See Pocket 1 for end

Distribution WMHT r/f WM r/f

LChase & r/f JGreeves **HMiller** MBell

NMSS r/f

PAltomare REBröwning JBMartin

CF

PDR

107.3/LC/82/05/06/0

WMHT:

- 1 -

MAY 1 7 1982

- **MEMORANDUM FOR:** Hubert J. Miller, Chief High-Level Waste Technical Development Branch Division of Waste Management
- THRU: John T. Greeves, Section Leader High-Level Waste Technical Development Branch Division of Waste Management
- FROM: Dr. Lawrence Chase High-Level Waste Technical **Development Branch** Division of Waste Management
- MEETING REPORT, "SITE CHARACTERIZATION TESTS AND SUBJECT: INFORMATION NEEDS FOR LICENSE APPLICATION"

In NRC Headquarters, Washington, DC on April 13, 14 and 15, 1982, a meeting was convened by WMHT and chaired by John Greeves, Section Leader, Design Section, High-Level Waste Technical Development Branch, Division of Waste Management. The subject referenced meeting was called to explore technical positions on repository in-situ characterization testing needs in four areas of interest: Hydrogeology, Geomechanics, Geochemistry and Thermomechanics.

The agenda (Appendix A-1), was provided to participants in advance, and contained questions which were intended to focus discussions for the meeting (the answers to these questions are found in Appendix A-2). The key questions were: (1) what information is needed (2) why is it needed and (3) when is it needed.

On April 14 and 15, the group functioning as a workshop, developed prioritized charts of issues that need to be examined in the in-situ environment, (Appendix A-3). Independent views were formulated by individual members of the group and these are contained in Appendix A-4.

DIST:

TICKET NO:

0FC	8206250347 PDR WASTE	820526 . PDR	!			
NAME		- PDR -	•=====		·	
DATE	:82/05/06	:	•	•	•	

107.3/LC/82/05/06/0	_	MAY 1 7 1982
Hubert J. Miller	- 2 -	MAT I I IOU-

The following is a summary of the key issues, recommendations and conclusions identified during the workshop:

KEY ISSUES

DIST:

- o Hydrological Response: What are the large scale vertical, horizontal and 3 dimensional permeabilities?
- Geomechanical Response: What is the in-situ stress state?
 What are the repository rock mass deformational characteristics? What is the geological structure and variability of the rock mass at the repository horizon?
- Geochemical Response: What are the retardation characteristics of the host rock and engineered barriers? What is the chemical composition of the pore fluid and composition of the fracture filling material.
- o Thermomechanical Response: What are the thermal properties of the repository host rock (conductivity, specific heat, expansion, etc)? What are the effects of thermally induced hydraulic gradients?

RECOMMENDED SCOPE OF TESTING

- Minimum of 500 feet of tunnel; tunnel to be developed in two orthogonal directions; in-situ boreholes (multi-directional) at least 1000 feet long.
- Hydrological: Water balance computations; geologic mapping; multidirectional borehole experiments; chamber test (coupled thermal flow-stress-structure effects).
- Geomechanical: Geologic Mapping; stress measurements; full scale mine-by experiments.
- o Geochemical: Laboratory analysis of uncontamined ground-water and joint filling material.

TICKET NO:

o Thermomechanical: Small and large scale heater tests; temperature logging.

OFC	:	:		 :	:	
NAME	·	·	•	 •	•	
DATE	:82/05/06	•	•	 :	•	

107.3/LC/82/05/06/0 Hubert J. Miller

CONCLUSIONS

- o Time is running out for completing the needed testing prior to License Application. The time required to conduct the needed test work ranges between 2 and 7 years; some of the recommended room size Chamber Tests cannot be completed before License Application. The time factor looms even larger because the in-situ test work cannot be started before completion of the shaft/bell and the associated tunneling.
- o There was unanimous agreement that the range of geologic information needed to characterize the repository rock mass could not be satisfactorily obtained by "working from the bell."

Attached to this memorandum, is the draft report of the meeting which was prepared by Dr. Jaak Daemen prior to adjournment. To the extent possible, comments received from the group have been incorporated into this draft. It should be noted, however, that due to the complexity of the subject and the diversity of opinions expressed, the draft report may not reflect the precise opinion of every participant.

ORIGINAL SIGNED BY

Lawrence Chase, Ph.D. High-Level Waste Technical Development Branch Division of Waste Management

DIST:				TICKET NO:			
OFC	WMHT .	WMHT	. WAHT				•
NAME	LCHASE:cfm	GREEVES	MINELER				
	:82/05/06 :	05-13-82	05-17-82	·			

End to 5-17-82 memo to miller

- 1 -

WMHT: 3003.1

MEMORANDUM FOR:Dr. Lawrence Chase, Mining EngineerFROM:Dr. J. Daemen, Consultant to Golder Associates

SUBJECT:REPOSITORY SITE INVESTIGATIONS, PANEL REVIEW
MEETING, WASHINGTON, DC, April 13, 14, 15, 1982

Purpose:

Establishment of a technical support basis for the development of a position on repository site characterization testing.

Attendees:

D.L. Pentz (Golder Associates); R. Gates (Golder Associates); H. Wollenberg (LBL); C.O. Babcock (U.S. Bureau of Mines); D.F. Hambley (Engineers International, Inc.); J. Daemen (University of Arizona); H. Miller, J. Greeves, L. Chase, L. Hartung, P. Prestholt, D. Tiktinsky (NRC).

Introduction:

This report provides a summary of the discussions at the subject meeting. The discussions centered on the testing requirements in four key areas: Hydrology, Geomechanics, Thermomechanics, and Geochemistry. Some important related aspects were discussed and are included in section five of this report, entitled, "Common aspects of repository site investigations". The title was selected to emphasize the fact that common prerequisites exist for all key issues of the site investigations, and that there is considerable overlap and interaction between them.

Key Conclusions:

- There is general and strong agreement among all panel members that 500 ft. of horizontal tunneling at the repository horizon is the absolute minimum necessary to have a reasonable chance of providing the information required for a license application (There was strong reluctance on the part of some of the panel members to accept the

- 2 -

500 ft. because they felt a thousand foot long drift is more desirable). Agreement was accepted only because the extremely late starting date of the shafts will make it extremely difficult to follow prudent engineering practice, which would require considerably more tunneling.

bort

- There is general agreement that 2000' of horizontal holes at the repository horizon from the tunnels is required (preferably (4-500 ft. multidirectional holes).
- There is general and strong agreement about the need for extensive in-situ testing in order to resolve key uncertainties (e.g., response of rock mass to high temperature, rock stability during tunneling) in the areas of Geochemistry Hydrology, Geomechanics and Thermomechanics. There is general agreement on the key parameters (e.g., permeability of rock mass, stress field in repository host rock, deformation response of rock) that need to be determined, but there is no complete agreement as to what specific tests should be performed to reduce the uncertainty in the knowledge of these parameters.
- A common feeling is expressed that shaft sinking, tunneling and in-situ testing should be started as soon as possible (should have been started already).
- A general unease has been expressed about making the entire in-situ testing up to the license application stage dependant upon a single very small very deep shaft (and, for BWIP, to be constructed by a method not used before in this very hard abrasive rock, moreover, a method which absolutely minimizes any possibilities for obtaining site information).
- It was generally agreed upon that a 12'-15' shaft was the minimum size required to allow efficient muck handling, ventilation, and transportation of men and materials. The shaft sinking method to be used by DOE (blind boring), makes it impossible to get undistured rock samples, difficult to measure water inflow, and impossible to obtain joint and beding plane geometry.
- There is agreement that the funding needed for a satisfactory site characterization for a project of the size and complexity of a repository would be of the order of \$50 million.

1. Hydrological aspects of repository site characterization.

There is uniform agreement among the panel members that hydrological characterization is the most important topic of the site investigations. There is general agreement that the needed information can not be obtained from surface holes only, nor from a shaft-bell combination with short holes.

Key Parameters

- Permeability
- ^o Water Pressure
- Water Composition
- ^o Excavation & Damage
- Storage Coefficients

Key issues identified:

- Determination of vertical and horizontal permeability (general agreement among all panel members) of at least a representative sample of the repository rock.
- Determine variability in permeabilities within repository horizon (general but less strong agreement).
- Determine permeability of disturbed rock (disturbed either by stress changes - excavation or heating - or by excavation damage).
- A representative volume; (i.e., A volume is considered representative when small increases in the test volume have no significant effect on the averaged value of the material property being measured) must be tested.
 Key methods:
- Water balance monitoring during construction (general agreement). This is needed to determine approximately the large scale permeability of the horizon, by measuring water inflow and outflow which allows the amount of water flowing into the tunnels to be calculated.
- Multi-directional multi-hole experiments are needed (general agreement). All rock mass parameters (e.g. stress,

discontinuites, strength, moduli) are different in different directions. Values can only be determined by measurement in preferably three perpendicular directions.

- Coupled thermal-flow experiments (agreement, but less strong). These are needed to determine permeability and deformational response of the rock mass to temperature and stress changes.
- Chamber tests (agreement, but wide divergences in needed test size, comprehensiveness and urgency). These are needed to determine the rock mass response on a scale approaching the actual, proposed, waste repository.
- 2. Geomechanical aspects of repository site characterization.

Most but not all panel members agreed this is second priority key topical area. As for the Hydrology, knowledge of the general geological context is an essential prerequisite. There is total agreement that sufficient investigations can not be performed from vertical boreholes because they are likely to miss major structural features. A representative volume will require at least some multidirectional drilling. This is necessary because in a rock mass, to determine directional characteristics (e.g. joint spacing and permeability) measurements must be made in at least two significantly different directions becuase all characteristics can be strongly directional dependant.

Key parameters:

- Geological structure (i.e., lithology, {rock types, presence or absence of faults, joint systems, etc.)
- In-situ (three-dimensional) stress state
- Rock mass deformational characteristics
- Rock mass strength characteristics
- Creep (time dependent behavior)

Key issue:

- Identifying variability of all parameters.

- 5 -

Key testing procedures:

- Field mapping to determine the geological environment (i.e. rock types, faults, joint systems, etc.)
- Monitoring of displacements during construction (might be prevented by some shaft sinking methods as previously noted).
- In-situ plate bearing tests to measure mechanical behavior of the rock mass.
- Overcoring stress measurement (in multidirectional boreholes-in at least three differently orientated directions) to measure in-situ stress.
- Standard laboratory tests on core to assess variability (e.g., uniaxial, brazilian disc, wave velocity).
- Mine by experiments at full scale repository dimensions (there was complete strong agreement on all previously listed tests).

Agreement is far less strong on this and subsequently listed tests?

- Drill vertical holes at corners of repository to prove presence of proposed repository basalt flow.
- Drill holes in advance of tunnels: predict tunnel rock behavior and assess validity of the model.
- 3. Thermomechanical aspects of site characterization. A knowledge of the thermomechanical response of the rock mass to the heating induced by the waste is essential to predict the containment and isolation provided by the heated rock mass. This requires specifically determining the dependence of (water)flow paths on heat and the flow-driving mechanism induced by heating.

Parameters

- o Thermal conductivity
- o Coefficient of thermal expansion
- o Strength and moduli as a function of temperature
- o Heat content
- o Thermal effects on engineered barriers

- 6 -

Key issues:

- There is general agreement that these tests must be done on a rather large scale to assure adequate results.
- General agreement exists that there is a fundamental lack of understanding of the complex factors involved in thermomechanical response, probably requiring further basic (generic) research.

Key tests:

- There is agreement that relatively large scale in-situ heater experiments are necessary, but the agreement is tempered by the knowledge that the interpretation, and hence predictive value, of such experiments remains uncertain at best. The reason for the uncertainty is that the tests involve very complex interactions of rock behavior aspects that have not been studied in much detail previously.
- There is general and strong agreement for the need to determine thermomechanical variability by performing laboratory determinations of standard properties (conductivity, specific heat, expansion, as a function of temperature) from representative samples obtained throughout a rock volume sufficiently large to allow variability to be assessed.
- Experiments must be in-situ because of the coupled heat-flowstress-structure effects.
- 4. Geochemical aspects of site characterization

There was disagreement about the importance of geochemical in-situ testing. There was total agreement about the need for obtaining representative uncontaminated samples of groundwater and fracture and joint filling. There was (incomplete) agreement that this would be difficult to do without in-horizon excavation and extensive drilling.

Parameters

- o Retardation capacity
- o Pore-fluid composition
- o Adsorption
- o Dispersivity

Key Issue

There was general agreement as to the need to determine retardation capacity of the mechanical enigineered barriers.

Key Tests

No need for in-situ geochemistry testing was experienced; however extensive laboratory testing may be required.

5. Common aspects of repository site characterization

It is essential to recognize that the key objective of the repository is to contain and isolate high level radioactive waste. The overall performance of the rock mass includes various aspects discussed in the separate sections summarized before, but they can not be totally isolated, because of interaction between them.

Deficiencies in one area can be compensated by superior performance in another area, and many aspects of the site characterization are closely related and overlapping.

There is total agreement among the panel members about the absolute need for extensive access to the repository horizon. Providing access is the major cost of site characterization. There is general agreement that it seems very unfortunate to invest a considerable expenditure to promote access to the repository and then not commit the relatively minor additional funds to outline the access to the fullest possible extent.

A more serious concern was expressed, and uniformly agreed with, about the extremely limited information gathering effort that is being planned, and that tests will be severely contained by the extremely small access facilities. Although the expressions of concern were muted by the recognition that full site characterization would be extremely difficult within the existing time frame, there is no doubt that all participants believed that the proposed in-situ work has been started too late and proposed in too small a scale to be truly satisfactory. If only one shaft is sunk, it should at least be of a sufficient size to allow safe, efficient and large-scale site investigations. A large diameter shaft would permit a drastic speeding up of all underground work by

1

allowing the use of larger equipment, more efficient mucking and better ventilation capabilities.

APPENDIX A-1

WMHT: 3103

0

MEETING NOTICE

Date: April 13-15, 1982

Location: Willste Building Conference Room 106 7915 Eastern Avenue Silver Spring, MD 20555

<u>Subject:</u> Site Characterization Tests and Information Needs for License Applications

- <u>Purpose</u>: To evaluate current DOE strategy for in-situ testing and formulate an NRC response to this strategy. This will include evaluation of three media (BWIP, NTS, and SALT) with the emphasis on BWIP.
- <u>Chairman</u>: John T. Greeves, Section Leader Design Section High-Level Waste Technical Development Branch Division of Waste Management Nuclear Regulatory Commission

Agenda

1 hour

Introductory Remarks: Hubert Miller Branch Chief, High-Level Waste Technical Development Branch Division of Waste Management Nuclear Regulatory Commission

a) Overview of High-Level Licensing Schedule (Greeves)

b) NRC Decisions at the Construction Authorization Stage (Greeves)

c) Status of 10 CFR 60 Revisions (Greeves)

d) NWTS Program Strategy (Greeves)

e) Current Issues at BWIP (Wright)

What are the information needs specifically required for a License Application in the following technical areas of interest?

> Geomechanical Geochemical Thermomechanical Hydrogeology

a) Presentation of LBL Report (Wallenberg)b) Presentation of Golder Report (Pentz, Gates)l hour

1 day

1 day

Group Discussion of Questions

Prepare Meeting Report

4

Invited Attendees

 Jaak Daemen - University of Arizona David Pentz - Golder Associates Richard Gates - Golder Associates
 Harold Wallenberg - Lawrence Berkeley Lab.
 Doug Hambley - Engineers International, Inc.
 Clarence Babcock - Bureau of Mines

NRC

2.

Hubert Miller John Greeves Lawrence Chase Ludwick Hartung Paul Prestholt David Tiktinsky Tom Schmitt

Background Information

10 CFR 60 - Procedural Requirements 10 CFR 60 - Proposed Technical Criteria 10 CFR 60.31 Standard Format & Content for HLW Repositories NWTS Strategy Document BWIP Documents on In-Situ Testing Report Golder Associates's In-Situ Testing Report Lawrence Berkeley Lab's In-Situ Testing Report International Engineers, Inc. Report Hubert Miller's Memo of 3/24/82 John Greeves Program Plan - Dated 3/26/82

103/JG/82/04/12/0

- 1 -

INTRODUCTION

The attached agenda and questions are intended to focus discussions for the upcoming April 13-15, 1982 meetings of NRC staff and contractors in preparation for an April 22 meeting with DOE on In-Situ testing plans. The DOE meeting will focus on what investigations are required to support Construction Authorization decisions. The three basis questions are:

- 1) What are the information needs for a license application?
- 2) Why are they needed?
- 3) When does this information have to be submitted?

Introductory remarks by NRC will include an explanation of (1) the licensing schedule (2) decisions which must be addressed by the NRC, (3) status of 10CFR60 revisions (4) discussion of the NWTS Program Strategy document and (5) Identification of current issues at the BWIP site.

This will be followed with a brief presentation by GAI and LBL of their recommendations in their recent reports. For NRC to be responsive and sensitive to DOE's schedule and planning needs, positions will have to be taken by the NRC staff in the April 22, 1982 meeting with DOE. Therefore, the April 13-15, 1982 meetings are intended to coordinate all NRC activities in this area, in addition to preparing for the April 22 meeting. Meeting participants should be prepared to address the following questions and prepare a consensus of the technical conclusions.

103/JG/82/04/12/0

General Questions

- 2 -

- 1) What are the information needs for a license application?
- 2) Why is the information needed?
- 3) When does the information have to be submitted?
- 4) How much of this information can be obtained from surface investigations with drill holes?
- 5) How much of this information requires underground testing?
- 6) What is an acceptable investigation program to meet these needs?

103/JG/82/04/07/0

- 3 -

Specific Questions

- The DOE schedule calls for sinking a single small diameter (6-7 ft. I.D. at BWIP) shaft at each site before license application. What investigations are feasible and practicable at the bottom of a single small diameter shaft ... away from the bottom?
- 2. How far out from the shaft can you tunnel without a second shaft? How fast can you go?
- 3. What is the cost of opening up rooms similiar to the LBL report, at BWIP?
- 4. What is the cost of large scale tests? What is a reasonable schedule for these tests?
- 5. What percentage of the repository horizon should be investigated before license application · · · by surface methods, horizontal borehole or tunnels? Why?
- 6. Is a mine-by experiment needed prior to license application? If not, when? Why?
- 7. Is thermomechanical testing in the repository horizon needed prior to license application ? If not, when? Why?
- 8. Is a large scale chamber test needed prior to license application? If not, when? Why?
- 9. Does this information satisfy model verification needs at the construction authorization stage?
- 10. If a license application is to be made in 1988 how much investigation can be done underground?
- 11. How can the results of these investigations be used to support NRC findings on protection of the public health and safety?

DIST:

TICKET NO:

OFC :	:	:	:	:	:	
NAME :	***********				:	
DATE :	82/04/07			:	:	•

103/JG/82/04/12/0

- 4 -

Licensing Sequence

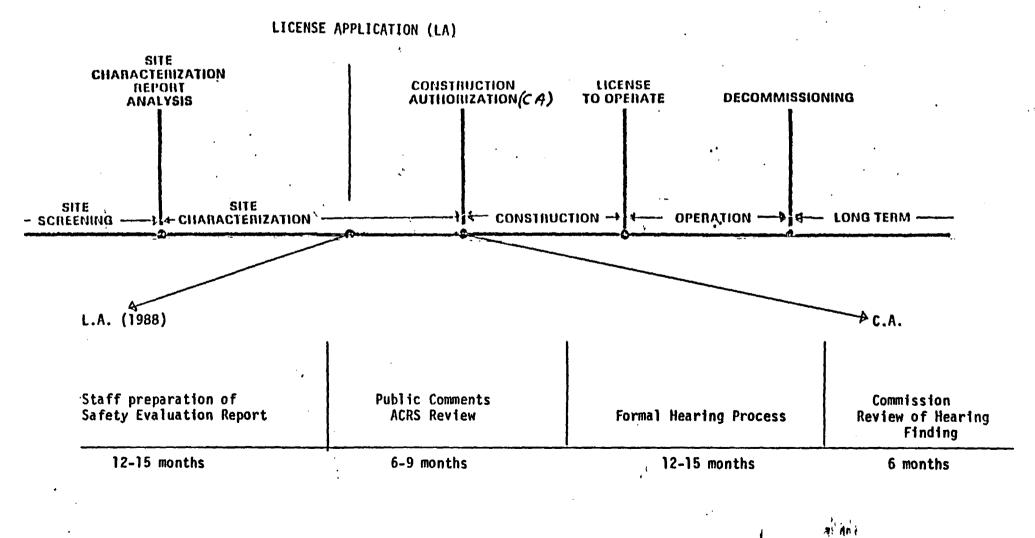
Based on current thinking $3\frac{1}{2}$ to 4 years will be needed for the Construction Authorization process (see attached figure).

 First the staff must review the L.A. for completeness and adequacy (this will be assured though the SCR review process). Then the staff must develop a position (Safety evaluation report) on all important issues (see 60.31 below). ÷

- The SER is reviewed by the ACRS and a SER supplement is issued if necessary. Only then can the formal hearing process start.
- Even though some prehearing conferences can be started prior to issuing the SER, the formal process takes at least one year
- After the hearing board makes its findings, the commissioners will review the decision.

60.31 Construction Authorization

Commission determines:


There is reasonable assurance the design proposed can, without unreasonable risk, protect the public health and safety

The Commission shall consider:

- geologic, geochemical and hydrologic characteristics of the site
- kinds of radioactive waste disposed
- principal engineering criteria for the design and operation
- construction effects
- Whether the site and design comply with technical criteria in 10CFR60
- Quality Assurance requirements
- Environmental issues

LICENSING SEQUENCE

.

Ļ **1**2

Appendix A-2

DRAF1 05-17-82 Crm

÷

107.3/JTG/82/04/23/2

- QUESTION 1: The DOE schedule calls for sinking a single, small, diameter (6 ft. I.D. at BWIP) shaft at each site before license application. What investigations are feasible and practicable at the bottom of a 6 ft diameter shaft . . . away from the bottom?
- ANSWER: A shaft in principle provides access to the entire rock sequence between (and below) repository level and surface. It appears highly undesirable to restrict access to repository level only.

In bell liner: stress meters-convergence points. Drilling extensometer holes from 6 ft diameter shaft will be very difficult (drilling 50 ft holes) - extensometer installation might be difficult - same holds true for 50 ft overcoring tests.

Need vertical permeability - can (will) holes be used for this purpose?

Measure heat flow, i.e. intake-return air heat content (enthalpy - temperature - moisture)

Maximum drill depth from bell should be at least several hundred ft - should give (vertical fracture patterns, spacings, etc.)

