
'1/

C A l X? A center of excellence

A Division of Southwest Research Institute"
6220 Culebra Road * San Antonio, Texas, U.S.A. 78228-5166
(210) 522-5160 * Fax (210) 522-5155

in earth sciences and engineering

May 19,2003
Contract No. NRC-02-02-012
Account No. 20.06002.01.041

U.S. Nuclear Regulatory Commission
ATTN: Mr. Ted Carter
Two White Flint North
11545 Rockville Pike
Mail Stop 7 F3
Washington, DC 20555

Subject: Software Audit Observer Training Module Version 1.0
Intermediate Milestone (IM) 20.06002.01.041.303

Dear Mr. Carter:

Enclosed is the Software Audit Observer Training module that T. Matula and you requested.
This was previewed in a discussion several weeks ago when we discussed development and
control of scientific and engineering software. This submittal fulfills IM 20.06002.01.041.303
under the External Quality Assurance Element work.

An electronic version of the Software Audit Observer Training, Version 1.0, in a PowerPoint file,
is also enclosed. A copy of this letter only is being transmitted to others at the U.S. Nuclear
Regulatory Commission and the CNWRA.

If you have questions regarding this Software Audit Observer Training module, please contact
me at 210.522.5149. Your cooperation in this matter is appreciated.

Sincerely,

Bruce Mabrito
Director of Quality Assurance

BM:mp

cc: M. Leach
E. Whitt
B. Meehan
D. DeMarco
J. Greeves

W. Reamer
K. Stablein
T. Matula
J. Schlueter

B. Schlapper
W. Patrick
B. Sagar

CNWRA Directors
CNWRA Element Managers
P. Maldonado
R. Weber (SwRI)
S. Domine (SwRI QA)

)\SoftwareAuditTmgLtr.wpd

i R, Washington Office * Twinbrook Metro Plaza #210
i - 12300 Twinbrook Parkway * Rockville, Maryland 20852-1606



Software Audit
Observer Training

Version 1.0

zww _ ... -.. , -i1_. C,_: , t

Prepared by the
Center for Nuclear Regulatory Waste

Analyses
Quality Assurance



Software Observer Auditor
77- Training - Course Agenda

• Life Cycle Models
* Design, Development and Testing
* Peer Reviews
* Configuration Management
• Validation
* Risk Management
* Maintenance

Version 1.0 2



About Your Instructor
Am Randy Folck

* Consultant: process improvement
* Lead Auditor: Telecom, Aerospace,

Automotive, Commercial Nuclear
* Nine years software QA
* University instructor
* Twenty five years quality

management system experience

Version 1.0 3



77 .Myths or Facts?
Quality means goodness; it cannot be
defined.
Because it cannot be defined, quality cannot
be measured.

• The trouble with quality is that workers don't
really care.

* Quality is fine, but we can't afford it.
* Data Processing is different, error is

inevitable.

Version 1.0 4



_AS Software Quality Defined
* The degree to which software meets

specified requirements.
* The degree to which software meets

customer or user needs or expectations.

[IEEE-STD-610]

Version 1.0 5



Is Satisfying Requirements
_- Software Quality?

2 . Getting the requirements right
K Getting the right requirements

W)I�

Version 1.0 6



_1- What is software 'quality'?
S 5 ~~\ I,

- . Reasonably bug-free software
- e - . Meets requirements and

expectations
* Maintainable

Quality may be defined by a set
of attributes!

Version 1.0 7



_- Software Quality as Attributes
- Quality is the degree of excellence of

something.
• We measure the excellence of software via a

set of attributes.

[Glass, Robert L., Building QualitySoftware, Prentice
Hall, Englewood Cliffs, NJ, 1992]

Version 1.0 8



_-s Quality Attributes
. Portability
. Reliability
* Efficiency

User Friendliness
I,, * ~Testability

-F'! y w * Understandability
. Modifiability

Version 1.0 9



If quality is made up of
attributes then...
How do we achieve them?
• Trade-off analysis

* Prioritized list of attributes
• Testing, testing, testing
* Focus on satisfying

requirements I

Version 1.0 10



7r IQuestions?

