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EXEUTE SUMMRY

Applicability of the Limit State method, which was developed initially for structural reliability
analyses, to performance assessment of geologic repositories is investigated. This study was
undertaken as an auxiliary analysis for the Iterative Performance Assessment (IPA), Phase II
project.

The Limit State method belongs to a class of methods that deal with uncertainty propagation and
sensitivity analysis of system response that depends upon a multitude of parameters, some of
which are random. Other such methods applied to repository performance assessment are the
Monte Carlo, Differential Analysis, Response Surface, and Regression Analysis. The Limit
State method has found considerable application in reliability estimation of structural
components, but is relatively new to the repository performance assessment field.

The Limit State approach is based on partitioning the parameter space into two parts: one in
which the performance measure is smaller than a chosen value (called the limit state), and the
other in which it is larger. Through a Taylor expansion at a suitable point, the partitioning
surface (called the limit state surface) is approximated as either a linear or quadratic function.
The success and efficiency of the limit state method depends upon choosing an optimum point
for the Taylor expansion. The point in the parameter space that has the highest probability of
producing the value chosen as the limit state is optimal for expansion. When the parameter
space is transformed into a standard Gaussian space, the optimal expansion point, known as the
Most Probable Point (PP), has the property that its location on the Limit State surface is
closest to the origin. Additionally, the projections onto the parameter axes of the vector from
the origin to the MPP are the sensitivity coefficients. Once the MPP is determined and the
Limit State surface approximated, formulas (see Equations 4-7 and 4-8) are available for
determining the probability of the performance measure being less than the limit state. By
choosing a succession of limit states, the entire cumulative distribution of the performance
measure can be determined. Methods for determining the MPP and also for improving the
estimate of the probability are discussed in this report.

The Limit State method is obviously more complex than the more commonly used Monte Carlo
method. To aid understanding, all steps of the method are explained by applying them to a
simple example of obtaining the cumulative probability distribution function of Darcy velocity,
V, given by V = -KI, where K and I are the hydraulic conductivity and hydraulic gradient,
respectively. Although simple, this example turned out to be not so easy for the application of
the Limit State method because of the possibility of change of sign of I (and hence of V). All
steps of this example are boxed in the text for easy identification.

Finally, the method is applied to a one-dimensional transport problem and compared to the
Monte Carlo method. Sensitivity coefficients were computed and compared with those obtained
from differential analysis.
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The evaluation of the Limit State method documented in this report indicates that it has merit.
It is recommended that it be evaluated next by applying it to a more complex problem, such as
the total system performance assessment which may have several modules linked together. It
appears that some developmental work regarding efficient determination of the MPP and
estimation of the derivatives of the performance measure required for Taylor expansion will also
be needed.
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1 INTRODUCTION

In assessing high-level waste (HLW) repository performance, mathematical models will be used
to estimate system behavior in response to future perturbations, including the release of
radionuclides into the geosphere. Performance assessment models are based on a combination
of scientific principles and empirical data. It can be expected that, because of inherent
variabilities in the model inputs due to the difficulties in obtaining relevant field data and in
validating the models, uncertainties will exist in the model input parameters as well as in the
description of processes included in the models. Therefore, the predicted response or
performance will also be uncertain.

One way to address the uncertainties is to use probabilistic sensitivity analysis approaches which
assess the variabilities in the response due to input or model uncertainties. There are several
well-known uncertainty and sensitivity analysis methods that can be used. The most common
of these analysis approaches generally depend upon repeated evaluation of the response for
different combinations of input parameters. However, for complex numerical models generally
applicable to HLW performance assessment, these methods may demand excessive computational
effort or may not be sufficiently accurate. The Center for Nuclear Waste Regulatory Analyses
(CNWRA) and the Nuclear Regulatory Commission (NRC) are exploring an alternative
uncertainty and sensitivity analysis approach that may save computational effort without losing
significant accuracy. This investigation is a part of the Iterative Performance Assessment (IPA)
effort to develop HLW system performance assessment capabilities within NRC and CNWRA.
A series of two reports regarding uncertainty and sensitivity analysis methodologies has been
developed. In Part 1 Gureghian, et al. (1991)], a mathematical model and a computer code for
one-dimensional radionuclide transport in a layered fracture rock were developed. This report
employs this model to evaluate the alternative sensitivity and uncertainty approach.

In the context of this report, uncertainty analysis means probabilistic analysis in which the
uncertain input parameters are treated as random variables with assigned probability
distributions. The goal of the uncertainty analysis is to compute the cumulative probability [or
cumulative distribution function, (CDF)] of one or more responses or performance measures.
Sensitivity analysis, on the other hand, refers to the estimation of change in the performance
measure if any one of the input variables is varied. Probabilistic sensitivities are defined as
variations in the performance CDF because of a change in an input variable.

For problems related to repository performance assessment, applicable probabilistic methods
include the widely-used Monte Carlo method, the response surface method, and the differential
analysis method. These methods are well documented in the literature (e.g., see Helton et al.
1991). The goal of this study is to investigate an alternative approach which has a relatively
short history of development. The basic idea of this alternative approach was originally
developed to solve problems encountered in the field of mechanical and structural reliability
design and analysis especially when high reliability (or low probability-of-failure) was of
particular interest. More recently, the ideas have been extended to develop full CDF of
performance measures. However, the alternative approach addressed in this report has not been
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sufficiently investigated for its applicability to repository system performance assessment
problems that are characterized by large uncertainty, large number of random variables, and
complicated nonlinear performance functions.

Traditionally, sensitivity analysis is based on the perturbation of a system parameter at a
'reference' point, typically the mean-value. In this report, the meaning of sensitivity analysis
will be extended to include probabilistic sensitivity, e.g., the sensitivity of a probability-based
measure with respect to a system parameter, evaluated at a performance value of interest that
may not correspond to the mean-value of the parameter. The alternative approach provides a
framework to determine an optimum reference point in the parameter space and for performing
probabilistic sensitivity analysis based on such an optimum point.

The alternative approach is evaluated by considering: (1) the efficiency and accuracy of the
approach when the models are complicated and require extensive computations; (2) the feasibility
of the method when the numerical models cannot be modified easily and must be treated as
"black-boxes"; and (3) the efficiency and accuracy of the method when problems involve a large
number of random variables.

Section 2 of the report defines uncertainty and sensitivity analyses and discusses different
methods of computing sensitivities. Section 3 provides a summary of the more established
methods. Section 4 describes the alternative approach. It provides a review of the fundamental
concept as well as a scheme that was developed during the development of this report to support
the alternative approach. In Section 5 several methods are applied to the transport model
example for illustrating and comparing different methods. The advantages and limitations of the
alternative approach are summarized in Section 6. Cited references are given in Section 7. In
addition to the general description of the alternative method, some detailed technical discussions
are given in the appendices to supplement Section 4.
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2 DEFINITIONS OF UNCERTAINTY AND SENSITIVITY ANALYSES

In this report, uncertainty analysis is defined as being equivalent to probabilistic analysis in
which the uncertain input variables are treated as random variables with assigned probability
distributions. The goal of the uncertainty analysis is to compute the CDF or the complementary
CDF (CCDF = I - CDF) of a performance measure such as cumulative radionuclide release.

The term sensitivity has several meanings. For distinguishing the different meanings, this
report defines sensitivity as dZ/da where dZ is the change in a measure Z related to system
response or performance, R, and da is the change in a system parameter a. In general, Z could
be R itself, or a characteristic of R such as the CDF of R, FR(r). With a deterministic, dR/da
can, in general, be calculated by obtaining R at a "reference" value a, and then at a perturbed
value itda. In this case, dR/da will be called a "deterministic' sensitivity.

In probabilistic performance assessment when the response R is a random variable (or vector),
the usefulness of dR/da is limited since the expression does not include input uncertainty
information. The dimensionless sensitivity coefficient," [dRIR]/[dct/a] discussed in Gureghian,
et al (1991), which represents the percentage change in the response relative to the percentage
change in a parameter is more useful for identifying important" parameters. However, the
sensitivity coefficient still does not include parameters that are related to probability
distributions; hence, it is also a deterministic sensitivity.

A commonly used 'probabilistic' sensitivity measure that relates to input and response
probability distributions, in terms of the standard deviations, is dclt/do. This measure is useful
because it provides information on the degree of response uncertainty (or variability) reduction
as a function of reduction of the input uncertainty. Similarly, a probabilistic measure associated
with a change in the mean value is useful in examining the impact of the uncertainty in the mean
value of an input random variable. Probabilistic sensitivity measures can be used to identify key
parameters that contribute to the uncertainty in the performance measure. Relative importance
or ranking of input random parameters may be used to assist in making decisions regarding
uncertainty reduction.