Probably can only drill 2 holes simultaneously

Instrument rock bolts and shaft liner (steel is relatively easy and reliable to instrument)

Use all information gathered during shaft sinking - rate of advance - heat: measure water temperature at various levels, flow?

For BWIP drive at least one tunnel above repository level, parallel to tunnel at repository level - allows vertical testing.

Figure 12* suggests no hydrological testing - seems difficult to believe: a variety of flow tests are

- 2 -

possible and desirable: hole pressurization, fracture flow, tracers.

All holes (bolts, stress measurements, etc.) should <u>at</u> least be photographed, preferably cored.

Bell surface should be mapped in detail.

If at all possible install multiple thermocouples in some of the holes (probably needed for stress meter corrections anyway)

Figure 12* states doorstopper tests: 8 @ 20' does this mean or imply multiple measurements up to 20' or point measurements at 20' and 50' only - the former would be preferable.

J. Daemen

04-14-82

*FIGURE 12. Breakout Station Concept.

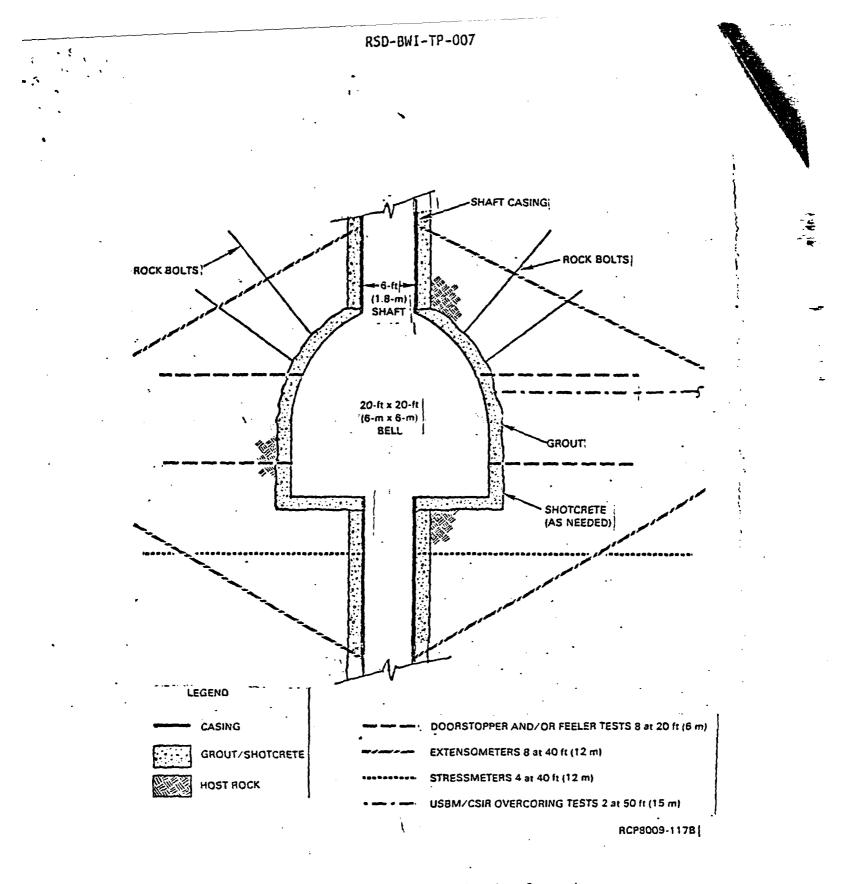


FIGURE 12. Breakout Station Concept.

-33-

QUESTION 1: The DOE schedule calls for sinking a single, small, diameter (6 ft. I.D. at BWIP) shaft at each site before license application. What investigations are feasible and practicable at the bottom of a 6 ft diameter shaft . . . away from the bottom?

ANSWER:

Tests are very limited for this confined space. Two men will have tight working conditions. Short drill rods will be required. Noise will be a problem from an air drill. Water supply for wet drilling will be a problem especially if water is lost. Tests that should be made are : (1) multiple anchor extensometers, to measure convergence rate of circular hole in rosette form, (2) overcore USBM Deformation gage in at least two perpendicular directions to determine in-situ stress, (3) determine physical properties from core testing in laboratory, (4) determine constitute relationships from convergence measurements, (5) make finite element analyses of convergence vs. stress levels to model closure if non-elastic behavior exists, (6) if shaft is dry enough attempt overcore at bottom of shaft in vertical direction to estimate 3 dimenisonal state of stress after correction from depth difference, (7) place cylindrical pressure cells radially to define in-situ modulus, (8) place borehole pressure cells or (IRAD) gages in horizontal holes to monitor ground pressure changes close to shaft, (9) use USBM borehole shear tester to determine Mohr-Coulomb behavior in-situ in radial directions, (10) packer tests to define permeability along selected length of drill holes, (11) USBM gas detection gages for measuring methane gas if it is present, (12) consider infrared equipment to detect cracks, (13) mirco-seismic noise detectors if rock fracturing is time dependent, (14) study rock cooling behavior of ventilation air or water, (15) measure water inflow rate-does it increase with time, (16) use core recovery as an indication of rock strength in-situ, (17) use RQD index as rock classification method.

All preceeding tests could be made away from shaft. Additional tests away from shaft are: 1) drift convergence behavior with multiple anchor extensometer rosettes; 2) measure stress changes with mine-by simulation with multiple entires (room and pillar); 3)

rock bolt behavior for roof support with bolts of the type - (a) conventional with expansion anchor, (b) conventional with grouted anchor, (c) full resin grouted, (d) gypsum grouted, (e) Scotts Split sets; 4) beam, sling, or yielding set support; 5) increase roof width progressively to define stable in-situ roof span and insitu physical properties; 6) define mining sequence so that air flow requirements can be met during development and later mining; 7) hydrology studies with packers between drill holes; 8) hydrology from blocked drift section (LBL).

C. Babcock

04-14-82

5

.

- 4 -

- QUESTION 1: The DOE schedule calls for sinking a single, small, diameter (6 ft. I.D. at BWIP) shaft at each site before license application. What investigations are feasible and practicable at the bottom of a 6 ft diameter shaft away from the bottom?
- ANSWER: Without a second shaft, with only 6' diameter ID shaft, and ambient temperature of 135° F (58°), the extent of working at depth must be very limited. The 500' of tunnel, as tentatively proposed at BWIP for ES II, is most likely practicable. More in-situ testing is needed as discussed in other answers. Thus, two shafts may be required prior to License Application if one is only 6' diameter(ID).

At the bell of DOE Phase 1, some rock fracture frequency can be documented, some hydrogeology data collected, possibly some deformation tests (flat jacks) and some in-situ stress measurements can be taken. The shaft structural stability and proof of shaft liner and shaft seals effectiveness can be obtained. Also, horizontal drill holes will alow more rock property and hydrological property determination. With the construction of some small rooms and drifts out of the bell, much more can be learned. More reliable in-situ stress measurements (overcoring) can be taken, some deformation properties can be learned by plate tests and flat jack tests. Hydrogeologic testings to include multiple borehole tracer tests, multiple and borehole permeability tests, and groundwater sampling. Additional testing to include boreholes and logging to check horizontal extent of the horizon, temperature logging, hydraulic fracturing, and geophysical testing could be done to confirm site selection and design criteria.

Dick Gates

04-14-82

- 6 -

QUESTION 1: The DOE schedule calls for sinking a single, small, diameter (6 ft. I.D. at BWIP) shaft at each site before license application. What investigations are feasible and practicable at the bottom of a 6 ft diameter shaft . . . away from the bottom.

ANSWER: In a 20 ft. diameter station, it would be possible to carry out diamond drilling - it is possible to drill holes over 70 ft before deviation becomes severe and with carful stow drilling somewhat longer holes are possible. It will be very difficult to drill 40 ft. long extensometer holes from the shaft above and below the "bell." That is the work that can be done from the "bell" is very limited.

> There are, however, more fundamental questions. First, a 6 ft diameter shaft will require blind shaft boring which is not proven technology in hard rock for depths of 3700 to 4200 ft. Second, if it is intended to monitor the shaft walls as a prediction of performance at larger shafts, expected inflow and so on, this will not occur since boring disturbs the surrounding rock much less that drilling-and-blasting. Third, there is the question of the temperature and ventilation (135°F at 3700 ft). This by itself imposes very real constraints on the amount of dead heading that can be performed, since the shaft and any workings are a dead heading. As far as carrying tunnels away from the shaft, the extent will be severely limited likely to about 1000ft. or so. Thus, one can safety assume that a second shaft would be necessary before drifting is carried very far, with a second shaft more extensive exploration headings could be excavated, so that a more exhaustive suite of tests could be performed. This would better enable one to confirm site selection and design criteria than would the very limited amount of data which one could obtain from the "bell."

D. F. Hambley

04-14-82

٠

QUESTION 1: The DOE schedule calls for sinking a single, small, diameter (6 ft. I.D. at BWIP) shaft at each site before license application. What investigations are feasible and practicable at the bottom of a 6 ft diameter shaft . . . away from the bottom?

ANSWER:

A. WHAT INVESTIGATIONS ARE FEASIBLE IN A 6' I.D. SHAFT?

• •

- 1. Deformation evaluations (quasi modulus determination).
- Water pressure (head) evaluations, borehole vertical permeability evaluations of a limited zone surrounding the shaft.
- 3. 3D Stress determinations in boreholes (3).
- 4. Hydrological evaluation of shaft grouting.
- 5. Limited geological framework exploration (40 ft. beyond limits of shaft.)

B. WHAT INVESTIGATIONS ARE FEASIBLE AWAY FROM THE SHAFT?

Assuming the environmental conditions are satisfactory there is no limit to the number and type of investigations that can be made provided there is suitable space to allow decoupling each test.

C. WHAT INVESTIGATIONS ARE PRACTICAL IN A 6' I.D. SHAFT

All methods outlined in (A) above are practical however I doubt if deformation evaluations at this stage are appropriate or cost effective. Hydrological tests carried out in a series of boreholes packed off at different levels are practical but time consuming primarily due to limitations in space. It should noted that all investigations could use the same boreholes if sequenced appropriately.

D. WHAT INVESTIGATIONS ARE PRACTICAL BEYOND THE SHAFT (I.E. IN ACCESS DRIFTS DRIVEN FROM THE SHAFT AT THE REPOSITORY HORIZON

A variety of investigations are practical if there is both a demonstrated need, available time and budget. These investigations should address in part of all the following issues.

- 8 -

Thermal Response Mechanical Response Hydrological Response Geochemical Response Constructibility

The latter issue addresses only those perturtations induced by construction which can be demonstrated to have long term response in disturbed zone around the openings and design and construction of engineered barriers.

D. Pentz

04-14-82

.

QUESTION 1: The DOE schedule calls for sinking a single, small, diameter (6 ft. I.D. at BWIP) shaft at each site before and license applicat. What investigations are feasible and practicable at the bottom of a 6 ft diameter shaft . . . away from the bottom?

ANSWER: Directly from Bell

The principal benefit will be investigation of the hydrologic regime (a) in the entablature, (b) the flow top zone and (c) the colonnade zone below the entablature. The investigations can be accomplished primarily by horizontal, inclined holes drilled from the bell. One set, at least 2 bell diameters in length (and 40 to 50 long if inclined) would cover the zone in the vicinity of the bell. Longer holes (500 m) would cover areas in possible directions of test locations and, ultimately a portion of the repository area. All holes would be continuously cored with core oriented and fracture orientation and frequency recorded. Based on information from the cores and borehole TV Survey, intervals in the holes would be packed off and pressures measured. Samples would be obtained of essentially uncontaminated formation fluid for determination of Eh, pH, and major and trace element contents.

÷

÷

The azimuths of the long inclined and declined holes will match those of the long horizontal holes to examine hydraulic gradients between the flow top and colonnade and the repository horizon.

Following establishment of the hydrologic setting, selected packed off intervals could be pressurized for determination of in-situ stress by hydraulic fracturing and compared with results of overcoring tests at similar depths.

If shaft access permits, horizontal holes in interbeds above and below the Untanum should be drilled and instrumented for hydraulic gradient determinations.

H. Wollenberg

04-14-82

4. 41

1

- 11 -

NOTE: IMPORTANT CONSIDERATION

It should be assured that as much of the rock shall be exposed as practicable to permit observation of lithology and measurement of fracture orientation and spacing. Stations should be excavated at the corners of the "racetrack" to accomodate <u>long</u> (300 to 500m) horizontal and inclined holes.

H. Wollenberg

04-14-82

LUN IN

- 12 -

QUESTION 2: How far out from the shaft can you tunnel without a second shaft? How fast can you go?

ANSWER: This decision may be determined by MSHA requirements especially since methane gas may be present. The USBM bored shaft in oil shale blind-bored to 2352 in 1977. They were allowed a working distance from the shaft of 200 feet because of gassy conditions. Because the temperatures will be about 135°F 3450 feet in Basalt the miner can work 20 minutes per hour and this will restrict its output and the rate of mining advance. By conventional drill and blast at most one 12 x 12 x 10' round can be driven each 8 hr. shift. A realistic estimate may be 3 rounds for 5 shifts assuming the drifts are naked but bolted. MSHA can make special provisions for experimental or test purposes. 500 to 1,500 ft-long "racetrack" appears feasible.

C. Babcock

04-15-82

÷

- QUESTION 2: How far out from the shaft can you tunnel without a second shaft? How fast can you go?
- ANSWER: Because of the high ambient temperature (135°F), and the limited hoisting capacity in 6 ft borehole, it is unlikey that tunneling can go more than 500 to 1000' without second shaft. The speed which work will progress will depend on the equipment used.

To have men work under such conditions it will be necessary to have cool ventilating air. This can be accomplished using compressed air or chilled water. The latter has greater cooling capacity but, either way, it will be expensive. The ventilation capacity in cfm will also limit the equipment which can be used for 12 ft by 13 ft tunnels or larger would normally require L₅H-D equipment of 4 yd³; however, in this case 2yd³ equipment must be used since this will fit in the 6' dia shaft if properly dismantled while larger equipment will not. Dismantling and reconstructing the equipment will add about 1-2 weeks time to this schedule. L-H-D equipment is normally diesel powered: a 2 yd³ machine has 78HP engine which will require a minimum of about 10,000 cfm of air. However, if one is talking only of 500 - 1000 ft then electric powered L-H-D's could be used - these units normally have 500 ft long trailing cables. Advance rates will likely vary from 3 to 10ft/day.

D. F. Hambley

04-14-82

£

- 14 -

QUESTION 2: How far out from the shaft can you tunnel without a second shaft? How fast can you go?

ANSWER: The distance that can be expected are up to 500 ft with costs of \$1000-\$1500/ft 3 to 10 ft average of advance.

We believe this can be done assuming chilled water for cooling and 6 ft. shaft and 12 x 12 ft or 18 x 18 ft. exploratory tunnels. These can be excavated using diesel equipment which will be disassembled at the repository horizon.

D. Pentz

04-15-82

¥

ۍ

÷...

.

- QUESTION 2: How far out from the shaft can you tunnel without a second shaft? How fast can you go?
- ANSWER: 500 to 1,000 ft (Depends mainly on MSHA approval and on safety considerations e.g. what happens if power (hoisting; ventilating; pumping) goes out. 5 to 10 ft/day advance

JUSTIFICATION

Small Tunnel - Full Face Larger Tunnel - Top Heading/Bench Drill 10'Rounds in Both Cases 24 Hour Cycle 0 16 Hour Operations

> 8 hour ventilation, cooling with chilled water, cooled air can reduce temperature to below 90°F; can handle diesel exhaust; can handle mucking (spoil hoisting) within time limit

This is a conservative estimate - with necessary equipment (underground coolers compressors), might go faster.

J. Daemen

04-15-82

£

4

- 16 -

QUESTION 2: How far out from the shaft can you tunnel without a second shaft? How fast can you go?

ANSWER: 500' no problem 1000 at reasonable cost; if MSHA says OK 1,500 if MSHA says OK

Requires compressed air cooled at surface, cold water best extraction, keep temperatures below $90^{\circ}F$ 12' x 13' to 17' x 18' tunnel sizes are assumed will cost \$1000-\$1500/foot of advance average rates of 3'/24 hours - reasonable (16 hour work shift and 8 hour cooling period), thus about 6-12 months.

Assume rock bolt support - <u>No Shot-Crete</u> to allow for mapping of joints.

Dick Gates

04-15-82

- 17 -

QUESTION 3: What is the cost of opening up rooms similar to the LBL report, at BWIP? ANSWER: *Hydro/Thermomechanical Experiment 1) Drilling gallery 30 x 30 x 15": Chamber 125" x 6" diameter: 260K 213K Liner and bulkhead: 371K TOTAL 844K 2) Excavation Damage/Sealing Experiment Excavation Damage Drift, 100' long, 12' x sect: 239K Center Drift, Liner and Bulkhead: 544K Cross cut and Bulkheads: 221K TOTAL \$1004K (*These costs do not include overhead)

H. Wollenberg

04-14-82

ŧ

- 18 -

QUESTION 3: What is the cost of opening up rooms similar to the LBL report, at BWIP?

ANSWER: The costs for rooms ranging from 12 ft. by 12 ft. to 17 ft. by 18 ft. would be:

a) A 12' x 12' opening or 12 x 13' would cost at least \$1350/ft.

b) A 17 x 18' opening would, assuming the same cost/ft as a 12 x 13', would cost at least \$2600/ft.

D. F. Hambley

04-14-82

31 AC

.....

-

QUESTION 3: What is the cost of opening up rooms similar to the LBL report, at BWIP?

ANSWER: Probably a minimum of \$10/ft³. Almost certainly will be affected (hampered) severely by small size of access shaft.

J. Daemen

•

04-15-82

+

Pent2 Pro 10 Princip Part - Corrige We D TABLE 1 **.** . . COST ESTIMATE OF IN SITU TEST FACILITY CONSTRUCTION states design and tunes assaul to be part of

Gates

OPTION 1

()

(]

Exploratory shaft Exploratory shaft equipment	\$ 13,090,000	214,590,000 m, 1557) =
Exploratory shaft equipment	1,500,000	
Exploratory shaft access tunnel Flatiact test Block test room	3 cirect us a 33,990	
Pressure chamber test	116,440	
Full-scale heater test room	16,995	
Mine-by test observation tunnel	130,500	-
	\$ 14,906,200	-

セ

(Access

OPTION 2 - (Cost of Option 1 and one access tunnel)

Option 1 \$ 14,906,200 2 ? 3 merers lore Access tunnel & (assured in liter & us re Teps the <u>527,510</u> 218:31 ... 2 " Bournes long or gez fr 15,433,710 10 the sum on figure

142 - 1 Nor M 21 124 6 6-71 (6/25 - 6620 -) · 307×=,00,= 5=1,1000 - 730 - 1=0 - FILIDIA BRITANDIA hail g The state of the second st 10:0x 2:00 -______

lignae et le leng Drin i 🖌 incentio

1 15/82 4/15/82 12 Jate 4/15/52 Sch, ect to Change

TABLE 2 COST ESTIMAE OF IN SITU TESTING

	Explora # of Tests	tory Shaft Total Test Cost	Undergr # of Tests	ound Test Facility Total Test Cost
Plate Test		-	6,	261,600
Block Test	e e 🖷 👘		2	1,116,300
Pressure Chamber Test	• • • • • • • • • • • • • • •	-	1	621,700
Mine-By Test	· · · · · · · · · · · · · · · · · · ·	.·	1	948,300
Heater Test (Large Scale)	-	-	1	593,800
Heater Test (Small Scale)	2	568,900	6	1,016,700
Tracer Test (Multiple borehole)	1.120 A. 2	289,200	3	385,200
Permeability Test (Multiple borehole)	2	768,600	3	1,006,200
Overcoring	30	114,800	27	72,900
Flatjack Test	6	31,300	9	17,200
Coreholes	40	102,000	9	1,494,000
Groundwater Sampling	40	-	20	-
Temperature Logging	40	-	20	-

Golder Associates

()

(

(...

The source of the second se

		Permeability Test	100	-	450	•
	Plaza Tost	(Single borehole)		, Ú		261,600
		Hydraulic Fracturing	10	-	30	-
	(como t	Geophysics (Exposure, x-hole)	40	-	40	-
	· t	Gas Detection	c	-	c	-
		Acoustic Monitoring	c	-	с	-
	·	Exposure Mapping	c	-	с	•
		Displacement Monitoring	· C	-	с	-
	e din en	Pore Pressure Monitoring	с 	-	C	<u>.</u>
()		Mine Drainage Monitoring	c	-	с	-
		Construction Monitoring	Ċ	-	c	-
	All and a second	Operation Monitoring	с	-	c	-
	· •	Exploratory Shaft Testing	-` •	\$ 1,8 74,800		
	- 	Underground Test Facility Te	sting			\$ 7,533,900
		Note: C = Conti	nuous moni	toring		1,574,500
	and zoon and					0,409,-00
	La ta ta ta t					

urbur sit

Ċ

Ċ

-

۰.

••

•

• .

Golder Associates

.

A UN

-

.

The following major tests have been used in the cost estimate. Some minor tests have been examined and the minimum required number of tests indicated. These minor test and monitoring activities have not been used in the cost estimate:

- Small scale heater test (2 locations)
- Multiple borehole tracer test (2 locations)
- Multiple borehole permeability test (2 locations)
- Overcoring (30 tests, 3 tests/hole, 10 holes)
- Flatjack test (2 locations, 3 directions/location)
- Coreholes and logging (40 holes, 50 ft min., 2 holes/drill station
- Groundwater sampling (40 samples)
- Temperature logging (40 tests)
- Single borehole permeability test (100 tests)
- Hydraulic fracturing (10 tests)
- Geophysical testing (40 tests)

Underground test facility testing is as follows:

- Plate test (2 locations, 3 directions)
- Block test (1 location, 3 directions)
- Pressure chamber test (1 location)
- Mine-by test (1 location)
- Large scale heater test (1 location)
- Small scale heter test (2 locations, 3 direction)
- Multiple borehole tracer test (1 location, 3 directions)
- Multiple borehole permeability test (1 location, 3 directions)
- Overcoring (3 tests/hole, 9 holes, 3 direction/hole)
- Flatjack test (3 locations, 3 directions)
- Coreholes and logging (9 holes, 1000 ft/hole, 3 stations, 3 directions)
- Groundwater Sampling (20 samples)
- Temperature logging (20 tests)
- Single borehole permeability tests (450 tests, 20/test, 9-1000 ft. long holes)
- Hydraulic fracturing (30 tests, concentrated in long holes)
- Geophysical testing (40 tests, concentrated in short holes)

• In situ testing includes testing in the exploratory shaft and the underground test facility. Emphasis in the testing program is on

- Permeability
- Radionuclide migration
- Institutistress state simulation
- Exploratory shaft testing program is detailed in Table 2. Testing
 will be conducted in the repository horizon and the overlying

 strata. The suggested number of tests are the minimum which should be conducted. Cost and practicality have been considered.

