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TEMPERATURE LOGS IN PRODUCTION AND INJECTION WELLS

by J. Loeb and A. Poupon

I N r R O D U C T I O N

Both In production wells and in injection wells reliable quantitative information about fluid
movements can be obtained with the Production Logging tools:

.Packer Flowmeter, to measure flow rates not exceeding about 2,000 barrels per day at bottom
hole conditions ; in the, future the Packer Flowmeter will be equipped with fluid analyzing
devices, to determine the approximate proportions of oil, gas and water in the flow.

- Continuous Flowmeter, for flow rates higher than about 1,000 borrels per day.

. Gradiomanometer, to measure the pressure gradient, from which the average density of the fluids
in the well can be derived.

* Caliper to measure hole diameters in the case of borefoot completions.

* Cement Bond Tool, to evaluate the quality of the cementation.

* Neutron Log, responding to the presence of gas in the formations and in the casing.

* High Resolution Thermometer.

All these tools hove small diameters and can be lowered through tubing against well head pressures
of as much as 4,000 psi without any interruption of the production or injection.
The Thermometer is of great interest, because the temperature profiles will pin-point gas entries,

sually shown by a substantial cooling effect due to gas expansion, and will also * and this is
even more important * give inhormation about possible fluid movements behind pipe (casing, liner,
or tubing).

There have been already several publications about temperature logs in production and injection
wells (see references) but in these the case of vertical communication behind pipe is not consi.
dered. Besides in the case of gas wells, the effect of the expansion of the gas as it flows upwards
is not taken into account ; consequently actual temperature profiles in gas wells do not always
have the shape predicted in these earlier publications.
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ITHEORETICAL CONSIDERATIONSS AND DERIVATIONS

I . Mechanism of heat exchange .

It is assumed that at the time when the temperatures are measured, production, or injection, is
under well stabilized conditions, and that the temperature remains constant at any given point
in the system considered (fluids, casing, formations).

Heat exchange between the moving fluid and the casing is through forced convection in relation
with the fact that temperature equilibrium cannot be attained since the fluid in contact with the
casing is continuously renewed. In the case of a stagnant fluid heat exchange is through natural
convection.

(units: M K S system)

I

i

The parameters involved are:

A inside cross section of the casing

D inside diameter of the casing-

V velocity of the fluid

v specific volume of the fluid

p density of the fluid

Cp specific heat of the fluid at constant pressure

is viscosity of the fluid

A thermal conductivity of the fluid

k thermal conductivity of the formation

g acceleration of gravity

T temperature

a coefficient of heat exchange

p pressure

G geothermal gradient, vertical distance aver which
the temperature of the formations varies by Is
centigrade

Kilogram always designates the unitof moss

square meters

meters

meters/second

cubic meters per kilogram

kilograms per cubic meter

kilocolories per kilogram per @ C

kilograms second per square meter

kilocolories per meter per hour per * C

kilocolories per meter per hour per ' C

9.8 meters per second per second

degrees Centigrade

kilocolories per square meter per hour
per * C

Pascal

meters

The quantity of heat q (in kilocalories per square meter per second) flowing across the casing
is proportional to the difference between the temperature T of the fluid and the temperature Tc
of the casing :

q = a (T - Tc )

The quantity a is derived from the following dimensionless numbers:

the Reynolds number R = V
Ii'a

V
-� - I,



the Prandtl number P s Cp I 9
A/ 3600

the Biot(orNusselt)number B -aD

a is given by empirical relationships
for liquids 1) B = .0225 R 8 p

for gases 1') B = .02R'

Typical values of a range from a lew hundred to o few thousand kilocalories per square meter per
hour per degree centigrade.

Heat exchange between the casing and the formation is through thermal conductivity, without
any discontinuity of the temperatures.

It is assumedthat there is no vertical heat tronsfer other than that due to vertical fluid movement.

. Enthalpic Balance

Let a be the distance measured upward along the axis of the casing from some convenient refe.
rence point. Considering a small interval between z and z + Az, since the temperature does not
change with time, the quantity of energy corresponding to the variation of the temperature T of
the fluid with depth compensates the losses of heat across the casing, the expansion of the
fluid (for gases) and the action of gravity.

For liquids :

2) AQ - A pV Cp ' £Az

For gases
3) ~~~~~~T v dp Az

3) Q '-A pV I(Cp L dz

The action of gravity results in

4) dP =_
dz vs

this, carried into 3), gives

5) AQ -A p V Cp ( + I ) Az

where y = C ;S a length.

Finally, between the casing and the formations heat exchange is defined by a Neumann problem:
knowing T and Tc, the heat flux across the casing is known; in addition the temperature of the
formations Te (z) at a sufficient distance from the well is known. It is assumed here that:

6) Te z) = To-laCx±0



In the case of gas production, (methane), for V = 2 m/sec (ot a depth of 8,000 feet this would
correspond to a doily production of the order of 30.000.000 cubic feet measured at surface
conditions, we find

J (+ ~ = 1800 meters

and J ( + ) = 17' Centigrade
y3

Practical application of differential equations 8) and 9)

In fact, these ore not linear differential equations, as the coefficients Cp p and a depend on
temperature. It would be possible, through the use of electronic computers, to obtain accurate
solutions. However, this is not necessary, as the need is mainly for predicting the shapes of the
temperature profiles, particularly at levels where fluid is produced . or absorbed . by a formation.
Since, in addition, the intervals of interest ore often fairly short, with temperature variations not
exceeding .10 or possibly 200 Centigrade, it is sufficient to consider the solution for constant
values of the coefficients corresponding to the usual practical range of temperatures and pressures.
With these limitations then, equations 8) and 9) indicate that the temperature profile, for a constant
flow rate, is an exponential curve with an asymptote parcllel to the geothermal profile. In the case
of liquids,this asymptote is shifted horizontally (temperatures being plotted in abscissae, depths
in ordinates) with respect to the geothermal profile by a quantity.