More generally, in probabilistic performance assessment, when there is a change in the system
parameter a, either deterministic or random, the CDF of R will change (e.g., its mean and
standard deviation will change). Thus, it is reasonable to define "probabilistic" sensitivity as
the derivative of the cumulative probability, F(r), with respect to a parameter, a. The
probability sensitivity, dFR(r)lda, can be evaluated either at a specified probability, P, or at a
specified response, r. Here, the parameter a is related to the input (deterministic or random)
variables. For example, a could be a system parameter or a mean value or a standard deviation.
Other probabilistic sensitivity measures could also be defined. In a more general sense, a
probabilistic sensitivity analysis can be performed with respect to a change in the distribution
type (e.g., Normal to Lognormal distribution). This type of sensitivity analysis may be applied
for situations where there are several competing probability distribution models. It will be

2-1



;

shown in Section 4 that the alternative approach provides a reasonable way to compute
probabilistic sensitivity measures.

The most direct method for calculating a deterministic or a probabilistic sensitivity is by
calculating the performance measure at two levels: reference and perturbed. When each
individual solution requires significant computer time, repetitive analyses can put excessive
computational burden on the performance assessment. This approach of numerical
differentiation requires a minimum of (n + 1) solutions for n input parameters. It does not
require much knowledge about the modeling details and is essentially a "black-box' approach.

In a non-black box' approach, sensitivities could be obtained by analytical means such as the
transport model discussed in Part 1 (Gureghian, et al. 1991). Analytical sensitivity provides
accurate and possibly faster calculations than the numerical differentiation approach. For some
problems, sensitivity could be computed much more efficiently using the adjoint method. The
advantages and the limitations of these methods are discussed in a report by Thomas (1982).
Another way of computing the sensitivities efficiently is the use of perturbation method as
discussed by Dias and Nagtegaal (1985). In general, the adjoint method and the perturbation
method might require significant modifications to the original computer codes. Detailed
investigation of these methods is outside of the scope of this study.

2-2
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3 REVIEW OF CURRENT PROBABILISTIC METEODS FOR
PERFORMANCE ASSESSMENT

Commonly used probabilistic methods for performance assessment include the Monte Carlo
method, the response surface method, and the differential analysis method. These methods are
well explored (Helton, et al 1991, and Karamchandani 1987), and are briefly reviewed below.

3.1 MONTE CARLO METHOD

This method generates K realizations of n input parameters, Xl,...,X,, from specified
probabilistic distribution information. These K realizations are then fed into the model to
compute K responses or performances. The K response values are synthesized to derive
probabilistic information including the CDF. Several sampling techniques are available.

In random sampling, each sample of the parameter vector is obtained from the entire joint
probability distribution of the input random parameters. This sampling is the most
straightforward, and is often called the standard' Monte Carlo method.

In stratified sampling, the domain of Xl,...,X. is divided into regions of (typically) equal
probability, and then from each region a random sample is generated. This approach ensures
that samples cover the entire domain. In Latin Hypercube sampling (LHS), the range of each
input variable is divided into intervals of equal probability, and one value based on its marginal
distribution is then randomly selected from each interval. For each Y. the K sample values thus
obtained are rearranged according to an independent random permutation. The resulting
permutations form an n by K matrix, with the n row consisting of the permuted values of Nj.
The K columns of this matrix constitute the Latin Hypercube sample. For correlated input
variables, the permutation is based on the specified correlation matrix. As is true for stratified
sampling, it can be shown that, under appropriate conditions, estimates based on LHS have
smaller variance than estimates based on random sampling.

Monte Carlo method has several advantages. As summarized by Helton et al., (1991),
Monte Carlo techniques do not require a large amount of sophistication that goes beyond the
analysis problem of interest. Also, they do not require modifications to the original model or
additional numerical procedures, and can be used to propagate uncertainties through a sequence
of separate models.

The major drawback is that a large number of samples might be required to achieve a
result with sufficiently narrow confidence bounds. In particular, when the interests are at the
tails of the distribution, the sample sizes will need to be large in order to generate sufficient
"hits" in the "corner(s)" of the parameter space that corresponds to extreme performance values.

Probabilistic sensitivity analysis can be performed by combining the Monte Carlo method
with the regression analysis. The accuracy of this approach depends on the distribution of the
data points used in the regression analysis. In the 'corner" region where there are fewer
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samples, the answers generated by the regression-based sensitivity analysis might not be
accurate. Alternatively, a probabilistic sensitivity analysis can be performed by generating a
perturbed solution using a new Monte Carlo analysis in which the input parameters are perturbed
(e.g., a standard deviation is redefined). This process, while able to provide accurate results,
is clearly computationally more expensive than the regression-based method.

To reduce the computational burden in the above Monte Carlo approaches, an importance
sampling technique, which forces sampling in the 'important" region (e.g., a "corner" region),
may be used. The main difficulty is that the important region is not known a priori. A good
guess will be needed to use this technique.

3.2 RESPONSE SURFACE APPROACH

The response surface approach consists of replacing the original response function Z by
a simple analytical function of a limited number N of the initial n input variables, with N n.
Most often that function is a linear combination of the Xi, i = ,..., N:

N

Z a + a, Xi *(3-1)
1-1

In a more complex case, the fitted function may include higher-order terms, e.g.,

N N N

Z a+ E aiX + E E bji Xj X . (3-2)
M- 1-1 J.1

j Li

The coefficients ao, a, and bji are fitted by a regression analysis based on a number of solutions
at designed or randomly selected input points. After the response surface model is developed,
probabilistic analysis can be performed efficiently because the developed response surface is
simple. Thus, for complicated models, the efficiency in using the response surface approach
depends mainly on the efficiency in generating the coefficients of the response surface.

In order to obtain accurate information at the tails of the distribution, higher-order
response surfaces will be required when the response functions are highly nonlinear. In practice,
unless n is small, higher than second-order response surfaces are rarely developed because they
require much more data points and because nonlinear regression models may produce large
modelling errors in the regions where few or no curve-fitting data are available.

3.3 DIFFERENTIAL ANALYSIS APPROACH

The differential analysis approach consists of approximating the actual function by
Taylor's series expansion about a reference point, typically the mean (u) or median value,

3-2
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While not intended for full CDF analysis, the above first-order approximation can be used to
provide the estimates of the response mean and standard deviation and to produce the sensitivity
coefficients.

The Taylor's series model is more accurate in the neighborhood of the expansion (mean)
point while the response surface model is intended to be used for a wider region by optimizing
the modelling errors. Similar to the response surface approach, a higher-order Taylor's series
expansion (Sagar and Clifton, 1984) may be better, but would require extra computations to
obtain higher-order term coefficients.
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4 ALTERNATIVE PROBABILISTIC APPROACH BASED
ON LIMIT STATE FORMULATION

4.1 INRODUCTION

In the alternative formulation, a particular value identified as the "limit state' of the
performance measure is selected. Having selected a limit state, the probability of the
performance measure being less than (or exceeding) the limit is computed. The CDF of the
performance measure can be established by selecting a number of limit states, and performing
probability analysis at each of these selected limit states.

The limit state approach is based on approximating the performance function at a suitable
point in parameter space by a simple expression (linear or quadratic) so that the probabilities can
be calculated relatively easily. The efficiency and accuracy of the results depend upon the
selection of the point on the limit state surface at which the performance function is simplified.
The key step in applying the limit state approach is in determining this approximation point.

In the following, the procedures required to compute the approximation point and the
probability estimates efficiently will be described. An adaptive importance sampling approach
for improving the approximate probability solutions is also described. A simple example will
be used in this section to illustrate the approach. This example, described in Figure 4-1,
pertains to the estimation of CDF of Darcy velocity. For easy identification, application of
various steps of the limit state approach to this example are enclosed in boxes. The radionuclide
transport model developed in Part 1 of this report (Gureghian, et al. 1991) is used in Section 5
to demonstrate the applicability of the limit state approach.

4.2 LIMIT STATE FORMULATION

Define the performance function as: Z = Z(XI, X 2,.. .X), where Xi are the input random
variables. In the limit state formulation, Z is approximated at a selected value (called the limit
state), for example, Z z. Numerous combinations of (XI, X 2 ....XJ) that lead to the limit
value z constitute a limit state surface" which can be regarded as the response surface" but
is constrained by the condition that Z = z. The limit state surface partitions the parameter
space into two parts. On one side of the limit state surface, Z < z, and on the other side Z >
z. Once this partition is determined, the probability of Z being less than (or exceeding) z is
easily computed. A full CDF can be established by selecting a number of zi, and performing
probability analysis at each of these selected z.

