundwater

composition for the highest temperature in SWATER.

The testing of subroutine INGRDH20 consisted of verifying by inspection

that the data in SWATER corresponds with data in ENVSOL.DAT. The data in

array SWATER are as follows:

Row 1 - Temperature

Row 2 - pH

Row 3 - Eh

Row 4 - Cl-

Row 5 - P04---

Row 6 - S04--

Row 7 = C03--

Row 8 - N03-

Row 9 - 02

Row 10 = HC03-

Row 11 = Br-

Row 12 - F=

Row 13 - Si

Row 14 - Zn++

Row 15 - Sr+

Row 16 = Mg++

Row 17 = Al..

Row 18 - Ca++

Row 19 K+

Row 20 - Na+
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APPENDIX F

CORRODE MODULE

PURPOSE

CORRODE is the driver for the waste package containment phase of the

AREST code. CORRODE is called by the main AREST program, and uses the modules

PREFAIL, DISTRIB, and MODEL.

DESCRIPTION

CORRODE is called once for each waste package. It simulates corrosion

of the package, and returns a time and cause of failure. The package may be

prefailed, meaning that it was defective or damaged at the time of emplacement.

If the package is not prefailed, a corrosion time is determined, either via

modeling or via a statistical distribution. CORRODE is essentially a driver;

it calls other routines to do this work.

ROUTINES CALLED

CORRODE calls three subroutines: PREFAIL, DISTRIB, and MODEL. PREFAIL

determines if the package has prefailed, DISTRIB simulates failure times from

a distribution, and MODEL simulates failure times via corrosion models. Each

of these routines is documented in a separate appendix.

ARGUMENT LIST

STEPS is the number of time steps used when simulating

corrosion via modeling.

IFSCF indicates the type of corrosion simulation:

O => Model

1 => Distribution

KIND indicates the type of distribution (if any):

1 => Point

2 => Uniform

3 => Normal

4 => Exponential
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A, B are coefficients for the distribution (if any):

KIND A B

1 Fail time --
2 Minimum fail time Maximum fail time

3 Mean fail time Standard deviation

4 Minimum fail time Lambda

NIFAIL is a minimum number of containment prefailures.

PFAILO is the probability of containment prefailure for each

package.

CORROSN is an array indicating which types of corrosion are

being considered. It is indexed by corrosion type

code:

1 a> Uniform corrosion

2 => Stress corrosion

3 -> Pitting corrosion

4 => Fracture corrosion

5 => Cladding corrosion

Array entries are numerical flags:

0 => The corrosion type is not used.
1 -> The corrosion type is used.

TIMES is the time value array.

LIMIT is an array of maximum corrosion values (depth in

most cases), and is indexed by corrosion type code

(see CORROSN above).

MECHF is the code for the cause of containment failure:

-4 => Exponential distribution

-3 => Normal distribution

-2 => Uniform distribution

-1 => Point distribution

0 => No failure

1 => Uniform corrosion

2 => Stress corrosion

3 => Pitting corrosion
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4 => Fracture corrosion

5 => Cladding corrosion

6 => Prefailure

TFAIL is the time of containment failure (infinity if no

failure has occurred.

MECHFC is the code for the cause of container failure.

See MECHF above.

TFAILC is the time of container failure (infinity if no

failure has occurred).

STATUS is the code for the current status of the container

and containment. Constants have been defined in the

STATUS.PAR include file, and are used in referencing

status levels.

Value Constant Meaning

0 OK The package is OK; neither container

nor containment has failed.

1 NOCONT The container wall has failed,

but the cladding is intact.

2 NOCLAD The cladding has failed, but the

container wall is intact.

3 FAIL Both container and cladding have

failed; release will occur.

MECHF, TFAIL, MECHFC, TFAILC, and STATUS are initialized before the call

to CORRODE and may be changed by CORRODE. All other arguments are inputs

only.

LOGIC

1. Simulate prefailures

(PREFAIL)

2. If containment did not prefail, then

a. Simulate via distribution or

(DISTRIB)
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b. Simulate via model.

(MODEL)

TEST PLAN

The only function performed by CORRODE is the driving of other
subroutines. For this reason, the test plan for CORRODE consists only of
testing its subroutines. The test plan for each of the subroutines, PREFAIL,
DISTRIB, and MODEL are listed in the Appendices G, H, and I, respectively.

F.4



APPENDIX G

PREFAIL MODULE



APPENDIX G

PREFAIL MODULE

PURPOSE

PREFAIL determines if the current waste package should be considered to

be prefailed, i.e., defective or damaged at the time of emplacement in the

repository.

DESCRIPTION

PREFAIL uses a saved local variable to keep track of the number of

prefailed packages. The first NIFAIL packages are considered prefailed, by

default. Thereafter, each package has probability PFAILO of being prefailed.

A uniformly random number on [0,1) is generated to simulate this probability.

ROUTINES CALLED

PREFAIL uses function RANDOM to generate the random number.

ARGUMENT LIST

NIFAIL is a minimum number of containment failures.

PFAILO is the probability of containment prefailure for each

package.

MECHF is the code for the cause of containment failure,

and will be 6 if prefailure occurs.

MECHFC is the code for the cause of container failure, and

will be 6 if prefailure occurs.

TFAIL is the time of containment failure (infinity if no

failure has occurred.

TFAILC is the time of container failure (infinity if no

failure has occurred).

STATUS is the code for the current status of the container and

containment. Constants have been defined in the STATUS.PAR

include file, and are used in referencing status levels.
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Value Constant Meaning

0 OK The package is OK; neither container

nor containment has failed.

1 NOCONT The container wall has failed,

but the cladding is intact.

2 NOCLAD The cladding has failed, but the

container wall is intact.

3 FAIL Both container and cladding have

failed; release will occur.

All arguments are used as inputs to PREFAIL. MECHF, MECHFC, TFAIL,

TFAILC, and STATUS may also have their values changed.

LOGIC

1. If the prefailure quota is not met or if a prefailure is randomly

generated, then store container and containment failure data.

(RANDOM)

TEST PLAN

PREFAIL is a straightforward routine to generate package prefailures,

based on two factors: a minimum number of prefailures (NIFAIL), and the

probability of prefailure (PFAILO). PREFAIL was tested as follows:

1. A test program was written to drive a large number of trials

of PREFAIL, and output resultant failure times and mechanisms.

2. A second program was used to reproduce the sequence of

pseudo-random numbers generated in step 1.

3. Results were hand-calculated from the random numbers and compared

to the step 1 results.
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APPENDIX H

DISTRIB MODULE

PURPOSE

DISTRIB simulates containment failure times from a specified statistical

distribution.

DESCRIPTION

DISTRIB performs a case selection on the KIND of distribution. Each

type of distribution is handled separately with a few lines of code which

mathematically define the distribution.

ROUTINES CALLED

DISTRIB calls functions RANDOM and NORMAL. RANDOM generates a uniformly

random number on the interval [0,1), and is based on the function RAN1(a).

NORMAL generates a random normal deviate based on a random number returned from

RANDOM, given a mean and standard deviation, and is based on the function

GASDEV(a). The failure time and cause are then stored.

ARGUMENT LIST

KIND

A, B

indicates the type of distribution:

1 => Point

2 => Uniform

3 => Normal

4 => Exponential

are coefficients for the distribution:

(a) Press,
1986.
Press,

W. H., B. P. Flannery, S. A. Tuekolsky, and W. T. Vetterline.
Numerical Recipes: The Art of Scientific Computing. Cambridge
New York, New York.
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KIND A B

1 Fail time --

2 Minimum fail time Maximum fail time

3 Mean fail time Standard deviation

4 Minimum fail time Lambda

MECHF is the code for the cause of containment failure.