P Centigrade x L (13+ )
G A

towards higher temperatures in the case of production, towards lower teWeratures in the case
of injection. For the numerical example considered hereabove, and for G = 33 meters, this shift
A T would be

1° Centigrade X L ( Ia) = 1840/33 M 56 Centigrade -

For the gas producing well the shift AT would be

P Centnigode x LJ + [8 0] I



.

Computations made for the case of a cylindrical pipe of infinite length leod to a solution where
the temperature varies as a logarithmic function of the radial distance to the axis of the well
this is not compatible with the condition that at a sufficient distance T (r, z) be equal to Te (z).

On the contrary computations con be made without any difficulty for the case of on elongated
ellipsoid of revolution end it is found that at the equator of the ellipsoid

7) (T ( To) = T- Tc

the quantity = F is a dimensionless number.

Case of liquids

Combining 2) and 7), it is found that

8) L (1 ) dT + T =T (z)

Where L = A X PR is a length

Case of Gases

It is found that

dz y

Where J ADx Cp P V is a lengthTrD a

Equation 9) is very similartog); for a given flow rate the term J (1 ) is constant; this shows

that in the case of gas production, due to the cooling effect in relation with the expansion of the
gas, the temperature profile is the same as would be observed for a non compressible fluid but
with formation temperatures which would be lower by a fixed amount

1C x J (1X +

Numerical examples

Let D = .20 m A .05m

In case of oil production, for V .10m/second (opproximately 1700 borrels por day), we find

L C1 + + ) *1840meters
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RESULTS

Using the results of the theoretical study, temperature profiles have been determined for a number
of typical cases, so as to provide a sound basis for the interpretation of actual temperature logs.
In all cases considered hereafter it is assumed that the producing intervals (or the intervals
taking fluid) are very thin; it is also assumed that the geothermal profile is a straight line
(TT on all the figures).

* A Oil Production

A * I

One interval P is producing ; there is no vertical movement behind the casing, so that the oil
entering the casing is at the temperature given by the geothermal profile at the corresponding depth.
Starting from bottom, the temperature curve follows the geothermal profile up to the point of oil
entry. Above this point, the curve is an exponential, with an asymptote AA' parallel to the
geothermal line: the horizontal distance AT between the geothermal line and the asymptote can
be expressed as a function of the mass flow rate M and of the casing diameter D:

AT = I M D + bM)

a and b are coefficients depending essentially on the physical characteristics of the fluid
produced, and the thermal conductivity of the formations.

- In practice the relative values of coefficients a and b are such thatthe first term in the above
expression of A T is negligibleos compared to the second one, and accordingly AT is practically
proportional to the weight of fluid produced per unit time ; the size of the casing has very little
effect. The shape of the curve, and the construction of the tangent at any point E are shown on
figure A 1: draw ENhorizontally, then NO vertically, OE is the tangent at E. At P the tangent
is vertical.

A *2

Two intervals, PI and P2, are producing, with production rates M1and M7 From bottom toP2 the

temperature curve has the shape indicated on figure A . 1. At P2 there is an abrupt decrease of

temperature. The oil from P1 being at temperature T1 , the oil from P2 at T2 (geothermal profile),

the mixture of the two takes the temperature T given by:

(M 1 + M 2) T = Ml T, + M2 T2

The increased flow, above R2 causes a displacement toward the right of the asymptote ( see

figure A-2); the position of this second asymptote A2 A'2 with respectto the geothermal profile
is given by:

AT b G (MI + M2)
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A .3

At depth S, all the flow enters a tubing; above S temperature exchange between the flowing fluid
and the formations is through natural convection of the oil which is trapped in the annular space
between tubing and casing; the temperature curve remains exponential in shape, but as the coef-
ficient of the natural convection is considerably smaller than that corresponding to the forced
convection, the asymptote A2 A'2 is much further to the right (figure A.3).

A * 4

The flow is through the annular space between tubing and casing ; the fluid in the tubing does
not move: in this case, the temperature observed in the tubing will be practically the some as if
there were no tubing ; hence at the level of the tubing shoe the curve will show no significant
change.

A - S

The flow is through the annular space, and some fluid is lost at depth F. The fluid loss causes
c shift toward the left of the asymptote, hence the point of fluid loss will be shown by a change
of slope on the temperature curve, fig. A 5-1 and A 5-2. Figure A 5-3 is for the case where no
fluid is produced at the surface.

A . 6

Oil flows upward from P1, between casing and formations, and enters the casing at P2 the
temperature curve is practically the some as if the oil entered the casing at P1 . In this case the
temperature profile shows the origin P1 of the oil, whereas a flowmeter will indicate the point of
entry in the casing P2 .

A ?

Oil flows downward from P, between the casing and formations and enters the casing at P'.
Below P'the curve follows the geothermal profile; at P' there is an abrupt temperature decrease;
then the variation of temperature with depth follows a curve which has a vertical tangent at the
level of P'. At P there is a change of slope. Above P the curve is as in case A-l (Figure A-7).

A . 8

As for A-7 there is a downward flow behind casing from P to P', but there is also oil production
at P'. The curve is similarto thatof case A.7, however the temperature anomaly at P' is smaller
and the tangent at P' is no longer vertical (figure A-8).

A.9
A * 9

There is no production; oil flows downward from P into P', either inside the casing, or behind
the casing ; due to the downward flow, the asymptote is to the left (side of lower temperatures)
of the geothermal profile (figure A-9).

%
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-B: Gas Production

The gas expands as it escapes from the reservoir rock into the casing; this causes a substantial
cooling, and accordingly the gas when it enters the casing is at a lower temperature than the
formation from which it comes. Besides, the gas as it moves upward continues to expand and
this expansion absorbs heat. As in the case of oil production, the temperature profile is on
exponential curve, but the cooling due to gas expansion causes a shift toward the lower tempe.
ratures of both the asymptote and the parallel straight line from which the tangents to the tempe-
rature profile can be constructed (this a guide-line a is the geothermal profile in the case of oil
production). The horizontal distance AT between the * guide-line * and the asymptote is still
given by.