20 1

- COST not include: inepc.com in

. . . .

35

. - . . .

- ve s

(È

 (\cdot)

COST ESTIMATE OF IN SITU TEST FACILITY IN BASALT

o Cost estimate includes:

- Exploratory shaft construction
- Access tunnel and test room construction
- In situ testing
- o Exploratory Shaft Construction (Table 1 and Fig. 1) المعادية المعادية
 - Drilled shaft, 8 ft 0.D./6 ft I.D.

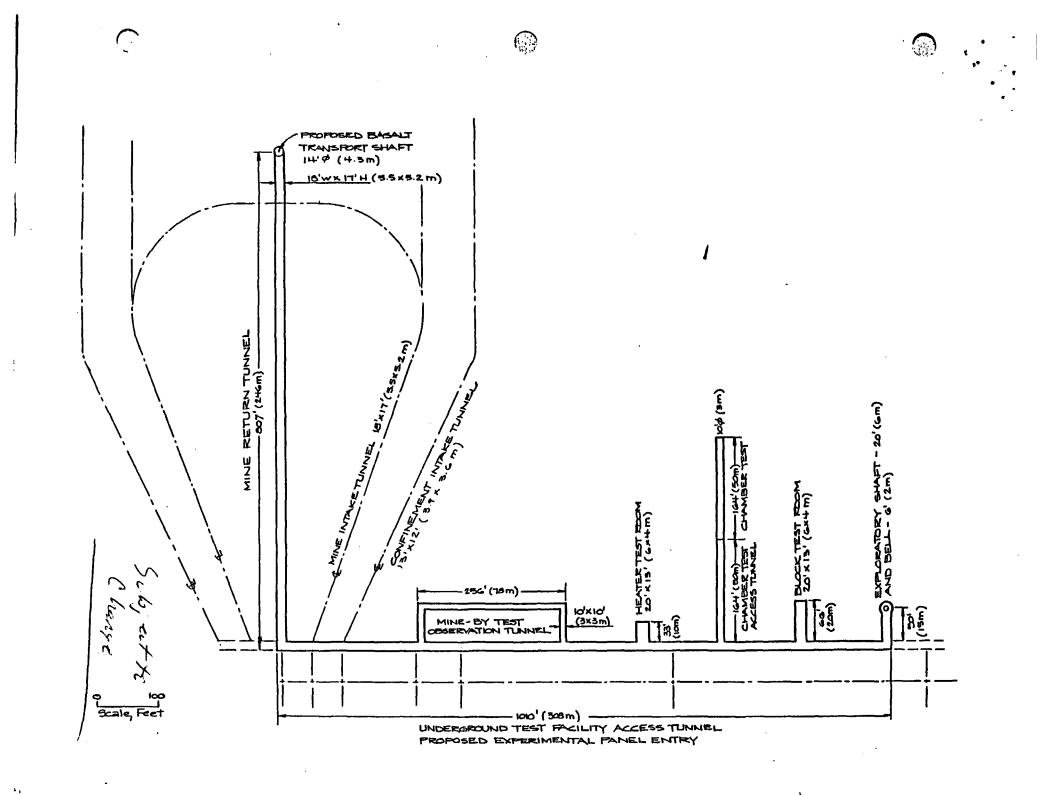
- 3740 ft deep

- Steel lined

. . .

- \$3,500/ft of finished shaft
- \$1.5 million for shaft equipage
- Cost estimate not based on Task 3 results
- BWIP using \$6,400/ft (10' 0.D. Liner w/portholes)
- -555 million for everything (surface facilities, escalation, continuing)

15,000,000 (Barton 30) 1,500,0007,0,008,7022 9,408,700 500


3740x 6750 = 8:3 500, 000 3740x 6750 = 8:245 ()000 3 550

1667 2 2 2 199 107

- o Access tunnel and test room construction (Table 1 and Figure 1)
 - Excavation and support cost varied with cross-sectional area of the opening and ranged from \$355/ft to \$555/ft of advance
 Cost included: exploratory shaft access tunnel.
 - Cost included: exploratory shaft access tunnel, block test room, pressure chamber test, heater test room,

mine-by test observation tunnel

 Cost not included (repository construction) mine return tunnel for state experimental panel entry (includes mine-by test section)
 Cost
 basalt transport shaft

ł,

r : ·

AL ANY

- QUESTION 4: What is the cost of large scale tests? What is a reasonable schedule for these tests?
- ANSWER: Costs provided with answer (3) above, 3-4 years will allow for all recommended tests.

R. Gates

04-15-82

4

*

,

· ·

- 21 -

QUESTION 4: What is the cost of large scale tests? What is a reasonable schedule for these tests?

ANSWER: No idea

Comments: Will be severely hindered by lack of access (single small shaft)

J. Daemen

04-15-82

19. 19. 19.

-

*

- 22 -

QUESTION 4: What is the cost of larger scale tests? What is a reasonable schedule for these tests?

ANSWER: No recent experience in which to base estimates.

C. Babcock

- QUESTION 5: What percentage of the repository horizon should be investigated before license application . . . by surface methods, horizontal boreholes or tunnels? Why?
- ANSWER: The lateral extent of the basalt should be established by vertical surface drill holes at least at the four corners along the perimeter one mile outside the repository area. Physical tests should be made to establish basalt variability from one boundary to the next. The thickness of the repository horizon should be established to verify that the required basalt volume for containment is present. A minimum of 1000 foot of drift 12' x 12' from a vertical shaft is desirable for both Golder Assoc. and LBL tests. In-situ tests from either drifts mine-by, or drill hole instruments should be made to establish constituate relationships to relate stress to strain or displacment for computer or closed form mathematical analysis. In situ stresses should be obtained from over core tests (USBM). Rock stress change during mining or development by convergence or gages (BPC, CPC, IRSD, SXIRO, deformation gage).

C. Babcock

4-14-82

£

- 24 -

- QUESTION 5: What percentage of the repository horizon should be investigated before license application . . . by surface methods, horizontal boreholes or tunnels? Why?
- ANSWER: The exploration of the horizon prior to submittal of the L.A. should be such to meet the following objectives:
 - 1. To assess the variability of the geological framework, mechanical, thermal, hydrological, geochemical, and construction induced responses can be satisfactorily predicted.
 - 2. There is sufficient excavation to allow needed space for experiments to perform such that the interpretation of each test can be discovered from adjacent test. The types and number of these tests should be sufficient to characterize the response listed above so that their requirements of the SER can be met.

To amplify these comments a 6' shaft at BWIP + bell + limited horizontal holes, and surface borehole is insufficient. A 500' orthogonal drift with minimum 12' x 12' cross section should be regarded as an appropriate lower bound. An upper bound 100' x 800' would be the maximum defined by a 6 ft shaft with an additional smaller driller ventilation shaft. Excavation of the entire perimeter should not be necessary if this appeared to be a need, the overall site would in all probability be unacceptable.

Boreholes drilled from the surface through the center line of all shafts and possible deflected or inclined holes in large pillar areas should be encouraged to determine lateral variability. The above would be very unlikely to be sufficient on its own.

Horizontal boreholes drilled from the subsurface excavation drift should be compared with excavated characteristics. Boreholes should also be drilled beyond the test area to further establish continuing predictability.

- 25 -

D. Pentz

4

.

۰.

4-15-82

· · ·

ALL L

-

- 26 -

- QUESTION 5: What percentage of the repository horizon should be investigated before license application . . . by surface methods, horizontal boreholes tunnels? Why?
- ANSWER: Drill holes and shaft + bell are not sufficient for safety evaluation report (SER) to contain reasonable assurance of lateral extent of the basalt flow an variability.

A shaft + 500' of tunnel plus most of the test proposed in task 2 report would be enough to prevent me from testifying against DOE/NRC et. a public hearing presenting their SER for a repository.

For me to sign, as a professional, the SER,I would need a system of orthogonal tunnels with at least one shaft (preferably 2) with enough room to conduct appropriate tests as outlined in other questions to confirm lateral extent, constructability, and variability.

A preliminary concept for Hanford with an L (800' + 1000')appears to be an upper bound of need. A minimum would be about 500' x 500' with a target of 600' x 800'. Tunnel size could be 12' x12' to 18' x 17', with 18' x 17' matching the Kaiser design for repository development.

The cost of inclined holes or deflected holes to the horizontal appear to be less effective and more costly than tunnels to learn the required information at repository depths.

Additional drifts in line with future repository development with possible additonal ventilation shafts are prudent and should be done as much as is possible with funds and time available. The 10's of million of dollars may sound expensive until you consider the billions of dollars for surface and underground facilities that could be wasted if siting problems are encountered.

R. Gates

4-15-82

- QUESTION 5: What percentage of the repository horizon should be investigated before license application . . . by surface methods, horizontal boreholes or tunnels? Why?
- ANSWER: Surface methods are not sufficient to characterize or establish the lateral variability/homogeneity of the candiate horizon. Rather, maximum effort should be applied to subsurface investigations.

Excavation of up to 1000 ft. of drift from the shaft is necessary. Drifts should be oriented in 2 orthogonal directions to intersect all fracture orientations. Drifts should be laid out to accomodate stations for long (300 to 500m) continuously cored horizontal and inclined drill holes, and drift section should be long enough to allow 200 to 300 ft. between locations of tests.

Though the lateral homogenity of the candidate horizon would be not proved, a significant-sized block of ground would be sampled so that the range of variability of critical properties of the candiate repository rock mass would be encountered.

H. Wollenberg

.....

- 28 -

- QUESTION 5: What percentage of the repository horizon should be investigated before license application . . . by surface methods, horizontal boreholes or tunnels? Why?
- ANSWER: Surface methods: 100% or nearly so should be investigated by means of surface methods: remote sensing, field mapping, geophysical surveys: Why? to avoid or minmize the chance of major surprises.

Underground methods:

- a minimum of two horizontal tunnels, advanced at an angle of at least 60° between them, each direction driven to a distance of at least several hundred feet. From these tunnels are to be driven testing rooms needed for testing as determined in later questions.
- a minimum of two horizontal core holes, each extending for a minimum of 1,000 ft or several shorter holes.
 For a total horizontal core length of not less that 2,000 ft.
- Why? identify presence of desirable host formation
 - variability of all essential rock properties
 - demonstrate constructability in two (preferably orthogonal) directions

More detailed why:

- need variability in joint patterns; to establish this need information in (at least) two directions; map orientation, frequency spacing, aperture, continuity, length, in-filling etc.
- measure deformation/stress in tunnel walls
 need access for horizontal and vertical permeability/flow determinations: presure tests;
- tracer tests
 need cross hole measurements: flow, permeability, geophysics

J. Daemen

QUESTION 5: What percentage of the repository horizon should be investigated before license application . . . by surface methods, horozontal boreholes or tunnels? Why?

ANSWER: Surface methods i.e. vertical or inclined boreholes from surface will provide only limited information on lithology. Because of the basic drilling process, it would furthermore, be very expensive to keep the holes sufficiently on line to be useful.

> From the 'bell' limited horizontal holes could be drilled - on the order of about 200' per hole. This test would not provide sufficient information to adequately characterize site.

The "racetrack": (ES-II) containing 500 ft of drifting is an improvement for several reasons:

 it allows flow-through ventilation i.e. a loop - this allows better characterization of the rock mass - it allows horizontal boreholes to be driven in which test work can be carried out.

It does not however provide sufficient room to carry out chamber tests free of outside influence: one needs 200-300 ft between tests.

Ideally, one should have the full perimeter of the repository site excavated, or at least one quadrant. The full perimeter would be about 36,000 ft. for the BWIP site - this would take 9 years @ 10 ft/day. Obviously we haven't got that much time available. A quadrant would have 18,000 ft. and, by the same token, this would take $4\frac{1}{2}$ years to drive. This presupposes that satisfactory accesses are available including sufficient shafts of sufficient size to provide for the ventilation.

The minimum satifactory amount of work lies somewhere between ES-II and excavating a full quadrant. From a single shaft of 6 ft. I.D., one can reasonably excavate about 1000 to 1500 ft. of tunnels. To provide for chamber, heater, mine-by and block tests; to provide a reasonable spacing between them requires at least 700 ft. of tunnel in one direction. If two chamber tests were run orthogonal to the main tunnel the requirements for having fracture mapping surfaces in two dimensions will be met. Thus at least 1000' at tunnel will be required.

- 30 -

D. F. Hambley

- 31 -

- QUESTION 5: What percentage of the repository horizon should be investigated before license application . . . by surface methods, horizontal boreholes or tunnels? Why?
- ANSWER: Surface methods: 100% or nearly so by remote sensing and by seismic surveys: avoid major s rprises (faults especially.)

Underground methods:

- a minimum to two horizontal tunnels, at an angle of a least 60° to each other, for a length of at least one hundred ft. each

Purpose:

- establish a solid data basis to identify and describe adequately the major joints systems (i.e. frequency, spacing, aperture, variability
- provide access for horizontal permeability determinations
- a minimum of several thousands of ft of horizontal boreholes

Purpose:

- establish lateral continuity of repository horizon
- determine joint patterns
- allow cross-hole measurements (geophysics, flow permeability)
- allow in-hole measurements: stress-state: permeability; jacking tests (?)

J. Daemen

04-15-82

- 32 -

QUESTION 6: Is a mine-by experiment needed prior to license application? If not, when? Why?

ANSWER: Yes, the response of the rock to various tunneling techniques anticipated in repository development can effect the design and effectiveness of engineered barriers and thus ultimate performance of the repository. The SER must show reasonable assurance that performance will meet EPA standards, and thus we must know rock response.

See Golder Task 2 Report.

R. Gates

04-15-82

QUESTION 6: Is a mine-by experiment needed prior to license application? If not, when? Why?

ANSWER: Yes, to model the long time behavior of the rock mass; finite element methods of structural analysis to predict repository behavior will almost certainly be used. If realistic assumptions based on actual observed experimental relationships between deformations or strain and stress in-situ are not used, serious mistakes in design will result. To observe the relationships some method (s) of experimentally measuring them is needed. A mine-by approach of some kind not necessarily the one proposed by Golder Associates should be used. If the work proposed by Golder Associates is accepted it should be carefully reviewed for technical competence. It presently is very weak in many respects.

C. Babcock 04-14-82 QUESTION 6: Is a mine-by experiment needed prior to license application? If not, when? Why?

ANSWER: Yes, The information that it would provide would be the in-situ deformation of rock in response to excavation. This allows estimate to be made of the following:

- in-situ modulus of deformation - in-situ poisson's ratio - degree of fracturing surrounding an excavation

This information is required in order to verify assumptions in model studies at stress distribution as well as for determining the ground support requirements.

D. F. Hambley

- 34 -

QUESTION 7: Is thermomechanical testing in the repository horizon needed prior to license application? If not, when? Why?

ANSWER: Yes, the physical properties of the rock and of the rock instrumentation used to measure them are greatly modified by elevated temperatures. Since the mine must be stable for 50 to 100 years at least with respect to the main haulagaways the long term behavior under these, conditions must be known. The chemical reation rate increases rapidly with temperature and the physical properities are designed for ambient temperature use. There are serious problems in using rock mechanics instruments at elevated temperature. They need to be adapted for elevated temperature use and tested in the environment of their intended use underground.

C. Babcock

- QUESTION 7: Is thermomechanical testing in the repository horizon needed prior to license application? If not, when? Why?
- ANSWER: Yes, (See Golder Task 2 Report), the coupling of thermal and mechanical response to tunneling and waste package heat is the most unique design feature of a repository. There is no known comparable "experience" to apply "judgement" of experts without in-situ data. Murphy's law will apply to a repository if the new environments being developed in a repository are not tested in-situ. The evaluation associated with license application (SER) appears to be the most critical evaluation by NRC in the life of a repository. Using NRC's words, "all points (CA, License to emplace decommissioning) will be of the nature of confirmatory."

R. Gates

04-15-82

- 36 -

- QUESTION 7: Is thermomechanical testing in the repository horizon needed prior to license appliaiton? If not, when? Why?
- ANSWER: Yes. The thermomechanical response of the rock is one of the fundamental assumptions in the design of a repository. The physical properities are fundamental to assuring that the geological setting is satisfactory. The thermal properties of the rock must be adequately known if one is to be confident that a site is satisfactory. The thermal properties are of critical importance in ensuring that environmental requirements are met. It there is a possability that environment requirements cannot be met, then the siting of a repository is seriously in question. Thus, this information is required if a license application is to have any meaning.

D. F. Hambley

- QUESTION 8: Is a large scale chamber test needed prior to license application? If not, when? Why?
- ANSWER: Yes. the behavior or a multiple hole system close together is a different problem than a single entry drift. The effect must be known before a multiple opening entry system is developed at high cost. These tests allows a determination of rock support problems. Should rock bolts be used? If so, what kind-conventional (expansion anchor or grouted end), resin grouted (full or partial), gypsum grouted or Scotts Split. Set? Is angle bolting necessary because of vertical cracks? Is room and pillar mining method ok with mining geomestry proposed? Should other types of support be used such as steel sets with caps, is logging or grouting ever necessary? What about water inflow problems? Are ground control problems easy to live with or require and unusual work effort?

C. Babcock

4-14-82

10.10

- 38 -

QUESTION 8: Is a larger scale chamber test needed prior to license application? If not, when? Why?

ANSWER:

Yes. A large-scale chamber test combining thermomechanical and hydrological measurements is needed to determine the response of a large volume of the candidate rock mass to heating. The baseline phase of this test begins with the drilling of short horizontal holes from the bell, and continues with observations of fracture orientations in the drifts and in oriented core. This information is necessary for choosing the optimum direction of the chamber, and with proper instrumentation in the horizontal holes, the hyrological baseline for the test will be established.

The 7-year duration scoped for the entire test (in LBL-13190) exceeds the time frame of application. However, a good portion of information form this test would be available prior to the license application deadline. Results of measurements of initial conditions and the complete heating phase would be available well in advance of 1988 if initial design could begin in 1982-1983.

H. Wollenberg

- QUESTION 8: Is a larger scale chamber test needed prior to license appliation? If not, when? Why?
- ANSWER: Yes. A chamber test is a practical means of determining the in-situ behavior of the rock mass. The properties which can be determined include (in the case of the LBL test):
 - permeability at ambient and elevated temperature.
 - deformational response due to in-situ stress and thermal stresses.
 - in-situ geochemistry and changes in same due to elevated temperature.

From the information collected the measured response can be compared with the response predicted by hydro/thermomechanical models. Hence the validity of the models can be verified and if necessary, the models can be modified to provide better predictability. The hydrological, geochemical, and thermomehanical properties must be reliably known to be such that EPA requirements can be satisfied and that it can be reasonable assured that the waste packages and any radionuclide emissions are isolated from the accessible environment. If there is any question as to the feasiblity of this at the time of licensing application, then continued effort at such a site should be stopped.

D. F. Hambley

- 40 -

SUBJECT: ENGINEER BARRIERS TESTING PRIOR LICENSE APPLICATION

If DOE is required to take the credit for engineered barrier(s) in the overall performance of the entire system the NRC will require in-situ tests tp support the basis of the values of the parameters of the engineered barriers and or components used in the total performance assessment. These tests should specifically address the uncertainity of the coupling phenomena with the surrounding rock mass. Since time of emplacement and performance of the backfill is a critical issue to retrievability, the testing refered to above may be used in addressing the retrievability standards.

HEVENDIX A-3 D. PENTZ

.

1

FREQUENCY - A = SEVERAL B = NUMEROUS C = CONTINUAL

.

.

1

۳.,

.:

2 1

STAGES - A = SITE CHARACTERIZATION B = LICENSE APPLICATION C = CONSTRUCTION ANTHORIZATION D = EMPLACEMENT AUTHORIZATION

TEST NEEDED FOR PARAMETR LICENE APPLICATION	PURPOS STAGE	FREQUENCY	TES DESCRIPTIONS AND REMARKS
 DETAILED MAPPING AND CORE PRIOR TO L.A. LOGGING OF ALL OPENINGS AND ALL CORE.	CHARACTERIZE THE GEO- A, B LOGICAL FRAMEWORK OF EXPOSED ROCK AND COM- PARE THIS INFORMATION WITH THAT PREDICTED FROM CORE.	i i	DRILL CORE HOLES (PILOT HOLES) PRIOR TO CONSTRUCTION OF ALL MAN SIZED OPENINGS.
STRESS DETERMINATIONS	SHORT TERM ENABLES JUSTIFICATION OF REPOSITORY LAYOUT TO BE MADE LONG TERM, ESSENTIAL PARAMETERS TO ESTIMATE DEFORMA- TION AND HENCE LHYDRA- ULIC CONTAMIMENT	27 tests in 9 holes	DVERCOMING OF IN SITU TESTS AT DISTAN FROM OPENINGS SEE TASK 2 REPORT
 Plate Test		2 LOCATIONS 3 DIRECTION	See Task 2 report
 Mine By Tests		LOCATION 250' LONG	See Task 2 report
Flat Jack Tests		9 LOCATEONS	See Task 2 report
	Supervision and the second		Beller Constant and the second states of the second

D. Pentz

<u>z</u> (

ŝ

あるないという

GEOMECHANICS	TEST NEEDED FOR	SUMWARY REPORT		
P/RAHEIER	LICENSE APPLICATION IN PRIORITY ORD R 	RECOMMENDED STAGE (SEE), GREEVES SCIEDULE) APPENDLL	JUSTIFICATION FOR PRORITY	
DETAILED MAPFING AND CORE LOGGING OF ALL OPENINGS AND ALL CORE.		Prior to L.A.	THIS TEST WILL BE BASIS FOR EXT POINT TESTS (GEDMECHANICAL, HYD GEOCHEMICAL) SEE ANSWER QUESTID	RAPOLATING ROLOGICAL, N 5.
A DEFORMATION RESPONSE IN SITU	3	PRIOR TO L.A.	FUNDAMENTAL PARAMETER FOR SHORT TERM CONTAIMENT ASSESSMENT.	AND LONG
B Plate Tests	5	PRIOR TO L.A.	ENABLES INDEX ON CORRELATION OF TESTS WITH REMAINDER OF TEST FA	FULL SCALE
C Mine By Test	3	Prior to L.A.	IMPORTANT TO ASSESSMENT OF CONS INDUCES ZONE - POTENTIAL IMPORT	
D Flat Jack Tests	5	Prior to L.A.	Similar reason "to plate Test bu parameter	Л DIFFERENT

律 和任何 THE A 「「「「「「「」」」」 記書があたませ 4 . 1 m 1 **.** . . . 行われて、東京学校

H. WOLLENBERG

GEOMECH.