Equivalently, for each limit state, define,

g(X) z(X-z - , (4-1)

which separates the variable space into two sets: g less than or equal to 0" and g greater than
0" (this corresponds to "failure" and safe" in a structural reliability problem). Given the joint
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Example: V = -KI

Consider a simple flow problem described by Darcy's law, V = -KI, where K is the
hydraulic conductivity, I is the hydraulic gradient, and V is the Darcy velocity. Assume
that both K and I are random variables and that the performance function is the flow
velocity V(K,I). The goal of the probabilistic analysis is to compute the CDF of V.

To formulate a limit state, let V = v;. Figure 4-1 shows three limit state surfaces for
vi = -5, 0, and 1. Each limit state surface determines two regions: V < vi, and V > '.
The goal of the analysis is to compute the probabilities of those two regions and the
approach is to simplify the limit state surface using a linear or quadratic surface.

0.4

0.2

1 0

-0.2

..................... ........ --.-..................
. .

I-
_. ~~~~~~~~............: , Iv@ I

0 20 40 60 80 100 120
K

Figure 4-1. Limit state surfaces for v1 = -5, 0, and 1
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probability density function, f(x), the CDF, F(z), of the performance function, in theory, is
given by:

Fz(z) = P[g O] = f.* .fx (x)dx (4-2)
gsco

In practice, this integral is very difficult to evaluate analytically. For practical purposes,
efficient numerical solutions are desired. One approach is to approximate an exact limit state
surface by a more simple, but approximate (say linear), limit state surface, such that the above
integral can be computed easily.

4.3 APPROXIMATION POINT FOR DEVELOPING APPROXIMATE LEMIT STATE
SURFACE

In order to develop an acceptable approximate limit state surface, a good approximation
point in the parameter space needs to be identified. Assuming that a first- or second-order
Taylor's series will be used to approximate the exact function, ideally a best point can be defined
as that point on the limit state surface that minimizes the probability in the region between the
exact and the approximate linear (or quadratic) surface. However, such a point is, in general,
difficult to find. An easier and widely used procedure requires a transformation of the original
problem to a mathematically more tractable problem, as described below.

First, the generally correlated non-normal random variables X are transformed into
independent, standardized normal vector u. One such transformation is the Rosenblatt
transformation Rosenblatt (1952), and Hohenbichler and Rackwitz (1981)]:

UI -1[F ()]

U2 = '[F 2(x 2 IXI)]

(4-3)

Un = 0-J[Fn(x1 I 1X2 -- Xa-fl)

where 4a-(*) represents the inverse standardized normal CDF, and F 3(x, | xl, x 2 ... x. ) denotes
the conditional CDF. In practice, if all that is known are the marginal distributions and the
correlation matrix of X, a transformation can be made to generate a joint normal distribution that
gives the same correlation matrix. This topic is discussed in Section 4.7.

In the cases where all the X; are mutually independent, Eqn. (4-3) reduces to
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u = (-[Fi()(44

and the inverse transformation is:

xi = (ui)]. (4-5)

By using the above inverse transformation, the original g(X)-function is transformed to
g(u)-function. In the u-space, the point closest to the origin called the minimum distance point,
as illustrated in Figure 4-2, can be determined. In the u-space, the joint probability density is
rotationally symmetric about the origin, and is an exponentially decreasing function of the
distance from the origin. Thus, the minimum distance point has the highest probability of
producing the value z among all the points on the limit state surface. Therefore, this point is
the most-probable-point (MPP), denoted by u* in the following. See Figure 4-3 for an example
of MPP.

X2 2 B. Minimum Distance

Most Probable Point (MPP)
Transformation

Z(X) = z (u) = z

xi U1

Figure 4-2. TransformatIon and most probable point

4-4



.4

Example: V = -KI

Let K be a lognormal random variable with a mean of 13.4 and a standard deviation of
14.4 (i.e., coefficient of variation (COV) is 107 percent), and I be a normal random
variable with a mean of 0.05 and a standard deviation of 0.033 (i.e., COV = 66 percent).
The median value of K is 9.141. Based on Eqn. (4-5), it can be shown that

In K = n 9.141 + ulAn (1 + COV2 )
(46)

= In 9.141 + 0.876 u,
and

I = 0.033u2 + 0.05 (4-7)

Therefore, the transformed limit state is

In V = In v; = (In 9.141 + 0.876 u) + n (-0.033u2 - 0.05) (4-8)

The three transformed limit states corresponding to vr = -5, 0, 1 are plotted in Figure 4-3.
The u* of the three corresponding MPP's are (2.16, 0.984), (0., -1.515), and (1.622,
-2.31), respectively.

4
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Us 0

I

I

.,11V=-S

-~~~~~~~~~ I
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IV =O -

...... .........................

V = 1 

I . I -I

-2

.4 
4I2 0 2

UK

4 6

Fligure 4-3. Limit state surfaces and most probable points in the transformed u-space
for velocity vi = -5, 0, and 1
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4.4 FAST PROBABILITY INTEGRATION

Assuming that the MPP is found, the g(u) or g(X) function is then approximated by a
linear or quadratic polynomial function and the associated probability can be computed relatively
easily.

When the g(u) formulation is used, several analytical solutions are available for linear
and quadratic approximations. For example, with # as the distance of the MPP from the origin,
the First-Order Reliability Method (FORM) estimate [Ang and Tang (1984), and Madsen et al.
(1986)], which requires only the minimum distance, is:

P(gso) = I . . . ffu(u)du = (-P) (49)
gcO

where F( ) is the CDF of a standard normal distribution. The asymptotic, Second-Order
Reliability Method (SORM) estimate Breitung (1984), and Breitung (989)] is:

a-1
P(gsO) = | .*. ffu(u)du 4 (- .)l (1 + PKj)- 2, (Exact as p-co) (4-10)

which requires # as well as sc, j = 1, ... n - 1, the main curvatures (Fiessler et al., 1979) of the
limit-state surface at the MPP u*. A rather complete treatment of probability analysis based on
quadratic functions can be found in Tvedt (1990). It should be noted that in the above two
equations, the minimum distance is always positive, meaning the calculated probability (usually
< 0.5) is always associated with the region which does not contain the origin. Thus, the
computed results might be either CDF or CCDF.

When the g(X) formulation is used (Wu and Wirsching, 1984), a numerical procedure
based on the convolution theorem and Fast Fourier Transformation has also been developed for
efficient first-order and second-order probability analysis (Wu and Torng, 1990).

Example: V = -KI

Referring to Figure 4-3, the minimum distances corresponding to vi = -5, 0, and 1 are
2.372, 1.515, and 2.826. The corresponding probability estimates are: P V < -5) =
4(-2.372) = 0.0088, P V < 0) = 4(l.515) = 0.935, and P (V < 1) = (2.826) =
0.9976.

4.5 ITERATION METHODS FOR MOST PROBABLE POINT SEARCH

The MPP, u*, can be found by using an optimization procedure based on the following
formulation:
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Minimize: Distance P - + u + -+ :

Subject to: g(u*) = 0

The MPP can also be found by methods that involve iterations in which a sequence of
successive approximation are generated by updating the g-function and its gradients (Liu and Der
Kiureghian 1986). For example, a widely used iteration method was proposed in Rackwitz and
Fiessler (1978). This method has several other versions Ang and Tang (1984), Thoft-
Christensen and Baker (1982), and Madsen et al. (1986)] with subtle differences. The advanced
mean-value (AMV) method, which will be discussed in Section 4.8, is another iteration
algorithm.

There is no single algorithm that can be identified as universally superior. In fact, in
using an optimization program a poor initial guess point may lead to a local, rather than a global
extremum. At the same time, in using an iterative procedure, slow or unstable convergence may
occur for some problems. Two approaches are recommended to help alleviate these problems.

For problems in which many local minimums are present, a checking procedure such as
the adaptive importance sampling method (explained in Section 4.9) can be used to validate (or
invalidate) the approximate solution. Problems in which convergence is slow typically occur
when the dominant random variables switch from one input parameter region to another. In
such problems a linear approximation function is good only in a local region and extrapolation
results in poor iteration performance. To resolve this problem, the following strategy based on
the most-probable-point-locus (MPPL) concept (Wu et al. 1988) might be useful.

The MPPL is defined by connecting all the MPP's for all the performance levels, as
illustrated in Figure 4-4. A unique property of MPPL is that it always passes through the
origin, which is because the minimum distance is zero for the performance evaluated at the
origin. This point is usually used as a starting point in an MPP search procedure. However,
if one is interested in a limit state that is far away from the origin, then the origin may not be
a good starting point. To ensure a robust iteration procedure, one can start from the origin and
keep track of the MPPL by using a small increment of performance measure until the
performance reaches the desired limit state. The success of this approach depends upon the
choice of a suitable increment in discretizing the performance measure.