For distributions, the codes are:

-4 => Exponential distribution

-3 => Normal distribution

-2 => Uniform distribution

-1 a> Point distribution

TFAIL is the time of containment failure (infinity if no

failure has occurred.

MECHFC is the code for the cause of container failure.

See MECHF above.

TFAILC is the time of container failure (infinity if no

failure has occurred).

STATUS is the code for the current status of the container

and containment. Constants have been defined in the

STATUS.PAR include file, and are used in referencing

status levels.

Value Constant Meaning

0 OK The package is OK; neither container

nor containment has failed.

1 NOCONT The container wall has failed,

but the cladding is intact.

2 NOCLAD The cladding has failed, but the

container wall is intact.

3 FAIL Both container and cladding have

failed; release will occur.

MECHF, TFAIL, MECHFC, TFAILC, and STATUS are initialized before the call

to DISTRIB and may be changed by DISTRIB. All other arguments are inputs

only.
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LOGIC

1. Simulate via one of the following:

a. Point distribution.

b. Uniform distribution.

c. Normal distribution.

d. Exponential distribution.

2. Store container and containment failure data.

TEST PLAN

DISTRIB consists of straightforward computation built around "book"

routines for random deviates. The following testing was performed:

1. A test program was written to drive several trials of DISTRIB

using a normal distribution. The computations involved are

typical of those for other distributions.

2. The sequence of pseudo-random numbers generated in step 1 was

reproduced.

3. The normal deviates were hand-calculated from the random numbers

and compared against the step 1 results.
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APPENDIX I

MODEL MODULE

PURPOSE

MODEL simulates the corrosion, or degradation, of a waste package.

Arguments (some of which are passed by COMMON) are used to specify which types

of corrosion to simulate and which models to use to simulate them.

DESCRIPTION

In this section we describe MODEL in a systematic way. First, we identify

the classes and types of corrosion which MODEL considers. After that we

describe, in general terms, the corrosion processes leading to waste package

failure. Then we consider how MODEL incorporates these failure processes

into its logic, with close attention paid to how each corrosion process is

simulated. Finally, MODEL's data structures are discussed.

MODEL distinguishes between three classes of corrosion: uniform corrosion

of the waste package container, nonuniform corrosion of the container, and

corrosion of the waste form cladding. Uniform corrosion affects all portions

of the container evenly. In contrast, nonuniform corrosion consists of various

localized corrosive forces. The current version of the AREST code considers

three nonuniform types: stress, pitting, and fracture. The degradation of

the cladding is limited to only one process, in each environment, in this

version of the AREST code. This limitation can be easily eliminated if the

need arises.

In all, MODEL supports five types of corrosion or degradation: uniform,

stress, pitting, fracture, and cladding. For each type, the AREST code input

must specify which types are to be considered for the particular run; and for

each type being considered, a particular model must be designated. From a

programming standpoint, the selected model is unimportant in that MODEL uses

the corrosion rate returned by the modeling subroutine, but does not care how

that rate is determined.
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Understanding how waste package failure can occur is one of the keys to

understanding MODEL. Containment fails when both the container and cladding

have been breached, allowing release of the waste form to begin. There are

two ways that containment failure can occur. The first uniform corrosion.

When the container wall fails due to uniform corrosion, it is assumed that

the collapse of the container onto the waste form causes the cladding to be

breached too. The result is containment failure. The second way that

containment failure can occur is the combination of nonuniform and cladding

corrosion. When nonuniform corrosion causes a breach in the container wall,

the cladding becomes exposed to corrosive forces. Subsequent cladding failure

will also constitute containment failure.

A few remarks may be helpful. The corrosion processes act concurrently,

although cladding corrosion cannot start until the container fails. Note that

container failure is not synonymous with containment failure; after nonuniform

corrosion breaches the container wall, cladding prevents release of the waste

form. However, exposure of the cladding to the environment allows cladding

corrosion to start, leading to eventual release. It is unnecessary to simulate

nonuniform corrosion after the wall is breached.

MODEL simulates all corrosion types via the same general procedure.

First, MODEL computes the environmental conditions, including the temperature

and state (gas or liquid) of the surroundings. This information is passed in

a common block to the modeling subroutine. Model-dependent parameters may

also be passed in COMMON blocks, to the routine, from input routines external

to MODEL. MODEL then receives a corrosion rate from the modeling routine.

This rate is numerically integrated (using the trapezoidal rule) over the most

recent time step, and added to the previous corrosion depth to produce the

current corrosion depth. If this depth exceeds a specified limit, then failure

occurs. Interpolation is used to determine a more precise time of failure

(the time when depth equaled the limit).

Depth limits are input values for all corrosion types except pitting.

For pitting, a limit is computed for each package (see Appendix PITDPTH).

The logic flow of MODEL is fairly simple. First, initialization is

performed. The routine then simulates corrosion, time step by time step. At

each time step, MODEL updates the environmental conditions. Then MODEL
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simulates either nonuniform or cladding corrosion. Nonuniform corrosion is

simulated prior to breach of the container wall, while cladding corrosion is

simulated after a breach. Finally, uniform corrosion is simulated time

stepping continues until containment fails or until there are no more time

steps. MODEL returns the time and mechanism of failure to the calling routine.

When the container wall breaches during a time step, cladding corrosion

must be simulated for the post-breach portion of the step. This is

accomplished by allowing the nonuniform corrosion routine to call the cladding

corrosion routine.

There are few important data structures in MODEL. One such structure is

necessary for the numerical integration used in corrosion simulation. The

integration requires information (the time, rate, and depth for each corrosion

type) for the previous time array entry. An array (PREV) is used to store

this information. The only other important variable is STATUS, which MODEL

uses primarily as a flag to indicate if the container wall has been breached.

(For more information on STATUS or other arguments, see the Argument List

section.)

ROUTINES CALLED

MODEL calls PHASE, ENVIR, INITCUM, CLADDNG, NONUNIF, and UNIFORM directly;

and PUTPREV, GETPREV, BREAKDN, DRIVECO, INTEGRA, YINTERP, and user-selected

modeling routines indirectly. PHASE and YINTERP are functions; the rest are

subroutines.

PHASE determines if the package is currently in a liquid or gas

environment.

ENVIR sets time-dependent environmental values.

INITCUM loads the PREV array for the initial time step.

CLADDNG drives the simulation of cladding corrosion.

NONUNIF drives the simulation of nonuniform corrosion types, determining

which, if any, cause failure first. If failure by non-uniform corrosion occurs

during a time step, then cladding corrosion is simulated for the remainder of

the time step.

UNIFORM drives the simulation of uniform corrosion of the container.
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PUTPREV saves the current values of time, corrosion rate, and corrosion

depth, for use by the integration routine in the next pass of the time

loop.

GETPREV retrieves the previously saved values of time, corrosion rate, and

corrosion depth.

BREAKDN is used to simulate any corrosion type for a single time step.

Simulation is as outlined in the description section.

DRIVECO is a driver used to select the desired corrosion-modeling routine.

INTEGRA performs trapezoidal rule integration.

YINTERP performs linear interpolation.

ARGUMENT LIST

STEPS is the number of time steps used when simulating

corrosion via modeling.