Version 1.0 11



Software Lifecycle
77 Development Models

* The Waterfall Software Development Model
* The Iterative Software Development Model
* The Prototype Development Model
* Others

Version 1.0 12



Waterfall Model

Version 1.0 13



At Iterative Model
- � -

Version 1.0 14



Prototype Model
Ai

- q

General
Concepts End Project

Traditional
Development

Version 1.0 is



o7 7 Questions?

Version 1.0 16



d i 4 Questions About a Process
W

I Metrics

With which Idicators Is
effectiveness sessed?

Inputs

| Skills

What tralnin ,skil
knowledge a e

Methods

With Ich methods,
tehc Iques and

proce res Is the
process controlled?

is and
eded?

I
What I
neede(

lon -U

I?

What tools hardware,
software) re needed?

W

I Tools I I Support

hat are tlinked
;uppo and

man ement
pro esses?

1
Output

What should be
delivered?

Processes I

Version 1.0 17



Software Analysis & Design
-0 -

Anal
Number DI
Defects 1

Traced to
Design Defec

Number Serious \
Defects

Inputs
* Technical

Requirements
* Software

Requirements

Design Tools

Bug Tracking DI

ysis and
esign
ools

Techniques
* Abstraction
* Refinement
* Modularityt Type

Application
Domain

Procedures &
StandardsProblem

Solving

Resource
ManagementConfiguration

Management
Peer Review

Hardware
Risk

Management
Corrective

Version 1.0 18



r 7'i Analysis and Design Methods
n Structured Analysis and Design
m Functional Decomposition
m Object-oriented Analysis and Design
. Others

Version 1.0 19



rep Structured Analysis & Design
m Systems with stable requirements
* Complex systems
m Concurrent systems

Version 1.0 20



. Functional Decomposition
• Distinct input-process-output view of

Requirements
• Top-down decomposition
i Systems with stable requirements
i Small systems
• Systems with simple interfaces

Version 1.0 21



Object-Oriented Analysis &
Des nn

* Uses an object model with classes and
objects, attributes, operations, and messages

* Dozens of object-oriented analysis & design
methods

• Prototypes, iterative systems, and
evolutionary systems

* Data-intensive systems

Version 1.0 22



r j 187A Word About Requirementsin&

* Requirements analysis will
not "how," i.e. what data,
what interfaces, and what
Requirements should be:
m Feasible and appropriate
* Clear and properly stated
* Proper level

. Testable

focus on "what",
what functions,
constraints.

Version 1.0 23



hQuestions?L s i xc .7

Version 1.0 24



r-7 I ... Code and Unit Test
,- ,

Test Design Inspections & Walk
throughs

Percent Test -

Coverage \

Number
Serious Defect

Rework Effort
Test Cases
* Boundary
* Path
* DataProblem Solving Coding Standards

Error Type Regression Tests

Number Tests
Completed Language

Inputs
* Requirements -
* Design
* Risk Information

Application
Domain

Output
Software that

Implements the
Design

Code Analysis Tools Resource
ManagementConfiguration

Management
Software Peer Review

Hardware
Risk

Management
Bug Tracking

Version 1.0 25



0Coding Standards
- What is a coding standard?

. Conventions for use and formats
• Not required by the computer

language
. Benefits the human
* Rules and Recommendations
) How to write code: descriptions and

examples

Version 1.0 26



What's in a Coding Standard?

Typical table of contents
* File formats,comments, header

information
• Spacing and indentation, brace

style
• Names, declarations,

statements
* Classes, methods, fields

Version 1.0 27



_ Unit Level Testi ng (White Box)

• Test cases are derived from knowledge of the
internal structure of the module or unit

* Test cases can be derived to exercise:
Independent paths within a unit
Logical decisions on their true and false bounds
Loops at their boundaries and within their
operational bounds

• Also termed logic-driven or glass box testing

Version 1.0 28



r77 White Box Testing Methods
* Static Analysis

* Used to identify potential errors such as
unreachable code, uninitialized variables, unused
variables, etc.