ATE- bM

as in the case of oil ; however, gas and oil having different specific heats, the corresponding
coefficients ore also different. The horizontal distance by which the a guide-line * and the
asymptote are shifted toward the lower temperatures is given byM ° where g is the accelerationCp
of gravity (9.8 m/sec/sec) and Cp the specific heat of the gas at constant pressure ; this is
proportional to ATondwouldbe equal to aboutone third ofAT in the case of methane. Four cases
only will be considered:

B - I

One interval P is producing ; there is no vertical movement behind the casing. The positions of
the * guide.line a and of the asymptote depend on the production rate, as seen here above.
Two cases are possible: if the permeobilities are comparatively low, there is a fairly large
pressure drop between the reservoir and the casing, and the gas when it enters the casing is at a
temperature lower than that corresponding to the a guide-line a : then the gas will first be heated
up by the formations ; the tangent will be vertical where the curve crosses the * guide-line * and
above this point the gas becomes colder due to the combined effects of heat exchange with the
formations and gas expansion. If the permeobilities are relatively high, the pressure drop between
reservoir and casing is small and the gas when it enters the casing is at a temperature higher
than that corresponding to the i guide-line *; in this case there is no warming up of the gas, and
no reversal of the slope of the temperature profile. The two cases are shown on figure B-I .

B- 2

Two intervals P1 and P2 are producing. To flow rates MI and MI + M2 correspond two sets of
guide lines and asymptotes L1 L'1 , Al A'1 and L2 L' 2 ,A 2 A' 2 (figure B * 2).

B -3

Gas escapes from the formation of P. moves upward behind the casing and enters the casing at
P'. There is a cooling effect due to gas expansion at P, and probably also at P'; both parts of
the temperature curve, between P and P', and above P. have the same guide line and the some
asymptote (figure B * 3).



B * 4

Gas escapes from the formation at P. moves downward behind the casing and enters the casing
at P'. In this case again there is gas expansion at P and as P' but the temperature log shows an
abrupt temperature variation only at P' ; at P there is a change of slope, as shown on figure B4.

* C : Water Injection

The temperature profiles are again exponential curves. As the water flows downward the asymptote
AA' is on the low temperature side of the geothermal line, at a horizontal distance AT given by

bM
AT = G

C - I

One interval takes fluid. The shape of the curve, and the construction of the tangents ore shown
an figure C.1. Where the curve crosses the geothermal line, the tangent is vertical.

C-2 and C.3 i

Two intervals P1 and P2 take fluid, at mass flow rates M1 and M2

Above P1 the position of asymptote A1 A' 1 corresponds to total flow rote MI + M2,owhereas
below P1 asymptote A2 A'2 is determined by flow rote M2 At the level of P1, there is a change

of slope on the temperature curve. Cases C2 and C3 are similar ; however in case C-3 there is a
reversal of the curvature at P1 , because the curve overshoots asymptote A2 A'2 (case C-3 is
similar to case A 51, while C.2 is similar to A 5.2).

. D : Gas Injection

As the gaS flows downward, its pressure increases; the compression produces heat. As a result
the guide-line and the asymptote are shifted to the right, that is towcrd higher temperatures, by

on amount proportional to the mass flow rate, and equal to about one third of AT b -

As in the case of gas production, a variation of the flow rate will produce a corresponding hori-
zontal displacement of both the asymptote and the guide-line. Cases Di D2 D3 ore very similar
to cases C) C2 C3

I --
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FIELD EXAMPLES

Example I

This isan unusual case: nevertheless,this temperature profile is thought to be of great interest,
as it is a striking illustration of the ability of temperature logs to give information about fluid
movements behind pipe.

In this well a 7" casing was run down to 1300 meters. Some 20 hours after the cementation, the
well started blowing oil and gas from the annular space between the surface pipe and the 7"
casing. A temperature log was recorded a few days later in the 7" casing. From the bottom to
825 m, the curve is practically a straight line and the temperatures probably do not depart signi-
ficantly from the geothermal profile, indicating that there is no fluid movement below 825 m.
Between about 825 m and 660 m the temperature curve presents several anomalies in relation
with the blow out ; at 820 m the production is probably oil ; at 750 m the large cold anomaly
clearly indicates gas production ; there is also gas production at about 725 m and 675 m. There
is production also at 785 m but it is not too certain whether it is oil (probobly), or gas. The very
smooth shape of the curve indicates that the formations above 650 m were not producing.

The hydrocarbon bearing permeable formations, as determined from the open-hole electric logs,
are shown on the figure ;there are other hydrocarbon bearing permeable formations, below 1100 m.

After this temperature survey, perforations were made at 800 meters and the upper part of the 7"
casing was successfully cemented.

Example 2

Atthetimeof the survey this well was producing 1660 barrels per day of oil with a Gas Oil Ratio
of 1050 (the solution GO R was about 400) and a water cut of 14';.

The reservoir is a 150 foot limestone and dolomite, the structure is very flat. There is a gas-cap
and the gas-oil contact is at a fairly short vertical distance - Iess than 100 feet - above the
upper perforations, but the well is at a large horizontal distance from the edge of the gas cap.

Two intervals, A and B, are perforated. According to the Flowmeter and Grodiomanometer logs,
interval A contributes very little to the total production. The Gradiomanometer indicates a large
gas entry opposite the lower half of interval B.

The temperature log recorded in the flowing well gives large cold anomalies not only opposite
interval B but also near the bottom of interval A ; the only possible explanation seems to be
that a sizeable quantity of gas was being produced at that depth ; for some reason, this gas was
not entering the casing through perforations A, but through perforations B.

That this was possible was confirmed by a cement bond log (Through Tubing CBT.B tool) which
indicated avery poorbond between A and B; itclso indicatedc very good bond below interval A.

The information given by the logs about the origin, or the point (s) of entry of the water produced,
is not as clear. However the two temperature logs, made during production and with the well
shut-in, show no significant departure below interval A from the expected geothermal profile other
than a normal downward spreading of the cold anomaly due to the lower gas entry; accordingly,
it seems that no water was channeling up behind casing from below interval A; this is confirmed
by the good bond indication given by the CBT-B log (not shown).