•

۰.,

行いたま

			_	
FREQUENCY	-			
		B	*	NUMEROUS
		С	=	CONTINUAL.

t

1

 $\begin{array}{rcl} \text{STAGES} & - & \text{A} & = & \text{SITE} & \text{CHARACTERIZATION} \\ & \text{B} & = & \text{LICENSE} & \text{APPLICATION} \\ & \text{C} & & \text{CONSTRUCTION} & \text{AUHORIZATION} \\ & \text{D} & = & \text{EMPLACEMENT AUHIORIZATION} \end{array}$

4

j.

のないではないないないの時間で

(see John greeves schedule) Apply 2008 And

「「ない」のないないないない

	AMETR	LICEN	NEEDED FOR E APPLICATION (WHAT)		URPOS		STAGE (WHEN)	FREQUENCY	TES		(HIS AND REP ICH)	ARKS	_
GEOLOGIC SETTI & LITHOLOGY	ng Structure	DETAILE	D MAPPING COF	RE ASSESS FRACTUR AND LIT	VARIABI	ITY OF ATION F MASS	A, B IN BELL, ND ALO WITH PRO DE EXCAN	IG DGRESS VATION	FRACTUR	e in or Ology a	iented (ND Recof	F SIGNI ORES; R DING AN G MATER	eco D S
							ND EXA DF COMPI GAELERII						
IN SITU STRESS		Overcor	ING	AND ORI	NE MAGNI ENTATION SE COMPO	s of Nents	А, В	A	Overo	oring			
Excavation Dam	AGE	Mine-By		EXCAVAT ONE OR THE MEC	TNG OPEN MORE MET HANICAL	ECTS OF INGS BY HODS ON AND GRITY O		ONE	DRILL H BE MINE OFF INT	DLES IN D. MEA ERVALS	CLINED C SURE PRE N A SIM	TENSOME MER THE SSURES ILAR SE DNITORI	AR N O
				THE ROC	K NEAR /	ND AWAY							
DEFORMATION		Flat Ta	ск Теѕт		ATE RES		C	A	AND PLA	TES ORI	ENTED IN	ESTS WITH ACCORD ORIENT/ MINE-BY, /	ÁNCI ÁTIO
1	1		TESTS	1	3	1	C	Α					

ŝ

MINE-BY AREA. 344 đ Ap. 1987 **-**. 1 ÷.

H. WOLLENBERG

の日本のであるとなっていたのであるという

1

 GEOMECH.			JEST ,	I NEEDED FOR	њ. ,	•	SU	TIARY REPOR	T							
P / F	RAHET	ER	LICENS IN PE (1 H	E APPLICAT	ON P		REC (SEE)	THENDED ST	ige Ethere) AP	ENDIX	1.1 a		ION FOR PR			
GEOLOGIC SETTI AND LITHOLO	ing Sti gy#	UCTURE	(I)	<u>сн. 10 го</u> н			NEEDED	for LA		<u>Lavois (</u>	Z) BASEL OF GE	CTERIZE	6 VARIA PLANNIN THERMON	ILITY T) be exp iterpret /drologi	ATION L
In situ Stress	S		(2)				NEEDED	for L.A			FROM SI HIGH HO	IRFACE D	RILL HOI	ES; CON	rved in Firm pré Aluate e Of repo	Sence of FFects
Excavation Day	MAGE		(2)				Needed	for L'A			MINING	METHODS	AND MEC	HANICAL	- Candii And Hyd Methods	ROLOGIC
DEFORMATION PI JACK TESTS	ATE &	Flat	(3)		·		Needed Conistru Plann In	CTION								
				-												
·																

1

7 # - 4 则并把目标用以为 Зł **TRAFT** 変換 ŗ linner a litter meres いたります。こことになっていたいないないであっていたからなるのであっていたいです。 į ALL STATES のないの に接着す 1 . the second second 1. ٠., \$.

		. E . E .	ŕ	
FREQUENCY -		SEVERAL		
		CONTINUAL		

 $\begin{array}{rcl} \text{STAGES} & - & \text{A} & = & \text{SITE} & \text{CHARACTERIZATION} \\ & \text{B} & = & \text{LICENSE} & \text{APPLICATION} \\ & \text{C} & & \text{CRISTRUCTION AUTHORIZATION} \\ & \text{D} & = & \text{EHPLACEMENT AUTHORIZATION} \end{array}$

GEOMECHANICS

D. HAMBLEY

P AR A HE TER	TESTS NEEDED FOR LICENSE APPLICATION			TES DESCRIPTIONS AND REMARKS
GEOLOGIC STRUCTURE AND LITHOLOGY	DETAIL MAPPING AND O		В	THIS CAN BE ACCOMPLSIFED BY DETA LINE SURVEYS ALONG WALLS AND FUL CIRCUMFERENTIAL MAPPING OF OPINI USING A SCHMIDT STERONET, PREFER JOINT CRIENTATIONS ARE OBTAINED
IN-SITU STATE OF STRES	s A) over or ing	TO DETERMINE THE IN-SITU STRESS STRATEGY	B 27	THERE ARE SEVERAL FEASTIBLE METHO THE BEST ARE THE CSIRO GAGE (PRO THAT IT IS PROPERLY BONDED) AND CSIR TRIAXIAL GAGES AS EACH PROV
	B) PLATE JACKING TES	S TO DE ERMINE LARGE SCALE DEFORMATIONAL BEHAVIOR	B 6	THE ADSOLUTE 3 D STRESS FIELD FROM MEASUREMENTS IN ONE HOLE, THESE NEED TO BE CARRIED OUT VER CAREFULLY TO ASSURE THAT THE LOAD CONDITIONS ARE AS ASSUMED.
DEFORMATIONAL RESPONSE	C) MINE-BY TEST	TO DETERMINE BE- HAVIOR OF ROCKS SURROUNDING AN OPENING; TO DETERMINE EXTENT AT DAMAGED ZONE	B 1	THE DAMAGED ZONE SURROUNDING OPE HAS AN INCREASED PERMEABILITY, T ITS EXTENT IS OF GREAT IMPORTANC
IN-SITU MODULI	D) FLAT JACKS	CALIBRATE INSTRUMENT	9	THERE IS SOME QUESTION AS TO THE VALUE OF THESE TASKS.
Rock mass strength shear strength	PRESSURIZED SLOT TES (SUCH AS THOSE CARRI DUT BY BIENIAWSKITH 'SOUTH AFRICAN QOAL			THESE ARE AT RELATIVELY MINOR IM PORTANCE IN BASALT BUTLLIKELY AT IMPORTANCE IN TUFF.

MINES) THIS IS OF MINCR IMPORTANCE IN BASALT BUT OF GREAT IMPORTANCE IN SALT, AND PERHAPS IN TUFF. TO DETERMINE LONG TERM DEFORMATION OF ROCK MASS CLOSURE MEASUREMENTS

新增 情料深刻 澤 T

A REAL PORT OF A REAL PORT

١,

Ĩ

The second

. 2

.

: . .

.

12

CREEP

A CONTRACTOR ÷, 言語を言語を見 No. of the second se

Ð,

んというないないというと

i.

GEOMECHANICS

1

-

				•	ŧ	•		SU	MWRY REPOR	T				D. Hav	BLEY		
P /	RAMET	E R	ŀ	LICEN: IN PI	heeded for e applicat iority ord gh <u>. 10 lo</u> m	ON R		REC	HIMENDED ST	AGE EDULE) / Ê	F.V.D. + /	<u>+</u>	JUSTIFICA	ION FOR PR	ORITY		
GEOLOGIC STR LITHOLOGY	icture /	NÐ			il Mapp Loggin	ing and G		Needed	for LÁ			KNOWN I	N SUFFIC	lent de	TAIL TO	HOLOGY ENSURE TISFACT	THAT
IN-SITU STAT DEFORMATIONA IN-SITU MODU	RESPOR			PLA MINE	CORING E JACKI -BY TES JACK T			NEEDED	FOR LA			STRESS	FO VERING STATE MU FROM SI VABLE V	de on t Urface w	HE BASI	E: IN-S OF HYL OF	tu R0-
Rock mass st shear stre			1	PRES TASI TEST		SLOT JACKIN	AUTHOR	IZATION	LACEMEN IN BAS/ ICATION	LT.		Due to mass st	the com Rength	ETENCE S UNLIK	of the i Ely to i	ASALT, E A PRO	rock Blem,
Creep				CLOS MENT	ure mea S	sure-		FOR DE CATION	s IGN			CREEP I BASALT,		LY TO A	MAJOR	ROBLEM	EN
_											·						
								•				2					

٠

.

ł

7.7 **A** 1 三洲目的医学家们加 h **NAS** 633 17 Sector 1975 Provide Sector Sec - **1**87 ł ŝ and See N ă 物はないないないない

FREQUENCY - A = SEVERAL B = NUMEROUS C = CONTINUAL

諸語の語言語の言

.

.

 $\begin{array}{rcl} \text{STAGES} & \text{A} & \text{``SITE CHARACTERIZATION} \\ & \text{B} & = \text{LICENSE APPLICATION} \\ & \text{C} & \text{CONSTRUCTION AUTHORIZATION} \\ & \text{D} & = \text{CPLACEMENT AUTHORIZATION} \end{array}$

67

GEOMECHANICAL

いたいないためである

1.200

R, Gates

(SEE JOHN GREEVES SCHEDULE) APASAPIN & 1

れのかか

PARAMET R	TEST NEEDED FOR LICENSE APPLICATION (WWT)	PURPOS (wm)	STAGE _(WHER) _	FREQUENCY	TES' DESCRIPTIONS AND REPARKS
Geologic structure and Lithology	DETAIL MAPPING AND CORE LOGGING OF ALL OPENINGS AND ALL CORE	VERIABILITY EXTENT OF FLOW ES	U	CONTIN- UOUS ALL	see task 2 report
IN-SITU STRESS	OVERCORING		B	27 9 HOLES 3 TESTS/ HOLE	see task 2 report
DEFORMATION RESPONSE	PLATE TESTS	GEOMECHANICAL RESPONSE INFLUENCES PERFORMANCE		6 (2 LO- CATIONS, 3 DIREC-	SEE TASK 2 REPORT
DEFORMATION RESPONSE	MINE BY		В	1	see task 2 report
DEFORMATION FESPONSE	FLAT JACKS		B.	9 (3 LO- CATIONS- 3 DIREC- TIONS_	SEE TASK 2 REPORT

. 1

· 1

.

--

の目的

÷

「日本のなどである」のないで、日本でな

GEOMECHANICAL

R. Gates

	,		1657	JEEDED FOR	,	SU	MWRY REPOR	t				к.	GATES		
P /	RAMET	ER	LICEN: IN P	E APPLICAT IORITY ORD	ON R	 REC	HENDED ST	nge Edule) <i>API</i>			MENTS, REP	ion for Pr	S. ADVISE		
GEOLOGIC STRU	CTURE			1			B		-	to avoi as poss uncerta assuran	D LARGE IBLE IN INTY TO CE"	expense The pro The poi	for Bad Gram Ani NT of "f	SITE A TO RED EASONAL	s eari Uce Le
IN-SITU STRES	s			2		 ļ	В			TO AVOI AS IN T TO THE) LARGE HE PROGI POINT O	EXPENSE AM AND "REASO	FOR BAD TO REDUK VABLE AS	SITE A E UNCER SURANCE	S EARI
DEFORMATION R	ESPONSE		PLATE T MINE BY FLAT JA	2 est 2b 2A cks 2c			В			to avoi As poss Uncerta Assuran	IBLE IN	Expense The pro The poi	For Bad Gram Ani NT OF "F	site a to red Easonab	s eari uce le
	1														
· ·						 									
															1

干型 ١. FIRESHEAD States Link HURSEN F 夏 1 調読い 対応が必要 後のためないない 記事時代を の意思を No. No. 2 すいたいな

, W

FREQUENCY	-	B	=	seve Nume Cont	RC	ŪŞ	
	$\frac{1}{2}$				t,	÷	٠.

ł

•

:

: 1

行いなのの

<. . _

 $\begin{array}{rcl} \text{STAGES} & - & \text{A} & = & \text{SITE} & \text{CHARACTERIZATION} \\ & \text{B} & = & \text{LICENSE} & \text{APPLICATION} \\ & \text{C} & = & \text{CONSTRUCTION} & \text{AUTHORIZATION} \\ & \text{D} & = & \text{EMPLACEMENT} & \text{AUTHORIZATION} \end{array}$

GEOMECHANICS

.

.

J. DAEMEN

(SEE JOHN GREEVES SCHEDULE) APIXITIN A. 1

£										(s	EE JOHN GREEVES S	SCHEDULE) APIY				
	P A	RAMET	R	LICENE	NEEDED FOR APPLICAT	ON	P	URPOS		STAGE	FREQUENCY	TES		CHIS AND REP ICHI)	ARKS	
	GEOLOGICAL ST		• • •	-DETAILE ALL U.G -LOGGING AND HOL	OF ALL	URES	MASS -NEEDED	BILITY (FOR ST	F ROCK	a/b/ C/D	С	- Surf - Logg (Inci	CE (COM NG OF A USIVE P	(MINIMU PLETE) M L CORE HOTOGRAF	APPING AND HOL HS OF B	DTH)
			• •				ESTIMA -NEEDED MECHAN	FOR TH	rmo- Sponse	A/B/C		TO DI THERI	MONSTRA	n-advank Te capae Ktrapola Ze	ILITY O	LACK
	In-situ stres	SS STATE		Overcor	NG		SHAPE ROOMS ;-ESSENT	of tunni	STABIL-		В	LEVEI (BY) - MUST	IS UND EFINITI HAVE A	ACTURING ESIRABLE ON) ROCH MINIMUM IN THRE	- INDU DAMAGE OF THRE	ES
							-ESSENT		MODELIN	6				ONAL DIF		
	Rock mass dei Response	ORMATIO	NAL				OF LAR MASS	ge scali Lculate		A/B/C	В .	TUNN	il advan	MEASUREM CE MONITOR	1	ING
	Plate tests					· · · · · · · · · · · · · · · · · · ·	DETERM	INE MOD	LUS OF FFNESS)	B/C	A			N OF YOU S RATIO	NG'S MOI	ulus
	VARIABILITY (ULTRAS	C, RADA ONIC, A	R, ICCOUST I	1			A/B/C				MOLUMES		
653-579		an a	i fit			(時待)							- 1		INER	T.
																1999 1997 1997 1997 1997 1997 1997 1997

Geomechanics J. Daemen

「たいないないないないないないないです」

1

÷.

P	RAHET	1	IN P	E APPLICAT	OH R	r managemente a dest	REC	ITHENDED ST	se edule) <u>β</u> i	<u>) x d b • x /</u>	.) (•	JUSTIFICA MENTS, RE	ion for Pr oppendatio	ORITY IS, ADVISE		
Geological S	Structure		1				В				NEEDED MENTS, TUNNELS DICTION	GTABILI THERM	e scale Y estim Mechani	PERMEAU ATES OR CAL MODE	ILITY A ROOMS A LING, P	SSESS~ ND RE-
In situ stri	ESS STATE		2				В				Needed Model In Needed Room De	5, FOR I FOR STAI	ECHANIC YDROLOG ILITY E	AL AND ⊺ ICAL MOI VALUATIO	HERMOME ELING. NS, TUN	Chantca Nel and
Rock mass deformatio response	DEIAL		3				В				Needed	for geor	ECHANIC	AL AND -	MOD	ELING
- -																

х ⁻

۰

.

÷

SUMMARY REPORT

.

.

17 1 107 THE STREET STREET ž, ANN. はないでは、日本の日本にあるのである 2 1 「「「「「「」」」 South the state of いたいのでいたので、 てたいまいも 4 and the second second second MANDARIA PA 1 ÷

FREQUENCY - A = SEVERAL B = NLMEROUS C = CONTINUAL

1

į.

--

•

1

.)

. ;

٠

•

U.

H, WOLLENBERG

 $\begin{array}{rcl} \text{STAGES} & & \text{A} = \text{SITE} & \text{CHARACTERIZATION} \\ \text{B} = \text{LICENSE} & \text{APPLICATION} \\ \text{C} & & \text{CRISTINCTION} & \text{AUTIORIZATION} \\ \text{D} & = \text{EMPLACEMENT} & \text{AUTIORIZATION} \end{array}$

:

pg. 1 of 1

	GEOCHEM.								(SEE JOHN GREEVES SCHED	ULE)AITEN	A 1			
	PA	RAMET		STE HEEDED F	r .		URPOS	۹ ۱	STAGE	FREQUENCY	TES		(HIS AND RE)	ARKS	
	GROUNDWATER AND FRACTURE MATERIAL COM	COMPOSIT FILLING POSITION	ION ANALY TRACE ELEME STABL WATEF FILL	-AND RAD NT COMPO E ISOTOP AND FRA NG AGE D	SITION; RATIOS OTURE	GEOCHE UPON W OF REP SUPERI AND PA FROM C	HICH EFF OSITORY MPOSED / THWAYS (ANDIDATE	ASELINE FECTS WILL BE AGE F WATER HORIZO	8	IC: AS HORIZON- TO DRILLING PROGRESSES & WATER & CORE ISAMPLES OBTAINED.	MAJOR-1 & HYDRO CRITICA	IN-SITU E, PH, RACE-AN GEN ISO		Lements, Ios; ot;	OXYGEN
			MINA	10NS.		ABOVE HORIZO PREDIC	AND BELO N-WILL I TION OF ONDWATER	NABLE REACTIO WITH	ศร	HORIZ, BOREHOL CAN PROVIDE ESSENTIALLY	[N FILL	NG MATE	R1AI •	
	Descention	· · ·	1.000		: : 	BARRIE	R SYSTER			UNCONTAMINATED WATER SAMPLES. FROM SURFACES BOREHOLES	LAB, AND MATE IT I	ANALYS RADIOELI RIAL ANI 6 DEPOS	s for m Ments, Minera Ted	ajor, tr Substrat _s upon	E WH1CH
B	RETARDATION		CATIO ITY (FRACTI MATER	FROCK N REFILLI	inig Igi appro-	OF (IN GROUND ING RA	TERACTIO	DN OF) DNTAIN ENTS WIT ERS THAT	Ì	C: As samples are obtained from excava- tions and <u>Horizontal Dri</u>	ROCK MA MATERIA	TRIX AN	f excha Fractu	RE FILL	
			ND F	RADIOEL RMATION ITIONS,	WATER	LOGIC	SYSTEM.			HOLE CORPS					
			BE IS IN BA RETAR TO TH	DLÀTED (I SALT), IN DATION TE DSE AT CL	est simil Limax sto	AR					· · · ·				
				TUNNEL A											
news A rea and a set			計律特殊結	and a second and a second and a second										The state	F

FREQUENCY	-			SEVERAL
		B	-	NUMEROUS
		C	-	CONTINUAL
				2

.

ч.

!

10.14

л^а

1

$\begin{array}{rcl} \text{STAGES} & - & \text{A} & = & \text{SITE} & \text{CHARACTERIZATION} \\ & \text{B} & = & \text{License Application} \\ & \text{C} & & \text{Construction Authorization} \\ & \text{D} & = & \text{EMPLACEMENT AUTHORIZATION} \end{array}$

H. WOLLENBERG

D = EMPLACEMENT AUTHORIZATION PG. 2 OF 2 (SEE JOIN GREEVES SCHEDULE) (M/9/3/101X A-1

,	c	GEOCHEM.		3. 							(see John Gre	EVES SCHED	ULE)/11/02:01	DIX A-1			
		P A	RAMET	R		NEEDED FO E APPLICAT (MHAT)	i'	P	U R P O S (www)		STAGE	FREQUENCY		TES		onis and ref (m)	ARKS	
	с —	DISPERSIVIT	Y 		Tracer	Tests		CHARAC INTERCO REPOSI	DISPER ERISTIC INNECTIV IORY HOR IGIC SYS	is and Eness o Sizon's	A	B: Foll Determi Of Flui Positio Fractur ITEM GEO	E SYS-	INJECTI ELEMENT MONITOR INTERVA	DN RADIO TRACER: FIRST / S OF M	element Into F Rrival Nitorin	AND /OF RACTURE IN ISOL/ G DRILL	ANALOG S) AND TED HOLES,
			· · · · · · · · · · · · · · · · · · ·	;					1 1									
			- - - - - - - - - - - - - - - - -				:											
									k 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9				•					
														↓ 		 		
				2.像种			< 64475 fi	875129			1 13133		 5083	1 1 1				
																		-

	GEOCHEMICAL	B = NLIMEROUS C = Contrimunal		A = SITE CONRECTENTIATION B = LICENSE APPLICATION C = CONSIGNATION D = EMPLACEMENT AUTHORIZATION D = EMPLACEMENT AUTHORIZATION (SEE JOHN GREEVES SCHEDULE)	D. HAMBLEY
	P AR A ME T R	TEST NEEDED FOR LICENE APPLICATION (WHAT)			ilvis and reivirks
	PORE FLUID COMPOSITION		TO DETERMINE IONIC COMPOSITION OF PORE WATER ENTERING REPOSITORY AREA.		
	FRACTURE FILLING COMPOSITION		IT IS THE SUBSTRATES (SURFACE COATINGS) WHICH REACT WITH THE WATER SO THE REACTIONS AT THIS MATERIAL MUST BE KNOWN		
-	RETARDATION	Single Fracture Retardation Test	IF DOE IS GOINS TO TAKE CREDIT FOR RETARDATION THIS IS REQUIRED.	Very D FFICU	T TO MEASURE IN PRACT
	DISPERSIVITY				
. Ti		isa potema			
: - - -					

:

. .

A LEW TRACK AND

からいたちちょう

;

H. WOLLENBERG

大学学生は法学

うちいとないろうろうちょうない

5

	GEOCHEM,			JEST	NÉEDED, FOR		•	, Su	MARY REPOR	T							
	P Pore Fluid Co	RANET	ER	LICFN IN PI	e applicat lority ord g <u>hl. 10 lo</u> w	ON R		-(see j. Necess/	RY FOR	EDULE)/11	RAC-	<u>NECESSA</u>	HENTS, RE		IS <u>, ADVISE</u> AN UNDE	RSTANDI	
A									ion and Red bar	plannii Rier sy: 	TEM	reposit Hydrolo F <u>rom</u> Re Determi	RY HORI GIC REGI SIMES AL E THE A ATERS, 2 RISTICS	ZON; TO ME OF TI O <u>VE AND</u> GE AND O TO DE OF MATI	Determi IE Horiz Below_ Low Rat	Candid Ne Wheti On IS I 2) to H E OF Thi The Sof NING AN	ier the Olated L <u>P</u>
B	RETARDATION			(2)				Necess/ Terizat Of Engi	ry for Ion and Neered	SITE CH PLANNIN BARRIER	ARAC- G SYSTEM	SYSTEM'	S ABILII	Y TO RE RMATION	ard mig on A an	BARRIE RATION D B REQU ARRIER	ADIO- IRED
c	DISPERSIVITY			(3)				Not mar	DATORY .	BUT DES	IRABLE						
								IN SITE	CHARAC G OF EN	TERIZAT SINEEREI	ION AND	R					

.