* Loop Testing
To force loops to execute a varied numbers of
iterations.

* Data Flow Testing
To exercise all instructions that define or use a
particular variable.

Version 1.0 29



_ If Basis Path Testing
* A strategy for generating test cases that can

achieve 1000/o path (code) coverage for a
single module.

• A way to ensures that all statements within
a module are exercised at least once and all
logical decisions are exercised on their true
and false sides.

Version 1.0 30



_us Basis Path Testing Approach
Determine the cyclomatic complexity of a
module
Determine a basis set of independent paths
through the module

* Preparing test cases that will force execution
of each path in the basis set

Version 1.0 31



Cyclomatic Complexity Metric,

Defines the number of independent paths
through a module/program

* V(G) = number of regions in a decision-to-decision
graph

* V(G) = number of predicates (decisions) + 1

Determines the maximum number of tests
that must be conducted to ensure that all
statements have been executed at least
once in a given module/program

Version 1.0 32



Example #1
_aa (Simple Compare Program)

BEGIN
1. READ X AND Y (Both defined as signed integers)
2. IFX > Y
3. THEN print "X is bigger"
4. ELSE print "X is not bigger"
5. ENDIF

END

Version 1.0 33



Example #1 continued
(Skeletal Decision Table);d77~-

-*77

Test Case Test Case

Inputs X X1 X2
Y Y 1 Y 2

Decisions X > Y?yes no
Expected Message "X is yes no
Outputs bigger"

Message "X is no yes
not bigger"'

Skeletal means that input values have
for the test case.

not been selected

What is the significance of having two (2) test cases?

Version 1.0 34



Example #1 continued
L (Skeletal Decision Table)

n.n

m Inputs include variable names (X, Y) and the

l

test case conditions (X > Y?)
* Each case in one column, covering one path

through program
* Test Case 1 covers path 1-2-3-5
* Test Case 2 covers path 1-2-4-5

Version 1.0 35



Basis Path Testing
Example #2

A

B
Version 1.0 36



Basis Path Testing
Example #2

. Complexity:_

m Number of independent paths:

* Number of test cases to ensure 100% code
coverage, i.e. every (reachable) statement is
executed at least once:

Version 1.0 37



Questions?is-
-we �

Version 1.0 38



Peer Review
Risk Identification

Process
Review Process

Defect Types
Number Major

Defects

Application
Domain

Software Review Procedures
& Plans

Number Work
Products
Reviewed

Risk Mitigation
Process

Inputs
* Requirements
* Plans
* Procedures
* Standards
* Reports
* Code

Process

Training
Hardware Action

Code
Analysis
Software

Resource
Management

Bug Tracking
Software

Risk Management

Version 1.0 39



AIL Types of Reviews
* Status Reviews

• Project Issues
s (Schedules, problems, resources)

• Product Issues
. (Progress, problems)

* Peer Reviews
Product and Process Issues

. (Quality of work products)

Version 1.0 40



rA_- Status Reviews
M y leader(s) or team member(s)
* For leader(s) or buyer(s)
. Examples

n Design reviews
* Customer interface meetings
n Development team meeting

Version 1.0 41



Peer Reviews
"The purpose of Peer Reviews is to remove
defects from the software work products
early and efficiently. An important
corollary effect is to develop a better
understanding of the software work products
and of defects that might be prevented.
Peer Reviews involve a methodical
examination of software work products by the
producers' peers to identify defects and
areas where changes are needed."