4.6 PROBABILISTIC SENSITIVITY FACTORS

Under the limit state approach framework, first-order sensitivity factors which provide
approximate relative importance of the random variables are produced as a by-product. This is
a major advantage of the limit state approach. The probabilistic sensitivity factors (referred to
as sensitivity factors from now on) are defined as follows Ang and Tang (1984), Thoft-
Christensen and Baker (1982), and Madsen et al. (1986)].
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Figure 4-4. Most probable point locus 0IPPL)

At the most probable point u* = (u 1*, u2*, ..u.,*), the first-order probability estimate is
simply t(-#) (Eqn. 4-9) where

p2 = U; 2 + 2 + 2 (4-11)

The sensitivity factor, s, is defined as

= (4-12)

- which is the direction cosine of the OP vector (from the origin to the minimum distance point)
as shown in Figure 4-6. Thus

S2 2 2 (4-13)

which implies that each s is a measure of the contribution to the probability (since the
probability is related to A); the larger the s the larger is the contribution. In general, the
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Example: V = -KI

The most-probable-point-locus (MPPL) is shown in Figure 4-5. It can be seen that the
slopes for different V-values range from negative to positive.

Assuming that we are interested in the V = 1 limit state, the computational efficiency in
determining the MPP depends on the optimization algorithm and the tolerances used in the
analyses. The required number of V-function calculations for this example are in the order
of 50 to 150 using different algorithms and tolerances.

Figure 4-5 suggests that a linear approximation for V at the origin is valid only in a small
region close to the origin. By starting at the origin, several iteration methods failed to
converge in locating the MPP for V = 1. However, by using a small enough incremental
value of V, and keeping track of the MPPL, the iteration methods converged to the desired
MPP.

V=-O.46=-

2~~~~~ MPPL

: 

-2 0 2 4 6
K

Figure 4-5. Limit state surfaces and most probable point locus
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Figure 4-6. The definition of sensitivity factors

sensitivity factors depend on the g-function as well as the probability distribution. In a CDF
analysis, the sensitivity factors will usually be different for different Z levels.

Other probabilistic sensitivities such as do/doi, and those described in Section 2 can be
computed easily once a linear or a quadratic limit state surface is approximated.

4.7 CORRELATED RANDOM VARIABLES

For many applications, the information is seldom sufficient to establish the joint
probability distributions. A more realistic model assumes the knowledge of marginal
distributions for X and the associated correlation coefficients Grogoriu (1983), Liu and Der
Kiureghian (1986), and Wu et al. (1989)]. The transformation for this model first requires the
application of Eqn. (4-5). he next step is to obtain the correlation coefficient matrix for the
transformed normal variables u. Finally, given the correlation coefficient matrix, a linear
transformation can be applied to find the uncorrelated normal random variables v. The basic
assumption for this model is that random variables vi are jointly normal.

Consider two random variables Y. and X with correlation coefficient R. The correlation
coefficient of the transformed normal variables ui and uj denoted as r is needed in the analysis
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Example: V = -KI

Based on Figure 4-3, the sensitivity factors can be computed using the MPP coordinate and
Eqn. (4.9). Tbe results are plotted in Figure 4-7 for three values of V: -5, 0, and l. The
figure shows that for V = -5, variable K is more important than 1, for V = 0, I is the
dominant variable, and for V = , I is more important than K.

Note that for V = 0, the solution is I = or K = 0. But since K can take only positive
values, the only possibility for V = 0 to happen is when I = 0. This explains why the
sensitivity factor is zero for K.

This example illustrates that sensitivity factors depend strongly on the performance levels.
In general, the sensitivity factors also depend on the probability distributions.

co

a

> 0.8

D 0.6
S
I 0.4

?,. 02
'5
co

C
-6 -5 -4 3 -2 *1 0 1

Velocity (V)
2

Figure 4-7. Sensitivity factors for velocity v1 = -5, 0, and 1
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and can be found by solving the following equation:

R 1f I (x1 i 51 Xi ) du, duj (4-14)

where

CXP - . (4-15)
2 a ni 2 2(1 -r) )

Because of the implicit nature of Eqn. (4-14), the calculation of r generally requires iterative
solution.

4.8 MPP SEARCH AND CDF ANALYSIS BY THE ADVANCED MEAN VALUE
(AMY) METHOD

The advanced mean value (AMV) [Wu et al. (1989), Wu and Burnside (1988), and Wu
et al. (1990)] is designed to improve the estimate of CDF obtained from the mean value (MV)
method. In the MV method, the performance function Z is approximated by the first-order
terms of the Taylor's series as follows:

ZMV Z() @ I (33;pi) ; pi - E(Xi

(4-16)

-a 0 + £a1 X
1.1

where is the mean value vector and the derivatives are evaluated at the mean values of Xi.
Selecting a limit state value z, the probability of {Zuv < z can be computed using the methods
described in Section 4.6. The AMV method improves this estimate as explained in the
following.

In the AMV method, the approximation of Eqn. (4-16) is improved by writing:

Z^mvr - ZMV + H(Zv)= (ao + alX) +a Hd) (4-17)

where the H(Zmv)-function is defined as the difference between the values of Zmv and ZExAcr
where it is assumed that an algorithm, possibly in the form of a computer program, is available.
The computational steps of the AMV method are:

1. Select a limit state Zmv = z.
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2. Use Eqn. (4-16) to compute the CDF Pf Zmv< z}-

3. In the transformed u-space compute the MPP u*.

4. Transform u* to x*.

5. Compute Zvucr(x*) to update z for the CDF computed in Step 2.

Step 5 updates z at the MPP computed in Step 4, thus the MPP, x*, defines a limit state of
Z-E>cr = Z(x*). This update requires one Zm,~c-function calculation. By selecting different
Zmv = z-values and repeating the above steps, the CDF curve estimate can be constructed. An
illustrative example for the above AMV analysis is given in Appendix A.

The accuracy of the AMV solution depends on the quality of the MPPL approximation.
The accuracy will tend to be good if the MPPL developed from Zuv is close to the exact MPPL
and poor if the ZucT-function is very nonlinear such that the MPPL of ZV,, is good only in a
small region near the mean-values point. In this case, the AMV solution can only be applied
effectively to that small region.

The AMV method applies the limit state concept and it can be improved by searching and
using the exact MPPL, which requires more function calculations. In the context of MPP search
(Section 4.5), the AMV method can be considered as -providing a first guess of the MPP.
Further improvement of MPP and CDF estimate may be made by successive linearization at the
previous MPP and applying other MPP search procedures. These analyses may be combined
with the MPPL tracking" procedure proposed in Section 4.5 to minimize the possibility of
convergence instability problems.

In summary, the AMV method bridges the differential analysis method and the limit state
concept and provides a first-order determination of CDF, as well as other information regarding
the behavior of the performance function. For example, it may be used to detect whether the
function has more than one MPP (Wu et al., 1990). As a general procedure, the AMV solution
should be updated at critical CDF points using improved MPP and adaptive sampling method
described next. The application of AMV to the example problem is shown in Figures 4-8 and
4-9.

4.9 PROBABILITY UPDATING BY ADAPTIVE IMPORTANCE SAMPLING
METHOD

The approximating function developed around the MPP provides only approximate
probability without estimates of error bounds. It is useful to confirm the solution with minimal
extra computations. One approach is to use an importance sampling method [Melchers (1989),
Dolinski (1990), and Hohenbichler and Rackwitz (1988)J that samples the parameter space only
in the region close to the MPP. This procedure requires fewer samples than are required by the
standard Monte Carlo approach.
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Example: V =I

By expanding the V-function at the mean value, we obtain:

V = 0.671 - 0.05K - 13.42I (4-18)

From which a most probable point locus (MPL) can be developed. Figure 4-8 shows the
mean value-based MPPL as well as the exact MPPL based on the original equation. It
appears that, because of the drastic change in the sensitivity factors for different V-values,
the MV solution is a poor approximation, which results in a poor MPPL approximation.
However, this can be detected easily by checking the sensitivity factors at the calculated
MPP. Once this is detected, the MPPL-tracking procedure discussed above can be
activated to search for the exact MPPL. This process was performed for V = 1, and the
CDF results are shown in Figure 4-9.