K 11 1

7 * 11 T • 1 「「「「「「」」」を言いたいで、「」」を言いていたいで、 1 御教 かたていたまで、 いうない うちょうきょう しんかい しょうしん ••• • . ., ·

GEOCHEMICAL		SUMWRY REPORT		D. HAMBLEY
	LICENSE APPLICATION IN PRIORITY ORD R 		LUSTIFI MLE)APASABLY A-1 COMENTS. LAB TEST OF A	
Pore Fluid Composition		Needed for B	LAB TEST OF A	CTUAL REPOSITORY ROCK
FRACTURE FILLING COMPOSITION	(I)	• B		
RETARDATION (ADSORPTION)	(2)	" В		
DISPERSIVITY	(2)	" В	"	

 \mathcal{O}

きんないまたもう

「日本の

「日本のないない」であってきる

:)

Number of

4

.

.

.

.

5

٠

5 Station. ないない

马马马克 4 のためになったななない。

۰.

f i

GEOCHEMISTRY

R. Gates

	•				÷.	1.5		SU	THRY REPOR	RT				K. U	hilo		
	т. . Р/	RANET	E R	LICEN IN PI	LEEDED FOR E APPLICAT LORITY ORD IGH. 10 LON	ON R	<u> </u>	REC	MMENDED SI	nge Edule)	·ENDIX	-1 a	JUSTIFICA	ion for pr	ORITY ISJ. ADVISE		
	DISPERSIVITY				<u>ен. 10 го</u> н 2	BLOCK 1	EST		В			CRITIC "REASO	al to pi VABLE A	RFORMAN SURANCE	S. ADVISE	D FOR	
	RETARDATION			l 	2	CHAMBEF HEATER	TESTS TESTS		В								
·	Pore fluid (OMPOSIT			1	TRACER	TESTS		В	<u> </u>							
	Fracture fil (substrate)	LING MA	TERIAL						B								

i si

.

۱

RESURVENT 語語を非常 an intervention

Deres.

1

STATISTICS TO TO TO TO TO TO TO

21

٠.

÷į

FREQUENCY ~ A = SEVERAL B = NUMEROUS C = CONTINUAL

.

4

i,

STAGES - A = SITE CHWRACTERIZATION B = LICENSE APPLICATION C = CONSTRUCTION AUTIORIZATION D = EMPLACEMENT AUTIORIZATION

R. Gates

GEOCHEMISTRY

1

(see John Greeves schedule)APPFARER A. L.

						-				SEE JOHN GR	EVES SUPER					
PA	RAMET	R	TEST LICEN	NEEDED FO		P	URPOS		STAGE	³ FREQUENCY		tes		(INS AND REP (TH)	ARKS	
DISPERSIVITY		-				BLOCK			В			See 1	ask 2 r	eport		
 RETARDATION ADSORPTION		DİNG				HEATER	R TEST TEST (S ARGE) TESTS	MALL.	В. В. В	1 1 3(2	I DCATION					
Pore fluid (fracture f (substra Fracture fil	HILLING ATE)	MATERIAL	č.		• ! ;	RETARD	AB TEST E FRACTI ATION TI TARDATIO	ST"				See If D Low UNCE	/TIQA 100	HEMIST ING TO BECAUSE IN TEST ER BARRI	1 OF RET	ARNAT I
						4 5 5 5 5										
											• • • •	[
			istan Silante	Pictor Bistor		AUSSA IX							99 16.51		i Averi Re	T'S
													7			

FREQUENCY - A = SEVERAL B = NUMEROUS C = CONTINUAL 4

.

.

\$.

3

Å

 $\begin{array}{rcl} \text{STAGES} & - & \text{A} & = & \text{SITE} & \text{CHARACTERIZATION} \\ & \text{B} & = & \text{LICENSE} & \text{APPLICATION} \\ & \text{C} & = & \text{CONSTRUCTION} & \text{AUHARIZATION} \\ & \text{D} & = & \text{LPHLACEMENT} & \text{AUHARIZATION} \end{array}$

GEOCHEMISTRY

:

J. DAEMEN

(SEE JOHN GREEVES SCHEDULE) AMATULIN A-1

PA	RANET	R	LICEN	NEEDED FO	TION		URPOS	r 6	TAGE	FREQUENCY		TI	S DESCRIPT	IONS AND REP	ARKS	
Chemical Com - Pore Flu - Fracture Material - Rock	ÚD - R	• •	LAB TES	T, INCL		RETARD	ATION PR NS ITY PRE			В		LAB TI	ests on 1	JICONTAMI	NATED	SAMPLES
RETARDATION							:		•			lab ti	STS			
					£						•					
											н			-		
										· · · · · · · · · · · · · · · · · · ·						
143 1		傳释					L				[(\$2,245)				i	<u> </u>

THERMO MECHANICAL RESPONSE

.

.

1

「「「「「「「「」」」

•

.

FREQUENCY	- 1	. =	SEVERAL
		. •	NUMEROUS
	¢	=	CONTINUAL
	5		2
	F		,

• • ,

.

$\begin{array}{rcl} \text{STAGES} & - & \text{A} & = & \text{SITE} & \text{CHARACTERIZATION} \\ & \text{B} & = & \text{Licfuse} & \text{Application} \\ & \text{C} & & \text{Construction} & \text{Authorization} \\ & \text{D} & = & \text{Epplacement Authorization} \end{array}$

D. Pentz

(SEE JOHN GREEVES SCHEDULE) APPENDON & A-1

	P A UNDERSTANDING MECHANICAL TH MECHANICAL H GEOCHEMICAL F	HERMAL T	PLED HERMO-	E APPLICAT			URPOS (HHY) INCERTA	INLY	stage (inheri) PRIOR TO L.A.	FREQUENCY	See Tas Appendi	k 2 REF x A2-1	Oris and Ref Itan) ORT NTROL ST	•) TEMP,
	Mechanical Re of Rock Mass Thermal Loads As Above Thermal Condu Mass Heat Caf Heat	AS A RE	ŚULT	Test Scale) Test Scale)	· · · · · · · · · · · · · · · · · · ·	PACKAGE IN GEOC THERMAL DIFFUSI	OF WAS S CHANGI HEMISTR CONDUC VITY TO ICT TEM	s IVITY_	S						
1		. 16 1										3 70			
				·金麗麗語藝藝展示意思, ·											

GEOCHEMISTRY

J. DAEMEN

,			15.57	HEEDED FOR			TING NEPUR						
P 4	RANET	E R	LICEN IN Pi	e applicat lority ord g <u>h. 10 lo</u> y	ON R	rec (see, B	ntiended st greeves.sc	NGE EDILE)ÅL		MENIS. RE	S. ADVISE	AND LON	SEVIT
 - PORE FLL - FRACTURE - ROCK		6							 		 		
 		 				 				•			
				-11									

SUTTARY REPORT

•

112 Service and the service 南部がある 「上三日日本の家

Ð

٦

「日本」の「日本」の「日本」

4.26335

に見たいないないないのである

State 7 **EXTRACTOR** £.

1: 7

21

FREQUENCY - A = Several B = Niterous C = Continual,

÷.,

ためれたいない

 4

 $\begin{array}{rcl} \text{STAGES} & & \text{A} & \forall & \text{SITE} & \text{CHWRACTERIZATION} \\ & & \text{B} & = & \text{License} & \text{application} \\ & & \text{C} & & \text{Chistruction} & \text{Autherization} \\ & & \text{D} & = & \text{EMPLACEMENT} & \text{Autherization} \end{array}$

1 × 1

c

THERMOMECHANICAL

	e: •••••••	. 				B = NUTH C = CON	EROUS TINUAL,	•				B = LICENSE A C = CONSTRUCT D = EMPLACEME (SEE JOHN GRE		H.	WOLLENB	,	
		P /	RAMET	R	TEST LICEN	HEEDED FO E APPLICAT (MHAT)	•	P	URPOS (war)		STAGE	FREQUENCY	 TES	DESCRIPT	Chis and Rei	WRKS	
		RESPONSE OF HEATING	Rock Mas	s To	Chambei	r Tests	(EFFECT: HYDROLO GEOCHEI	STIGATE S OF HEA GIC SET NISTRY A	TING ON TING, ND THER	B, C	Once	INCORPO HEATED MONITOR	hydro/ rating to 100° ed by t	HERMOME WATER , AND I HERMOCOI	FILLED (TS EFFE(PLES, E)	HAMBER, TS (TEN
						ed ther cal & I)	ydro-	OF A L	ANTCAL B ARGE REP VOLUME TE ROCK	RESEN- DF THE MASS.			SOMETER RADIAL FMANATI	s and p and lon	RESSURE	TRANSDU	ers in Holes
							• •	FURNI	H INPUT PREDIC ASS RES	FOR TING TH							
					Heater	Tests		SIMULA	STIGATE OF HEA ED WAST ON THE IES IN	TING BY E CAN- ROCK	B, C	ONCE	simulat And Eff And Ext	ING APP ECTS MO ENSOMET	TER TEST ROPRIATE NITORED ERS IN V DRILL H	WASTE I	DADING DCOUPLES
					Heated	Block 1	Tests		D MID F								
					 - -												
ייין (ייין (. 1	10 4 - 44	sa per j	(清]	1341-	T	长储存	in the second	US M					\$ 10			T

THERMOMECHANICAL

Party and the second second

行外は語言語を

のいたないない

SUMMARY REPORT

H. WOLLENBERG

P /	RAMET	ER	LICEII IN Pi	NEEDEDLEOR E APPLICATION IORITY ORDER GHL 30.10M			REC	iffended si Greeves sc	NGE EDULE) CE	·ć~))7/	<u>-1</u> a		ion for Pr C <u>htifndatio</u>			
Responses of to heating	Rock M	ASS		r Test)	·	IF STAR A GOOD OF THE FOR THE EVALUAT PORTION CONTINU	TED IN A PORTION TEST WOL LICENSE ION. IN OF THE E INTO T	TIMELY OF THE LD BE A APPLIC E_COST- TEST WO HE CONS	FASHION RESULTS VAILABLE ATION DOWN LLD		The most	ON OF T	HE RESP	D TO AC NSE OF ATING.	HIEVE T A LARGE	ie Volumi
			(Heater (1)	Test)		AUTHORI STARTED STAGE SC THE RESL FOR EVAL APPRECI	IN SITE THAT A ILTS WOU LIATION	CHARAC GOOD P LD BE A	ORTION C	F	HEATING	BY THE	WASTE C	LIATE TH NISTERS E ROCK	ON THE	MECH-
							-									
							· · · · ·									

7 * 12 T 20.0 ð. 198 4 お言語のない h 14 4

おんてもうないろうとない

FREQUENCY - A = SEVERAL B = NUMEROUS C = CONTINUAL

4

5

源金の後年のあるなどで

13

NAME OF TAXABLE

ι.

1

1

- - -

 $\begin{array}{rcl} \text{STAGES} &= & \text{A} \stackrel{=}{=} & \text{SITE} & \text{CHARACTERIZATION} \\ \text{B} &= & \text{LICENSE} & \text{APPLICATION} \\ \text{C} &= & \text{CONSTRUCTION} & \text{AUTHORIZATION} \\ \text{D} &= & \text{EHALACEMENT} & \text{AUTHORIZATION} \end{array}$

D. HAMBLEY

P. 1 OF 2

PARAMETER	TESTS NEEDED FOR LICENIE APPLICATION	PURPOS STAGE FREQUENCY	TES DESCRIPTIONS AND REMARKS
THERMAL CONDUCTIVITY	HEATER EST	IO DETERMINE THE LARGE SCALE	PERMITS ASSESSMENT OF THERMAL CON DUCTIVITY, THERMAL DIFFUSIVITY, SPECIFIC HEAT AND COEFFICIENT OF THERMAL EXPANS ON.
Thermal Diffusivity Specific Heat	lab tests	TO PROVIDE A FIRST APPROXIMATION TO ROCK THERMAL PRO- PERTIES	IT IS DIFFICULT TO EXTRAPOLATE RESULTS OF LAB TESTS ON INTACT SI IMENS TO THE IN-SITU BEHAVIOR OF ROCK MASS.
Thermal Expansion	Temperature Logging	TO PROVIDE INFORMA- TION ON THE GEOTHER- MAL GRADIENT AND THERMAL DIFFUSIVITY	
Temperature Effects on Rock Properties	Chamber Test Block Test	TO DETERMINE DN-SITU B 1 ROCK MASS PROPERTIES AT ELEVATED AND AMBIENT TEMPERATURE TO DETERMINE THE IN-	A LARGE SCALE CHAMBER TEST SUCH A PROPOSED BY LBL CAN PROVIDE A LAF AMOUNT OF DATA ON ROCK BEHAVIOR A ELEVATED TEMPS, UNDER CONTROLLED DUCTIONS,
		SITU ROCK MASSI PROPERTIES AT ELEVATED TEMPERATURES B 2	BY USING FLAT JACKS IN THE PERIME AT THE BLOCK TOGETHER WITH SURROL HEATERS ONE CAN MONITOR THE EFFEC ELEVATED TEMPERATURE ON THE DEFOR RESPONSE OF THE ROCK USING CONTROL
			HEATERS AND JOINT PERMEAMETERS, T EFFECT OF ELEVATED TEMPERATURES O JOINT PERMEABILITY CAN BE ASSESSE
Temperature Effect on Engineered Barriers	Lab Tests	TO PROVIDE A FIRST APPROXIMATION TO BEHAVIOR OF ENGINEERED BARRIERS AT ELEVATED TEMPERATURES	THIS IS IMPORTANT FOR ASSESSING T ISOLATION OF THE WASTE AS WELL AS THE PRACTICALITY OF RETRIEVAL.

5

1. 1. -31° 19 11 1 個和總統 "你们,你们们的你们的你的。" 1 -

31 ÷. . .7

4

ł

Ĩ

Ś んちち

APPENDER OF

÷

1

語

「ないとうしていているので

ないがある

		- 111	erioneo		1		FREQUENCY	- A = SEV B = NLM C = CON	ERAL EROUS TINUAL	ì	L i	\$		A = SITE CHA B = License (C = Construc D = Emplacem (see John Gre			61 - 1/1 1	D. Ham p 2 of		
	х 				RAMET	R	LICEN	NEEDED FO E APPLICA (MAT)	£		URPOS		, 2	FREQUENCY		TES	DESCRIPTI	ons and rei (DW)	NRKS	
							Chamber	Test		PROPERT	MINE IN IES OF E BACKFILL DS.	NGI-	с				·			
					•															
				 - - -					• · · · · · · ·	2 2 4 4				-						
						•														
						; ; ; ;	· ·								•					
			<u></u>						9 											
			. <u></u>	4 			 -									; ; ; ;		 		
					1.1 . <i>2 .</i>		1 		s a a Britse	e descende a c				2011			<u> </u>			
1			i (j e te linte		16 16 1	新 達 野 となって、	n (ferfel) Victoria	n∎entr∰ e		CH-HARAN SECTO	41 · · · ·	station in the second sec			1993-191 BK	-				100 - 1 00

1

FREQUENCY - A = SEVERAL B = NUMEROUS C = CONTINUAL

「「「「「「「「「」」」」」」

4

ŧ

1

おきたがない

治理行

.

.....

STAGES - A = SITE CHARACTERIZATION B = LICENSE APPLICATION C = CONSTRUCTION AUTHORIZATION D = EMPLACEMENT AUTHORIZATION

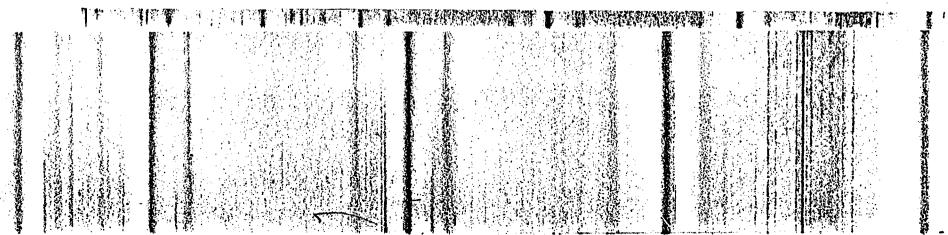
R. GATES

THERMOMECHANICAL

(SEE LOUG GREEVES SCHEDULE)

 								 (8	EE JOIN GRE	EVES SCHEDU	LE)/\{ <i>\frac{1}{2}, \frac{1}{2}, \frac{1}{2}</i>	2018 A-1			
P A	RAMET	R	TEST	NEEDED FO E APPLICAT (MHAT)	TON .		URPOS	STAGE	FREQUENCY		TES		ONS AND REI	ARKS	
Thermal condu	стіvітү						IMPACT ON	ANDV 7		17 - - 1	SEE	task 2			
Specific heat			BLOCK	TEST				B ·	1		SEE	task 2	REPORT		
Thermal expan	ISION		LARGE	SCALE T	EST	- 		 В	1		SEE	task 2	REPORT		
Heat effect o ties Heat effect o	1			SCALE T	EST			 В	6		SEE	task 2	REPORT		
		1 ·	INSIF	TEST B TESTS TURE LO	r 5 1	(GOLDEF	Assoc.)	 В	1 20		SEE	task 2	REPORT		
			13.49 13.49	No. 1						(\$22,256					 ****
											たなが、市民に対				

THERMOMECHANICAL


SUTTARY REPORT

1

۱

D. HAMBLEY

THERMOMECIAN	IICAL	TEST NEEDED FOR	·		u sera di filimente di Summaniane di 19 anni mendendi 2 anni mendende di 19 anni mendendi 2 anni 19 anni 19 anni
	RANETER	LICENCE APPLICAT IN PRIORITY ORD 11 HIGH, 10 LON	CH FR	RECEIVIENDED STAGE	JUSTIFICATION FOR PRORITY
Thermal Condu Thermal Diffu Specific Heat Coeff. of The Expansion	SIVITY	HEATER EST TEMPERATURE LOGGING LAB TESTS	(1) (2) (3)	PRIOR TO B	A HEATER TEST IS THE MOST PRACTICAL MEANS OF DETERMINING IN-SITU ROCK MASS PROPERTIES, TESTS IN THE NEAR SURFACE TEST FACILITY (NSI WOULD BE INAPPROPRIATE BECAUSE OF DIFFERENT STRESS LEVELS, DIFFERENT BASALT FLOW AND
					DIFFERENT HYDROLOGICAL CONDITIONS, IT IS DIFFICULT TO SCALE FROM LAB SPECIMENS TO FU SCALE IN-SITU BEHAVIOR
Temperature E Rock Properti	FFECT ON	Chamber Test Block Test	8	PRIOR TO B	BOTH US THESE TESTS ARE RELATIVELY UNTRIED. HOWEVER, WITHIN THE LIMITATIONS OF THE TEST PROCEDURES, VALUABLE DATA CAN BE OBTAINED.
Temperature E Engineered Ba		Lab Tests		PRIOR TO B	THE PROFERTIES OF PROPOSED ENGINEERED BARRI AT ELEVATED TEMPERATUR'S ARE CRITICAL TO TH FUNCTION OF THE REPOSITORY. ANY DOUBT AS TO THE VALUE OF THESE BARRIERS CALLS IN QUESTION THE THER THE REPOSITORY WOULD BE EFFECTIVELY
					ISOLATED AND HENCE SAT FY LICENSING REQUIRE

FREQUENCY, -	A	=	SEVERAL
1	8	=	NUMEROUS
. .	С	۰	CONTINUAL

時間の

.

.

 $\begin{array}{rcl} \text{STAGES} & - & \text{A} & = & \text{SITE} & \text{CHARACTERIZATION} \\ & \text{B} & = & \text{License application} \\ & \text{C} & & \text{Cristinction Authorization} \\ & \text{D} & = & \text{Explacement Authorization} \end{array}$

THERMOMECHANICAL

D = EMPLACEMENT AUTHORIZATION J, DAEMEN (SEE JOHN GREEVES SCHEDULE) APPLNDIX A.1

							• •			e	(see john gri	EEVES SCHEL	ULE) APP(n	1.A kiel		•	
	THERMAL (SPECIFIC THERMAL (Conda Heat	t (etc		LICEN	NEEDED FO E APPLICAT (HHAT) ORY DET N CORE	ION ERMINA-	Data ne Mechant Hence t	URPOS (MM) EDEDFO CALMOD NDIRECT GICALM	R THERMO ELING, LY FOR		FREQUENCY		tes Standari	· · · ·	(VIS AND RE (CH) STS	ARKS	
	Thermal Chemical				INATIONS GROUNDF	OCK MAT	PLES OF	TURE ON	(ISOLAT	EMPERA-	B.	В						
	RESPONSE HEAT ING	OF	Rock Mas	SS TO			• •		1		C/D	A		LHAMBER	RGE SC/	1		
	RESPONSE COOLING	OF	ROCK MAS	SS TO	TURES, DISPLAC	stresse Ements Due to	TEMPERA S AND DURING I CON- TILATION	COMPARE	? Measur	ED WITH	B/C/D	В		AN BE IF STAR NILL PR DATA BA	DONE AT TED FROM OVIDE A SE, WII	RELATIV START LOW-COS	ELY LOW OF EXCAV I LARGE A FAIRL GE ONLY	ATION VOLUME V
													* *					
			1	ļ								-	• • •	·				
1								Nasionalista										

THERMOMECHANICAL

SUTIWRY REPORT

*2.8

.

, ·•·

R. Gates

-	P /	RANEI	LICEN IN P	HEEDED FOR E APPLICAT IORITY ORD <u>GHL_10 LOM</u>	ONI R · ·		REC (SEE1.	ITHENDED ST	ge Edule)AL			MENIS. BE	l	S. ADVISE		•
	Heat Effect (properties	n rock						B			Thermal Vehicle Best av Now) Mu	LY INDUC FOR RAI AILABLE ST. BE US	ED HEAD IONUCLI TESTING ED TO T	on hydi de moven (possii <u>Ry to g</u> i	OLOGY I ENT, TH LY BETT T BEST	s Majo Erefor Er tha Availa
											ANSWER					
	<u>.</u>							·								 .
			 							·				 		
			 1			 							 			

77 1.4 MARKA STATE Construction of the second sec 法にはな 1 , a 「「「「「「「「「「「」」」」」」 200 . のための いたちからになる たいと Survey and Constant of Ne. . . . :

HYDROLOGICAL RESPONSE

٠,

.