_I,,,,q,-, _--..""._���___ - -_
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The temperature log in the producing well covered an interval of only 100' above B and, as a
consequence, it does not seem possible to reach a definite conclusion about the possibility of
the water coming fIom higher up.

Example 3

This example correspond to a water injection well. The well has a 5 1/2" casing, perforated for
water injection at 3,220-3,270.

The first temperature survey (dashed curve) was recorded after the well had been -shut-in several
hours. Then injection was resumed, at a rate of about 800 barrels per day, andonother temperature
survey (solid curve) was mode after 20 hours. The approximate geothermal profile is else shown
on the figure.

Looking at the temperatures recorded during injection, we see that the water is injected at a
temperature in excess of 1 10t F. The water being at a much higher temperature than the formations
near surface, the formations cool down the water. At about 1,200 feet the water (solid curve)and
the formations (geothermal profile)are at the some temperature. Then below 1,200', the formations,
being at a higher temperature, worm up the water. At about 3,270'there is an abrupt temperature
increase and the temperature measured at the bottom of the well is approximately that of the
geothermal profile. This confirms that no water is flowing downward post 3,270'.

Looking now at the dashed curve, we see that when injection stops, the temperatures in the fluid
column change rapidly and tend to become equal to the temperature of the formationsg(geothermal
profile). There is a striking exception, however ; opposite the perforations, in spite of the fact
that the temperature recorded is some 222 F lower than the temperature of the geothermal profile,
the change is much smaller. At that depth it-would take many days to establish temperature
equilibrium, and reach a temperature equal to that of the geothermal profile.

This can be explained as follows. At 3,000', for example, the water flowing downward being
colder than the formations cools down the formations, but only to a short distance from the casing
because the thermal conductivityof the formations is low ;when injection is stopped the formations
rapidly warm up the water in the casing. At the level of the perforations, the water flows into
the formations and lowers the temperature of the formations to a considerable distance (depending
not on thermal conductivity, this time, but mostly on flow rate and porosity); accordingly a long
time is needed to worm up to equilibrium temperature the formations and the fluid in casing.
Of course, near the bottom, where the temperatures have never been disturbed by the injection,
there is no significant temperature difference between the solid and the dashed curves.

The two temperature curves then clearly show that the water was going into the formations at
3220-3270, as expected, yet a continuous flowmeter indicated that the casing was leaking at
about 600', andthatno waterwas flowingdownwardinside the casing below that depth. This means
then that, in spite of the casing failure, the water was reaching the right formations, flowing
downward behind the casing below 600'.

It seems that all the water leaving the casing at about 600' was reaching the formations at
3220'-3270' . Any other formation taking water would have been indicated by an appreciable
change of the slope of the temperature profile, and also by a much slower rate of variation of
temperature after injection is stopped, as observed at 3220.3270.

As expected from the theoretical study, the temperature log does not show any significant ono-
maly at the depth of the casing leak.



Example 4

This corresponds to another water injection well in the some field. The 5 1/2" casing has
several perforated intervals between 3260' and 3300'.

The solid curve was recorded during injection, with an injection rote of about 800 barrels per day.
Then the injection was stopped and, after 13 hours, the dashed curve was recorded. The approxi-
mate geothermal profile is also shown.

Below about 1400' the dashed curve and the solid curve are identical and remain very close to
the expected geothermal profile and both curves have a fairly constant slope about equal to that
of the expected geothermal profile. These three features indicate that no water at all had reached
that depth of about 1400'. A continuous flowmeter, mode a few days later, showed that all of the
injected water was leaving the casing at 180'.

Where was the water going ? Above about 330' the temperature changes rapidly when injection
stops ; this, as already explained, indicates that the temperature disturbance affects only a
small volume of formations close to the casing ; the formations above 330' probably were not
taking water.

The abrupt change of slope at about 1,200-1,250'of the temperature curve recorded during injection
may well correspond to the lowest formations taking water ; between 800' and 1,250', the two
temperature curves do not differ much but, as already explained, the temperatures are expected
to change slowly opposite formations taking water.

The water, then, is probably going into formations located between about 400' and 1250'. It does
not seem possible to carry the interpretation further without some additional information: depths
of permeable formations (these would be given by the open hole electrical logs) and geothermal
profile.

The fact that the temperature profile recorded during injection does not look quite as would be
expected from the theoretical considerations has several possible explanations

* the temperature of the water injected probably is not constant

- there is a second string of casing, of larger diameter, down to about 800' ; thus it would be
possible for example to have a downward flow in the annular space between the two casings
and an upward flow behind the larger casing.

In any case, the Temperature log very clearly shows that the water does not reach the right
formation and that it goes somewhere between about 400' and 1250'

CONCLUSIONS

The theoretical curves of figures A, B, C and D show what kind of information temperature logs
can be expected to give in production wells and in injection wells ; with the help of the other
production logs, as explained for example in case A46, it should be possible to detect vertical
fluid movements of any significance behind pipe. The theoretical derivations are very well
confirmed by the actual temperature profiles. Besides both the theoretical figures (A 5.3 for
example) end the actual logs show that better information is obtained if the temperature logs are
recorded not only during stabilized production or injection, but also after a shut-in period of
several hours.
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NONSTEADY FLOW TO A WNELL
[N AIN INFINITE ANISOTROPIC AQUIER

Kstavros S. PAPADOPLLOS tQ)
U.S. Geological Survey, Washington, D.C

AassAc-r

Well flow equations presently used in the analysis of pumping tests and the
prediction of water levels have been derived under the assumption that aquifers are
isotropic. These existing equations are not applicable to anisotropic aquifers such as
fractured rocks.

In this paper, an equation is derived for the drawdown distribution around a
well discharging at a constant rate from an infinite anisotropic aquifer. Drawdowns
computed by this equation are compared and found to be in good agreement with
those observed in an electric-analo* model constructed for this purpose. Is is shown
that pumping test data from a minimum or three observation wells can be analsted
to obtain the components of the transmissibility tensor along an arbitrarily chosen set
of axes. and that these components, in turn. can be used to determine the principal
sransmissibilities and the orientation of the principal axes. The method is illustrated
with an example.