SET CMM, V. 1.1

Version 1.0 42



Commonly Reviewed Work
_ Pro uc s

Software plans
- Requirements specifications
i Design documents

Test plans and procedures
. Code

Procedures and Methods

Version 1.0 43



Informal Peer Rev ews
Poorly defined review process
Unspecified reviewer responsibilities
Used for:
• Low risk products
* Small products
• Products of low complexity

No Follow-up

Version 1.0 44



i Formal Peer Reviews
Well-defined "visible" review process
Specified reviewer responsibilities
Written records
Used for:
• Risky products
• Large and/or complex products
• Early work products

. Follow-up

Version 1.0 45



;A iFormal Peer Review Process
. W._Ri al _

-

1. Plan
-Identify risks
-Identify reviewers
-Assemble package
-Schedule review

2. Brief
-Present objectives
-Get background
-Detailed overview
-Assign roles
-Establish schedule

3. Examine
-Identify defects
-Document issues

4
6. Verify

-Check all changes
-Create summary
report

5. Rework
-Fixtnegotiate "majors"
-Document differences
-Document new
version

4. Discuss
-Present defects
-Detect "group" defects

Version 1.0 46



77-, Defect Categories
Major defect

Potential to cause "big" failure or costly to fix
* Seriously impairs maintainability
. Fails to satisfy a requirement
• Inaccurate statements
* Exclusion of vital information

Minor defect
m Defect that is not a major

Version 1.0 47



rem:~ :: i7': s~- f, Types of Defects

* Ambiguous
* Unnecessary
* Untestable
U

U

U

* Missing
* Inconsistent
* Nonconforming
* Incorrect
* Unclear
U

I

Version 1.0 48



_ Issues
Any issue requiring effort outside the peer
review process:
• Problems with the standard
• Problems with the process
* Problems with a specification

Version 1.0 49



, , i it,,

I , . �ill , Why Do Peer Reviews?
*

n Find Problems in
the short run

* Prevent problems
in the long run

- Better technical
work

m Communicate
technical information

* Educate
participants

n Detect Defects
Early resulting in:

* Lower costs
m Lower risk
* Higher quality

Version 1.0 50



-_Questions?
__X 

an

Version 1.0 51



Ad CX"' -onfiuration Managemnent
11|111~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -a;-

Number \SCM bta
Changes

Over Time 4 Usage

Number
Release
Problems Coi

P
Inputs
* Code
* Documents
* Reports
* Test Cases
* Test Results

Library System

Change 4.

Control
Software

ndards Identification
System

SCM Procedures &
Plans

Application
Domain Change Control

ProcessTiplaints &
'roblems Rekease Process

Status

Corrective
Action

Management

Hardware

Version 1.0 52



r7=,Configuration Management
The process used during software development

and maintenance to identify, control, and
report functional and physical configurations
of software products (e.g., source code,
executable code, databases, test scenarios
and data, and documentation).

Version 1.0 53



Components of Configuration
Management

. Identify

. Control
. Status

t 'iiqxi * Audit

Version 1.0 54



Baseline
* A particular version of a document, software

release, or system configuration which status
and content are known, which is
reproducible, and which has some particular
and specified designation or reason for
existence. For example, a software baseline
might be a release incorporating some set of
new features that the previous release did
not have.

Version 1.0 55



_ Configuration Identification
The selection of configuration items (CI)
The issuance of numbers and other identifiers
affixed to the CO's and to the technical
documentation that defines the CO's
configuration
The release of CO's and their associated
configuration documentation
The establishment of configuration baselines
for CO's

[MIL-STD-973]
Version 1.0 56



'17- Configuration Control
The systematic proposal, justification,
evaluation, coordination, and approval or
disapproval of proposed changes, and the
implementation of all approved changes in
the configuration of a Configuration Item (CI)
after establishment of the baseline(s) for the
CI.