FREQUENCY	- A	-	SEVERAL
	B	=	NUMEROUS
	C	-	CONTINUAL
			۲

.

$\begin{array}{rcl} \text{STAGES} & - & \text{A} & = & \text{SITE} & \text{CHWRACTERIZATION} \\ & \text{B} & = & \text{LICENSE} & \text{APPLICATION} \\ & \text{C} & = & \text{CRISTRUCTION} & \text{AUTHORIZATION} \\ & \text{D} & = & \text{LIPELACEPTENT} & \text{AUTHORIZATION} \end{array}$

D. Pentz

(SEE JOHN GREEVES SCHEDULE) APPENDIX A-1

South No.

禄蚄

のないない

ŗ,

ないための

	AMETER		PPLICATION		U R P O S		.(WEN) .	FREQUENCY		(INS AND REA	.
HYDRAULIC CON FUNCTION OF AN CHANGE IN EFFI <u>CHANGES IN T</u> SPECIFIC STOR	NISOTROPY, ECTIVE STRESS, MPERATURE AND AGE IN UN-	Tests	BOREHOLE	DEFINE CONDITI TO DETE VERT. H	RMINE F	RM DSSIBLE ROM	PRIOR TO L.A.	3 pumps, holes in 3D	TEST CO PERMEAB	/ATION H JLD BE A	s (BWIP) Oles Noti Dopted t Constru RTIES.	E. IHIS OMEASUR
DISTURBED ROG POINT HYDRAU INDEX PERMEAB MENTS	K ZONE . IC PERMEABILIT ILITY ASSESS-	Single Bo Shaddle P Tests		CONF IR VARIABI	HYDRAU LLTY	.IC	Prior to L.A.	say 200 ie B	Cheap s constru	MALL TES	ts in ur Duced Da	DISTURBE MAGED RO
GEOLOGICAL FR. GROSS VERTICA PERMEABILITY FACILITY	L.	TRIBUTION AFTER CON OF OPENIN MOUNDING, GROSS WAT AND AIR S	GS IN ROCK HEASURE ER BALANCE SEQUENTIALLY	FORMANC	E OF TH NSTRUCT	IN ON	Prior to L.A.	CONTINUO	us Hote al Nt dept		can only	TO PERF
Note_	Every effort s Particular emp	AND WITH HOULD BE M HASIS ON V	ADE TO QUANT	FY HYDF	AULICAL	VAR I AB	LITY TH	ROUGHOUT	THE ENTIRE SI	TE FROM	SURFACE	BOREHOLE

ÿ

12

ď

÷.

あまたの

11

A CONTRACTOR OF A CONTRACTOR O 「「「「「「「「」」」 j.,

5

-

「日本語のない

THERMOMECHANICAL

· · · · ·			TCOT	WEEDED EOB			. Su	HWRY REPOR	it i					. DAEMEN		
1	RAMET	E R	LICEN IN P	e applicat iority ord gh. 10 low	R		REC	144ENDED ST	nge edule) Av	GLDIX A	/c	JUSTIFICA MENTS, RE	ion for Pr onliendatio	ORITY		
Thermal Cond Specific Hea Thermal Expan	ICTIVIT) F (ETC ISION	-)	2				В				NEEDED	for prei	IMINARY	MODEL II ESPONSE		ermo-
 Thermal, effe chemical pro and joint fi	PERTIES	OF ROCK	1				В				AND LON	for prei G-term i 10chemi(OCK/FIL	LONGEV L (JOIN ILITY	ty calc) predi	ULATION CTIONS
 LARGE SCALE RESPONSE TO	ROCK MAS	s	3				B/C/D				MECHANI	CAL MODI	ELS AT R	CHANICAL ELATIVEL E - LOW	ly low d	D - DST -
 		· · ·				·										
 									1							
									i							

i

] († ð., 深いるかい The second se ñ 下きたいろうないであることなったない のないの 諸語の言語を言語である :

H. WOLLENBERG

.

代してなかかうちまうない

言いなのある

注いにの語う ÷...

FREQUENCY	-		
			NUMEROUS CONTINUAL
	ł.		

 $\begin{array}{rcl} \text{STAGES} & & \text{A} & \text{SITE CHARACTERIZATION} \\ & \text{B} & \text{License application} \\ & \text{C} & \text{Construction Authorization} \\ & \text{D} & \text{Entracement Authorization}^{\prime} \end{array}$

(SEE JOHN GREEVES SCHEDULE) APPEN DIX A-1

:

IM	DRO.	· .				-				<u>. </u>	(:	SEE JOHN GREEVES SCH	edule) <i>Appe</i> ,	NDIX A	-1		
		P A	RAMET	R		NEEDED FO E APPLICAT		P	URPOS		•	FREQUENCY	TES		ICHIS AND REI	WRIKS	
		DIRECTIONAL (MEABILITY & S IN HOST ROCK	TORAGE	L) PER- COEFF.	MULTIPL	(1914T)== . E BOREHC	1	Establi Rectors Host Ro	(MIN) SH PERME IN CANE CK	ABILITY IDATE	-(men) _ A	DEPENDS ON RESULTS OF DETAILED MAPPING OF WORKINGS	DRILL	CKED-OF	(ioh) Interi Measure Oring Ho	AL OF C PRESSU	ntral Res in
		Perm. & Stora opening and/c induced fract	XR THERM	, of Ally	Ventila K& dete mine wa	ION TES MINATIC TER BALA	IN OF	Establi of larg rock ma	SH PERME VOLUME SS	ABILITY OF	A	Following DETAILED MAPPING OF WORKINGS		HOLES.	INTROD	AFTER D LCE DRY / ER CONTE RRENT PR LS IN RA	IR INTO
					Chamber	Test		HEATING OF A LA ROCK UP	GATE EFF ON PERM RGE YOLU TO LOM WORKING	EABILIT ME OF FROM	A	ONCE, FOLLOWING DETAILED MAPPING CORE LOGGING	COUPLEI (SEE W	d Hydroi Riteup (LOGIC-TH THERM	EXMOMECH DMECH. S	TEST-
		MDROLOGICAL GEOLOGICAL	FRAMEWO	жк 	HE EXI PERMEAB	STING HO	tes sho	ULD BE	UTILIZEI	FULLY	TO ACHI	THES INCORPORA	DEFISTANDI	FÀCE DRI NG OF TI	ILHOLES E REGIO	NALI VERT	ICAL
								WES A									T.

-

FREQUENCY - A = SEVERAL B = NUMEROUS C = CONTINUAL STAGES - A = SITE CHARACTERIZATION

B = LICENSE APPLICATION<math>C = CONSTRUCTION AUTHORIZATIOND = EMPLACEMENT AUTHORIZATION

D. Pentz

なんであるとあいました

(SEE JOHN GREEVES SCHEDULE) A PAFA OI + A-1

TEST NEEDED FOR STAGE FREQUENCY TES DESCRIPTIONS AND REMARKS PARAMETER LICENSE APPLICATION PURPOSE (inw)__ (MAT) . (HIY) (MIEN) ... (1) CHAMBER TEST (2) MODIFICATION OF MINE- BY TEST (3) LBL TYPE (4) POINT SINGLE POINT (5) BLOCK TESTS EVALUATION OF CONSTRUCTION These tests are only necessary if the chamber test is performed INDUCED FRACTURE ZONE IN HYDROLOGICAL TERMS A STATISTICS 語言であると South the second **教**]

HYDROLOGICAL RESPONSE COMBINED

事業はないないないないないない

FREQUENCY - A = SEVERAL B = NUMEROUS C = CONTINUAL

STAGES - A = SITE CHARACTERIZATION B *: LICENSE APPLICATION C * CONSTRUCTION AUTHORIZATION D = EMPLACEMENT AUTHORIZATION

HYDROGEOLOG I CAL

, D. HAMBLEY

(SEE JOHN GREEVES SCHEDULE)

14

1

1000

が設置け

P A	RAMET	R	LICEN	NEEDED FO E APPLICAT (NHAT)		P	URPOS		STAGE	FREQUENCY		TES		HIS AND REP ICH()	ARKS	
DIRECTIONAL AND STORAGE ROCKS			SINGLE MULTIPL TEST			PERMEA	ERMINE BILITY O ASS AND AVEL TIM WATER	f the Hence	A	SEVERAL 1	THE "B Assura	ell" but Ice that	THERE THE VO	BE CARF NOULD BE LUME SAN SENTATIN	LITTLE PLED IN	
PERMEABILITY COEFFICIENT OR THERMALLY FRACTURES	DF EXCAN	/ATLION - D	A) CHAM B) SING TE C) MULT TE D) BLOC	le Borei St Iple Boi St	ole Ehole	PREMEA FRACTU OPENIN	gs and 1 N-At-Eli	F OUNDING HE EFFE		2 1 1	IF, WO STANDA VIRONM THE RO	IST CASE IDS VIS- INT CAN	MODELI A-VIS T BE MET AVEL.	OSTPONE IG INDIO IE ACCES FOR EX FOR EX FOR TESTS TORITY	ATES TH SIBLE E AMPLE,M LISTED	AT EI H- DDEL
Hydrological Geological						RELATI OF THE REGIME LOGICA THE RE	ERMINE 1 VE IMPOL HYDROL TO TOTA CESSIBLI ENT	TANCE GICAL L GEO- ION AT- FROM	Prior to la		Hydrol Assurat Reposi	CE THAT	ONDITIO A SITE	IS ARE C COULD F	RITICAL	TO AS
										4 9		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			-	

Å.

1980.94

派派

ACCEPTION NOT TO A

夏 1

あったいとうないないとういとうな

H. WOLLENBERG

2015

HYDR	0.		.	TEST	NEEDLD FOR	ċ		twry repor	T							
	P /	RANET	ER	LICEN	e applicat iority ord <u>ght, 10 low</u>	ON	 DUC		vge Edule)AP	<u>t/911_</u> (-1 PERMEAB	JUSTIFICA	ion for Pr Comendatio	ORITY ISZ. ADVISE	ATE LOC	DOCK
<u>А</u> 	IRECTIONAL (ERMEABILITY DEFF, IN HOS	AND STO T ROCK	RAGE	(1)			 				UST BE		NED		AIE HUS	
Pi OI JI	erm, and Sto F opening an NDUCED FRACT	rage Co d/or th ures	FF.	(1)			 A				ihe effi of the i rock wi (the zon accessii	EPOSITO HIN 10 E OF PO	ry on ti Mof th Issible	ie perme Reposi Short ci	ABILITY TORY GAI RCUIT TO	of the Leries The
	YDROLOGICAL HE GEOLOGICA			(1)			A 			2	Regional Stood to Ducing / Flow PA Through Reposito	PREDIC REPOSI HWAYS F THE ROC	t and a fory an rom the	SESS EF	FECTS OF	INTRO- SSIBLE AND
												KT.				

0

٦ . 悍 117 THE PARTY IS Г). У Ş, . なななない の一般の がした E ٥. 古いのある

FREQUENCY - A = SEVERAL B = MUNERCUS C = CONTINUAL

-

.

٠

4.

¥

$\begin{array}{rcl} \text{STAGES} & - & \text{A} & = & \text{SITE} & \text{CHWRACTERIZATION} \\ & \text{B} & = & \text{LICENSE} & \text{APPLICATION} \\ & \text{C} & & \text{CRISTRUCTION} & \text{UNIFORIZATION} \\ & \text{D} & = & \text{CHILACEMENT} & \text{AUTHORIZATION} \end{array}$

HYDROGEOLOGY

~

R. Gates

(SEE JOHN GREEVES SCHEDULE)API'I N DIX A -1

			5							SEE JOHN GRE	EVES SCHEDU	AEXIP(') al	bix A+1			
PA	RAMET	R	2	HEEDED FC E APPLICAT	\$ I	P	URPOS		STAGE (INTERI)	FREQUENCY				ins and rep (dh <u>)</u>	ARKS	
DIRECTIONAL AND STORAGE IN HOST ROCK HYDRAULIC	COEFFIC	ļent İvity	WATER MONITO PERMEA	BILITY -) TEST	FOR CH	AINTY - EAP EASY T KNOWLE ELOW PRO	₹ IM-		C			ask 2 r			
EFFECTIVE SPECIFIC S PERMEABILITY COEFFICIENT	TORAGE AND ST DF OPEN	QRAGE	(MULTI PERMEA (SINGL TESTS	BILITY BILITY BOREH	HOLE) TEST OLE) THROUGH	INFORM DIRECT LARGE SAMPLE	ATION OF	DW FOR	<u>−</u> ₿ ₿.	3 (3 рл 1 го	RECTION CATION	' See 1	ask 2 r	PORT		
 OR THERMALLY FRACTURES		<u>D</u>	FRACTU ZONE)	re zone And inti	UN - UN- TROCK,	D SAME A LEARN	S ABOVE	RIABI-	B B	450		See 1	ask 2 r	PORT		
IN-SITU HYDR (PART OF G WORK)			IN BOR	PRESSUR	1	יי קור			A,B	C	5	See t/	isk 2 re	ORT		
			BLOCK	TEST		EFFECT	RN ABOU WITH T IICAL RE	i couple Ermo- Sponse	D B	1		See T/	ask 2 re	FORT		
				 [• • • • • • • • • • • • • • • • • • •						
																1.2

1

たいである

15 ٤.

.

ŝ

ł

ł

Sec.

۱

HYDROGEOLOGICAL D. HAMBLEY .

.

- <u>8</u>-1

No. of the second second second second second second second second second second second second second second se

P & R & M E T E R IN PHIORITY ORDER RECOMMENDED STAGE	
	JUSTIFICATION FOR PRORITY
DIRECTIONAL PERMEABILITY 1 AND STORAGE COEFFICIENT IN HOST ROCKS (EMPHASIS ON VERTICAL PERMEABILITY)	LOW PERMEABILITY AND, HENCE, LARGE TRAVEL TIMES FROM THE REPOSITORY TO THE ACCESSIBLE ENVIRONMENT (FOTH VERTICALLY AND HOR ZONTAL ARE THE PRIMARY PREREQUISITES FOR SUITABILI OF A CANDIDATE SITE.
PERMEABILITY AND STORAGE 1 COEFFICIENT AT EXCAVATION - ON THERMALLY-INDUCED FRACTURES	IF IT CAN BE SHOWN THAT EVEN WITH HIGH PERMEABILITY MODEL STUDIES INDICATE THAT EPA STANDARDS CAN BE SATISFIED, THEN THIS PARAMETER BECOMES REDUCED IN PRIORITY. HOWEVER, IT MUST BE BORNE IN MIND THAT
	FRACTURE ZONES WILL EKIST SUFROUNDING OPENINGS AND THAT THE PERMEAUILITY OF THESE ZONES WILL BE SEVERAL ORDERS OF MAGNITUDE GREATER THAN THE INTACT ROCK, I.E., PERMEAUILITY WILL BE FRACTURE CONTROLLED,
HYDROLOGICAL PORTIONAL 1 GEOLOGICAL FRAMEWORK APPLICATION	IRANSPORT OF RADIONUC IDES BY WATER S THE PRIMARY MEANS, IF ANY, THAT MATERIALS FROM THE STORED WASTES WILL REACH THE ACCESSIBLE ENVIRONMENT, THUS, THE HYDROLOGY OF THE ROCK MASS AT THE REPOSITORY HORIZON AND
	ABOVE) IS OF FARAMOUNT IMPORTANCE IF THE REPOSITORY IS TO BE ISOLATED.

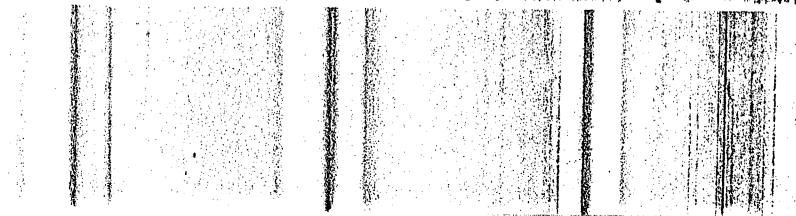
SUNIWRY REPORT

ļ

1 -

÷

· . ·


-

÷.,

のためできたないないないないである。

.....

÷

HYDROGEOLOUY

e -	*****				JEST	REEDED FOR	z i Et es	•	SU	TARY REPOR	:T					R. Gates	<u> </u>	
		P /	RAMET	ER	LICEN IN PI	e applicat iority ord <u>gh., 10 lok</u>	ON R		REC	MMENDED ST	AGE EDULE)(()()	GKDIN.	<u>a.a. a</u>	JUSTIFICA MENIS, REC	ion for Pr C <u>hmenicatio</u>	ORITY		
		See oth	r sheet		ALL PRI					rior to Ton			THESE T	ests Ari Ty to oi Sy is ti	REQUIR	ed to r Easonab	DUCE UN E ASSUR PE OF FORMANC ENOUGH	- ANCE" E, SO
										2			OUTSIDE	CRITIC	CANNOT	DELAY		
				<u> </u>														
· [-																		
																		-

٠.,

۱

ግም . 117 化日常原 T S. P. S. LURIS SUSERIE CHARLES AND AND A PARTY OF A BUNNER IN A AVERA a. 2 1 松田の 東京には「「「「「「「「「」」」 *. いたいないないない AND STATE Ţ.

11

•

•

HYDROLOGY J. DAEMEN

SUMMARY REPORT

6 TI IT IT				JEST.	NEEDED FOR											-	
_	P / LARGE SCALE / HORIZONTAL P		AND	IN P (1.11 1 (111G)	e [°] applicat Iority ord Gh <u>10 low</u> EST PRI ON ASPE	R DRITY OF	ALL .	REC (SEE). B	ntiended st greeves.sc	AGE EDULE) AI	INFORM	TION CA	MENTS. RE	AINED O	ORITY ISLADYISE NLY FROI LOSSES		
 	3-DIMENSIONA			HATER E	ALANCE	10NITOR	NG	B			TUNNEL: SMALL, KEPT A	, DURIN ONLY MO D_INTER	g and af Nitorink Preted	TER CON	STRUCTIO DED - D/	n, Cos ta must	T IS BE
	TENSOR				TIONS						TIVE O ESSENT FORMAN DIFFIC	REPOSI ALFOR E.NUM LTTOE	Tory hoi Estimat Ber of i Stimate	izon ro Ng neaf Oles ne Until-F	CK FLOW FIELD EDED IS RACTURE	IT IS SOLATIC DEBATEAI CHARACT	n Per- Le Eristic
											ARE BE	G, WIDI TER KNO DRILLIN	WN, I.E	UNTIL	ENTATIO SEVERAL LETED.	HUNDRED	NUTTY) SOF
	Damaged zone - excavati - stress r	IN DAMAG	E					B/C	D		BE MEA TYPIC TATIVE	URED IN L"EXCA IT IS	REPRESI VATION A COMPL	NTATIVE THE "E CATED S	MPORTANK EXCAVAT ELL" IS HAPE (FO THE BOT	ION, I. <u>NOT</u> REP R BLAST	E. NEED RESEN- ING),
											NOT PR	VIDE SU	FFICIEN	REPRES	L COMB ENTATIVE DGICAL V	ACCESS	
					-												

ी 🕸 14.75 STR. 1 ्राष्ट्र साह ł Š. いのないのの Į 出版学具地的 12.4.4

FREQUENCY - A = SEVERAL, B = NIMEROUS C = CONTINUAL

1

.

.

.

Ð

調査会

N 1 1

$\begin{array}{rcl} \text{STAGES} &= & \text{A} &= & \text{SITE} & \text{CHARACTERIZATION} \\ & \text{B} &= & \text{LICENSE} & \text{APPLICATION} \\ & \text{C} &= & \text{CONSTRUCTION} & \text{AUTHORIZATION} \\ & \text{D} &= & \text{EMPLACEMENT} & \text{AUTHORIZATION} \end{array}$

HYDROLOGY

J. DAEMEN

.

....

:

(SEE JOHN GREEVES SCHEDULE) NET A -1

<u>ر</u>	ala kurala (* <u>.an inter</u> ter								T	() 1772	SEE JOHN GRE	EVES SCHED				[r
	PA	RAMET	R	LICEN	NEEDED FO E APPLICA (WHAT) _	тјон		URPOS . (vary)		STAGE (WEDI)	^{''} FREQUENCY	i i	TES	DESCRIPTI	ons and rei Ion)	NRKS	
ľ	LARGE SCALE V HORIZONTAL PI ESTIMATES	ERTICAL RMEABIL		Monitor Balance - Dur Sin	ing of Ing Sha King	WATER	THE MOS ISOLATI FOR THE CONTRIB	T CRITI ON PARA FAR FI	ĊAL METER ELD	A/B/C D			DURING	OUSLY M AND AFT CTION A	NITOR V ER ALL U	ATER BA NDERGRO ING, I NDICATO SCALE	UND 15 THF
			-		ing tun Avation		WASTE 1			······································		· · · · · · · · · · · · · · · · · · ·	DOWN AN ADDITIC WILL PF ABOUT L	D DEPRE N OF A OVIDE E ARGE SC	SSURIZA FEW MON SSENTIAI ALE RESI	ION, W TORING INFORM ONSE. OF IN-	ITH NELLS, ATION SHOULD
		t				£						•	INVEST	GATIONS	I WILL	PROVIDE ENT, PE	LARGE
	Hydrological geological ff			PUMPING MULTIPL TESTS, TESTS I AVAILAP VERTICA	e packe Tracer N All Le	R	DETERMI STORAGE AT, ABO REPOSIT	, Charac Ve and 1	TERISTIC BELOW	V/B/C	B		Holes A BEEN EX CONTINU	(PENDED	ABLE - SHOULI	1AJOR C BE UTI	ost ha ized
	Detailed 3-d PERMEABILII	Y	ŧ.	IN-SITU	1 .	1		2 9 4 7 1 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		 							
	-			- -							L		· · · · · · · · · · · · · · · · · · ·		 		
	. Æ				4 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.		(00 200 4 V M	TUNKA								<u>i</u>	
							arress E	() (s) (x)			gewen S	an an an an an an an an an an an an an a	第二日 - 復三二日		a la	anter Vi	ſ
and the second second second																	
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		•		1			2										

Appendis A-4

107.3/JTG/82/04/23/1

- 1 -

1. Hydrological aspects of site characterization

Key issue: isolation capability of repository horizon; potential driving force that could cause radionuclide migration, potential paths for migration.

Most likely potential driving force is heat induced convection. Convention must be prevented by eliminating significant pathways. Licensing will require reasonable assurance that no such pathways exist or that they can be closed off.