Risumt

tcoulement irw4u1ier en directilon duon puti dons oen nappe anisotrope illimiiec
Les Equations d'ecoulement des puits actuellement utilisdes pour l'analyse des

tests de pompage et Ies previsions des niveaux d'eau ont EtE ctablies sur IC postulat
que les aqufRems sont isotropes. Cc$ Equations rse peuvent etre appliquees aux
aquiferes anisotropes que sont -es roches assurees.

L'auteur de cet article etablit sne equation donnant la ripartition du rabattement
de Ia nappe autour d'un puits au d~bit constant. fore dans one nappe anisotrope
illimitde. Si l'on compare les rabattements calculds d'apres cette equation &I ceux que
I'on observe sur an modk dlectrique analogique construit t cette intention, on
constate que ICs uns ct es autr concordent L'Eauteur montre aussi qu'en analhsant
les donnees des tests de pompage effectuhs sur un minimum de trois puits d'obser.
vasion, on peut obtenir Ics compmants du tenscur de transmissivitt pour un ensemble
d'axes arbitrairement choisis. Ces composants peuvent eux-meines ehre utilises pour
determiner les transmissivites principales et l'orientation des axes principaux.
La m~thode est illustric par un exemple.. :1 ... -

1NihOOUCctOt

Equations presently used in analyses of pumping tests and predictions of water
levels have been derived under the assumption that the aquifers are isotropic. These
existing equations are not applicable to anisotropic aquifers such as some fractured
rocks in which joint Pancrns cause variations of the permeability in different directions.

This paper derives an equation for the nonsteady drawdown distribution around
a well discharging at a constant rite from an homogeneous anisotropic aquirer of
infinite area! extent.

The nlow of ground water in aquifers follows Darcy's ltw which states that the
velocity is proportional to the negative gradient of the hydraulic head. In vectorial
form this can be written as

P - -K gradh

where P is the velocity vector, the constant of proportionality X the permeability
(hydraulic conductivity) of the aquifer, and k the hydraulic head.

(I) Present address: DCPL Of GeoL tand Geophys., Univ. of Minnesota. Minnea-
polis, Minn.
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In anisotropic aquifers the velocity vector and the hydraulic gradient vector are
cenerally not parallel. The constant of proportionality K is then a symmetric tensor
of the second rank (Ferrandon, 1948; Scheidegger. 1954; Liskopoulos. 1962). usually
referred to as the 'permeability tensor", which transforms the components of the
hydraulic gradient into those of the velocity. The velocity and the hydraulic gradient
have the same direction only along one of three orthogonal axes called the 'principal
axes' of the permeability tensor. The anisotropy of an aquifer can be defined by the
orientation of the principal axes and the maignitudes of the components of permeability
along them.

For the two-dimensional flow problem treated in this paper use of the 'trans.
missibility tensor" T. which is the product of the two-dimensional permeability tensor
and the thickness of the aquifer. is convenient. In matrix notation the two-dimensional
symmetric transmissibility tensor can be written as

T
T., T.,

where z and y are an arbitrary set of orthogonal axes. For the principal axes I and ,1

the above equation reduces to

T =

Tr and Tj, being the maximum and minimum transmissibilities, respectively.

ANALYSIS

The distribution of drawdown around a well of constant discharge which fufly
penetrates an infinite anisotropic artesian aquifer is described by the following boundary
value problem

where s is the Laplace trai
Application of the complex
results in

-7; TVc - 2 i

where r is the transform 0l

Transforming once more thi
, yields an explicit expressi

r

T,, 2 -+2 Ty,.--+ Ty 2 -+QJ(X) 60y) -S-a
zzx2 cxy ayI'a

S(± a, Y, 1) = 0

$(s x ±Cot ) - 0

(1)

(2)

(3)

(4)

where: is the transform ol
Equation 10 is obtainci

are made. Consequently, tl
convenience. Taking first t1

o Q exp ((iyZT

Then, taking the inverse L
results in

2 ir -/2S -T,,

where L;- denotes the in
Fourier transform with rei
obtain the formal solution

S

where W(u) is the ntpeaiv
the !well function", defin

and in which

u,,

If the coordinate axe
transmissibility tensor, eq

where s is the drawdown. nss. YTs and Tsy the components of the transmissibility
tensor, S the storage coefficient, Q the diseharrc of the well. 6 the Dirac delta function,
x and y the coordinates of an arbitrary set of orthogonal axes with origin at the well,
and * the time since the flow started

The theory of integral transforms is used in solving the problem. By using the
Laplace transformation with respect to s and initial condition 2 the problem can be
expressed as

T,,-2 1+ 2 T...-+ +Ty 2+ -+~ ( ) J (y - SpJ

AZ16, Coy 1A

I(x, + o,, p) = 0

(5)

(6)

(7)
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hydraulic gradient vector are
K is then a symmetric tensor

4; Liakopoulos. 196!). usually
forms the components of the
iatv and the hydraulic gradient
onal axes called the 'principal
aquifer can be defined by the

he components of perneability

this paper use of the trans-
imensional permeability tensor
x notation the two-dimensional

For the principal axes c and q

where s is the Laplace transform of s, and p the parameter of the transformation
Application of the complex Fourier transform with respect to x to thc above equations
results in

-T... 2 w-2i27T,, -- I ,, (Y P
lay al"T,

(S)

u(M, ± 10. p) - 0 (9)

where w is the transform of 1. s the parameter of the transformation and I /-
Transforming once more through use of the complex Fourier transform with respect to
y yields an explicit expression for the transform of the solution

z =Q I
2r~p Tz1+2TwtP+T,,P2 +Sp (10)

where : is the transform of w and A the parameter of the transformation.
Equation 10 is obtained irrespective of the order that the three transformations

are made. Consequently, the order of inversion is irrelevant and can be chosen for
convenience. Taking first the inverse Fourier transform with respect to y. one obtains

1.Q exp {(iyzT,,-IyI ((T5.T,,- T;,?)~ 2 + ,pJ1*)/T,}
21,2,th p f(T.T,,- T.'P + ST"pJ*

(11)

Then, taking the inverse Laplace transform through use of the convolution integral
results in.nissibilities. respectively.

