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Mr. Joseph J. Holonich, Director
Repository Licensing & Quality Assurance

Project Directorate
Division of High-Level Waste Management
Office of Nuclear Material Safety

and Safeguards
U.S. Nuclear Regulatory Commission
Washington, D.C. 20555

Dear Mr. Holonich:

The U.S. Nuclear Regulatory Commission (NRC) offered Phase I
review comments on Study Plan 8.3.1.2.3.1, "Characterization of
the Site Saturated Zone Ground Water Flow System," on December 6,
1991 (enclosure 1). Activities 1-6 are the responsibility of the
U.S. Geological Survey (USGS), and Los Alamos National Laboratory
is responsible for Activity 7. Several concerns were raised in
NRC's letter. In responding to these concerns, the U.S.
Department of Energy's (DOE) response to NRC's Phase I review
comments on Study Plan 8.3.1.14.2, "Studies to Provide Soil and
Rock Properties for Potential Locations of Surface Facilities,"
should also be consulted.

The first concern pertained to technical procedures in general.
The NRC has asked for a schedule as to availability of technical
procedures needed for conduct of the work and that the procedures
themselves be supplied upon availability. The DOE does not
maintain a schedule as to availability of these procedures and
only requires that technical procedures be in place prior to
beginning work. Verification that technical procedures are
available takes place during the preparation of job packages
under Yucca Mountain Site Characterization Project Office (YMPO)
Administrative Procedure (AP) 5.21Q, Field Work Activation. If
it was NRC's intent to request specific technical procedures,
please make a specific request through the on-site representative
(OR) by having the OR request them from YMPO.

Another concern was the potential test-to-test interference in
the C-holes cluster and the availability of a graphic showing how
this study intends to pass information to other studies requiring
it, or receive information from other studies supplying it.

With respect to test-to-test interferences, the study plan's
discussion of test-to-test interferences is not exhaustive, nor
is it meant to be. Detailed consideration of test-to-test
interferences, for specific tests at specific locations, are

to6 A
9210150218,920914
PDR WASTE,-. i .' P:
Wri-11 PDR



dealt with under AP 5.32, Test Planning and Implementation
Requirements. The planning package resulting from this process
includes details on interferences that is explicit to the
operational test program to be performed. Interference among
tests is not anticipated to be a major problem that would impact
schedules. Past experience at the C-wells complex indicates that
after a typical hydraulic test, the pressures return to pretest
conditions within hours to days. The large scale hydraulic tests
certainly take longer, but the time frame would be days to weeks
rather than months to years. To minimize interference among
tracer tests, a suite of tracers rather than a single tracer
would be used. Ideally, each test would use a separate tracer.
Even if some tracer remains from an early test, the breakthrough
curve for a later test using the same tracer would still be
distinguishable from the background concentration caused by the
early test.

With respect to a schedule with test start/duration information,
in general the exact type, start date, or duration of tests at
multiple-well sites cannot be determined a priori. The testing
follows a methods-development sequencing, where a few tests will
be run at first. The results will be analyzed and a decision
made as to whether or not to run more tests, modify the testing
procedure, adopt a different type of test, or that adequate and
sufficient data has been acquired. Site Characterization Plan
(SCP) Section 8.3.1.2.4 (page 8.3.1.2-445) identified the logical
relationships between the various studies comprising the SCP's
geohydrology program. Although the real-time dates indicated in
the schedule section are now obsolete, the feeds from, and to,
other studies preserve the relative logic.

Another concern pertained to integration among data collection
and modeling studies; and relationship to iterative performance
assessments. The exchange of information between these
activities is inherent in the way studies have been planned.
Much of this data is being gathered as input to specific physical
system and subsystem models. Principal investigators and
modelers potentially needing data from field studies are alerted
to its availability through the Technical Data Catalog, which is
published quarterly. Also, many of the same hydrologists at the
USGS are involved in both data collection and modeling.

With respect to iterative performance assessments, how data
obtained by Study 8.3.1.2.3.1 are used in a total-system
performance assessment, or the frequency intended for these
exercises, is beyond the scope of this study plan. These
variables are being considered by DOE and the participant
organizations, and as these plans mature, the NRC will be
informed. In general, iteration between data collection as part
of this study and modeling in Study Plan 8.3.1.2.3.3, "Site
Saturated Zone Synthesis and Modeling," would take place through
concurrent data collection and modeling. Groundwater flow and
transport modeling would occur at the same time as data
collection, and not only after all data has been collected.
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Initial models would be set up and calibrated with available
data. New data would serve to refine these models. Early
modeling would identify the need for additional types of data or
other locations where data should be acquired to improve the
models and reduce uncertainties.