Key information needed: potential pathways-their presence or absence in repository rock mass. This includes as essential parameters the fracture system in the repository rock.

Methods: as no reliable methods exist to determine fracture (discontinuity) characteristics, they have to be obtained from direct observation. This key information can be obtained from holes, tunnels and shafts. Because of the inherent three-dimensional nature of fracture systems in rock, one needs information along at least two significantly different directions. The considerable depth of a typical repository level makes it extremely inefficient to try to obtain such basic information from the surface, and impossible to obtain numerical values for the actual flow parameters from the surface or from boreholes (which cannot sample a representative elementary volume). Underground excavation of minimum representative volume is a prerequisite to valid hydrological assessment. In a typical rock mass this requires access for at least several hundred feet in three (more or less) perpendicular directions. The shaft provides one direction, two horizontal drifts the additional directions needed. The first numerical estimates of in-situ large scale characteristics are obtained by monitoring the water balance during all excavations. These numbers have to be improved by in-situ testing. Because of the well-known influence of stress and temperature on flow parameters, and because of the need to study a "typical" rock sample such tests can be performed only in-situ, and have to be site-characteristic. Testing in boreholes is not feasible because cross-hole testing is essential, in multiple directions, and at great depth.

J. Daemen (4-15-82)

107.3/JTG/82/04/23/1

Permeability of the zone directly around the tunnel has been mentioned as a key issue. Damage of this zone could be caused by stress redistribution, by inappropriate excavation methods, and by heating. Stress redistribution damage will depend on the stress field (hence on the orientation of the stress field and of the tunnel), on the size of the tunnel and on its shape, on the stiffness of the support and on the installation time after excavation. It will be extremely difficult to obtain a representative sample of the real repository situation during any

experimental tunneling, and impossible for the support method and for excavation damage which depend to a great extent on the contractor. The license application should specify how DOE will write the construction contract such that a very tight stiff support is in place even shortly after opening up around, and how they will make sure that no excessive construction damage is done. A carefully written contract can be prepared without delay in the testing program and is as important as the in-situ conditions.

107.3/JTG/82/04/23/1

2. <u>Geomechanical aspects of repositorylicensing information</u> requirements

The key issue to be addressed by the geomechanical investigation of the repository rack is to determine to what extent, if any, the geomechanical response to excavation will affect the isolation capacity of the rock mass. The most likely influence is a change in the hydrological regime of the near field, associated with disturbances around excavations. The most severe case would be a major collapse, propagating (and hence influencing-disturbing) a large distance from the excavation (tunnels-shafts).

Information needs: major discontinuity system and their geomechanical characteristics within the repository horizon; mechanical characteristics of discontinuity systems (particularly strength), stress state.

Methods: the primary information need, the geological structure, requires mapping of a representative sample. Need at least three directions, in each direction for a length of several hundred feet this minimum required (is needed for the license application, in order to determine that the variability does not exceed acceptable limits, and that geomechanical stability is exceedingly difficult to predict until a clear understanding of rock structure is available it must be considered necessary to excavate tunnel, in at least two different directions to determine potential stability problems. Two directions will provide opportunity for assessments of the influence, of anisotropy, both of stress state and of rock characteristics.

Stress measurments at repository level are essential as they provide input needed for any rational predictive method. Standard lab testing of mechanical properties is necessary to determine variability within sampled rock volume, which requires access to sufficient rock volume.

Need data on large scale in-situ strength and deformational characteristics, First (essential) method is monitoring of rock mass response to excavation. This can be performed by convergence and extensometer displacement monitoring, combined with monitoring stress changes. These results can be used to backcalculate the stress state (treating the excavated opening as a large undercoring

stress measuremtnt). Although the in-situ stress state is usually considered mainly in the context of geomechanical stability its influence on permeability, especially directly around a tunnel, deserves attention (for example, if the stress ratio in one horizontal direction is 2:1. the permeability of vertical joints parallel to the tunnel located in crown and floor will decrease, due to compressive stress concentration, (assuming excavation damage has been prevented by careful excavation) if the tunnel is normal to this direction.

J. Daemen (4-15-82)

- 4 -

3. Thermomechanical aspects of repository licensing information needs

<u>Key issue:</u> influence of heating on containment-isolation performance of rock mass i.e. consequence of thermal loading on flow-path and on flow-driving mechanism.

<u>Information needs:</u> flow consequence of heating rock mass, in particular displacement response and its influence on closing or opening of discontinuties.

<u>Methods:</u> first necessary prerequisite is establishment of geological framework (lithology, structure) and its variability. Next step is gathering properties (thermomechanical) by lab testing on samples from representative rock volume. Requires horizontal tunneling for sample collection at a number of points sufficient to establish variability.

Large scale in-situ testing of heat influence is necessary because the rock mass response depends on stress state, discontinuity geometry (orientation, spacing, width, etc...) and fill, possible excavation influence, factors which are virtually impossible to duplicate or scale.

The prime objective of in-situ thermomechanical tests is to demonstrate that it will be possible to predict the rock mass response to the heat generated by canisters, and to demonstrate that the rock response will not have an excessively damaging effect on containment.

J. Daemen (4-15-82)

Thermomechanical (continued)

A key problem in the thermomechanical area is that the heat-flow-displacement predictive models have not yet been demonstrated or validated generically, for the very short term. It is clear that the long-term response prediction will have to rely exclusively on theoretical predictions. It should be required therefore, that DOE should demonstrate, in the license application, its research efforts to improve model validation in this area. Because this is fundamental problem it can be studied generically, i.e. without interference with progress at a specific site. In-situ site specific testing can be considered confirmatory, and design fine-tuning. Of particular concern should be the long term behavior at design temperatures. If design temperatures exceed ambient significantly DOE should demonstrate in the license applicaton that is is performing generic long term studies of potential rock damage due to high persistent temperatures.

J. Daemen (4-16-82)

4. Geochemical aspects of repository licensing information requirements

<u>Key issues:</u> longevity (and possibly radionuclude retardation if hydrology considerations require it); past hydrological regime thermodynamic systems equilibrium analysis is the only method available for predicting the longevity of a repository (including its many components and aspects).

Key information needs: present physicochemical environment within repository horizon, as this will be the basic for predicting the far-field as well as the near-field response to waste influence, i.e. long term bahavior of the rock system when heated water age and compositon above and below repository level to estimate past vertical transmissivity.

<u>Key methods:</u> 1) collection of uncontaminated representative samples of rock joint fill material this would be extremely difficult from boreholes, and more reliable from a large size excavation. To determine variability one needs undisturbed samples from a number of points sufficiently far apart to allow sampling a representative volume.

2) lab studies of samples: These two steps, together with long term goechemical stability predictions (and retardation assessments) must be provided for license application. Confirmatory in-situ tests should be initiated for license application, and continue until decommissioning.

3) collect uncontaminated water samples from above, within (if present) and below the repository horizon.

Retardation almost certainly is an area which requires further fundamental research before it can be relied on.

1.5

• -

5. Repository site investigation-licensing information needs

Key issues: determine suitability of a rock formation for safe permanent disposal of HLW

Key aspects: 1. Hydrology 2. Geomechanics 3. Thermomechanics 4. Geochemistry

Key parameters for each topical area are identified in each of accompanying topical subsections. It is essential to recognize the considerable overlap of information needs between these areas. Fundamental to all is the knowledge of the overall geological framework.

Key methods: surface investigations (including holes drilled from surface) and underground investigations.

Surface investigations include remote sensing, surface mapping and geophysical surveys. These must cover the full area of the potential repository, and extent laterally to a point indicated by geological knowledge of the area. This work must be completed for a license application. The results must be presented in the form of geological/hydrological cross sections giving the best interpretation of the site geology backed up by all available factual information on which it is based. All holes drilled in support of surface site investigations must be logged (photographed, geophysical) and used to the greatest extent possible (i.e. continuously or until data becomes excessively redundant) for gathering water flow information, i.e. piezometric monitoring; pumping tests; pressure tests; pulse and tracer tests. The major expenditure (drilling) has been made and full benefit should be gained from these available facilities.

Underground testing is essential for resolving key uncertainties in all major subtopics. It is needed to establish the geological framework at the repository horizon. This requires, as a minimum, detailed mapping in three directions (vertical and two nearly perpendicular horizontal) for a distance of several hundred feet (minimum requirement to guarantee the possablity-not-certainly-of having a representative sample). Collection of uncontaminuted samples, testing on a realistic sample scale and in-situ testing requirements necessitate that some of this work-a minimum of several hundred feet in two directions-be a tunnel-type excavation. Access by one shaft only an extremely small one at that, severely

restricts the practical options for work to be performed at depth. It poses serious safety and health risks, in addition to complicating greatly logistics and environmental control. Although one-shaft access might allow the required in-situ work it will increase its cost drastically as well as increase the time required to perform the bare minimum testing essential for meeting information needs.

Key information needs: initial (pre-construction) flow characteristics (permeability); constructive influence on permeability; waste (heat) influence on permeability. Construction influence includes both stress redistribution and excavation damage. (Part of geochemical study). These information needs require full-scale in-situ testing, hence need for tunnels, in order to reduce the uncertainty to an acceptably narrow range to permit licensing.

Our entire discussion has totally (and inexcusably) omitted indirect geophysical investigation: low cost non-destructive large volume methods.

It should be obvious that the panel has expressed extremely serious reservations about current DOE site characterization proposals. If NRC agrees, I would strongly recommend assembling an outside board of consultants, without ties to either the DOE or NRC projects, with national and worldwide reputation for knowledge and experience in site investigations for major (multibillion)deep mining and civil construction projects. This board should be told clearly what the license application approval requires. This board should be asked whether the current DOE plans can provide the necessary information within the proposed time frame.

It must be clearly recognized that he timing of gathering the technical information is the crucial problem. According to DOE plans the technical information needed for an extremely comprehensive performance assessment will be obtained, but only during and after the currently planned licensing and public hearing time period. If NRC could build into the licensing procedure a mechanism for incorporating information as it develops, the time constraints would be reduced greatly.

7

.*.

- 10 -

J. Daemen (4-15-82)

Integration/overview

Any site that is proposed by the License to be a repository must, at the time of submittal of their license application must have reduced the uncertainty of meeting EPA performance criteria to the point that NRC can prepare a safety evaluation report for that site with "reasonable assurance" that the EPA Criteria will be met. Future updating of the license or amendments may only confirm the reasonableness. The four key issues discussed above cannot be taken up individually because mother nature does not take them up individually. The needed information and methods for obtaining that information must recognize the leakage or coupling of one to the other. There is no way that the information required for a safety evaluation report for 2-4 billion \$ repository facility can be obtained with surface drill holes and a shaft with a small bell. No client working underground would make such on investment with so little information. I feel tunnels must be excavated at the proposal repository depth to improve our knowledge of the extent of the proposed repository horizon and the variability of the information needs (characteristics, parameters and factors). Some of these tunnels of test section need to be full scale to the openings in the proposal design. At least 2 orthogonal directions should be tunneled; enough tunnels excavated to conduct the test methods proposed below without adversely effecting the results of individual tests, but staying within MSHA standards for working underground with only one shaft. Five hundred to one thousand feet seems to be a reasonable range of tunneling with size options from $12' \times 12'$ to full scale (18' x 17' at Hanford). The following table of tests integrates the methods proposed to get the information needed to adequately address the key issues discussed prior to License Application for a selected site.

Test	Quantity	Key Issued Addressed	<u>Priority</u>
Plate test	6	geomechanical response	2
Block test	2	geomechanical, thermo- mechanicals hyrdrologic response	3 al
Pressure Chamber	1	geomechanical, hydrolog	i- 2

- 12 -

test

monitoring

cal and geochemical response Continuous Detailed Mapping geomechanical, hydrological 1 of all openings 1 geomechanical response Mine by test 1 Heater tests thermechanical and Larger Scale 1 2 chemical response Small Scale 6 3 thermechancial and chemical response Permeability and 3 hydrological and 1 tracer test Geochemical response (multiple borehole) Permeability test 450 hydrological response 1 (single borehole) Overcoring 27 geomechanical response 1 (in situ stress) Flatjack test geomechanical response 3 9 (in situ stress) Groundwater 20 hydrological, thermechani-1 sampling and cal, and goechemical Temp. logs response Pore pressure Continuous hydrological response 1 and mine drainage

The proposed program is cost effective and practical. Good planning can allow for future use of the tunnels and test areas. A second shaft would be desirable and would allow for more comfort and efficiency and could be constructed conventionally and be one of the shafts of the final repository. A second shaft could accelerate expenditure of some planned funds, but would not increase total costs if the site became a repository. The exploratory shaft should - 13 -

ž

cost much less than \$50 million and the testing problem and excavation proposed above could cost less than \$20 million. Probably any testing for engineered barriers and retreivablity needed at this time could also be accomplished within the above estimates. The attached table shows the subjectively assessed acceptable level of uncertainty for each information need (characteristics) in the opinions of Golder Associates (D. Pentz and R. Gates).

ACCEPTABLE LEVEL OF UNCERTAINTY IN THE ASSESSMENT OF EACH CHARACTERISTIC

٠.,

Table 3.3

	ACCEPTABLE LEVEL OF UNCERTAIN (See Figure 3.3)	
CHARACTERISTIC	Very High High Moderate Low	
GEOLOGIC FRAMEWORK		
Stratigraphic/structural	•	
Tectonic	e	
In situ stress field	•	
In situ hydraulic field	•	
In situ temperature field	•	
MECHANICAL		
Rock mass strength	•O	
Deformation moduli	•	
Creep/plasticity	•	
THERMAL		
Thermal conductivity		
Specific heat (etc.)	•	
Thermal expansion	•	
HYDROLOGIC		
Hydraulic conductivity	•	
Effective porosity		
Specific storage		
GEOCHEMCIAL		
Dispersivity		
Adsorption/retardation		
Pore fluid composition		
Alteration/solubility		
*Note: Acceptable levels of uncertainty have based on experience. However, these only, as the characteristics are not of media.	levels are qualitative indicators	
 Acceptable level of uncertainty for undist 		
 Acceptable level of uncertainty for distur mass characteristic 	bed (due to excavation) rock	

Hydrological Response (top priority for testing)

The hydrological response of a repository is the most critical issue and reasonable low uncertainity at License Application is justified because water is the escape mechanism for radionuclides upon which EPA has established (draft) the ultimate long term isolation performance criteria. Much of the natural in-situ hydraulic field will be learned during site characterization, by pore pressure monitoring but more must be and can be learned prior to construction application. We must know directional permeability (hydraulic conductivity), effective porosity and specific storage for both undisturbed and disturbed (damaged) host rock. Continuous mine drainage (by water and air moisture removal) monitoring. More pore pressure monitoring during initial tunnel construction is essential because this is the first time the pressure difference will be applied to the rock unlocking its secrets, multi-directional single and multiple borehole permeability tests are needed to get large representative samples of rock mass behavior in various locations to evaluate variability. A block test will help to learn coupled hydrological response to thermal and stress loading. All the needed information cannot possibly be obtained with surface drill holes and a shaft with only a bell.

Geochemical Response - Priority 4 for testing

Much of the uncertainty remains at decommissioning will be geochemical response. Most of what we know now and probably then will be based on labortory results. The information needed to assume any credit for natural retardation of radionuclides is dispersivity, retardation (including adsorption), pore fluid composition, and fracture filling materials (substrate). Because of the large variability in assumptions in this key issue, any reasonable testing that can be done should be done. Example methods are adding to the scope of the proposed block test, chamber test, heater tests, and adding tracer tests to the three proposed multiple borehole permeability tests. A "single fracture retardation test" described by NRC"S Alexander is a "nice to have" test. The Ph and Eh, of groundwater are critical and will be changed by the construction of the repository. They must be monitored continuously to confirm assumptions if they are critical to DOE's design assumptions. My input on this issue is limited by my personal lack of training and experience, but I am convinced surface boreholes and a shaft with a bell will not provide the needed information.

Geomechanical Response Priority 2 for testing

Although less critical than hydrological response and thermomechanical response for long term performance of the repository, it is the most critical for short term performance and has a major impact on long term performance. Overall design will be driven by geomechanical response and will thus directly impact long term performance. The top priority for testing for this issue is the information needs related to geologic structure and lithology. How thick is the repository horizon (Untanum flow at Hanford)? What is its extent? How uniform is the thickness? How variable are the properties within the flow? The second priority for testing is insitu stress determination and deformation response. If the in-situ stress in unknown, the impact on making openings cannot be determined. The impact on making opening can have a major impact on the stability of the opening for short and long term performance. In situ stress can be determined by overcoring holes from tunnels at depth. Some of this could be learned from a shaft with a bell. Deformation response to tunnel openings can only be learned by measuring during tunnel openings, i.e. mine-by testing. The proposed plate test and flatjack tests add critical information about deformation properties form one spot to another, i.e. variability. Tunneling in excess of 500 feet, some full scale, is essential prior to License Application. Thus, a shaft and bell are inadequate.

5 e 17 5

Thermechanical Response Priority 3 for testing

Thermally induced head on hydrology is a major vehicle for radionuclide movement. Without heat, the groundwater would have little reason to pass through a repository carrying away radionuclides. The information needed by license application is thermal conductivity, specific heat, thermal expansion, and effect on rock fractures and engineered barriers to reduce uncertainty to the level of "reasonable assurance." Testing procedures are not as well developed as in other key issues. This lack of development causes us to know less now than we would like for site suitability at all proposed sites, thus, testing prior to NRC's Safety Evaluation Report and thus DOE's License Application is all the more critical. Testing procedures (and instrumentation) are improving and most likely will be better by that time. At BWIP's NSTF for example, tests are being conducted now and they are making improvements. However, since the in-situ stress is different, the NSTF is in a different basalt flow, and the NSTF host rock is unsaturated the results cannot be used in lieu of at-depth in situ testing where the Umtatum is saturated. The proposed block test, chamber test, and large and small scale heater tests are a reasonable minimum to learn what is needed for license application. Surface drill holes and a shaft with a bell will not produce the needed information.

INTEGRATION/OVERVIEW

It is essential to emphasize that no test should be required unless it can be demonstrated that it will cause the performance objectives (standards in 10 CFR 60) for a <u>particular</u> site to be reached. Thus, <u>clearly</u> to <u>test</u> purely for the sake of <u>compileing</u> the total range of possible values is unnecessary if the existing data of assumptions already meet the standards. The test program suggested, in my view discussed over the last <u>few</u> days should be at least (illegable) for better in schedule and terms of cash.

As stated previously the prime issue forcing a License Application is both a question of variability and uncertainty in "modeling". thus specifically the amount of excavation at BWIP could if <u>required</u> certainly reach some 500 feet of lateral excavation from a single shaft. With a small additional <u>ventilation</u> shaft this could reach perhaps 1500 feet of excavation. Assuming a shaft is started to be sunk in Jan. 83 all this excavation plus all testing with some modifications to the LBL test could be completed prior to 88.

The costs of such exploration should not exceed \$50 million in 82 dollars. Which should be compared with an estimated cost of \$50 million dollars for the 6 ft. shaft. Thus the estimated cost of site characterization (i.e., shaft plus in situ testing) would be about 2% of total capital cost of a repository.

Pentz (4/15/82)

- 19 -

. . . .

Hydrological Response

<u>Hydrological Response</u> is a key issue for a license application since this dominantly defines ultimately the response of the entire system. Thus the basis for the assumptions of performance modeling will dominantly lie in the supporting hydrologic data. The key issue could thus be described as what is the <u>variability</u> throughout the site and what is the uncertainty associated with explicit hydraulic tests to characterize the parameters and finally what is the uncertainty associated with the models, experience, physical laws which couple the parameters together to describe the hydrologic response.

The parameters must therefore address these issues. Vertical, and horizontal permeability are different if preferential structural geological conditions prevail (dominantly vertical structures are expected within Umtanum at BWIP). Vertical permeability is very difficult if not practically impossible to determine from vertical boreholes. Thus, measurements must be made from subsurface locations particularly within the repository horizon. In my opinion, once an exploratory shaft reaches the proposed repository horizon the construction of a 20 ft. bell is very unlikely to either expose enough rock to establish the variability limits of the entire site and also is inadequate to hydraulically stress a representative volume of rock.

If the applicant cannot satisfy standards (EPA, etc.) by assuming the worst credible assumptions relating to construction induced (increased) permeability around the openings. Then it will mecessary at least to establish with reasonable assurance the lower bound of such effects. This clearly cannot be established from a bell sized opening at thge shaft.

With these reasons stated above the following hydrological advice can be offered.

- 1. The prime issue is the hydrological variability, particularly the vertical permeability of the repository horizon.
- 2. This variability must be established by producing sufficient physical access to the repository horizon to the extent that the applicant will be able to adequately assure NRC that the site can meet the standards. This may be done by comparing a series of localized geological, and hydrological tests with measured response of the entire subsurface excavation within the repository horizon.

- 20 -

- 3. The number of tests discussed in supporting documents are based on our imperfect understanding of conditions at depths. Thus the tests, and indeed the number should not be taken as statement concerning the required tests or testing.
- 4. Coupled thermal hydraulic tests of the type suggested by Golder, LBL or variations of these are in our opinion important to bound the uncertainty associated with models.

- 21 -

Geomechanical Response

<u>Geomechanical Response</u> is a key issue since this encompasses the geological framework, mechanical deformation, the limits of construction induced effects, the effects induced by in-situ stress.

As with all parameters they are only important if they are deemed to effect the overall response of the system. If this is chosen to be the case their lateral variability must be established. Based on current knowledge at BWIP for example it would strongly appear that there is very limited data to even bound some of these parameters from the surface. Tests carried out at NSTF are not subject to either the effective stress conditions which will act on rock surrounding the openings at the repository horizon.

The geomechanical variability of the rock should be tested by drilling pilot core holes down the axis of the proposed excavation at the repository horizon and comparing these interpretations with that resulting from exposure of drift. The degree to which testing is required prior to L.A. will be a function of variation in the exposed geological framework.

Thus it is possible to conclude based on published data that some geomechanical testing will be required at depth which <u>cannot</u> be determined from the surface 20 ft. bell.

Typical tests concluded: - a Mine-By Test which establishes directly the geometry of the construction induced fractures; in situ stress determination using stress relief methods, "It should be noted this could be done with difficulty within a shaft-bell but the stress tensions cannot be determined from the surface. Hydraulic fracturing methods only determine the <u>ratio</u> of average vertical stress with the average horizontal stress. Flat Jack Tests are similar to stress relief tests and depending on the complexity can be based to determine 3D state of stress.

Comparison with in-situ tests should be made with small scale borehole and laboratory tests on samples from exploratory holes. These index tests are necessary to establish the degree of geomechanical variability.