[MIL-STD-973]

Version 1.0 57



77? Status Accounting
The recording and reporting of information
needed to manage configuration items (CI)
effectively, including:
• A record of the approved configuration

documentation and identification numbers.
• The status of proposed changes, deviations, and

waivers to the configuration.
* The implementation status of approved changes.
• The configuration of all units of the CI in the

operational inventory.
[MIL-STD-973]

Version 1.0 58



_ Audit

m An independent examination of a work
product or set of work products to assess
compliance with specifications, standards,
contractual agreements, or criteria,

(CMU/SEI-93-TR-25, IEEE-STD-610)

Version 1.0 59



,,Questions?
.k

it
M- w"4

Version 1.0 60



-jd Software Validation

Test Cases
* Boundary
* Guerrilla
* Load
* Usability

Inspections & Walk
throughs

Percent Test
Coverage

- Error

Number Serious
Defects \ ,

Inputs
* Scope
* Requirements
* Code
v Risk Information

Test Coverage

Bug Tracking -s

Test Procedures &
Plans

Type
Planning &
Scheduling

Test Plans

Regression Tests

Jumber Tests
Completed

Fair

Configuration
Management

Hardware
Risk

Management

Version 1.0 61



_ The Goal of Software Testing
How do the following statements "add
value?"

* Testing is the process of demonstrating that errors
are not present.

* The purpose of testing is to show that a program
performs its intended function correctly.

* Testing is the process of establishing confidence
that a program does what it is supposed to do.

* Testing is the process of executing a program with
the intent of finding errors.

Version 1.0 62



_ie Software Testing Defined
* Software testing is the

process of executing a
software system: i

* In order to identify errors

* To verify conformance to
requirements

AU-.-

Version 1.0 63



<%~ Defect Density Over Time
-a

---- --- ---

Version 1.0 64



_7 Testing Concepts
Testing is the process of executing a program
with the intent of finding error.
A good test case is one that has a high
probability of detecting an as-yet
undiscovered error.
A successful test case is one that detects an
as-yet undiscovered error.
If defects are present, debugging
determines where and why.

Myers, Glenford J., The Art of Software Testing, John Whiley & Sons, Inc.. New York,
1979.

Version 1.0 65



The (Potential) Cost of
- Inadequate Testing

- Loss of Life
I/\j - Property damage

a Loss of business
* Lost opportunity
.Reduced market share
. Cost of repair
. Any others?

Version 1.0 66



-k Exhaustive Testing
Ideally, testing should
exhaustively exercise all
program logical paths by
invoking the system with all
possible input values and
combinations.
To achieve 100 percent
confidence through exhaustive
testing is impossible.

Version 1.0 67



Exhaustive Testing
* 7 Example #1

Program analyzes string of ten uppercase
alphabetic characters.

Exhaustive testing entails 2610 = 1.4 x 10'4
combinations

* Would take 4,500 years at one millisecond per test

Learning Tree International, course number 316, p. 316-1-7

Version 1.0 68



Exhaustive Testing
_k Example #2

Unit has 10 - 20 statements with a DO loop
that iterates up to 20 times and 4 nested IF
statements

* The number of unique logic paths is 1014 = 520 + 519
+ .+ 51

* Exhaustive testing would take about 1 billion years
at one test case developed per five minutes

Myers, Glenford J., The Art of Software Testing, p. 10

Version 1.0 69



r7777777- Exhaustive Testing
:A"

I

Testing can be used to show the presence of
defects, but never their absence!

Version 1.0 70



Characteristics of a
"Good" Software Tester

- Attitude
* What am I going to break today?

* Creativity
. Derive those corner cases.

* Interpersonal Skills
_ A team player.

* Tenacity
J Don't give up.

* Technical skills
* Product, testing techniques and tools.

Version 1.0 71



_ Testing Benefits and Costs
* A software development organization can

expend between 30 and 40 percent of the
total project effort on testing.*

• Testing of life critical software can cost three
to five times as much as all other software
engineering activities combined.*

• If earlier development phases slip, extend
delivery date to enable full testing and
reevaluate costs as appropriate

*Pressman, Roger S., Software Engineering A Practitioner's Approach, p.
448

Version 1.0 72



Cost of Finding and Fixing
_s iSoftware Errors

WI

0w
0 I

Time

Version 1.0 73



aid- Software Testing - Black Box
You cannot see into it.
Test cases can be derived to determine:

* If the software is particularly sensitive to certain
input values

• What data rates and data volume can the
software tolerate

• What effect will specific combinations of data
have on the software operation

* Also called data-driven or input/output-driven
testing .