4
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6

Figure 4-8. MPP search by the AMV method
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Example: V = -KI
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Figure 4-9(b). Calculated CDF
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Assume that the interest is in calculating P { Z < z . The region XZ < z is
called the target region. Denotes S as the (importance) sampling region. Let P { S = p,, the
total number of samples in S be K, and the number of samples in the target region be K0.
The probability of [ Z z is:

K 0 (4-19)

The sampling efficiency achieves its maximum if the selected importance sampling region
equals the target region. In this extreme case, every point sampled will be in the target region,
therefore K0 = K and p = p,. The other extreme case corresponds to a standard Monte Carlo
approach where p, = 1, and

KQ (4-20)

An adaptive importance sampling method (Wu et al. 1991) lies between these two
extremes. Since the region of [ Z S z ] is not known a priori, one starts with a guess and
subsequently adjusts the region based on the observed results. For example, one can start with
a sampling region that is based on the first or second-order limit state surface developed at the
MPP. The sampling region is adjusted by deforming the limit state surface. The deformation
can be designed to gradually increase the sampling region until it fully covers the target region.
An example based on changing the curvature of the surface is illustrated in Figure 4-10. When
the sampling region fully covers the target region, the probability solution will converge,
indicating that no more deformation is required. Since the efficiency is dominated by the ratio
of p/p,, the procedure is essentially independent of the number of random variables.

The above procedure is intended for problems with p < 0.5. For optimal efficiency,
when the CDF of interest is greater than 0.5 the sampling should be performed in the [ Z > z ]
region and then use the result to compute the CDF. Application of importance sampling is
shown in Figure 4- 1.

4.10 SUMMARY OF THE LIMIT STATE APPROACH

In summary, the limit state approach consists of the following steps:

1. Select a set of discrete values of performance measure, zi.

2. For each z search for the most probable point (MPP) (Section 4.5). Transformation
from the correlated non-normal random variables to uncorrelated normal random
variables is required (Sections 4.3 and 4.7).

3. Approximate the performance function at the MPP by a linear or quadratic function
(Section 4.4).
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Figure 410. The concept of the curvature-based adaptive importance sampling method

4. Calculate the CDF at zj based on the approximate function (Section 4.4).

5. At critical tail regions, confirm the probability solution by the importance sampling
method (Section 4.9).

6. Calculate the probabilistic sensitivities based on the approximate function (Section 4.6).

7. Plot the CDF of Z.

Some further details of these steps are included in the next section and Appendix A.
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Example: V = -KI

The adaptive sampling method described above was applied to V 2 1. The probability in
the sampling region is 0.00239, the total number of sampling points is 61, of which 40 is
in the target region. The probability of V 2 1 is:

p* KAcK = 0.00239 40/61 = 0.00157.

The V = 1 limit state and the sampling points are shown in Figure 4-11.

(4-21)
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Figure 4-11. Calculation of P { V 2 1 } by the Adaptive Importance Sampling
Method

4-18



5 APPLICATION EXAMPLE

5.1 DESCRI[ON OF THE RADIONUCLIDE TRANSPORT MODEL

This example presents an uncertainty and sensitivity study of a hypothetical High Level
Waste (HLW) underground repository intersected by a vertical fracture or fault and under
saturated conditions, as illustrated in Figure 5-1. A one-dimensional analytical model based on
the Laplace transform method yielding the concentration in the fracture and rock layers and the
cumulative mass release of radionuclides at any point within the fracture was developed in Part 1
(Gureghian et al. 1991). In this instance, the cumulative mass is adopted as the performance
measure. The deterministic sensitivity of the performance measure to some of the system
parameters affecting the transport process was derived analytically in Part 1 and the same is used
in the uncertainty and sensitivity analysis in the following.

The demonstration example reported here refers to the one-dimensional transport of a
radionuclide, Np-237, in a heterogeneous saturated fractured rock system composed of five
layers (the last extending to infinity, see Figure 5-2), with piece-wise constant parameters. The
steady flow rate of water per unit width of fracture is 0.1 n9/yr. The type of solute release
mode at the source investigated here corresponds to a band release, where the leaching time T
= 5 x 103 years. Note that the flow domains in both fracture and rock layers are assigned
non-zero initial concentrations. The input data pertaining to this test case is presented in
Table 5-1.

Figure 5-3 depicts the time-dependent evolution of the cumulative mass (per unit width
of the fracture) profile at three different observation points in the fracture. These are located
at distances of 100, 200 and 500 meters downstream from the source, lying within the second,
third and fifth layer respectively. A comparison of our analytical solution results with those
yielded by Stefhiest's solution indicates excellent agreement (Gureghian et al. 1991). Note that
all three profiles tend to become asymptotic to three specific values of the cumulative mass
namely, 4.902 x 102, 4.7 x 102 and 4.309 x 102 (Units of Activity/m) at times greater than 104
years.

Figures 5-4a and 5-4b shows a comparison between the analytical and numerical spatial
and temporal variations of sensitivity of the cumulative mass to two typical rock matrix
parameters: pore diffusivity and distribution coefficient respectively (See Part 1 report for
details). These results suggest that for the given range of parameters, pore diffusivity seems to
have an overall greater impact on the cumulative mass than the distribution coefficient. In both
cases, maximum sensitivity seems to be achieved at time close to 2 x 104 years.

5.2 APPLICATION OF THE LIMIT STATE APPROACH

The above example was used to test the performance of the probabilistic methods
discussed in previous Sections. The performance measure is taken as the cumulative mass
release at an observation point in the fracture located at a distance 500m downstream from the
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Figure 5-1. Vertical cross-section of a layered rock system Intersected by a vertical
fracture subject to surface ponding. Calculations apply to the saturated zone only.

source (i.e., in the fifth rock layer) and for a simulation time corresponding to 10' years. The
mean values of the 25 random variables (i.e., b, 4, Dp, Kf, and K, in each layer) are listed in
Table 5-1. All the random variables are assumed to be independent lognormally distributed with
coefficients of variation of 0.5. As pointed out in Section 4, the methodology can apply to
correlated and non-normal distributions.

In Figure 5-5, several results using various approaches are plotted. The probability
(CCDF) is shown on a semi-logarithmic scale to emphasize the low probability region. Initially,
a Monte Carlo-based reference solution was developed using 5000 simulations. Using the
procedure described in Section 4.8, the MV model using analytical sensitivity calculations was
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Figure 5-2. Descrption of migration pathways In a system of homogeneous layers of
fractured rock. In the worked example, number of layers, n = 5, and migration path
lies entirely In the saturated zone.

first developed (the MV solution is not shown on the plot), then the AMV solutions were
obtained for seven selected probability values (shown as discrete points in Figure 5-5). Had the
MV sensitivities been calculated through numerical differentiation, a minimum of 33 (26 for the
first-order coefficients and 7 for the selected CCDF levels) function evaluations would have been
required. The AMV solution produced a CCDF whose shape resembles the one obtained
through the Monte Carlo method. To demonstrate how to improve the AMV solution, a limit
state of Z = 223 units of activity/m was selected. Note that this value of Z has a low
probability of exceedance or, in other words, it lies in the tail region of the CCDF.
Subsequently, the converged MPP was obtained using three additional iterations by successive
linearization (see Section 4.5). Finally, a quadratic function without product terms was
developed to approximate the exact limit state function. If the sensitivities were calculated by
numerical differentiation, a minimum of 129 (26 x 4 = 104 calculations for finding the MPP
and another 25 for calculating the second-order coefficients) function evaluations would have
been required for this approximation. The above numbers indicate that the number of function
evaluations and the computational time depend on the number of random variables and the way
the sensitivities are computed. It can be seen that the converged AMV solution approaches the
Monte Carlo results.
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TABLE 5. INPUT PARAMETERS FOR THE RADIONUCLIDE TRANSPORT
PROBLEMS. SPECIES: Np-237, Tin = 2.3 x 106yr, LEACHING TMIE T = S x 103yr, A'
= 1.0*, Q = 0.1(m2 lyr).