The NRC also requested a list of references that were cited in
the study plan. These references are collected into one
enclosure (enclosure 2).

If you have any questions, please contact Mr. Chris Einberg of my
office at 202-586-8869.

Sincerely,

John P. Roberts
Acting Associate Director for

Systems and Compliance
Office of Civilian Radioactive
Waste Management

Enclosures:
1. Ltr, 12/6/91, Holonich to Roberts,

w/encl.
2. Not-Readily-Available References

Cited in Study Plan
(Not Record Material)



cc: w\enclosures
Alice Cortinas, CNWRA, San Antonio, TX

cc: w\enclosures
C. Gertz, YMPO
R. Loux, State of Nevada
T. Hickey, Nevada Legislative Commission
M. Baughman, Lincoln County, NV
J. Bingham, Clark County, NV
B. Raper, Nye County, NV
P. Niedzielski-Eichner, Nye County, NV
G. Derby, Lander County, NV
P. Goicoechea, Eureka, NV
C. Schank, Churchill County, NV
F. Mariani, White Pine County, NV
V. Poe, Mineral County, NV
E. Wright, Lincoln County, NV
J. Pitts, Lincoln County, NV
R. Williams, Lander County, NV
J. Hayes, Esmeralda County, NV
M. Hayes, Esmeralda County, NV
B. Mettam, Inyo County, CA
C. Abrams, NRC
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Mr. John P. Roberts, Acting Associate Director
for Systems and Compliance

Office of Civilian Radioactive Waste Management
U. S. Department of Energy, RW 30
Washington, D.C. 20585

Dear Mr. Roberts:

SUBJECT: PHASE I REVIEW OF U.S. DEPARTMENT OF ENERGY (DOE) STUDY PLAN FOR

CHARACTERIZATION OF THE SITE SATURATED-ZONE GROUND-WATER FLOW SYSTEM

AND OF DOE STUDY PLAN FOR TESTING OF THE C-HOLE SITES WITH REACTIVE

TRACERS

On April 6, 1990, DOE transmitted the study plan entitled "Study Plan 
for

Testing of the C-Hole Sites with Reactive Tracers" (Study Plan for

Study 8.3.1.2.3.1.7) to the U.S. Nuclear Regulatory Commission (NRC) for review

and comment. On March 7, 1991, DOE transmitted the study plan entitle' "Study

Plan for Characterization of the Sit, Saturated-Zone Ground-Water Fl'z. Systc-'

(Study Plan for Study 8.3.1.2.3.1.1-6). These two study plans descrsce the

activities for one study as presented in DOE's Site Characterization Plan 
(SOP)

for the'Yucca Mountain, Nevada site. Because the two documents describe one

study, NRC chose to review them together. The NRC has completed its Phase I

Review of these documents using the Review Plan for NRC Review of DOE 
Study

Plans, Revision 1 (December 6, 1990).

The material submitted in the study plans was considered to be consistent, 
to

the extent possible at this time, wizh the agreemzant on content resu:i-n Mrom

the NRC-DOE agreements made at the May 7-8, 1986 NRC-DOE meeting on Levei 
of

Detail for Site Characterization Plans and Study Plans. Many procedures remain

to be developed, including ones covering key work activities at the site, such

as the drilling and coring of wells, equipment calibration, and methods for

conducting cross-hole hydraulic tests, large-scale pumping tests, and tracer

tests. The NRZ staff did not consider that the lack of availability of such

information compromised its ability to conduct its Phase I Review of 
the

material provided. However, we request that DOE provide us with a schedule for

the development of the procedures and that DOE notify us when the procedures

are available for review.

Among the references listed for these study plans are several which have 
not

been provided to NRC and are not readily available in the public domain. 
We

therefore request that DOE provide us with the documents listed in the

enclosure to this letter.