L-'(w) 2ST JoP S a-T, 7 J 0dr (12)
stant discharge which fully
I by the following boundary where L-t denotes the inverse Laplace transform of w. Finally, taking the inverse

Fourier transform with respect to x, and after some mathematical manipulation we
obtain the formal solution

rC) a(y) -
bz

(1)

4- 4 tT 21 T,, -T14,
(13)

(2)

(3)

(4)

-onents of the transmissibility
cell, o the Dinc delta function.
al ames with origin at the wel

it the problem. By using the
ndition 2 the problem can be

where W(u) is the negative exponential integral, known in the field of hydrology as
the 'well function", defined as

W(U) = C e

and in which

S(Tyi17+Ter2 -2T.rXy (14)

x) J(y) - SpI (5) If the coordinate axes x and r coincide with the principal axes I and it of the
transmissibility tensor, equation 13 reduces to

(6)

(7)

5- ' W(tj
4 -cf_1 CT

(13)
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II
where r. and rq arc the 'principal transmissibiliics' and

U , S ( T44T4 ) (16)

ANALOG UOOEl PMSVLTS

The analytical soluti<
analog model eensisting
vas designed for an aquif
and II crn:Jsec and a s
6.67 litersJsce. A node sp.
One quadrant of the in
similate an infinite aqui
limits that would be react

Equation 15 is similar to one given by Collins 11961).
For small values of its argument. that is for u < 0.0t the well function appearing

in equations 13 and 15 can be closely approximated [Cooper and Jacob. 1946) by

W(u) - -. 5772 - loL m - 2.303 logo 2.

Substituting this approximation in equations 13 and 15 one obtains solutions for
relatively large values of time as

2.303 Q lo 2-21 ( T..T,," T. 1
T.'°LS (Ty2 7 2L 2_i2T 1xJ)]

for an arbitrary set of axes. and

£ = 2.303 Q log,0 [2.25 t{ TIT

s x Ti7; T, g,o S tT;WX1'+ T )

250

200

0.0 0.0

0.I 0.1

0.1 0.1

(17)

s

IsO
0.9
0Q7

08
0.6

(1s).

for the principal axes
As an examination of the drawdown equations indicates, for a given time, lines

of equal drawdown around a well pumping from an anisotropic aquifer have the form
of concentric ellipses (fig. 1) with transverse axes along the maximum transmissibility
axis ' and conjugate axes along the minimum transmissibility axis qi

- sc _ <4;9 4.2
5.0 4.4

24.0 17.0
so_ .

26.0 21.0

wll 50.0

5Jil

Measured and com
pumping. are shown on
with time at I - 100 a
representing the observe
screen. The measured ai
differences being due to

I

A??ucmnox TO uxcpr

The use of analytic
the transmissibility and
by some mans.. These
pumping tests which cc
equations for the f9omFig. I
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.&ad ANALOG MEODCL tESULTS

(16)

'. the well function appearing
ICooper and Jacob. 19461 by

3 logi -
4 u

The analytical solution obiained in the previous pages was verified by an electric
analog model consisting of a rectangular rcsistance capacitance network. The model
,a-s designed for an aquifer having principal transmissibilities Tr. and r,,,, or37 cmn2 sec.
and II cm'Isec and a storage coefficient of 0.04. The well discharged at a rate of
6.67 liters/sec. A node spacing corresponding to a 50 meter orthogonal grid was chosen.
One quadrant or the infinite space bounded by the I and q axes was modeled. To
similate an inlinite aquirer the model was extended in both directions beyond the
limits that would be reached by the effect of pumping within the period or measurement.

I5 one obtains solutions for
2Is

2 2-TIXY/
(17)

-

T?4T., ) (18)
IS

AlIa

-0.0 0.0 0.0 EXPLANATION0. . 0.* (cm)
00 00 0.0 08 Measured drawdown

01 0.1 0.1 0.0 0.0 00 Neer pobl
0.1 0.1 0.0 0.0 0.0 0. 0.9 Compuled drawdown

0.9 0o8 0.5 0.3 0.2 0.1 0.0
0.7 0.6 05 O j 0.1 0.1 0.0

4.9 4.2 2.8 1.4 0.7 0.3 0.1 0.0

5.0 4.4 .D 1.7 0.5 0J 0.1 0.0

24.0 17.0 9.6 4.8 2.2 0.8 0.3 0.1
26.0 210 12.0 i .4 0.9 0J 0.1

Well 50.0 23.0 9.5 4.2 1.5 0.4 0.1 0.0
5JD0 22.0 9J J. 12 0.4 0.1 O0

I I I I I I I I

icates. for a given time, lines
.otropic aquifer have the form

-- maximum transmissibility
ity axis 17.

50

0

-*1 2cm'/sec T,,s,3cm3/soc
03.0001 Q2S.461iters/sec

-.--.- =~t=400hrs

0 so too ISO 210
f lmsfil

250 300 ISO 00

Fig. 2

Measured and computed drawdowns at each node point, for 10' secc ds of
pumping. are shown on igure 2. Variation of the computed and observed drawdown
with time at u - 100 meters and q - 100 meters is shown on ASgur 3. The curve
representing the observed drawdown was traced from a photograph of the oscilloscope
screen. The measured and computed values in the two figures age closely, the slight
differences being due to instrumental error.