Layer | L(m) | b(m) | u(m/yr) _ _O

1 50.0 5.OE-03 10.0 0.01

2 75.0 4.OE-03 12.5 0.008

3 100.0 3.OE-03 16.666 0.006

4 150.0 2.OE-03 25.0 0.004

5 1.5E-03 33.333 0.002

Layer p g/cmO) D,(m2 /yr) K F(m) |_ _c_/_ _

1 2.0 0.01 5.0E-03 O.S

2 2.3 0.02 8.OE-03 0.6978

3 2.6 0.06 2.7E-02 1.158

4 2.65 0.05 1.OE-02 1.059

5 2.7 0.03 3.0E-03 0.741

Layer a ta* | a2 * a(m') b b*

1 1.50E-04 -0.50E-04 0.02 1.OOE-05

2 2.OOE-04 -0.25E-05 0.02 1.75E-05

3 1.75E-04 -0.20E-05 0.02 1.25E-05

4 2.OOE-04 -0.15E-05 0.02 1.OSE-05

5 1.50E-04 -0.20E-05 0.02 l.OSE-05
* ~~.9., -

t (UA/L
Notes:

arDitrary unt o activity/L2)

L
b
U

p
D,
Kt
IC,

a,
a

b,

= rock layer thickness
= half thickness of fracture
= average fluid velocity in the fracture
= rock porosity
= bulk rock density
= pore diffusivity
= surface distribution coefficient in fracture
= distribution coefficients in rock matrix
= coefficient in the initial fracture concentration equation
= coefficient in the initial fracture concentration equation
= coefficient in the initial fracture concentration equation
= initial concentration in the rock matrix

See Gureghian et al., (1991) for details.
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Figure 5-3. Cumulative mass of Np-237 per unit in the fracture versus time at
different positions x = 100, 200, and 500 meters (exponentially decaying source and
band release mode)

Based on the exact MPP, the adaptive sampling scheme is applied to the limit state,
Z = 223 Units of Activity/m. For simplicity, the adaptive limit state surface has a common
curvature at the MPP. Consequently, 532 simulations were needed (after the MPP is found) to
achieve the "exact" (Monte Carlo) solution. The required number of simulations could be
significantly reduced if separate curvatures are used so that the final sampling region is closer
to, but still covers, the target region. Since the efficiency is dominated by the ratio of the
probability in the target region to the probability in the sampling region (see section 4.9), the
required number of samples is essentially independent of the probability level or the number of
random variables. Thus, the method offers significant advantage for calculating small CDF or
small CCDF.

Because the final MPP-based approximate CCDF is reasonably good, as confirmed by
the adaptive sampling method, it suggests that the MPP-based polynomial function can be used
to replace the exact function for further analyses such as probabilistic sensitivity analyses.
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Figure 5-4(a). Sensitivity of cumulative mass to pore difuslvity versus time for NP-
237 (exponentially decaying source). Curves marked layer I to 4 pertain to cumulative
release at layer interfaces, and the curve marked layer 5 pertains to cumulative release
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time for Np-237 (exponentially decaying source). Curves marked layer 1 to 4 pertain
to cumulative release at layer interfaces, and the curve marked layer 5 pertains to
cumulative release at 500 m.
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Figure S-5. Comparison of Limit State Approach with Monte Carlo

5.3 COMPARISON OF LIMIT STATE APPROACH WITH OTHER APPROACHES

Two computer programs LHS (Iman and Shortencarier, 1984) and STEPWISE (Iman et
al., 1980) were used to compare the LHS, the regression analysis, and the limit state method.
The fractile limits of 0.001 and 0.999 were built into the LHS program.

In Figures 5-6 and 5-7, the CCDF results are plotted on a semi-logarithmic paper. In
Figure 5-6, the LHS results for 50, 100 and 300 samples are shown to illustrate the
improvement in the CCDF for increasing numbers of samples. Figure 5-7 compares the
50-sample LHS run, the 5000-sample Monte Carlo run and the AMV analysis results. This
figure shows that the AMV method works well for the present example and was able to generate
with only 33 samples a CCDF comparable to 5000 Monte Carlo runs, or more than 300 LHS
runs.

The LHS results were also used to determine sensitivities; i.e., the derivatives of the
cumulative release with respect to the input variables. The sensitivities of the output result
(cumulative release for 10,000 years) were determined by the stepwise linear regression program
STEPWISE. In this method, the input and output for all samples are fitted to a linear equation:
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Figure 5-6. CCDF results using Latin Hypercube sampling

N

z = a= + ailq (S1)

where Z is the cumulative release for 10,000 years, a, is the proportionality coefficient for input
variable Xi, and ao is the constant term. The choice of the functional form for Eqn. (5-1) could
have been different than linear; e.g., it could include transformations of the input variables or
combinations of several input variables to form new input variables. For the present example,
only the linear form of the regression equation in terms of the input variables was chosen. The
linear format of Eqn. (5-1) allows approximate comparison between the stepwise linear
regression and differential analysis, since both results reflect sensitivities near the mean-values
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Figure S-7. Comparisons of the AMV method with the simulation methods

point of the space of input variables; i.e., the a terms are like sensitivities dZIdX1.

Sensitivities generated by the differential analysis were compared to those generated from
the regression analysis. Table 5-2 compares the sensitivities generated by the differential
analysis and the regression coefficients resulting from 50 LHS samples. The first column
denotes the name of the 25 input variables for the five layers. The next five columns in Table
5-2 give the regression coefficients in ascending order of the regression equation; i.e., N = 5
gives the coefficients for the regression equation which contains the five most significant input
variables. The column for N = 25 contains the coefficients of the regression equation where
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TABLE 5-2. COMPARISION OF SENSITIVITIES
DIFERIAL ANALYSIS (50 LHS SAMPLES)

FROM REGRESSION TO

N | 5 | 7 11 13 | 25 |Diff. Anal.

a0 216.3 258.0 320.5 335.9 348.2

b1 821.1 -9.7

b2 -205.0 -15.4

b3 -409.4 -21.1

b4_ _1504 -32.4

bs -3094 -26.8

ot -1197 -1334 -1390 -415.7

02 -652.3 -1247

03 -3763 -3996 -4023 -3856 -4550

04 -6871 -7127 -7835 -7516 -7381 -7384

Os -7848 -7407 -8352 -5704

D_ _-31.8 -415.7

D_______ -808.4 -805.0 -850.0 -499.2

_______-442.9 -452.2 -414.8 -413.3 -421.1 -455.4

-518.1 -494.4 -471.4 -454.9 -449.8 -590.8

-637.6 -641.8 -585.1 -552.9 -379.2

________ ________ -1240 -9.7

K _ _ 268.1 -15.4

_ __ 70.0 -21.1

PRt I -15.9 -32.4

Ka______ ________ _________ -1516 -26.7

K1 -23.9 -23.4 -6.6

he__ -1g.6 -18.6 -17.7 -12.6

Ad_ -24.3 -28.4 -28.0 -27.5 -28.0 -22.0

__ _ -29.36 -27.9 -29.0 -28.7 -28.4 -26.3

Ka -11.3 -10.9 -13.8

r2 0.659 ' 0.770 0.890 0.920 0.940 |
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all 25 input variables were included. The last column gives the sensitivity coefficients for the
differential analysis. The bottom row in Table 5-2 gives the correlation coefficient r2 value for
each of the regression equations. Table 5-3 presents the same comparison, but for the 300 LHS
samples.

Tables 5-2 and 5-3 demonstrate good qualitative agreement on the magnitude and sign
of the sensitivities for the regression and differential analyses for the five most important
parameters. On the less important parameters, there is significant disagreement.

By inspection of the governing equations, all sensitivity coefficients should be negative;
that is, an increase in any of the 25 input variables should lead to a decrease in the cumulative
release. Regression of the LHS results which forced significance on all 25 input variables
illustrates that in some cases the magnitude and sign of the sensitivity coefficients disagreed
markedly, which is a clear sign of "overfitting" the data to the regression equation. Program
STEPWISE performs regression with stepwise addition of important variables, and stops addition
of variables when r reaches a predetermined value, typically 0.95. This practice limits
overfitting the regression equation to the data. In the case of 50 samples and r2 cutoff of 0.95,
STEPWISE limited the order of the equation to the 13 most significant variables. In the case
of 300 samples, equations up to order 16 were admitted. Note however that the 16th order
equation for 300 samples case also had positive signs for some of the sensitivity coefficients.

The differential analysis or the regression equations from the LHS analysis can be
considered as the approximate model to the true cumulative release model. Based on the
generated LHS samples, approximate cumulative release results, Z', can be computed and
compared with the exact results, Z. If Z' is close to Z, then the "approximate' model is good.
In general, the degree of linear relationship, determined by performing a statistical correlation
analysis is an indication of how good the approximate model is.

Figures 5-8 and 5-9 are the Z versus Z' plots. Figure 5-8 is based on the full 25 variable
polynomials developed for the 50 and 300 sample cases using the regression results. The
agreement is quantitatively good except for a few "outliers' for both regression equations. The
standard error, S, was chosen to evaluate the approximate model. It is defined as:

S = K 2Z'-Zi (5-2)

where K = number of samples. The standard errors for the outputs was 1.083 and 0.827 for
the 50 and 300-sample regression equations respectively.