CORROSN is an array indicating which types of corrosion are

being considered. It is indexed by corrosion type

code:

1 > Uniform corrosion

2 a> Stress corrosion

3 => Pitting corrosion

4 > Fracture corrosion

5 => Cladding corrosion

Array entries are numerical flags:

o => The corrosion type is not used.

1 => The corrosion type is used.

TIMES is the time value array.

LIMIT is an array of maximum corrosion values (depth in

most cases), and is indexed by corrosion type code

(see CORROSN above).

MECHF is the code for the cause of containment failure:

-4 => Exponential distribution

-3 => Normal distribution

-2 => Uniform distribution

-1 => Point distribution

0 => No failure
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1 => Uniform corrosion

2 => Stress corrosion

3 => Pitting corrosion

4 => Fracture corrosion

5 => Cladding corrosion

6 => Prefailure
TFAIL is the time of containment failure (infinity if no

failure has occurred.

MECHFC is the code for the cause of container failure.

See MECHF above.

TFAILC is the time of container failure (infinity if no

failure has occurred).

STATUS is the code for the current status of the container

and containment. Constants have been defined in the

STATUS.PAR include file, and are used in referencing

status levels.

Value Constant Meaning

0 OK The package is OK; neither container

nor containment has failed.

1 NOCONT The container wall has failed,

but the cladding is intact.

2 NOCLAD The cladding has failed, but the

container wall is intact.

3 FAIL Both container and cladding have

failed; release will occur.

Only non-COMMON arguments are listed. Of these, MECHF, TFAIL, MECHFC,

TFAILC, and STATUS are initialized before the call to MODEL and may be changed

by MODEL. The other listed arguments are strictly inputs.

LOGIC

1. Get initial environment.

(PHASE, ENVIR)

2. Set initial corrosion values.
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(INITCUM)

3. For each time step,

a. Update environment.

(PHASE, ENVIR)

b. If container failure has not occurred, then simulate nonuniform

corrosion.

(NONUNIF)

c. If container failure has occurred, then simulate cladding

corrosion.

(CLADONG)
d. Simulate uniform corrosion.

(UNIFORM)

e. If containment failed, then done modeling package; stop stepping

through time.

Set Initial Corrosion Values

1. For each uniform or nonuniform corrosion type,

a. If used, then

1. compute initial corrosion rate

(DRIVECO)

2. compute initial corrosion depth.

Simulate Cladding Corrosion

1. Compute cladding corrosion.

(BREAKDN)

2. If failure, then store containment failure data.

Simulate Non-Uniform Corrosion

1. For each nonuniform corrosion type,

a. Compute corrosion.

(BREAKON)
b. If earliest nonuniform failure, then store container failure

data.
2. If nonuniform failure occurred, then

a. Store containment failure data.
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b. Set initial cladding values.

c. Simulate cladding corrosion.

(CLADDNG)

Simulate Uniform Corrosion

1. Compute uniform corrosion.

(BREAKDN)

2. If earliest failure of container, then store container failure data.

3. If-earliest failure of containment, then store containment failure

data.

Compute Corrosion

1. Compute corrosion rate.

(DRIVECO)

2. Integrate rate curve over time step, and add to previous depth.

(INTEGRA)

3. If depth exceeds limit, then interpolate failure time.

(YINTERP)

TEST PLAN

To test MODEL, several routines were written. Test drivers were used to

call MODEL or its subroutines. Stub routines were written, replacing existing

routines where expedient. For example, since MODEL does not care how these

rates are computed (i.e. corrosion rate models are largely independent of the

AREST corrosion framework), stub routines were used to generate corrosion

rates.

The following outline indicates the test process:

1. Test the BREAKDN subroutine. Recall that BREAKDN drives the

simulation of a corrosion type for one time step. Two cases

were run:

a. Failure occurs precisely on an array time value.

b. Failure occurs between array time values, necessitating

interpolation of the failure time.

2. Simulate typical MODEL runs. We are primarily concerned with

three main paths MODEL can take. By choosing the stub routine
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corrosion rates appropriately, MODEL was tested along each
path:

a. The container fails due to a nonuniform corrosion type.
(For the tests, pitting corrosion was used.) Then
containment fails due to cladding corrosion.

b. The container fails due to nonuniform corrosion, then
containment fails due to uniform corrosion.

c. The container and containment both fail due to uniform

corrosion.
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APPENDIX J

PITDPTH MODULE

PURPOSE

PITDPTH computes the pitting depth which is sufficient to constitute

container failure.

DESCRIPTION

With the exception of some conventions that have been adopted to preserve

computational consistency with other corrosion modules, PITDPTH implements a

pitting corrosion module that is essentially the same as that described in the

AREST report(a). The major modification involves the computations that are

used to determine the time of containment failure by pitting corrosion. In

PITDPTH, it is also assumed that all potential pit sites are located on the

exterior surface of the waste package container. This assumption is

conservative because potential pitting sites may actually be situated within

the container wall and would not be subject to pitting until exposed to the

environment (by uniform corrosion, for example).

Containment failure by pitting is described in terms of kf. which is the

number of wall-penetrating pits determined to constitute failure. A waste

package is determined to have failed by pitting corrosion at the time that

the probability, pf, of having at least kf penetrations exceeds a

conservatively small value (currently set at 0.1); this calculation involves

the binomial distribution with parameters n (the number of potential pit sites)

and p (the probability that a representative" pit has penetrated to

container). The probability p is estimated by

(a) Liebetrau, A. M., M. J. Apted, D. W. Engel, M. K. Altenhofen, D. M.
Strachan, C. R. Reid, C. F. Windisch, R. L. Erikson, and K. I. Johnson.
1987. The Analytical Repository Source-Term (AREST) Model: Description
and Document. PNL-6346, Pacific Northwest Laboratory, Richland,
Washington.
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pit depth
= container thickness

In estimating p, it is implicitly assumed that all pits have the same
probability of penetrating the container. Instead of doing the binomial

calculation described above, a "failure depth" df is calculated by means of

the following standard normal approximation:

Z ta a - mean v - np
standard deviation sqrt(np(1 - p))

where y is the number of pit failures and n is the number of pit sites. The

approximation is concerned with the z-value obtained when y - kf: Pf, the
probability of failure by pitting corrosion is estimated as the probability

that a standard normal value exceeds some conservatively small value of z

(currently set at z - 1.2816, to correspond to the probability 0.1 that the

number of penetrations exceeds kf). The values of z, y, and n are known at

the time of failure, so it is possible to solve for p:

p I kf/n

The resulting value of p is used to compute the failure depth

df a - * container thickness

At each time step, the simulated depth of the representative pit is compared

to df to determine whether or not containment failure by pitting has occurred.

ROUTINES CALLED

POISSON returns a Poisson-distributed random deviate (used for the number

of pitting sites).
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ARGUMENT LIST

BADPITS is the number of pits sufficient for failure.

SITES is the number of potential pitting sites.

CTHICK is the thickness (cm) of the container.

PDEPTH. returns the pitting failure depth.

LOGIC

The number of pitting sites is determined, and a simple computation is

performed as described above.

TEST PLAN

No testing was deemed necessary since the routine is trivial with the

exception of the function call to POISSON which has undergone a number of

test runs.
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APPENDIX K

CTINV MODULE

PURPOSE

This module calculates and stores the time dependent inventory for a

given radionuclide.

DESCRIPTION

For each nuclide, subroutine CTINV calls the subroutine RPARAM to retrieve

the parameters for the nuclide. RPARAM is fully documented in Appendix L.

The subroutine CTINV then calculates the radioactive decay (Function DECAY).