Version 1.0 74



Equivalence Classes
If you expect the same result from two tests,
you consider them equivalent.
• They all test the same thing
* If one test catches a bug the others should
• If one test does not catch a bug the other

probably won't
i Valid input conditions must be documented in

a specification.

Version 1.0 75



_7 Equivalence Partitioning
How do you pick the input values for a
specific test case?
• Identify an input condition from the SRS, SDD,

etc.
• Partition the input condition into two or more

groups, the equivalence classes.
• Use one test case to represent an equivalence

class.
X Note that there are two types of equivalence

classes, valid and invalid.

Version 1.0 76



-=1 Equivalence Classes
Valid equivalence classes represent valid
inputs to the software
Invalid equivalence classes represent all
other inputs (e.g., erroneous input values)

Version 1.0 77



II Equivalence Classes (Guidelines)
W 11,

A test of one input value in an equivalence
class represents the class
Should yield results that represent
responses to all class members
• For any input from a valid equivalence class the

software should produce a normal, correct
output

* For any input from an invalid equivalence class
the software should generate an error or incorrect
output

Version 1.0 78



,-- .V. -�TF ,I I I -,: , : 'I:.-

';1 : II

Equivalence Classes (Example #1)
-a- IAs,.I

m If an input condition specifies a member of a
set, identify one valid equivalence class and
one invalid equivalence class
Example:
Valid class:
Invalid class:

Set = {EG6334 students}
{...,Clem, Bobbie, ... }

{...anything else...}

Version 1.0 79



i j Equivalence Classes (Example #2)

m If a must be condition is required, identify
one valid equivalence class and one invalid
class
Example: First character in a PIN must be an

numeric
Valid class:
Invalid class:

{O, 1,2,3,4,5,6,7,8,9}
{. Knot numbers...}

Version 1.0 80



Equivalence Classes (Example
i&~_I I #3)

WI-

* If an input condition specifies a range of
values select one valid equivalence class
and two invalid class
Example: The item count can be 1 to 999
Valid Class: 1 < item count < 999)

& item countInvalid Class: Item count <
999).

1

Version 1.0 81



I
:L

} -

Equivalence Classes (Example #4)

* If an input condition specifies the number of
permissible values select one valid
equivalence class and two invalid classes
Example: One through six owners can be

listed for the automobile
Valid Class:
Invalid Class:

(1 <= owners <= 6)
(Owners = 0 and owners > 6)

Version 1.0 82



7_ Boundary Value Analysis
Assumes that the greater number of errors
tend to occur at the boundaries of the input
domain than at the center.
Tests special case input conditions around the
edges of equivalence classes with the
probability of invoking seldom-executed
special case code.

* Coded (a + b >= c) rather than (a + b > c).
Refines the input selection process for
equivalence partitioning.
Generally intuitive to most developers.

Version 1.0 83



Boundary Value Analysis
r-1L (JGuidelines)

• If an input condition specifies a range
bounded by values a and b, test cases should
be designed with values a and b and with
values just above and just below a and b.

* If an input condition specifies the number of
permissible values, test cases should be
designed to exercise the minimum and
maximum numbers and with values just
above and just below the minimum and
maximum.

Version 1.0 84



Boundary Value Analysis
_i- (Guidelines)

* If an output condition is a table, test cases
should be designed to create an output report
that produces the maximum and minimum
number of allowable table entries.

* If internal program data structures have
prescribed boundaries (e.g. array with a
defined limit of 100 entries), test cases
should be designed to exercise the data
structure at its boundaries.