ENCLOSURE 1
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A major purpose of the Phase I Review is to identify concerns with studies,
tests, or analyses that if started could cause significant and irreparable
adverse effects on the site, the site characterization program, or the eventual
usability of the data for licensing. Such concerns would constitute
objections, as that term has been used in earlier NRC staff reviews of DOE's
documents related to site characterization (Consultation Draft Site
Characterization Plan and the Site Characterization Plan for the Yucca Mountain
site). The Phase I Review of this study plan identified no objections with any
of the activities proposed.

There are two technical matters related to the study plans that the NRC staff
wishes to call to the attention of DOE. First, there is considerable potential
for interferences among the tests proposed, especially given the large number
of hydrologic and tracer tests planned at multi-well sites like the C-hole
cluster. If such interferences occur, they could cause disruptions of the site
characterization schedules, which could subsequently have an adverse impact on
schedules for licensing. Therefore, it is important for DOE to develop a
timeline that shows all proposed work activities under the site saturated-zone
investigations, including durations and start and finish dates. If it is not
yet possible to identify actual start dates, the timeline could still show the
relative starting times and durations for all related tests. If such a
timeline exists now or is developed at some future time, we request that it be
provided to NRC when available.

In addition to this first matter, the NRC staff notes that the connection
between this study and the study concerned with Saturated Zone Synthesis and
Modeling Activities (Study 8.3.1.2.3.3) is described as an iterative process
whereby modeling may lead to additional data collection and refinement of a
conceptual model. The staff considers the proposed process to be a positive
step but is unclear as to how DOE plans to implement it. Although the study
plan describes general relationships between this and other studies, there is
no explicit discussion of an overall program of iterative performance
assessment, or discussion of the timing of this study relative to such a
program.

After completion of the Phase I Review, based on the relationship of a given
study plan to key site-specific issues or NRC open items, or its reliance on
unique,.state-of-the-art test or analysis methods, certain study plans are
selected to receive a second level of review, called a Detailed Technical
Review. The NRC staff considers the two subject study plans likely candidates
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for a Detailed Technical Review. However, until the important procedures and
the test and activity timeline mentioned earlier in this letter are completed
and available to the NRC staff, we cannot make a final determination regarding
the need for a Detailed Technical Review of these study plans.

If you have any questions concerning this letter, please contact King Stablein
(FTS/[301]-492-0446) of my staff.

Sincerely,

Joseph J. ch, Director
Repository Licensing and Quality

Assurance Project Directorate
Division of High-Level Waste Management
Office of Nuclear Material Safety

and Safeguards

Enclosure: As Stated

cc: R. Loux, State of Nevada
C. Gertz, DOE/NV
S. Bradhurst, Nye County, NV
M. Eau;-.man, Lincoln County. NV
0. Bechtel, Clark County, NV
0. Weigel, GAO
P. Niedzieiski-Eichner,.Nye County. NV
C. Thistlethwalte, Inyo County, CA
V. Poe. Mineral County. NV
F. Sperry, White Pine County, NV
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References for Study Plan 8.3.1.2.3.1
(including Studies 8.3.1.2.3.1.1-6 and 8.3.1.2.3.1.7)

Requested by NRC

8.3.1.2.3.1.1-6

o Barenblatt, G.E., Zheltov, I.P., and Kochina, I.N., 1960, Basic concepts
in the theory of homogeneous liquids in fissured rocks: Journal of
Applied Mathematics and Mechanics (USSR), v. 24, no. 5, p. 1286-1303.

O Cringarten, A.C., and Witherspoon, P.A., 1972, A method of analyzing
pumping test data from fractured aquifers: Symposium on Percolation in
Fissured Rock, Stuttgart, International Society of Rock Mechanics,
Proceedings: v. 3, p. B1-B9.

o Hanson, J.M., 1984, Evaluation of subsurface fracture geometry using fluid
pressure response to solid earth tidal strain: Lawrence Livermore
National Laboratory, UCID-20156, 135 p.

O Karasaki, K., 1986, Well test analysis in fractured media: Lawrence
Berkeley Laboratory Report LBL-21442, University of California, Berkeley,
239 p.

o Loeb, J., and Poupon, A., 1965, Temperature logs in production and
injection wells: 27th Meeting of the European Association of Exploration
Geophysicists, Madrid, May 5-7, 1965.

O Papadopulos, S.S. 1965, Nonsteady flow to a well in an infinite
anisotropic aquifer: Dubrovnik Symposium of Hydrology of Fractured Rocks,
Proceedings, v. 1, p. 21-31.

o Rojstaczer, S.A., 1988, The response of the water level in a well to
atmospheric loading and earth tides; Theory and application: Ph.D.
Thesis, Stanford University, March 1988.