This version of the AREST code does not calculate decay or growin of the waste

form, this feature will be added later. The growin of radium, however, is

modeled in the CTINV routine.

The DECAY function calculates the radioactive decay scalar (the factor

to multiply the 1000 year inventory by to get the inventory at any time).

The inventory that is input to the AREST code is the inventory at 1000 years

after emplacement. Therefore, if the time of interest (TIME) is less than

1000 years, DECAY is greater than one. Similarly, if the time of interest

(TIME) is greater than 1000 years, then DECAY is less than one.

ROUTINES CALLED

RPARAM is called to retrieve the half life and the 1000 year inventory

for a given nuclide. DECAY calculates the radioactive decay scalar.

ARGUMENT LIST

ITS is the number of time steps in the release calculations.

NRN is the number for each nuclide being calculated.

NRAD is the total number of nuclides.

IFLAG if IFLAG - 1 then calculate growin (Ra-226).

K.1



TFA is the time of container failure after resaturation or wetting.

LOGIC

1. For each nuclide:

a. Set parameters for individual nuclide.

(RPARAM)

b. For each time step:

1. Calculate radioactivity decay (DECAY).

2. For Radium, calculate growin inventory.

3. Scale inventory by radioactive decay.

TEST PLAN

The testing of subroutines CTINV and DECAY included checking the following

cases by hand calculation:

1. Test with TIME > 1000 years.

2. Test with TIME < 1000 years.
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APPENDIX L

RPARAM MODULE

PURPOSE

This module retrieves, calculates, or simulates the parameters used to

calculate the release rate.

DESCRIPTION

Subroutine RPARAM assigns values to the variables to be used in the

calculations for the release of individual nuclides. The code retrieves the

diffusion coefficients, and if necessary calculates shared solubilities.

RPARAM then calculates the decay constant. If the gap or crud release models

are being used, RPARAM calculates the concentration in the gap or crud. The

code then checks for simulation of release parameters, porosites and sorption

in this version. If a uniform distribution is being used to simulate

variables, function RANDOM is called. If a normal distribution is being used,

function NORMAL is called.

ROUTINES CALLED

This module

a uniform random

This module also

of the inventory

ARGUMENT LIST

calls subroutines NORMAL and RANDOM to simulate a normal or

variable. These routines are described in other appendices.

calls Function DECAY, which calculates the radioactive decay

at 1000 years. Function DECAY is described in Appendix K.

IR is

If

If
If
If
If

the type of release model.

IR = 0, set parameters not specific to. a particular release

model.

IR = 1, Matrix release model.
IR = 2, Gap release model.
IR = 3, Grain release model.
IR = 4, Cladding Crud release model.
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If IR = 5, Cladding Zircaloy release model.

ICSAT is the radionuclide index.

XINVEN is the 1000 year inventory of the nuclide in the wastetform

(g/package).
TFAIL is the time of container failure.

IPHASE is the type of environment.
If IPHASE - 0, steam environment.

If IPHASE - 1, water environment.
IT is the index for the time dependent inventory.

LOGIC

1. Get time or temperature dependent parameters.

a. Diffusion coefficients, use DFS in steam or DFW if in water

environment.
b. If using shared solubility, then calculate shared solubilities by

ratio of time dependent inventories.

2. Retrieve parameters for specific nuclide (half life, inventory,

solubility, specific activity, diffusion coefficients, and Kd's).

3. Calculate decay constant (Lambda).

4. If IR = gap (2) or cladding crud (4) then

a. Calculate concentration in gap or crud (CNOG).

b. Correct initial concentration in gap or crud by its radioactive decay

at time of container failure (TFAIL).
5. Check for simulation of release parameters.

a. If uniform distribution then simulate uniform random deviate [0,1),

scale to (min,max) (RANDOM).

b. If normal distribution, call NORMAL.

c. Set simulated parameters for:

1. Backfill porosity.

2. Rock porosity.

3. Backfill retardation coefficient.

4. Rock retardation coefficient.
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TEST PLAN

Module RPARAM retrieves, calculates, or simulates parameters used to

calculate the release rate. The testing of RPARAM included the following

cases by looking at the values assigned and comparing them to hand calculations

where needed:

1. Test the case of shared nuclide solubilities (say for Cs-135 and Cs-137).

This is done by testing two times after container failure (100 and 1000

years).

2. Test the case of IR = 2, the gap release model. The concentration in

the gap and the radioactive scalar is calculated.

3. Test simulated values when using a uniform distribution.

4. Test simulated values when using a normal distribution.
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SOLUB MODULE

PURPOSE

The SOLUB module calculates the U02 solubility. It is the driver

subroutine that calls GRDH20, which calculates the groundwater composition

for the simulated temperature, and U02SOL, which calculates the U02 solubility

for a given groundwater composition.

DESCRIPTION

The SOLUB module begins by calling GRDH20, which calculates the

groundwater composition for the simulated temperature TEMP. This subroutine

is fully described in Appendix E.

The SOLUB module then calculates a U02 solubility by calling the

subroutine U02SOL. Subroutine U02SOL uses t4e U02 solubility function(a) to

calculate the U02 solubility. This function is good only for reducing

conditions, up to the U02/U409 boundary. The temperature dependent variables,

constants A and B, and the equilibrium constants, have been hardcoded. For a

given temperature (TEMP from the common block TIMETEMP) the A and B constants

are calculated using linear interpolation of the tabled values, while the

equilibrium constants are calculated using linear interpolation of the

logarithms of the tabled values. No extrapolation of the tabled values is

done.

The U02 solubility is calculated in moles per litre and converted to grams

per meter cubed. The U02 solubility function uses the variables temperature

(degrees C), pH, Eh (volts), carbonate (m/kg), phosphate (m/kg), sulphate

(m/kg), and chloride (m/kg). The groundwater composition variables are stored

in the common block WATER. Each variable has an allowable range for which

(a) Garisto, F., N. C. Garisto. 1986. A U02 Solubility function for the
Assessment of Used Nuclear Fuel Disposal. AECL-8515, Atomic Energy of
Canada, Limited.
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the U02 solubility function can be used. If a range is violated, then the

variable is set equal to its limit. The limits on the variables are

5 < pH < 10

Eh/pH < Eh < U02/U 409

C03-- < 0.01
P04--- < 0.000002

S04-- < 0.01

Cl- < 1.0,

where

Eh/pH

UO2 ,u409

a -A * pH and

- B - A * pH.

ARGUMENT LIST

IWP

IFLAG

is the number of the waste package being simulated.

is the flag for outputting the calculated U02 solubility.
The solubility is output (to unit 60) if IFLAG equals 1.

is the simulated temperature at which the U02 solubilityTEMP

calculated.

U02S is the calculated U02 solubility.

LOGIC

1.

2.

3.

4.

SOLUB

Find groundwater composition for temperature TEMP (Subroutine GRDH20).

Output U02 solubilities.

Calculate U02 solubility (Subroutine U02SOL).

Output U02 solubility.

U02SOL

1. Find temperature index (INDT) and multiplier (SLOPE) for loglO linear

interpolation.

a. If temperature is smaller than any tabled value, then use smallest

value.

b. Find slope in original and loglO scale.
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2. If temperature is larger than any tabled value, then use largest value.

3. Check if variables exceed their limits.

4. Calculate range for Eh. Use linear interpolation to get a and b

constants.

5. Output variables if desired (if SOLUB = -1.0 on input to routine).

6. Calculate Eh/a.

7. Calculate the 13 individual contributions to the U02 solubility. Use

linear interpolation on the logarithm to get equilibrium constants.