Figure 5-9 shows Z versus Z', where Z' is based on the differential analysis. The
standard error S was 1.667. Thus the linear approximate model using the differential analysis
is a relatively poor approximate model. Not surprisingly, agreement between Z and Z' is closest
at the cumulative release value predicted by the mean values of the input variables, since this
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TABLE 5-3. COMPARISION OF SENSITIVIIES
DIFFERENTIAL ANALYSIS (300 LHS SAMPLES)

FROM REGRESSION TO

iN 1 5 1 7 11 [ 13 | 25 |Diff. Anal.|

a. 215.4 252.7 305.3 326.0 328.7

_______ 183.6 -9.7

b2 _ -728.1 -1S .4
________ 226.3 -21.1

b4 _ -751.5 -32.4

bs 441.8 -26.8

l . .- 517.5 -518.3 -415.7

-1507 -1521 -1477 -1247

_______ -4313 -4273 -4286 -4323 -4347 -4550

04 -7360 -7253 -7454 -7399 -7431 -7384

Os -6944 -7044 -7261 -7251 -5704

D., -409.2 -404.8 -415.7

D,2 -548.6 -542.3 -537.6 -499.2

D,, -454.4 -458.2 -459.4 -458.5 -460.1 -455.4

D,, -596.3 -589.1 -599.4 -504.5 -605.3 -590.8

D ___-479.4 -505.1 -506.0 -379.2

Kfl _________ _______1060 1043 -9.7

_ _ _ _ _ _ _ _________ _________ _________ 193 .9 -15 .4

Ka 6.96 -21.1

_______ _________ _________ ____92 .7 -32 .4

Ks -4089 -26.7

_______ _________ -9.04 -9.13 -6.6

F.._____ _________ -15.95 -16.01 -12.6

K1, -21.6 -21.6 -21.9 -22.0 -22.0

____ -25.7 -25.2 -25.4 -25.7 -25.8 -26.3

_______ _______ _-17.8 -16.6 -16.7 -13.8

r2 0.617 D 0.739 0.839 0.871 0.940 I ---
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Figure S-8. Comparisons of the regression model with the exact model

is the reference point in parameter space at which the sensitivities were calculated.

Cumulative release based on the regression coefficients, while deviating at the extremes
of the cumulative release range, predicts the results better than those based on the differential
analysis. This result is understandable, since the differential analysis model relies only on the
behavior of the model at one point in parameter space, while the regression model is optimized
to perform over a wide range of input parameters.

The sensitivities, dZtdXi, express the change in the cumulative release with respect to
changes in the input variables. Since the dimensional units are different, the sensitivities cannot
be used directly to determine the relative importance of the input variables.

In order to rank the importance of the input variables, the sensitivities must be
normalized to make them dimensionless. As discussed in Section 2, the differential analysis
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normalizes the first derivatives with respect to the mean values of the input and dependent
variables. The stepwise regression method normalizes the regression coefficients with respect
to the standard deviation of the input and dependent variables. Although these two
normalizations are different, they may be used to rank the overall' relative importance of the
input variables. The normalized sensitivity coefficients are compared in Table 5-4 for the
differential analysis and the 5th and 7th order polynomial regressions on 50 and 300 samples.

The normalized differential sensitivity coefficients compared reasonably well to the
regression analyses. The absolute values of the normalized sensitivities for the differential
analysis were similar in magnitude. In nearly all cases, the normalized sensitivities from the
regression analyses were also similar in magnitude for the same set of input variables which
were most important for the differential analysis. There were different rankings within each
group, but absolute differences between the normalized sensitivity coefficients within each group
were small.
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Table 5-4. SENSITIVITY COEFFICIENTS FROM REGRESSION AND DIFFERENTL
ANALYSIS (RELATIVE RANK IN SQUARE BRACKETS)

|I N | _| 7 ||_ I | 7 |i jff. Anal.

ao

b3

b,

bs

03A ___________,-.268[61 -. 320(5) -. 317(5)

04 -. 316131 -. 328(31 -. 364(2) -. 359(11 -1.805131

Cs _ -.172(71

D,2

-.309(4) -. 316(41 -. 33541 -. 337(3) -1.675(41

D -. 299(51 -. 285(5) -. 364(l) -. 357(1) -1.810(1)

Dd5 -. 221771

T-n

Ka

F__ -. 365(21 -.382(2) -. 305(61 -1.672(5)

___ -. 443111 -. 421111 -. 337(31 -. 335(41 -1.807(2)
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The probabilistic sensitivity factors (see Section 4.6) based on the limit state approach
are shown in Table 5-5 for Z = 51 and Z = 223. The results show how sensitivity factors
change for different Z values. At the mean value point, where the corresponding Z is 51 UA/m,
the six most significant random variables are 04, D14, .4, 3, D 3, K3, and the importance of
these six variables is about equal. At Z = 223 UA/m, the above six variables remain the most
dominant ones indicating no significant change in the transport process. In this instance, the
sensitivity factors for 4, Do, K,4, are higher than 03, D3, K.

It can be concluded that the differential analysis is limited to a local" (mean-based)
analysis, the regression analysis is more appropriate for a 'global' analysis, and the limit state
approach provides both global and local analysis capability.
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TABLE 5-5. PROBABILISTIC
SQUARE BRACKETS)

SENSITIVITY FACTORS (RELATIVE RANK IN

l I z - 51 Z - 23

___ ___ __ ___ __0.0 0.0

b__0.0 0.0

b3_0.0 0.0

b4 0.0 0.0

bs 0.0 0.0

01 0.0 0.046

02 0.18 0.116

103 0.35(41 0.366(41

04 0.36(11 0.405(11

05 0.198 0.134

D,, 0.09 0.046

DO 0.18 0.116

D_ _ _0.34(41 0.368(41

__________________ 0.36(11 0.405(11l

Df 0.198 0.134

Kn_0.0 0.0

Ica 0.0 0.0

Ka 0.0 0.0

KM 0.0 0.0

K15 0.0 0.0

_ _ _ _0.09 0.046

FK4 0.1 i0.116

0.34(41 0.367[41

4-0 0.36(l 0.405[11

K,5 0.198 0.134
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6 SUMMARY AND DISCUSSIONS

This report investigates several uncertainty and sensitivity analysis methods for problems related
to HLW repository performance assessment. The alternative approach proposed in this report
can be viewed as a combination of differential analysis, response surface, and importance
sampling. The limit state and the most probable point concepts provide the required linkage to
switch from the differential analysis to the response surface, and finally to the adaptive
importance sampling.

In general, computational efficiency is proportional to the desired accuracy and the choice of an
approach will depend on the nature of the problem. However, this report demonstrates that the
limit state-based approach is efficient by focusing on a single response or probability level. This
permits the analyst to concentrate on the critical performance region. In addition, the approach
naturally leads to probabilistic sensitivity analysis. In particular, the efficiency of the alternative
approach is independent of the probability level, therefore it is most suitable for evaluating the
tails (i.e., CDF close to 0 or 1) of the distribution. However, the limit state is relatively
difficult to implement.

The computational efficiency of the limit state approach in general depends on the number of
random variables, n, the way the sensitivities are computed, and the required number of
sensitivity calculations. Assuming that a numerical differentiation scheme is used, the number
of limit states of interest is p, and the number of sensitivity calculations using an iteration
procedure is k, then the required number of response-function calculations will be in the order
of n p k. To minimize this number, efficient methods should be fully investigated to
minimize the required k.

When n is very large', the alternative approach may no longer be efficient unless the
sensitivities can be determined by other more efficient approaches including the perturbation
method and the adjoint method. It is also possible, as proposed in Appendix B, to minimize
sensitivity updating and increase efficiency by focusing more on the important random variables
during the iteration analysis. The stochastic finite element expansion for random media (Spanos
and Ghanem 1989) is another possibility for simplifying the problems associated with a large
number of random variables due to finite element discretization.

l Since the efficiency of the standard Monte Carlo method depends on the probability level and the
desired accuracy, it is difficult to define quantitatively what is large." Assuming that 10,000 samples
is required for a Monte Carlo analysis, p 2, and k = 5, then the limit state will lose its efficiency edge
if n is greater than 1,000. Notice the additional advantage offered by the limit state approach, that of
producing probabilistic sensitivity results essentially as a by-product.
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CDF Analysis by the Advanced Mean Value (AMV) Procedure -
Illustrative Example

Introduction

A performance function is used to illustrate the step by step procedure of the advanced mean
value (AMV) method which was discussed in Section 4.8 and applied to the transport example
problem in Section 5. For illustration purposes, the performance function selected is a simple
second-order equation with only two normal random variables to allow a closed-form AMV
solution. It should be noted that the AMV method can be used for more complicated problems
involving implicitly defined functions and non-normal random variables.