O Saad, K.F., 1967, Determination of the vertical and horizontal
permeabilities of fractured water-bearing formations: Bulletin IASH,
v. 3, p. 22.

O Snow, D.T., 1965, A parallel plate model of fractured permeable media
(Ph.D. dissertation). Berkeley, University of California.

ENCLOSURE
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8.3.1.2.3.1.7

o Dudley, W.W., Jr., and D.T. Oakley, 1988. Agreement between NNWSI
Technical Project Officer, Los Alamos National Laboratory, and NNWSI
Technical Project Officer, United States Geological Survey, Regarding the
Cooperative Conduct of Tracer Studies.

O Gelhar, L.W., 1982. "Analysis of Two-Well Tracer Tests with Pulse Input,"
RHO-BW-CR-131 P, Rockwell Hanford Operations, Basalt Waste Isolation
Project, Richland, WA.

O Kelley, V.A., J.P. Pickens, M. Reeves, .and R.L. Beauheim, 1987.
"Double-Porosity Tracer-Test Analysis for Interpretation of the Fracture
Characteristics of a Dolomite.Formation," Solving Ground Water Problems
with Models, proceedings of the National Water Well Association
Conference, Feb. 10-12, 1987, Denver, CO.

o Polzer, W.L., and H.R. Fuentes, 1987, "The Use of a Heterogeneity-Based
Isotherm to Interpret the Transport of Reactive Radionuclides in Volcanic
Tuff Media," Los Alamos National Laboratory Report LA-UR-87-2901, Los
Alamos, NM.

o Robertson, J.B., P.S. Huyskorn, T.D. Wadsworth, and J.E. Buckley, 1987.
"Design and Analysis of Deep Two-Well Tracer Tests," Hydrogeologic, Inc.,
Herndon, VA.

o Robinson, B.A., 1987. "Predictive Modeling of in Situ Retardation of
Reactive Tracers During C-W-ell Testing," Nevada Nuclear Waste Storage
Investigations Milestone No. R487, Los Alamos National Laboratory.
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C .C F. RECEIVED

BASIC CONCEPTS IN TUE TGEORY OF SEEPAGE
OF HOMOGENEOUS LIQUIDS

IN FISSURED ROCS (STRATA

(CB OCW0rNTKf PREDStAWLEMIKAKH MEORKI FILOTRATSIZ
ODRO9OSNVKG ZUIOX6STEI V tIESUCH1IOVATY&0
,. . , , t~EOIODAKU) f

PYY V.8.24, No.$# 1960. P. #52.164

*0.I. BAREMNBLAT. to.P. ZUELTOY and I.N. KOCHINA
(MOSCOW)

(1.ceivee to Jgas 1960) 0 ,

The aodern theory of seepage Iinfiltration I is based on the concept of
a porous medium consltting of imperseable grains separated by tore
spaces. Comparison ot the results of theoretical and laboratory Invest-
igationS of ton-steady-state floe of liquids with data for strata atder
natural conditions leads to the conclusion that current concepts of a
porous medium are inadequate. In 11 natural strata. the development of -
some degreecof fissuring Is a cbracteristic feature. The description of
mon-steady-state flow of liquids Itmfissured strata y suats of the
usual equations of Inflitration theory can lead, la some cases, to con-
flitting conclusions of qualitative nature.

I

'V

'C

I - At first glance, it appears that son-steady-state seepage In fissured
rocks can be studied by assumint a system of fissures, which are regular
to sone extent, In the stratuz. Apparently, for studying seepage in
fissured rocks, this method ls not promising.;Evon it it were possible
to overcome the enormous mathematical difficultisa involved in solving
problems 6f son-steady-state'flow In strata with a system of fissures of
a 'sufficiently general type. itis aotiossible to determine the con-
figuration of this syste. with any degree oS reliability. anformation ob-
tatted In the analysis of cores - specimens of the rock obtained by drill-
1mg from the surface -g nives very incomplete data on the fissure system.
The position Is to some *xtett similar to that which occurs In lnvestigst-
Ing tbe flow of a liqui. Inan ordinary Iorous medium - even If It were
possible to overcome alf the -difficultes Involved In the integration of
the equations of motion of a viscous liquid In the tore spaces, the
method would not be suitable for Investigating seepage, since t!4 pore
configuration reoains unknown. Various models of a porous medium, which

1286-

I

1.