8. Sum all individual contributions to get total U02 solubility in mole/I.

9. Convert total U02 solubility from mole/i to g/m**3.

TEST PLAN

The testing of U02SOL included checking the following steps by hand

calculations:

1. Find the temperature index (INDT), slope, and logIO slope for logbO

linear interpolation.

a. If the current temperature (TEMP) is less than the smallest value in

the table, array SOLTEMP, use the smallest value. The slope and

logIO slope will be equal to 0.

b. If TEMP is equal to one of the tabled values (25C, 60C, 100C, 150C,

200C), then use the tabled data.

c. If TEMP is between the tabled values in SOLTEMP, then the slope and

loglO slope are calculated as follows:

TEMP = the current temperature.

TEMI = the first value in SOLTEMP that is greater than TEMP.

TEMIP = the temperature in SOLTEMP that precedes TEMI.

DIFF = TEMI-TEMP.

SLOPE = DIFF/(TEMI-TEMIP)

LOG10 SLOPE = LOG10(TEMI-TEMP)/LOG10(TEMI/TEMIP)

d. If the current temperature is greater than the tabled values, then

use the largest value in the table (SOLTEMP). The slope and logIO

slope will be set equal 0.

2. Check to see if the pH, Eh, C03, P04, S04, and Cl variables have exceeded

their limits. The A and B constants will be calculated using linear

interpolation, and then will be used to calculate the range for Eh.
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3. Calculate the 13 individual contributions to the U02 solubility.
4. Sum the individual solutions, K(1) through K(13), to get the total U02

solubility in mole/l.

5. Convert the total U02 solubility from mole/l to g/m**3.
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RMATRIX MODULE

PURPOSE

The RMATRIX module calculates the mass transfer and fractional release

rates for the solubility-limited nuclides. Either a congruent or an

incongruent boundary condition at the waste form surface may be used.

DESCRIPTION

RMATRIX is called by AREST separately for each nuclide of each simulated

waste package. It calls several routines for calculating and storing the

mass transfer and fractional release rate. If the parameter MRUN is set to

one by AREST, RMATRIX will not calculate the mass transfer rate for this

nuclide-waste package combination, instead it will use the rates that were

calculated for the first waste package to calculate the fractional release

rate. This option is used to reduce calculations and may be used if the

parameters of the release equations do not change with time or temperature.

RMATRIX first calculates the mass transfer rate using the incongruent

boundary condition at the waste form surface. This mass transfer rate is

calculated only once, for the first waste package, for each nuclide if MRUN

is 0 and is denoted as M(i,t,r) where i is the individual nuclide, t is the

time since containment failure, and r is the distance where the release rate

is to be calculated (RDIST). The distance r must be between the waste form

surface (RO), and the waste package host rock interface (R1).

Next, RMATRIX calculates the congruent mass transfer rate from the waste

form surface. The equation for calculating this mass transfer rate is:

M(i,t,Rocong) M(UO21t,RO) M )(1)

where I(i,t') is the time-dependent inventory for nuclide i at time since

repository closure (t'). Then the congruent mass transfer rate away from the
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waste form surface, at distance r > Ro, is calculated. This release rate is
calculated using the incongruent mass transfer rate of nuclide i and the mass
transfer rate from Equation (1):

M(i,t,r)
M(i,t,r,cong) - M(i,t,Rocong) * (2)

M(i ,tR0)

Finally RMATRIX calculates the fractional release rate. The fractional
release rate, F(i,t,r) for incongruent release and F(i,t,r,cong) for congruent
release, is calculated by dividing the mass transfer rate by the 1000 year
inventory of the individual nuclide i.

ROUTINES CALLED

SINCON calculates the incongruent mass transfer rate for a given nuclide
at any distance.

SU02RO calculates the mass transfer rate of the U02 matrix from the
waste form surface.

SU02R1 calculates the mass transfer rate of the U02 matrix in the packing
material or into the host rock.

SCONG1 calculates the ratio of the incongruent release rate in the packing
material, or into the host rock, with the incongruent release rate at the
waste form surface.

INCON calculates the incongruent fractional release rate.
CONGRO calculates the congruent fractional release rate from the waste

form surface.

CONGR1 calculates the congruent fractional release rate in the packing
material or into the host rock.

ARGUMENT LIST

MRUN is a flag for calculating mass transfer rates,
0 -- > do not calculate, use store array (Vector Approach)
1 -- > calculate mass transfer rates.

NRN is the index for the nuclide being used.
ITS is the number of time steps to calculate release.
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ICSAT is the flag for shared solubility nuclides,

o -- > not shared solubility.

ISOL is the solubility limit flag,

o -- > No solubility limit applied

-1 -- > Solubility limit applied and also calculating

matrix release.

-2 -- > Solubility limit applied and not calculating

matrix release, thus only calculate incongruent

release.

IFCONG is the Flag for the type of boundary condition used,

o -- > Incongruent
1 -- > Congruent.

IPPT is the Flag for using precipitation,

> 0 -- > precipitation.

TFA is the time of containment failure.

XINVEN is the 1000 year inventory.

U02S is the solubility of U02.

TPREC is the time of precipitation.

XPREC is the distance (radial) of precipitation (% of packing).

CPREC is the concentration for precipitation (% of Csat).

STORELM is an array for storing time dependent fractional release

rates (l/yr).

STOREL2 is an array for storing time dependent release rates

(cm**3/s).

LOGIC

1. Calculate mass transfer rates.

a. Incongruent from waste form: M(i,tR 0)

(SINCON)

b. Incongruent into host rock: M(i,t,r)

(SINCON)

c. Incongruent U02 from waste form: M(UO21t,R0)

(SU02RO)

d. Incongruent U02 into host rock: M(U02,t,r)

(SU02R1)
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e. Ratio of incongruent releases: M(i,t,r)/M(i,t,R )
2. Calculate fractional release rates.

a. Incongruent from waste form

(INCON)

b. Incongruent into host rock

(INCON)

c. Congruent from waste form

(CONGRO)

d. Congruent into host rock

(CONGR1)

TEST PLAN

The test plan for the matrix release model (analytical solution) is

outlined below. In AREST we assume that the U02 matrix consists entirely of
U-238, M(it,r) is the inconguent time-dependent mass transfer rate, and the

fractional release rate is F(it,r) - M(it,r)/I(i,1000).

1. First verify that the actual release (incongruent: using the

individual nuclides parameters) calculations are correct. This was

done by matching the results from the AREST code to published

results(a). The test run was for both release from the waste form

(r - RO) and release into the host rock (r = R1). M(i,t,r)/Csat

2. Calculate incongruent release for U-238 and C-14 into the host rock

(r - R1). F(i,t,R1)

3. Calculate incongruent release for U-238 and C-14 from the waste form

(r = R0). F(i,t,RO)

4. Calculate congruent release from the waste form. F(i,t,Rocong),

where

MO(U02,t,Ro,cong) = M(UO2,t,R0), so

F(UO2,t,Rocong) = F(U02 *t,R0), and

(4) = (3)

M(i,tRo,cong) = M(U02,t,RO) * I(it)/I(UO21t'), or

(a) Chambre', P. L., T. H. Pigford, W. W. Lee, J. Ahn, S. Kajiwara, C. L.
Kim, H. Kimura, H. Lung, W. J. Williams, and S. J. Zavosky. 1985. Mass
Transfer and Transport in a Geologic Environment. LBL-19430, Lawrence
Berkeley Laboratory, Berkeley, California.
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F(i,tRocong) = M(U02 t,RO) * I(it')/I(U02 *t')/I(i1000).