Version 1.0 85



Boundary Value Analysis
(Guidelines)I

Input Valid Invalid
Condition Equivalence Equivalence

Class Values Class Values
1 to 999 1 and 2 0

998 and 999 1000
1 through 6 1 and 2 0

5 and 6 7

Version 1.0 86



_* Cause-Effect Graphing
* Test cases are generated based on

combinations of conditions
m Example: X is negative & Y is positive in the

compare program.
Equivalence partitioning and boundary value
analysis do not address combinations of
input values.
All test cases derived from equivalence
classes for input values A and B pass without
error but their product exceeds some limit,
e.g. memory.

Version 1.0 87



I1--. Questions
-I~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~1

0 t

Version 1.0 88



1Risk Management
Risk Identification

Process
Risk Methodolgy

Top 10 Risks
Risk Management

ProceduresRisk Software
Development

Unresolved
Risks

Application
Domain Risk Mitigation

ProcessNumber Risks
ResolvedInputs

* Requirements
* Test Results -

* Plans
* Status Reports
* Regulatory

Concerns

Training

Action

I- Risk Table

Risk Tracking
Software

Review

Version 1.0 89



4L- Risk Management

* A process of identifying risks and mitigating
their effects before these risks disrupt
program activities.
• Risk Identification and Analysis
• Assigning Risk Criticality
* Risk Action Planning

Version 1.0 90



Risk Identification and
-Analysis

S~~ a II

* Technical Risks
* Ambiguous, incomplete requirements

* Environment Risks
* Training, communication

* Program Constraint Risks
n Costs, schedule

Version 1.0 91



*- -

_- Assigning Risk Criticality
W Now

n Impact
a Negligible
. Marginal
. Critical
. Catastrophic

* Probability
* Very high
* High
a Medium
. Low
* Very low

Version 1.0 92



As- Risk Action Planning
* Act Immediately
.Watch
* Transfer
* Delegate
* Strategize

1"1-M

Version 1.0 93



Questions?

Almak

Version 1.0 94



A Word About
Software Maintenance
- Change in software is

inevitable
* Hardware deteriorates

because of a lack of
maintenance

* Software deteriorates
because of maintenance

I

Version 1.0 95



What is Software
F; Maintenance?
i What does it mean to you?
• What does it mean to your organization?
* Is it necessary?
* Are product "versions" defined by

maintenance cycles?
• Who should do maintenance?

Version 1.0 96



CAF Kinds of Maintenance
Oi,=

* Adaptive
m Environmental (hardware changes)

* Corrective
* Fixing errors

u Perfective
m Making enhancements

Version 1.0 97



Maintenance CycleI, 7
~~~~~~~7I~~~~~~~~i~-

m Understand the change: 15%
Tracing logic: 25%

- Implementing change: 20%
Testing and debug: 30%

* Reviewing/Updating documentation: 10%

Percentages represent time in phase.
Note similarity to development life cycle!

Version 1.0 98



<i- Questions?
- a, - 1 i

Version 1.0 99



___ Further Reading
* Software Engineering Institute, Capability

Maturity Model, Peer Reviews
* Software Quality Engineering, Technical

Reviews & Inspections, Version 4.1
* F.A. Ackerman et al, "Software Inspections:

An Effective Verification Process," IEEE
Software, May, 1989.

* M.E. Fagan, "Advances in Software
Inspections," IEEE Transactions on Software
Engineering, July, 1996.

Version 1.0 100



7_ Further Reading
K M.E. Fagan, "Design and Code Inspections to

Reduce Errors in Program Development," IBM
Systems Journal, vol. 15, no. 3, 1979.

* D.P. Freedman and G.M. Weinberg,
Handbook of Walkthroughs, Inspections, and
Technical Reviews, Dorset House Publishing,
1990.

* W.S. Humphrey, A Discipline for Software
Engineering, Addison-Wesley Publishing,
1995.

Version 1.0 101