4. I
I.

. ii

t

I'IS 1 ?.A2% .



5:

.-

wll

*tl

Obhcept of
tare
Y invest-
at. under
-Ss ot a
apseut of

:viption of

: .,the
to con-

a sured
sra regular

)ie in
0possible

;: Solvlag
'issures of
tbe Con-
;rsZtlon ob-

;d by drill-

e, system.

* investigat-
St it were
Cgration of

Lb. pore

tu1a which

I Seepage of &ouogeaeoue liquid# is fsiaured rocks 1287

are based on one or another type of arrangement of tho system of pores

and grains and on the study of the notion of the liquid in such systcms
(ideal soil. ficttlious soil, etc. [I I). proved suitable only for the

qualitative investigation of seepage phenomena. Soepago theory has

followed the trend which is eharactoristic of the mechanics of continuous
media generally. namely. the introduction of mean characteristics of the

media and flow (porosity. permeability, pressure, seepage velocity. etc.)

and the formulation of basic laws In terms of the$e mean characteristics.

Such an approach, applied irrespective of whether or not the system

of fissures is regular in the natural stratum, also proved most advan-

tageous Iln Investigating seepage In fissured rocks.

In this paper, the bhsic concepts of the motion of liquids In fissured
rocks are presented. Mean-characterlstics are Introduced whereby the
averaging In carried out on a scale ehich Is large compared to the
dimensions of the Individual blocks. The difference between the present
*chee and the more usual scheme of seepage Im a porous medium consists
in the Introduction at each point In space of two liquid gpressures -
liquid pressure in the pores and pressure of the liquid In the fissures
-.g *ad In taking Into consideration the transfer of liquid between the
fissures and the pores. Under certain assumptlons. an expression Is ob-
taised for the intensity of this transfer. The basic equation of the
seepage of a liquid In a fissured rock and the ame general equations of
theb spage of liquid In a porous medium with a double porosity are de-
rived. These equations will obviously contain. as a particular case, the
equations for the seepage of a liquid to an ordinary porous medium; In
the paper an evaluatio Is made' which Indicates for which cases the latter
equations a*r valid sad when the more accurate expressions given In this
paper have to be used. The formulation of the basic boundary-value prob-
lems for seepage equations in fissured rocks Is considered. Some
characteristic features of non-steady-state seepage In fissured rocks are
discussed, particularly the possibility of the occurrence, under certain
conditions, of a pressure Jump Ediscontlnulty I within the system and at
the boundaries, similar to the infiltration gap' l non-pressure seep-
ge [2 1 . Conditions at Jumps are derived, and the teatures pertaining

to the formulation of boundary-value problems la the presence of Jumps
are pointed out. Solutions are gives of certaim specific problems of som-
steady-state seepage is fissured rocks.

l. Basic physical concepts. A fissured rock consists of pores
and permeable blocks, generally speaking blocks separated from each other
by a system of fissures (Fig. 1). he. dimensions of the blocks will vary
for the various rocks within wide limits, depending on the extent to
which fissures are developed in the rock. The widths of the fissures are
considerably greater than the characteristic dimensions of the pores, so
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that the permeability of the fissure system considerably exceeds the MCI
permeability of the system of pores in
the individual blocks. At the same time, '
it is a characteristic feature of ; < A ,C

fissured rocks that the fissures occupy *. tr¼e
a much smaller volume than the pores, r1
so that the coefficient of fisauring of i
the rock a, - the ratio of the volbme-
of the cavity space occupied by the pore
fissures to the total volume of the play

rock - is considerably smaller than the n3 g W nzrr
porosity of the individual blocks a,. naf
Much factual data on fissured rocks has ful'
been published in [3-9 ]; the paper by Fig. 1.
Pirson [4 1 is of particular interest, since it gives a qualitative do.
scription of the structure of a porous medium with double porosity, %hich
is close to that considered in this paper. wncr

cos I

If the system of fissures is sufficiently well developed, the motion ift
of the liquid in fissured rocks can be investigated by the following n'
method. Unlike the classical seepage theory, for each point in space, not
one liquid pressure but two, pi and P2 are introduced. The pressure p1 A