Using the approximation I(U02,1000) = (1J02,t'), we get

F(i,t,Ro,cong) = F(U02 5t RO) * I(it')/I(i,1000).

a. For C-14 calculate the ratio of the time dependent

inventory to the 1000 year inventory. I(it')/I(i,1000)

b. Then calculate release

F(i,tRocong) F(U021t,RO) * I(it)/I(11 1000)

(4) (3) * (4a)

5. Finally, calculate congruent release into the host rock and check by

hand calculation.

F(i,t,R1 ,cong), where

F(U02,tR1 ,cong) = F(U02 tR1 ), and

(5) = (2)

M(i,t,R1 ,cong) - M(i,t,R1) * M(it,Rocong)/M(it,Ro), so

F(i,tR 1,cong) - F(i,t,R1) * F(i,tRocong)/F(i,t,Ro), so

(5) = (2) (4) (3)
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RGAP MODULE

PURPOSE

The RGAP module calculates the mass transfer and fractional release rates

for the soluble inventory-limited nuclides, from the gap/grain boundary.

DESCRIPTION

RGAP calculates and stores the mass transfer and fractional release rate

separately for each nuclide of each simulated waste package. The flag MRUN is

set to one if the mass transfer rate is to be calculated, and is set to zero

if the mass transfer rate for the first waste package is used for calculating

the fractional release rate. This option is used to reduce calculations and

may be used if the parameters of the release equations do not change with

time or temperature.

ROUTINES CALLED

The subroutine RELEASE is called to select the release model to be used

to calculate the mass transfer rate.

ARGUMENT LIST

MRUN is a flag for calculating mass transfer rates,

O -- > do not calculate, use store array (Vector Approach)

1 -- > calculate mass transfer rates.
NRN is the index for the nuclide being used.

ITS is the number of time steps to calculate release.

IPHASE is the flag for the environmental conditions,

O -- > steam

1 -- > water.

TFA is the time of containment failure.

XINVEN is the 1000 year inventory.

STOREL is an array for storing time-dependent release rates (1/yr).
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LOGIC

1. For each time step calculate mass transfer rate: M(i,t,r)

a. Calculate time since closure.

b. Calculate release (g/yr).

(RELEASE)

c. Normalize release by concentration (m**3/yr).

2. For each time step calculate fractional release rate: F(it,r)

a. Retrieve release rate (m**3/yr).

b. Multiply release by concentration (g/yr).

c. Normalize release by 1000 year inventory (1/yr).

TEST PLAN

For testing the gap model, the results from the AREST code were compared

to results that have been published(a).

(a) Kim, C. L., P. L. Chambre', T. H. Pigford. 1986. Mass Transfer-Limited
Release of a Soluble Waste Species. LBL-20899, Lawrence Berkeley
Laboratory, Berkeley, California.
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RCRUD MODULE

PURPOSE

The RCRUD module calculates the mass transfer and fractional release rates

from the crud part of the cladding. This release is for the highly soluble

inventory-limited nuclides. The release from the crud can occur in either the

steam or water environment.

DESCRIPTION

RCRUD calculates and stores the mass transfer and fractional release rate

for C-14 for each simulated waste package. The release can be calculated in

either the steam or the water environment.

The flag MRUN is set to one if the mass transfer rate is to be calculated,

and it is set to zero if the mass transfer rate for the first waste package

is used for calculating the fractional release rate. This option is used to

reduce calculations and may be used if the parameters-of the release equations

do not change with time or temperature.

ROUTINES CALLED

RPARAM is called to return time and environmental (water or steam)

parameters.

The subroutine RELEASE is called to select the release model to be used

and calculate the mass transfer rate.

ARGUMENT LIST

MRUN is a flag for calculating mass transfer rates,

O -- > do not calculate, use store array (Vector Approach)

1 -- > calculate mass transfer rates.

NRN is the index for the nuclide being used.

ITS is the number of time steps to calculate release.

IPHASE is the flag for the environmental conditions,
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o -- > steam
1 -- > water.

TFAC is the time of container failure.
TFACR is the time of container failure after the resaturation of

the waste package.
XINVEN is the 1000 year inventory.
STOREL is an array for storing time dependent release rates

(1/yr).

LOGIC

1. Calculate mass transfer rate for steam and water environment.
a. Set release parameters for environment (steam or water).

(RPARAM)
b. For each time step calculate release: M(i,t,r)

1. Calculate time since closure.
2. Calculate release (g/yr).

(RELEASE)
3. Normalize release by concentration (m**3/yr).

2. For each time step calculate fractional release rate: F(i,t,r)
a. Retrieve release rate (m**3/yr).
b. Multiply release by concentration (g/yr).
c. Normalize release by 1000 year inventory (1/yr).

TEST PLAN

The testing for this module was done by comparing the results for the gap
release with those for the calculation of the crud release, since the same
models are used by the AREST code, for the two sources. By setting the
parameters and distribution in each model of C-14, the results for the release
from the gap and those from the crud are identical.
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RCLAD MODULE

PURPOSE

The RCLAD module calculates the mass transfer and fractional release rates

from the zircaloy cladding. A congruent matrix (Zr) release model, solubility-

limited, is used to calculate the release of C-14 from the cladding.

DESCRIPTION

RCLAD calculates and stores the mass transfer and fractional release rate

for C-14 from the zircaloy cladding each simulated waste package. The release

from the cladding is similiar to that of the congruent UO2 matrix release. The

same equations and steps that were used in the RMATRIX module are used in the

RCLAD module.

The first step is to calculate the mass tranfer rate of Zr at the waste

form surface. Then the mass transfer rate of C-14, at the waste form surface,

is calculated by multipling the release of Zr, at the waste form surface, by

the ratio of the time dependent inventories, Equation 1 of Appendix N. Next

the incongruent release of C-14 at the distance r (RDIST) in the packing

material or into the host rock is calculated. Then the mass transfer rate of

C-14 is calculated using Equation (2) of Appendix N, and finally the fractional

release rate is calculated.

The flag MRUN is set to one if the mass transfer rate is to be calculated,

and it is set to zero if the mass transfer rate for the first waste package is

used for calculating the fractional release rate. This option is used to reduce

calculations and may be used if the parameters of the release equations do not

change with time or temperature.
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ROUTINES CALLED

RPARAM is called to return time-dependent parameters.

The subroutine RELEASE is called to select the release model to be used

and to calculate the mass transfer rate.

ARGUMENT LIST

MRUN is a flag for calculating mass transfer rates,

0 -- > do not calculate, use store array (Vector Approach)

1 -- > calculate mass transfer rates.

NRN is the index for the nuclide being used.

ITS is the number of time steps to calculate release.

TFA is the time of containment failure.

the waste package.

XINVEN is the 1000 year inventory.

STOREL is an array for storing time dependent release rates

(1/yr).

LOGIC

1. Calculate mass transfer rate for Zr from the cladding: M(Zr,t,RO)

a. Set release parameters for zircaloy.

(RPARAM)

b. For each time step calculate release.

1. Calculate time since closure.

2. Calculate release for zircaloy from the cladding (g/yr).

(RELEASE)

3. Calculate time dependent inventories for C-14 and Zr.

4. multiply zircaloy release by ratio of inventories.

3. Set release parameters for C-14.

(RPARAM)

4. Calculate mass transfer rate for Zr from the cladding: M(Zr,t,R0)

a. For each time step calculate release.