Performance Function

The performance function is:

Z-X2+ 2 (A-1)

in which the two input two random variables have normal distributions. The mean values are
10 for both variables, and standard deviations are 1 and. 2, respectively.

MV Analysis

Denote mean values as 1 1,(i 1,2) and standard deviations as (i 1,2). Taking a Taylor's
series expansion at the mean values and including only up to the first-order terms, the MV
approximation (see Section 4.8) is:

Znr -(pt + 1X) +2t1t(Xj - p) +2P2(X 2 - P2) =20X1 +20X2 -200 (A-2)

In order to define the most-probable-point (MPP), the original random variables must first be
transformed to standardized normal variables, u. Because X are normal variables, the
transformations are:

u,-(Xl - P)/alsX1 -0 (A-3)

= (X2 - P2)/0 2 = (X2 - 10)f2 (A4)

Using Eqns. (A-3) and (A4), Eqn. (A-2) can be expressed as:
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Zv -20u 40u2 +200 (A-5)

At the mean-values point, ulu 2 =0, therefore Z,=200. Now consider a limit Zuv=200.
The limit state surface will be represented by:

200 -20ul +40u2 +200

or

u,=-2U2 (A-m

which is the equation of a straight line (Figure A-1) passing through the origin. Other Zo-
based limit state surface will be parallel to the line defined by Eqn. (A-6. For any limit state
the MPP is a point with the smallest distance. Based on Eqn. (A-2), the
most-probable-point-locus (MPPL) of Zmv, shown in Figure A-1, is a line passing through the
origin and perpendicular to the limit states. The equation of this MPPL:

u, upt. (A-7)

AMV Analysis

The AMV approximation is expressed as (Section 4.8):

ZAMV- =Zfv + H( V-m) (A-8)

where H(Zuv) is defined as the difference between the values of Zmv and Z calculated at points
on the MPPL of Zuv.

For the example under consideration, substitute Eqn. (A-7) into Eqn. (A-5) to get:

ZMv-100U +200 (A-9)

For a given Z value (limit state), the corresponding MPP can be calculated, based on
Eqn. (A-9), as follows:

u;'=(Z,~-200)/100, u =2u,(Z;,-200)/50 (A-10)

The corresponding X-values, using Eqns. (A-2) and (A-3), are:
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The exact value of Z at the MPP is Zm= = (XI*)2 + (X 2*?. Therefore, the fction H of
Eqn. (A-8) is:

H(Zkw) Z(X,7X2) Zmv (-2

In general, the H-function could be evaluated numerically assuming an algorithm, possibly a
computer code, for calculating the Z-finction is available. In the present example closed-form
H-function can be obtained by substituting Eqn. (A-li) into Eqn. (A-12), i.e.,
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=17 (ZMV - 200)9/10000

Using Eqn. (A-2) and (A-13), the AMV approximation Eqn. (A-8)] can be written explicitly
in terms of X1 and X2:

ZAWv=Zv + 17(,v-200)2/l0000 (A-14)

=(20% +20X 2 -200) + 17(20XI +20X2 -400)2/10000

Note that Z^mv is a nonlinear function.

CDF Analysis by the AMV Method

To establish the CDF of Z based on the AMV procedure, select several z values and perform
the following analysis for each value.

1. Compute the CDF based on Zmv [Eqn. (A-2)].

2. Compute the MPP (Xj,X) based on ZMv-Z.

3. Calculate Z(QX;) [Eqn. (A-1)].

4. For the calculated CDF in step 1, update z-value by the value calculated in step
3 and repeat.

For the example under consideration, CDF's with nine z-values are shown in Figure A-2.
Observe that the CDF based on the AMV diverges from the one based on MV in the tail
regions.

Based on the AMV solution, iteration procedures (discussed in Section 4.8) may be applied to
search for the exact MPP, which is used to develop a better linearization function. Further
enhancement of the CDF results may be achieved efficiently by using the adaptive importance
sampling method (see Section 4.9).
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APPENDIX B

A SENSIVIY UPDATING ALGORITHM
FOR PROBLEMS WrIll LARGE NUMBER

OF INPUT RANDOM VARIABLES



A Sensitivity Updating Algorithm
for Problems with Large Number

of Input Random Variables

Introduction

As described in Section 4, the required number of performance function calculations is
approximately proportional to the number of random variables times the number of sensitivity
updates during an iteration process. Consequently, when the number of input random variables
(n) is large and the sensitivities are calculated by a numerical differentiation scheme, the
efficiency advantage over the Monte Carlo approach may disappear. This appendix proposes
a sensitivity updating algorithm to minimize the required number of full-size sensitivity
calculations. The feature of this algorithm is to keep all the random variables during the
iteration analysis, but the sensitivities are updated only for the important random variables until
the last step where the sensitivities for all the random variables are updated. The algorithm
seems to be most suitable for problems where the number of dominant random variables is small
relative to n.

Proposed Method

The basic idea is to use approximate sensitivities for less-sensitive random variables until the
final stage in the iteration process. This is based on the fact that for less-sensitive random
variables, the MPPs are close to the median values, and therefore the mean or median-based
sensitivities might provide good approximations.

Assume that the AMV model (see Section 4) is obtained and that the random variables are
separated into two groups: important and less important. The AMV model can be written as
follows:

SA~~~U

Z~m ZMV + v) ao + a; - p Ad aj(Xj -P) H ZV) B1
i-1 i-i

where ZAw/ is the linear approximation to the exact Z-function, Zv is the mean-value
approximation, H(Zmv) is the correction function, nA is the number of important random
variables, and nB = n - nA is the number of less-important random variables. The selection of
important random variables can be based on the probabilistic sensitivity factors (s) described in
Section 4. A cut-off s value may be selected.

In the AMV method, for every limit state Zmv = z, an MPP, x* can be found. Based on x*,
an updated linear function needs to be established to generate the next MPP. The process is
repeated until the exact MPP is found.

A first-order Taylor expansion of Z at x* is:
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Z Z(X')+E + lt(Xa-z) (B-2)

where each aZMaX1 can be computed by perturbing xi from x: to x +Ax and computing the
change in Z..

Rewriting the linearized function as:

KA %

Z =a: + E ni(XI -4 X) + Eai' (Xj -sit) n, +n, n (B-3)
1i1 jul

where k is the iteration number. The regular sensitivity updating procedure will be applied only
to nA random variables. For the nB random variables, the sensitivities, Rik, are estimated based
on the AMV model, Eqn. (B-i), as follows:

aj= aj + aH (B-4)

CIX

where

_a= aH . aZMV = aH a (B-5)
ayfi aMv ZRT AZM ai

With

c= E e(B-6)

aj-aj(1 +c) (B-)

The factor c accounts for nonlinear effect, i.e., when the Z-function is linear, H and c would
be zero. According to the definition of H, the c value can be compute by evaluating a perturbed
H value at a perturbed probability level. This requires one Z-function calculation regardless of
the number of random variables.

Substituting Eqn. (B-7) for Eqn. (B-3), the updated linearized function is
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Z= a ajk(X- X)+ a(I @ )C, - xj) (B-8)
i-1 J-1

which is then used to obtain the next MPP. The coefficients a; will remain constant while ap
and a,* will be updated for each new MPP until the MPP converges.

In general, the less-important random variable defined in the MV or AMV analyses may turn
out to be important after the MPP converges. Thus, after the above analysis, the ;-K terms
should generally be updated for a full iteration. If a significant change in the sensitivity factor
is found for an unimportant random variable, this variable may be re-defined as an important
random variable. Similarly, a previously important random variable may be re-defined as a less
important variable. Subsequently, the sensitivities are updated only for the new set of nA random
variables until the exact MPP is obtained. The process may be repeated as needed before the
final full sensitivity analysis starts.

Since at the final stage of the iteration procedure all the random variables will be included, the
selection of the cut-off s-value, while affecting the computational efficiency, should not influence
the final result.

It can be anticipated that the algorithm will be most effective when only a small number of
random variables are dominant (i.e, 0 < nA < < n). In the extreme cases where all the
random variables are roughly of equal importance (therefore, nB = n), the proposed algorithm
converges to the regular procedure and no efficiency improvement can be made. However, in
such cases, since the MPP's for all the random variables will be close to the mean or median
points, it is likely that the required number of iterations will be small, as shown below.

At the MPP,

2=~~U (B-9)

I11

If the sensitivity factors, , are equal, all u: are equal. Then, from Eqn. (B-9),

ur. P (B-10)

Thus, when n increases, u' will approach zero, meaning x, will approach the median and the
initial sensitivity results at the mean values will remain accurate.

B-3