ApructnoN To PumptNr TtsaT

The use of analytical solutions In quantitative hydrologic studies requires that
the transmissibility and storage coefficient otfhe aquifer% be determined or estimated
by some means. These formation constants are usually determined from analyses of
pumping tests, which consist of relating observed drawdowns to theoretical drwdo*n
equations for the flow system under consideration. For anisotropic aquifers the
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appropriate theoretical equations are equations 13 or 17 if the principal axes are not
known, and equations I5 or Is if the principal axes are known. The method of analysis
is essentially the type-curve' or. if applicable, the 'straight-line' method, both of
which are well known to hydrologists from their we in the analyses of tests of
isotropic aquifers. The observed drawdown s is plotted against time t or reciprocal
of time lt for each observation well. Because of the absence of radial symmetry, the
composite drawdown graph (s against ,r2t. where r is the radial distance) and the
distance-drawdown (s against r) plots which are used in tests of isotropic aquifess,

0

a

V

I=
C1
.Z

a

--- Observed
- Computed

N

1-

2. From tables of t
U'(Uvy) against Mw or
type curve.

3. Plot observed va
the three observation v

4. Superpose the o:
axes of the two plots F
curve. Choose a match
s. us. and I/i or each

5. Substitute the va
and solve for (rxTt,
approximately the sam
be used to obtain an -

6. Substitute the va
(rxsrvT- Tt,) obtain
observation well corresi
for the products ST,..

7. Solve these prod
into the expression (rT

t. Having found S,

Srbight-fine method

The straight-line m
the observed drawdowv
time for which equatio

1. Same as step I (
2. Plot observed v-

or semilogarfitmic pal
straight line equation I

3. For each well d:
line. An examination c
log Cycle) given by

4

C

0 2zl0' 4:l0' 6z10'

TIME t (tic)

8:10' lo, 2z105

Fig. 3 and a r-intercept to gi%

cannot be used in tests of anisotropic aquifers. Also. since there arc four constants to
be determined (the three transmissibility components .:. Ty, and Tzy and the storage
coefficient S) a minimum of three observation wells at different distances and different
directions from the pumping well are necessary.

Both the type-curve and the straight-line methods of analysis for anisotropic
aquifers are outlined below for the case where only three observation wels exist and
the directions of the principal axes ate not known. When data from more than three
observation wells are available the same approach can be used by grouping them into
sets of three.

rype-cu've method
1. Choose a convenient rectangular coordinate system witb the origin at the

pumping well and record the x and y coordinates of eacb observation well.

..

4. Find the interce:
have the same, or a;
average value.

S. Substitute the sl
6. Substitute the ir

in step 5 into eqUatiol
sponding to each intei
STJ, and STi.

7. Follow the sam
calculate S. T.:. Tvv ;
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at the principal axes are not
lown. The method of analysis
raight-line' method. both of

in the analyses of tests of
against time or reciprocal

sence of radial symmetry, the
the radial distance) ard the
in tests of isotropic aquifers.

2. From tables of the well function W(u) (Venzel. 19421 prepare a type curve of
W(urr) against *,y on logarithmic paper. The curve so obtained is known as the
type curve.

3. Plot observed values of the drawdown s against reciprocal time 1! for each of
the three observation wells on logarithmic paper to the same scale as the type curve.

4. Superpose the observed data plot on the type curve and, keeping the coordinate
axes of the two plots parallel. find. for each well, the best fit of the data on the type
curve. Choose a match point for each wen and record the dual coordinates U(uz :
. usw, and 1lt of each match point.

S. Substitute the values or W(wz,) and r from each match point into equation 13
and solve for (TssT8 -Ts2,). All three match points should yield the same, or
approximately the same, value for (TzT,,,-rT,). If they do not. judgement must
be used to obtain an 'average value.

6. Substitute the values of xzt and lit from each match point and the value of
(TxT>,v- zt8 ,) obtained in step S into equation 14 and, using the coordinates of the
observation well corresponding to each match point, solve the resulting three equations
for the products STS2 . STv and STxr

7. Solve these products for Ts. TJ atn T2, in terms of S and, substituting these
into the expression (Tzr2 ,,- T2

2 ) whose value is known from step S. obtain S.

S. Having found S, calculate rz, T7. and Ts,, from the products obtained in step 6.

Spaight-lfne method

The straight-line method of analysis can be used only if all or the latter pan ot
the observed drawdown data for all three observation wells falls within the range of
time for which equation 11 is applicable.

1. Same as step I of type-curve method.
2. Plot observed values of drawdown s in each observation well against time r

on semilogarithmic paper with I on the logarithmic scale., If the latter data plot as a
straight line equation 17 probably applies.

3. For each well draw a straight line through those points that plot as a straight
line. An examination of equation 17 shows that this sutaight line has a slope (da per
log cycle) given-by

2z100 Js 2.303 Q
Cycle 4x4T ,T7 -T~

and a t-intercept to given by

S (T, y+ FT/'-2 T xy\
10 2 2S TTnT I

2*7 27 -

(19)

(-0):e there are four constants to
.4, and Tz, and the storage

.5crent distances and different

of analysis for anisotropic
-e observation wells exist and
!n data from more than three
e used by grouping them into

stem with the origin at the
ch observation well

4. Find the intercept to and the slope 4:/cycle of eac line. All three lines should
have the same, or approximately the same, slope. If differences exist obtain an
average value.

S. Substitute the slope in equation 19 and calculate (TsxT,,- T2
2 ).

6. Substitute the intercept to of each line and the value ot(Tsvrwt,- T7e) obtained
in step S into equation 20 Lad. using the coordinates of the observation well corre-
sponding to each intercept, solve the resulting three equations for the products STr..
SrT and STa.

7. Follow the same procedure as in steps 7 and g of the type curve method to
calculate S. Tsr T, and rT,

2 7
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After the components 7,. Tr. and r,, of the transmissibility tensor if c obtained
from the typecurve or the straight-line method, the principal transmissibilities T.t
and r,,, and the orientation of the principal axes can be determined by making use
of tensor properties The foliow int relations. obtained from the invariants end the rules
of transfornaution of tensors, apply for all symmetric ten. :s of the second rank.