1. Calculate time since closure.

2. Calculate C-14 release from the cladding (g/yr).

(RELEASE)
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5. Calculate mass transfer rate for C-14 into host rock: M(C-14,tr)

a. For each time step calculate release.

1. Calculate time since closure.

2. Calculate C-14 release from the cladding (g/yr).

(RELEASE)

6. Calculate fractional release rate for C-14 into the host rock.

a. For each time step calculate mass transfer rate: M(C-14,t,r,cong)

1. Retrieve mass transfer rates.

a. C-14 congruent release from the cladding.

b. C-14 incongruent release from the cladding.

c. C-14 release into host rock.

2. Multiply congruent release of C-14 by the ratio of the

incongruent releases (g/yr).

b. Normalize release by 1000 year inventory (1/yr).

TEST PLAN

Since the same release models are used for the release from the cladding

and congruent release from the U02 matrix, the test plan for the module RCLAD

is simply to compare the release of C-14 from the U02 matrix with a similiar

release of C-14 from the cladding. Thus, the parameters for Zr were set equal

to those for U-238 and the distribution of C-14 in the U02 matrix and the

cladding were set equal. The results indicated that the release rates for

the cladding and the U02 matrix were identical.
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RSUM MODULE

PURPOSE

AREST simulates containment failure for each waste package. Release rates

are then calculated and stored in individual vectors (one for each release

model nuclide combination). Finally these individual vectors are summed to and

stored in the array RCUMUL. This final step, summing and storing release

rates, is done in the RSUM module. RSUM is called from the ESR component to

sum release rates for all waste packages.

DESCRIPTION

RSUM is called once for each nuclide, release model, waste package

combination. The routine stores the total repository release rates in the array

RCUMUL and the time since repository closure, in the array TCUMUL.

The individual release rates are calculated from the time of containment

failure (Tfail). Originally the RCUMUL array is set to zero. Any call to

the RSUM routine results in summing the individual release rates (STREL) to

the proper column of the RCUMUL array. Both the time since repository closure

vector (TCUMUL) and the time since waste package failure vector (STIME) are

initialized in the RTIME subroutine (see Appendix T).

Table R.1 is provided to illustrate what happens in RSUM when distributed

failure times occur. All of these columns are vectors used in RSUM. TCUMUL

is the time since repository closure, STIME is the time since containment

failure, STREL is the release rates calculated for the first waste package,

the Vector Approach is being used. The next column, TFAIL = 0.0, lists the

release rates for a waste package failing at 0.0 years after closure of

repository. The column with the header TFAIL = 2.5 lists the release rates

for a waste package failing at 2.5 years after repository closure, and the

next column lists the release rates for a waste package that failed 5.0 years

after repository closure. The last column shows the results of summing the

release rates over all of the waste packages.
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TABLE R.1. Example of Different Failure Times

TCUMUL
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0

10.0

STIME
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0

10.0

STREL
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0

10.0

TFAIL=0.0 TFAIL-2.5 TFAIL=5.0
1.0 0.0 0.0
2.0 0.0 0.0
3.0 0.5 0.0
4.0 1.5 0.0
5.0 2.5 0.0
6.0 3.5 1.0
7.0 4.5 2.0
8.0 5.5 3.0
9.0 6.5 4.0

10.0 7.5 5.0

RCUMUL
1.T
2.0
3.5
5.5
8.0
10.5
13.5
15.6
19.5
22.5

ROUTINES CALLED

RSUM calls the function AREA to

release rate curve, between two time

time interval of the TCUMUL array.

calculate area under the individual

steps. The area is calculated for each

ARGUMENT LIST

NRN

NTCUM

IR

ITS

IWP

IEXH

TFAILUR

NPERC

STREL

STIME

is the index of the nuclide being stored.

is the number of release, time combinations being stored.

is the index of the release model that is being stored.

is the number of time steps, release rate combinations.

is the number for waste package that is being simulated.

is the index in the STIME array for when exhaustion of nuclide

occurs.

is the time of container failure.

NPERC > 0 -- > store individual release to calculate

percentiles later.

is the array of individual release rates (1/yr).

is the array of times (yr) where release is calculated.

LOGIC

1. Find first time step on the stored time array that is greater than the

time of failure.

2. Get release rates for first time interval.

a. Calculate time since failure.
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b. Calculate area under individual release curve

for first time interval.

(CAREA)

c. Calculate release at end points of first time interval.

3. Sum release to other waste packages for first time interval.
4. Check for exhaustion of nuclide (time step greater than IEXH).
5. For remaining time steps, sum release to previous waste packages.

a. Calculate time since failure.

b. Calculate area under individual release curve for new

time interval (AREA)

c. Calculate release at time step.

d. Sum release to other waste packages.

e. Check for exhaustion of nuclide.

TEST PLAN

The testing of the RSUM submodule was done in the four steps described
below. These results were checked by hand calculations.

1. Make sure that the location of the individual release vector

is correct. In other words, locate the time of containment

failure with respect to the TCUMUL vector. This is done by

observing when the release rates start compared to the time of

containment failure (1 year and 1000 years were used).
2. Test the routine that calculates the area under the individual

release vector (AREA) from TO to T1.

a. Case where the endpoints (TO and Ti) fall directly on

the time steps.

b. Case where interpolation is needed.

3. Test the estimation of release rates for the RCUMUL array.
4. Test the summing for two waste packages.
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APPENDIX S

CUMREL MODULE

PURPOSE

The CUMREL module calculates the total release rate for each nuclide and

waste package by summing the rates for all release models (matrix, gap/grain

boundary, clud, and clad), to check for the exhaustion of the nuclide.

DESCRIPTION

The subroutine CUMREL adds the release rate from one release model to

another (i.e., CUM - matrix + gap + cladding). It also calculates the amount

released (parts) to see if the nuclide has been exhausted for the given model.

Exhaustion occurs when the area under the fractional release rate curve (1/yr)

for the given model equals the fraction in that release model (e.g., 1.0 for

100% in matrix). The release rate is set to 0 for all time steps after the

exhaustion of the nuclide.

ROUTINES CALLED

Function CUMUL uses the trapezoidal rule to numerically integrate the area

under the release rate curve. CUMUL integrates from the calculated X value

to the previous X value, and from the calculated Y value to the previous Y

value.

ARGUMENT LIST

ITS is the number of values in each array to sum.

IEXH is the index for the time step at which exhaustion occurs,

CUM(iexh) - 0.

REL is the array of release rates (1/yr).

CUM is the array of cumulative release (across the models).

TIME is the time array (years) used for calculating the area under the

release rate curve.
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PERR is the fraction of the nuclide in the release model (e.g., 1.0 if

100% in matrix).

LOGIC

1.

2.

Initialize variables.

For each time step cumulate release.

a. Check to see if exhaustion has occurred. If it has not occurred,

do the following.

1. Calculate the area under the release curve.

(CUMUL)

2. Check for exhaustion of the nuclide. If it has occurred, do

the following.

a. Use the trapezoidal rule to make the area under the release

curve equal 1.0.

b. Store the release at the time of exhaustion.

c. Set the index in the time array where exhaustion occurred.

3. Sum the release across the models (1/yr).

b. Store the release for the next release model.