- 22 -

Thermomechanical Response

Thermomechanical response is a key issue since the emplacement of waste has several effects. Currently at BWIP it is the emplacement of waste which is <u>predicted</u> to cause the only credible driving head gradients by inducing <u>conventional</u> cells. Thus it is necessary to characterize the thermal properties (conductivity, specific heat, thermal expansion) of the host rock and to a lesser extent for field geology.

In addition to heat induced gradients there is the further effect of the waste superimposed on natural rock temperature related to deformation and in the extreme, fracturing of rock. There is also a potential positive phenomenon of heat causing natural or construction induced fractures to close reducing the aperture and thus permeability.

Thus with these issues in mind the applicant should address these and determine for the specific site whether it is necessary to provide a numerical basis for the thermomechanical parameters and assumptions.

It is my opinion that the level of detail of the fractured rock mass at BWIP require that in-situ tests are carried out at the repository horizon. It is self evident that none of these tests could be performed within the proposed 20 X 20 ft. bell; substantial time and space will be required for those tests. These tests while they cannot be expected to define the complete thermomechanical response should be sufficient to bound the problem.

Geochemical Response

In the basalt of BWIP it is my judgement that while retardation and pore fluid composition are extremely important <u>potential</u> benefits to enabling the standards to be met. However, it appears that in-situ tests are with one possible exception unlikely reduce the uncertainty in geochemical parameters. My knowledge however in this area is limited.

The only test proposed in addition to tests carried out primarily for other purposes (heater tests, block tests, etc.,) is a tracer test within the underground test facility.

- 24 -

Hydrology

1. Key Issue: The regional hydrologic setting: the vertical permeability of the stratigraphic sequence encompassing the candidate repository site must be assessed to predict the effects of introducing the repository and to discern possible groundwater flow paths from the repository into and through the stratigraphic sequence.

Existing holes from the surface that penetrate into and through the candidate repository horizon should be utilized fully for appropriate hydrologic testing to determine components of groundwater flow near and away from the candidate site. This should be accomplished as an important part of the site characterization stage.

2. Key Issue: <u>Permeability and storage coefficient of zone of</u> excavation and/or thermally induced fractures:

The effect of the construction and operation of the repository on the permeability of the rock within about 10 m of the walls of the repository galleries (the zone of possible 'short circuit' to the accessible environment) must be determined. The permeability of this zone can be determined by ventilation tests in sealed off portions of drifts and in part by monitoring the water balance of the underground workings. The ventilation test will serve to establish the baseline for a chamber test to investigate the effects of heating on the permeability of the excavation-affected zone and a significantly large volume of relatively unaffected rock. A coupled hydrological-thermomechanical chamber test, where water in a cylindrical chamber is heated to approximately 100°C and allowed to form a continuim with the groundwater regime would provide definitive information on the response of the fracture-controlled hydrological system to heating. The test, scoped at approximately \$11 million, should begin following establishment of baseline conditions during the site characterization stage. If started in a timely fashion, results of the heating phase of the chamber test would be available for license application evaluation.

3. Key Issue: <u>Directional permeability and storage coefficient in</u> host rock

 The permeability vectors in the rock mass encompassing the candidate cite must be determined. A multiple borehole test incorporating pumping of a packed-off interval of a drill hole and observing pressure in a set of monitoring holes may best address this issue. As in the chamber test, the orientation of the drill holes depends on results of detailed mapping of the workings. Estimated cost is \$1M for a test incorporating sets of holes in 3 directions. This test could be accomplished in the site characterization stage.

In summary, the resolution of issues 2 and 3 requires access to underground workings, while issue 1 requires continued testing in existing drill holes from the surface.

H. Wollenberg 4/15/82

Geomechanical Response

The key issue here is the geologic setting; its structural and lithologic variability

Information required is primarily the degree of variability of fracture orientations and variability in lithology of the rock mass. This demands that drifts be excavated from the bell to a length that can be accomodated by the ventilation and muck-hauling capabilities of a 6 ft. diameter shaft. The drifts, encompassing 2 orthogonal directions, and long (300-500m) drill holes will cover a significant area that should include the range of variability in structure and lithology to be expected in the repository. Activities should include detailed geologic mapping of openings and detailed logging of core from the long holes.

This activity should characterize the variability to be expected, and its results will serve as the baseline for planning and interpretation of the thermomechanical and hydrologial tests.

A good portion of the understanding of the geological setting will be derived from site characterization activities currently underway. However, drifts from the bell are mandatory to assess the key issue of variability.

H. Wollenberg 4/15/82

Thermomechanical Response

The key issue is the response of the rock mass mechanical properties to the heating imposed by the repository.

Scale of tests vary to accomedate responses of near to far field. The largest volume of rock can be affected by chamber tests whose principal value is to verify and provide input for models predicting the thermomechanical response. This test incorporates a water filled chamber, heated to approximately 100°C, with its effects monitored by thermocouples, extensometers and pressure transducers in radial and longitudinal drill holes emanating from and roughly parallel to the chamber. (Further aspects of this test are discussed in the Hydrology write-up).

Full-scale heater tests can best evaluate the effect of heating by waste canisters on the mechanical properties of the rock in the near field. In this test the heaters simulate waste canisters and temperatures at the heater wall are those expected in repository operation.

These tests should be conducted in drifts away from the bell, and started as early as possible so that results of the heating phase may be available for evaluation of the license application. Holes drilled from the bell would be necessary to determine the orientation of drifts to accomodate for chamber and heater tests.

H. Wollenberg 4/15/82

- 28 -

Geochemistry

Key issues: The composition of groundwater and fracture-filling <u>material</u>: It is necessary to determine the geochemical setting of the candidate repository horizon, 1) to discuss whether the hydrologic regime of the horizon is isolated from the regimes above and below, 2) to help determine the age and flow rate of the groundwater and 3) to determine the sorptive characteristics of material lining and filling the fractures.

> Horizontal or inclined holes drilled from the bell and from the drifts will provide essentially uncontaminated water samples, compared with water samples from surface drill holes.

Samples of fracture-filling material will be obtained from cores of surface drill holes, as well as from subsurface horizontal inclined holes and exposures in the workings. Analyses of major-trace-and radioelement contents, stable-and radioisotope ratios will provide the data for items 1, 2 and 3 above. Sampling would commense in early portions of site characterization stage and continue as openings and holes were developed.

Key issues: Retardation: It is necessary to evaluate the "natural barrier" system's ability at a candidate site to retard the migration of radionuclides from the canister into and through the fracture controlled hydrologic system.

> To address this, laboratory analyses of the cation exchange capacity of rock matrix and fracture coating and filling material will be required, using appropriate radioelements and formation water compositons.

Retardation studies are already underway at BWIP and NTS. It is important that they be continued, to assess changes in retardation that might be observed when samples of uncontaminated water and fracture material are obtained from underground openings and drill holes.

Dispersivity is not considered a key issue, though it would

be desirable to investigate it by tracer tests in drill holes from the drifts, primarily to aid in design of the engineered barrier system.

In summary, resolution of the key issues of groundwater and fracture filling material composition requires samples from underground openings and drill holes. Holes from the bell would suffice for the initial water sample. The key issues of retardation can be addressed by laboratory measurements, but it will be necessary to know water and rock compositions based on subsurface samples.

H. Wollenberg (4-15-82)

 $t \in C^{+}$

Integration Overview

It should be recognized that the hydrological, geochemical, thermomchanical and geomechanical considerations are all strongly linked. Certain tests can address specific aspects of these considerations, while others can assess the coupled effects of several considerations. The overriding concern here is that little can be learned by examination of the bell alone; drill holes must emanate from the bell initially, to be followed by drifts and long holes to accommodate specific tests and to cover the range of variation in a significant sized block of the candidate repository horizon.

Ranking of priority of the major considerations:

- 1. Hydrologic response
- 2. Geochemistry
- 3. Thermomechanical response
- 4. Geomechanical response

H. Wollenberg (4-15-82)

Hydrological Response

Basalt is not a massive rock but is generally characterized by vertical columnar jointing. A spectacular example of this is the giant's causeway in Northern Ireland. Intact basalt has a low permeability, thus, the rock mass permeability is dependent on the jointing. The key hydrological parameters are:

- directional permeability, especially vertical and storage coefficient in the host rock
- permeability and storage coefficient of excavation
 or-thermally-induced fractures
- ^o hydrological portion of geological framework

The in-situ permeability of the host rock is required when it is difficult to extrapolate from small intact samples tested in the laboratory to full-scale where fractures govern. Some limited test work could be performed in surface boreholes but conditions would be largely uncontrolled and unknown so interpretation would be difficult. Somewhat better information would be obtained by testing in holes drilled from the bell coupled with the low probability that work performed in the bell or from the bell could be considered representative of the repository as a whole. If it can be shown that testing of the host rock is adequate to characterize hydrologic conditions to the extent that EPA standards can be met then needs are satisfied at this stage and tests at damaged forms would be for verification only. This, however, is unlikely.

The permeability of excavation or thermally-induced fractures is important because a fractured zone will exist around the openings in a repository. The extent of the fracturing is highly dependent on blasting practices - unless controlled blasting is employed, overbreak in a jointed rock can be severe and the radius of the damaged zoned quite large. Thus, it is important to determine the permeability of these fractures. Since the temperature in the rock surrounding the storage rooms will ultimately be elevated, it is essential to verify prior to license application that elevated temperature would adversely affect the permeability of fractures to the extent that EPA standards could not be met.

The directional permeability in host rocks could be obtained from single and multiple borehole tests. These tests would be required at the repository level since, as stated previously, it is unlikely that sufficient control could be exercised in holes from the surface to make results meaningful. A few short holes could be drilled from the bell, however, only short lengths are practical.

The permeability of the excavation-or-thermally-induced fractures can likely best be determined from a chamber test in which the conditions can be closely controlled, and in which the thermal and pore pressure parameters can be varied. Thus tests can be carried out which bound the range of expected conditions over the life of the repository.

It would be virtually impossible to carry out any exploration from the 6 ft. diameter shaft and as indicated only very limited work can be carried out from the bell - not enough to characterize the hydrological response.

D. F. Hambley (4-15-82)

Geochemical Response

Since the first requirement for a repository site is geologic isolation from the accessible environment, it is obviously necessary that the geologic structure is such that this is accomplished.

There are four key parameters, in general terms:

- geologic structure and lithology
 - in-situ state of stress, deformational response and in-situ moduli
- rock mass strength and rock mass shear strength
 creep

In regards to basalt, only the first two aspects given above are of primary concern.

It is imperative that the geologic structure and lithology of the repository horizon be mapped in all exposures - all openings and cores. This will provide information on the jointing attitude, spacing, and extent - as well as some indication of the lateral variability. This information is required prior to license application, and will require more extensive exploratory workings than simply the "bell". Futhermore, at least a portion of the exploratory openings should be full size and headings should be driven in 2 orthogonal directions to minimize the blinding effect on a observed joint orientations. The orientation and spacing of joints should be taken into account in designing large scale tests to determine other in-situ parameters. To have sufficient joints available to satisfactorily characterize the rock mass would require a minimum of 500 ft of drift but preferably more.

The second important parameter is the in-situ stress state and deformation response. This is a basic design consideration and thus the information must be available at the time of license application. For all practical purposes this information can only be obtained underground. Hydrofracing could be perfomed from surface but this has fundamental drawbacks:

• it fractures the rock mass at repository level.

° certain assumptions are required regarding the direction of fracturing in-situ tensile strength, vertical stress level at the fractured horizon.

- 34 -

The most reliable method for determining the in-situ stress is overcoring of which there are several possible methods. The best methods would be the CSIRO "Hollow Inclusion" gage and the CSIRO triaxial cell, both of which provide the triaxial state of stress from 3 measurements in a single borehole. Tests using the USBM Deformation Gage or the CSIR Doorstopper Gage would be cheaper but would require three boreholes for each triaxial stress determination as they only measure the stress state in the plane perpendicular to the borehole. The deformational behavior can be determined by mine-by tests, plate jacking tests and flatjacks. The most practical method is likely the mine-by test. However, one could perform many plate-jacking and flatjack tests for the cost of one mine-by test. The data from the former tests is, however considerably less reliable.

There is not sufficient space in a 6ft shaft to carry out overcoring tests. Overcoring tests cannot be carried out in highly fractured rock.

D. F. Hambley (4-15-82)

- 35 -

Thermomechanical Response

Since the planned of the canisters will result in heat transfer to the surrounding rock and thus, elevated temperature, it is necessary to know the effect of the elevated temperature on the properties of the host rock mass and on the engineered barriers as well as the thermal properties of the rock. The thermal properties of the rock include:

- ° Thermal conductivity
- ° Thermal diffusivity
- ° Thermal expansion
- Specific heat

These properties can be measured by heater tests, lab tests and temperature logging. Lab tests are relatively inexpensive, however, it is quite difficult to extrapolate from lab to macro scale, so the lab tests are of limited usefulness. Heater tests can be used to obtain in-situ thermal properties with a high-level of confidence; however these tests are not inexpensive.

The temperature effects on rock properties can be determined using chamber tests and block tests. Large scale chamber tests can provide a large amount of information. This information is especially important in regard to retrieval since scenarios exist in which the heat is allowed to build up. This has a profound effect on the equipment required. It also affects the allowable spacing and pitch of canisters since there is an maximum allowable threshold temperature for a given rock type.

The temperature effects on engineered barriers are also important. First, engineered barriers are part of the system isolating, the waste and hence, their behavior is critical to assuring satisfactory function of the repository. Second, the thermal effects on engineered materials such as backfills impact on retrieval methods for canisters in backfilled rooms. Lab tests are required prior to license application to ensure that the function can be modelled. In-situ tests would be desirable prior to license application but not necessary until construction authorization. How to conduct tests on engineered barriers in-situ is another difficulty.

D. Hambley (4-15-82)

- 36 -

Geochemical Response

The geochemical response has generally received only limited concern. The parameters of interest are:

- pore fluid composition
- fracture filling composition
- ° retardation
- ° dispersivity

The pore fluid composition is important since it determine the reactions between any radionuclide emissions and dissolved ions. The fracture filling composition is important because the substrates surface coatings) react with the water. Any reactions which result in flow channels cannot be permitted.

Retardation refers to the interference with radionuclide migration which results from reactions with pore water and fracture fillings.

These parameters are of great importance in determining the suitability of a repository. Not being as geochemist, I do not feel qualified to expand at any length on this topic.

D. F. Hambley (4-15-82)

Integration/Overview

The parameters and tests which have been discussed cannot be considered as isolated entities. The heater, chamber and block tests can all be used to determine parameters of more than one type i.e. geomechanical, hydrological and thermomechanical. That is, there is a fair degree of overlap and hence costs for a particular test will not be incurred solely for one type of information.

Engineered barriers have not received a large amount of consideration; however, assurance that a repository will function as required, requires a knowledge of the elevated temperature properties of engineered barriers. These properties are also important for retrievability especially if the rooms are backfilled.

D. F. Hambley (4-15-82)

Hydrology

The basalt flow is intended to be a container for solid waste disposal. Since it is broken its ability to contain the waste is critical to the entire problem. Also, since an area of about four square miles is to be used it should be verified that this area of suitable thickness exists. The permeability in both the vertical and horizontal directions will have an important impact on its suitability as a repository site. If water can penetrate the mined out repository zone, interact with the radioactive waste and then carry it away from the repository site the site cannot qualify. Some information can be obtained from surface drill holes. These can be use to define the lateral and vertical extent of the basalt at the repository horizon. They can provide diamond drill cores for establishing the existance of the basalt, its extent, the strength from core samples, the strength from core recovery, the frequency of fracture patterns, the fracture orientation, and the RQD index. Much can be determined from sinking the shaft including: the rock vs depth for a large visual sample, the porosity of the rock, the amount or water inflow vs depth, the geology with respect to structure relative to water channelways, the fracture filling material and its ability to retard water flow. The shaft to a depth of 3450 feet, 6 foot diameter may take a year to sink and cost 20 million. (A 2350 foot depth, 8 ft. diameter USBM in oil shale completed by oil well drill rig lined with steel 2" thick at bottom cost 8.2 million \$ several years ago). A six foot diameter shaft is really not large enough, an 8 ft. diameter would be better. Tests from 500 feet or drift 12'x 12' in size would establish structural features of basalt and water inflow characteristics. Mine by tests (Golder) should be used to define structural damage to drift surface from blasting that may later make drift sealing difficult. LBL tests should be made to study heating and pressure effect on large volume of, rock. Cost with 1000 foot access drift and test chamber should be 12-14 million. If drift was also used for mine-by tests total would be 2 million less.

The use of the shaft alone with only a bell would not be suitable for all necessary tests. This would particularly restrict hydrological and thermal tests. A 500 foot drift would be a minmum and a 1000 foot drift would be desirable.

Negative conclusions are as follow. The use of a shaft along is only a pretext of site evaluation. If the extent of the basalt flow is not defined the assumption of a four square mile repository site is shaky at best.

ŗ,

- 39 -

C. Babcock (4-15-82)

ż

Geomechanics

Since the mine to be used as a repository is a structure its behavior in terms of ground control problems and long time survival must be defined both experimentally and analytically. During the site characterization when the shaft is sink and the test drifts are driven many opportunities exist to experimentally measure structural behavior. This behavior can then be related through physical properties to assumed states of stress and failure. By means of mathematical, finite element, boundary intergral methods of analysis, the long term behavior of the basalt at elevated temperatures can be predicted. The physical properties of basalt at ambient temperatures $(135^{\circ}F)$ and at temperatures generated by nuclear waste may be very different. It is a critical need to establish this behavior. The most useful tests and also some of the least expensive relate to convergence measurements. If these are taken for openings of simple geometry (i.e. circular shaft) the behavior can be defined most easily, by closed form mathematical methods. The residual in-situ stress field as a function of depth should be measured. Variability of this field or of the physical properties should alert the site characterization people of potential ground control problems (i.e. is horizontal stess twice the vertical and if so where and for how much vertical depth?) Testing of in situ stress field from drifts should include the best established method-the USBM borehole deformation gages. The use of the CSIRO gage has been questioned with respect to bonding the inclusion sleeve to the rock mass. The physical properties in situ have received much emphasis recently. In that regard borehole shear tests (USBM-Handy, Iowa State) should be used. The Mohr-Coulomb stress condition and failure condition can be readily obtained in a few hours. Laboratory tests on core samples at elevated temperatures are also needed and are relatively inexpensive. Core discing of the Hanford Basalt should be duplicted in laboratory tests developed by the USBM Lobert, Stevenrson, Durelli) mine-by tests as proposed by Golder Associates could be done in other ways (i.e. using drill holes in advance of face advance in on top, sides, and bottom. Some testing of this type should be done. The physical property behavior at elevated temperatures could be done by heaters. Stress measuring gages and extensometers all need to be improved for other than ambient temperature use (LLL-Dex. 2, 3, 1981, Iowa). Finite element modeling of proposed mine for structure is necessary for a long term prediction of behavior at elevated temperature.

St. Car

5. ₁1

Thermomechanical

The repository site material (basalt) will have properties that are defined in part as thermal and in part as mechanical. For example, the structural behavior is modified by the fact that the presence of heat drastically changes things. What is brittle at ambient temperatures may be ductile or plastic at elevated temperatures (i.e. steel). If structural behavior is to be defined in terms of deformation then the temperature produced deformation must be separated from that produced by stress. This not only true of rock but also instrument behavior. Since the surface is at ambient temperature it offers few opportunities for heat produced behavior except in the laboratory. Such tests of heat related behavior can be made on core samples, especially with regard to stress and strain (Terra Tech contract). The cost of such tests is relatively high for tri-axial confinement tests (\$1000/sample?) Such tests are practical but of limited use. Underground tests as those proposed by Golder Assoc. and LBL are costly but more realistic. Block tests on 2 meter block of basalt to measure borehole gage behavior under influence of stress applied by flatjacks and heaters proposed by Golder should be carefully examined as to purpose and results. The block is attached at the back and therefore constrains nearly all of the cube (St. Venant Principle) the assumptions of two and three stress states are unacceptable from a stress analysis standpoint. The interpretation of borehole gage results should also be analytically defined. The gage response is not the rock response. The thermal properties of the rock as thermal conductivity, specific heat, expansion, on engineered barriers can all be tests to an extent in the laboratory rather inexpensively. The composite system, large scale, must be evaluated underground where the sample size can be representative of the structure.

Integrated Overview

The use of a 6 foot diameter shaft with bell is an unrealistic attempt to characterize the site. A minimum of 500 feet of drift is better but still is only a 'point' sample in many respects. A mimimal effort should also be made to include four vertical drill holes on the four corners one mile outside the repository area to establish that the proposed horizon actually exists. If the site is developed with the expectancy that this area is available when it is not NRC credability may be questioned. The cost of about \$2.5 million is small compared to the total expected cost of the repository. In a way this is insurance. Since the repository is actually a mine; structural behavior must be defined under the conditions of temperature and stress to avoid unnecessary ground control problems. Attempts to define variability of basalt should be made at every stage surface diamond drill core in laboratory, shaft wall during sinking should be logged. Geologically, drill rate recorded, particle size produced studied, water inflow recorded, and water flow into drifts. Critical analysis of usefulness of results in terms of cost should be made on a continuing basis. Carry-over findings to characterization of other candidate rock types and sites. Use openings for as many purposes as possible, Test engineered barriers concepts.

Tests to be performed in geomechanics are: logging all geology encountered, overcore with USBM overcoring gage to define 3 dimensional in situ stress, measure convergence of shaft, boreholes, drifts; plate tests with adequate interpretation of three dimensional state of stress under constrained conditions; use USBM borehole shear. Test to define MOHR - Coulomb failure in situ.

Thermomechanical test should include the complexities of the structural behavior problem, produced by temperature. In addition, the temperature effects such as conductivity, specific heat, and effects on engineered barriers should be defined.

Hydrogeology tests should include the determination of directional permeability both horizontal and vertical, and the storage coefficient.

Geochemical

The transport of radio-nuclides by water to the boundaries of the repository would render the BWIP site unacceptable. This should be the case for 1000 years or until radio-active decay reduces the waste to a safe level for humans. The geology with respect to structure will be a critical factor. Therefore both the geology and the chemistry of any waste transfer through the basalt must be monitored to insure that such is the case. If radio-nuclides escape from the canisters and migrate through the fractured basalt an important factor for containment is the ability or lack of ability of the basalt to adsorb the nuclides. If not, the basalt must be tight enough to contain by itself or by engineered barriers that are added for that purpose. Tests including pore fluid composition, openness of joints, faults, etc. fracture filling impermeability, fluid transfer rates, effects of heat and pressure should be made both in the laboratory and underground. Cost and number of tests could extent from a limited number of could be very expensive.