Solution
The coordinate a

coordinates of the ol

OW

. .... .. . TCC - I ((T.+ T,,) + [(T.. -T,,)' + 4 T.2,j i)

T") _ [(T _ T + 4 T.2,]*)T,. - f ((T..+ ")2

. . TI., - T- �
o Mt arctan

( T.Y j

(21) OW

(22) oly

(23)
S

where 6 is the angle between the x and the axis, positive in a counterclockwise
direction from the r-axis. and restricted for convenience to the interval 0O 9 <.L

lLLvUSTrATVt EXAmPL&

A 1 2-hour pumping test was conducted to determine the hydraulic properties of
an anisotropic aquifer. The well PM' was pumped at a rate of 12.57 litersjsec. and the
drawdown was observed at three observation wells OW-I, OW 2 and 0IV-3 located
as shown on figure 4. The drawdown data are given on table 1. The problem is to
find the storage coefficient and principal transmissibilitics of the aquifer and the
direction of the principal axes.

A 2

U.

0:
Z

(I4 ),0.371 1
Ct,) 0._ 9k o

4

.1 .3 .5
y

-9.Om-j W-2

°lm

i

A semilogarithmic p
analysis is applicable.
is the fame for aU t
t-intercepts arc

iNlIk-A.:
J7

5.2m
A OOW-3

j-19.3m-

IPW I o w-i .
~~28.3m-A

From equation 19 w

(7a. Ty, - 7'.',) - I
Fig. 4

28



.sibility tensor are obtained
cipa; transmissibilities Tic
determined by making use
the invariants and the rules
vrs of the second rank:

Solution

The coordinate axes are chosen with the x-axis passing through OW-I and the
coordinates of the observation wells are determined as

1- 4 TzgJ)

i- 4 T5',))

(21)

(22)

OW/l-x- 28.3m;y- 0

OW/2- x - 9.0m; y- 33.5 m

OW13- x - -19.3 In: y - - 5.2 m I (24)

(23)

tive in a counterclockwise
to the interval 0 e 6 < :i

the hydraulic properties or
of 12.S7 liters/sec. and the
o jv' and OW-3 located

table t. The problem is to
as oa the aquifer and the

OW-1 x
0-

V
a

a

I ow-I
0 7W-2

2 - -- - -

, _ 20L _ 7
.1 It s I I S - e to e2 so Ift too Igo 1ecWe

TlIM t (miW.W1

Fig. 5

A semilogarithmic plot of the data (fIg. 5) shows that the straightline method of
analysis is applicable. The slope of the lines drtwn throuih the latter part of the data
Is the iame for all three lines and has the value of 1.15 meters per log cycle. The
t-intercepts are:

(to), - 0.37 min.
(10)2 = 0.72 min.

(to)3 = 0.24 wi .

From equation 19 we obtain

(25)

(T.M VP r 2.303 x 12.57 liters/sec.2 4 x Pm'/sec
nZfl87 L4sx 1.15 mx 1000 literlm3 J (26)
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Substituting from (24). (25) and (26) into equation 20 we find

(8.3)1 ST,, - 2.00 x 10 ' m'Isec.

(33.5)2 S.7 + (9.0)2 S,, - 2(33.5) (9.0) ST,, - 3.89 x 10-' in'/sec.

(5.2)2 ST., + (19.3)2 ST,, - 2(5.2) (19.3) ST,, - 1.39 x 10- m'fsec.

Solving these three equations simultaneously we obtain

'SxI10 7 2'T., - 2 m isec.
SI

T 2.5 x10' MI/sec.
S

T. M - i.5 x IO- M'Is

S

(27)

Substituting from (27) into (26) gives

6.25 x 10-"-2.25 x IO- x'
- 4 x10'"

Si

i

or
S - 10- (28)

Finally. by substituting from (2S) into (27) we have

T,,, 2.5 x 10-3 mjisec. - 25 cm2'sec.

Jn - 2.5 x 10 - m2 isec. = 25 cmrlsec.

Jy- -1.5 x 10-1 m2 lsec. - -IS cm'lsec.

With the components or the transmissibility tensor now known, the principal
transmissibilities urs obtained from equation 21 and 22 as

- { ((25+25) + (4x(-15)2 ]+) 40 cm2fsec.

Tr, - j ((25 +25)- 4 x t-15)2 ]+) -10 cmilsec.

The angle O between . and C axis is found from equation 23 to be

e - arctan [40-25
L-15

- arctan (-1)

- 1350

Drgardou rn,

Time r since pun
suaned minut

0.5

3
4
6
3

10
15
'0

30
*0

to

60
90

120
150
I0
240
300
360
4S0
720

COLUrS, RE£ 1961
Publishing Corp.

Coonx. H. h. lr. aD
formatino consta
voL 27. no. iv p

FEtRANDON. 1. 1 948
PP. :4-'2.

LIAI;OOULOS, A. 19
Enginweialg, Am

Sawoacoaa.L A^. E.
fluids. Geojisic:.

WanuztL L. 1 19;2
192 p. (U.. S cc

i

30



-�. -il

M��

I 'c.

3.S9 x 10-' m'/sec.

1.39 x 10-' m'/sec.

TABLE I

Dracdown data from obstproaions well OIY.I., 0 W2. and OW.J

Time r since pumping
staned minutes)

Drawdown s (meters)
OW.2ow-I

(27)

0.5

2
3
4
6

10
I5
20
30
40
50
60
90

120
150
180
240
300
360
430
720

0.335
0.591
0.911
1.032
1.215
1.405
1.549
1.653
1.353
2.019
2.203
2.344
2.450
2.541
2.750
2.901
2.99t
3.075
3.235
3.351
3.438
3.587
3.784

0.153
0.343
0.611
0.762
0.911
1.09
1.225
1-329
1.531
1.677
I.353
2.019
2.123
2.2 10
2.416
2.555
2.670
2.750
2.901
2.991
3.111
3.247
3.455

0.492
0.762
1.089
1.284
1.419
1.609
1.757
1.853
2.071
2.2 10
2.416
2.55S
2.670
2.750
2.963
3.113
3.213
3.310
3.455
3.565
3.649
3.02
3.996

10-'

(28)

!sec.

'S2/sec.

now known. the principal
is

a 40 cmr/sec.

2 10 cm2/SCc.

*n 23 to be
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