TEST PLAN

The testing of CUMREL included checking by hand calculations the following

steps:

1. Test for exhaustion of Cm-245. Run the code with Time of failure at

1000 years, and use incongruent release.
2. Test that the array containing the accumulated release rates (CUM)

is being filled properly. Run the code with U-238 and C-14 with
Time of failure at 1000 years, and use congruent release.
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APPENDIX T

USER-SUPPLIED ROUTINES

This appendix is intended to describe the corrosion and release models

that are present in the AREST code, to discuss the procedure someone would

follow to add their own models, and to show how to modify existing routines in

the AREST code. Also, the common blocks used by the AREST code are briefly

discussed, and non-standard features that have been used in the AREST code

are described.

CURRENT CORROSION MODELS

The AREST code provides a number of low-level subroutines which perform

rate calculations for various corrosion models. The code also provides a

mechanism for implementing user-defined models. These models are identified

numerically within the program by the values listed in Table A.1 (Appendix A)

under the "Corrosion Models" heading.

Currently, the AREST code provides the following pre-programmed corrosion-

rate subroutines: BROOK, BWIP, BWIPS, DTPUN, DTPPIT, PNLPIT, PNLSTE, PNLSTZ,

PNLUNI, PNLUNZ, and WESTER. In addition, the code includes dummy user-

definable routines: CUSERI, CUSER2, CUSER3, CUSER4, CUSER5, CUSER6, and

CUSER7.

The pre-programmed corrosion routines are all time-dependent, and all

return both corrosion rates and depths. BROOK implements a uniform corrosion

model for low-carbon steel in salt water. There are two Basalt Waste Isolation

Project models for uniform corrosion (Sagar et al.): BWIP is used for an

aqueous environment, and BWIPS is used for a steam environment. Two models

are included for waste packages using carbon steel canisters with basalt-

bentonite packing: DTPPIT computes pitting corrosion, and DTPUN computes

uniform corrosion. Several pre-programmed routines are provided by the Pacific

Northwest Laboratory (Liebetrau et al. 1987): PNLPIT for pitting of steel in

a aqueous environment, PNLSTE for uniform corrosion of steel in steam, PNLSTZ

for uniform corrosion of zircaloy in steam, PNLUNI for uniform corrosion of
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steel in an aqueous environment, and PNLUNZ for uniform corrosion of zircaloy

in an aqueous environment. Finally, WESTER models unfirom corrosion of iron-

based materials in an aqueous salt repository (Westerman et al. 1984).

User-defined models can be implemented using the CUSER routines. Each

current CUSER routine is a placeholder which can be replaced by a user-written

routine. The specific CUSER routine to replace depends on the environmental

conditions and corrosion mode of interest: CUSERI is used for uniform

corrosion in a steam environment. CUSER2 is used for uniform corrosion in an

aqueous environment. CUSER3 is used for stress corrosion in an aqueous

environment. CUSER4 is used for pitting in an aqueous environment. CUSERS

is used for mechanical fracturing in an aqueous environment. CUSER6 is used

for uniform corrosion of cladding in an aqueous environment. CUSER7 is used

for uniform corrosion of cladding in a steam environment.

All corrosion routines require the same arguments: TIME, RATE and DEPTH,

in that order. TIME is an input; corrosion RATE and DEPTH are outputs. At

present, DEPTH (but not RATE) can be returned with a dummy value and rate is

returned in centimeters per year. The routines may require other input values

which need to be input by the ARESTIN module and passed by way of common

blocks.

CURRENT RELEASE MODELS

The current version of the AREST code contains release models developed
for saturated media. Two models are available for solubility-limited. release

(release from the UO2 matrix and release from the cladding) and two models for

inventory-limited release (release from the gap/grain boundaries and release
from the crud).

One of the solubility-limited release models assumes a spherical waste

package geometry, and is limited to one-member decay chains (Chambre' et al.

1985). These models also assume that mass transfer rates are diffusion

limited. The solubility-limited models for UO2 matrix and cladding release

are collectively denoted as the Pigford and Chambre' model in Table A.1 of

Appendix A. Another release model that has been recently added to the AREST

code calculates steady-state releases in a partially saturated media taking
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into account rates of matrix dissolution, convection and diffusion (Reimus et

al. 1988). It compares the release rates that result from these three

processes and uses the appropriate limiting rate. This model is the PNL TUFF

model in Table A.1 of Appendix A.

For unsaturated media, the PNL TUFF model, is also used to calculate

release rates from the gap and crud, except that matrix dissolution is not

considered as a limiting factor. For saturated media, another Pigford and

Chambre' model (Kim, Chambre', and Pigford 1986) is used to calculate release

from the gap and crud. This model assumes a planar geometry and diffusional

release only.

The user also has the option of adding their own release models. There

are five dummy routines that the user can modify and add to the AREST code.

The routines (RUSER1, RUSER2, RUSER3, RUSER4, and RUSER5) correspond to a

release model (matrix, gap, grain boundaries, crud, and cladding), where RUSER1

calculates the release from the matrix, RUSER2 calculates release from the

gap, RUSER3 calculates release from the grain boundaries, RUSER4 calculates

release from the crud, and RUSERS calculates release from the cladding. The

release from the grain boundaries is not used directly, in this version of the

AREST code. Instead, the release from the grain boundaries is combined with

the release from the gap.

To add new release models, simply modify the correct RUSER routine,

compile and link the routine with the AREST code, and choose the user supplied

option when running the code (option 0 for each release model from Table A.1

of Appendix A). The variables available to the release model are found in

the common blocks. The release model returns release in grams per year.

MODIFIABLE ROUTINES

The AREST code has been designed to be easily modified. It is

recommended that the modifications be made by a programmer, using this document

the source code as a guide. The AREST code has been broken into several

modules with most modules contained in a separate file. The rest of this

section will be describing several modules that may need to be modified by

the user.
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The routine RTIME initializes the time vectors for the calculation of

the release. Two time vectors are initialized by this routine. The first

time vector, STRT, is used to calculate the release from an individual waste

package and refers to the time after containment failure. The second time

vector, TCUMUL, is used to calculate the total release from the repository,

and refers to the time after the closure of the repository.

The individual radionucide paramters are read into the AREST code using

the RADION routine. This routine is called from the ARESTIN module. This

routine reads in the parameters and stores them in arrays. The distribution

of the nuclides in the release models (e.g., 50% in the matrix and 50% in the

gap) are stored in the RPERC array. While the individual parameters for each

nuclide are stored in the array RPARA.

The release parameters for the individual nuclides are set in the routine

RPARAM. This routine retrieves the parameters from the arrays RPERC and RPARA,

and also simulates different parameters. With this version of the AREST code

the only parametes that may be simulated are the porosites and retardation

coefficients for the packing and host rock.

INEVIR is the routine used to input the thermal data base. It is called

by the ARESTIN module and sets the time/temperature distribution. This routine

may need to be modified, depending on how the thermal data base is to be used.

The algorithm used by the AREST code is described by Liebetrau et al. (1987).

The groundwater composition is input into AREST by the INGROH20 routine.

This routine will have to be modified if a new format is used for the

groundwater. INGRDH20 is discussed in Appendix E (GRDH20 MODULE).

COMMON BLOCKS

Most of the variables and parameters used in the AREST code are stored

in common blocks. There are several common blocks that are used by the AREST

code. These common blocks are incorporated into each routine with the use of

the include statement. This statement is not part of the FORTRAN 77 standard,

but is used in most versions of FORTRAN 77. Each common block is contained

in its own file and each parameter and variable contained in the common block

is documented in the file.
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Besides the use of the include statement, there are other features of

the Fortran 77 standard that have been violated. They include non-standard

length of variable and routine neames and the use of the "I" as a comment

delimiter. These non-standard features are easy to fix and are implemented

in most compilers, thus we have not converted them to the equivalent standard.
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