represents the average pressure of the liquid in the fissures in the in

neighborhood of the given point, while the pressure p2 is the average fsI
pressure of the liquid in the pores'in the neighborhood of the given roc6
point. For obtaining reliable averages, the scale of averaging should to t

include a sufficiently large number of blocks. Therefore, it is neces- Blioc
sary to take into consideration that any infinitely small volume includes
not only a larger number of pores, as is assumed in the classical theory
of seepage, but also that it contains a large number of blocks. This con.,
dition permits the use of the method of analysis of infinitesimals in Lic

investigating fissured rocks. it

In a similar manner, two velocities of seepage of the liquid can be
defined at each point in space: V1 and V2 . Vector V1 of the seepage velol pur
city of the liquid along the fissures is determined as follows: the pro- Ing

jection of this vector in some particular direction is equal to the flow and
of the liquid through the cross-section of the fissures of a small zone
passing through the given point in a direction perpendicular to the given
direction, divided by the density of the liquid and the total area of 6r

4 this sone. In the sawn way, the projection of vector V2, the seepage
velocity of the liquid through the pores in a given direction, will equal
the flow of the liquid through the cross-section of the blocks of the
small sone mentioned, also divided by the density of the liquid and the

- - - - .- - -- -- - --.- - -- =

.
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Ii
* 1 total area of the zone.

* I It is a characteristic of fissured rocks that the flow of the liquid
¶ i ' proceeds essentially along the fissures, so that the flow velocity of K)
I t the liquid through the blocks is negligibly small is compared to seepage

,; of liquid along the fissures.

If the boundary between the fissures and the blocks is imagined im?
9. . permeable, the fissured rock can be considered as being a coarse-grained

porous medium in which the fissures play tbe role of pores and the. blocks
play the role of grains. If. furthermore, the fissures are sufficicntly
narrow and the velocity of the liquid is sufficiently smalI, the motion

; of the liquid along the fissures will be inertialess and DNrcy' lw:- is
.. fulfilled:

V1I, -- grad Ai

where h, is the permeability of the system of fissures and p is the vis-
cosity of the liquid. Application of Darcy's LAw to seepage along the

jR system of fissures is not of principal importance; if desired, inertia
1 of the motion can be taken into accountusing thereby a more complicated
.S nonlinear law. ..

A characteristic feature of the non-steady-state motion of a liquid
in fissured rocks is the transfer of liquid between the blocks, and the-,I fissures. Therefore, in investigating the seepage of liquids in fissured
rocks it is necessary, in contrast to the classical theory of seepage.
to take into consideration the outflow of liquid from the *grains -
blocks into the 'pores - of the fissures. -2

'he process of transfer of liquid from the pores and the blocks take;
TrY I place essentially under a sufficiently smooth change of pressure,; and,

In | therefore, it can be assumed that this pressure is quasi-stationary, i.e.
; I it is independent of time explicitly. It is obvious in such a case that

during motion of a homogeneous liquid in the fissures of the rock, tho
.; volume of the liquid v, which flows from the blocks into the fissures
so- iper unit of time and unit of volume of the rock, depends on the follow-
^ iing: (1) viscosity of the liquid p; (2) pressure drop between the pores
~ and the fissures P2- pl; and (3) on certain characteristics of the rock,
J which can only be geometrical ones, i.e. they may have the dimension of

Ven length, area, volune, etc., or even be dimensionless. Co the basis of
, j dimensional analysis ( 10 , we obtain for v an expression of tho typo

, ~pWVPs-p 1 . (1.2)

where a is some new dimensionless characteristic of the fiisured rock.

V

.~ ~ ~ ~ ~ ~ ~ ~ ~~ .
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lus, for the mass q of the liquid which flows from the pores into the
fissures per unit of time, per unit of rock volume. the following equa.
tion is valid:

:. ' q F~~~~~~~~~ ~~ ~ ~~~~ (Ps PA) * ,

;. . ,where p is the density of the liquid.

It should be pointed out that in a somewhat different form rclation
(1.3) was applied for the integral estimate of the flow along the stratuz

'i -*as a whole Ell 1.
2. Equation of motion of a uniform liquid in fissured

rocks. In accordance with what has been said above, the law of consenr.
ation of nass of liquid in the presence of fissures can be written as
follows:

- follows: fj-P +divpV&-qe=O (2.Y

s In view of the smallness of the volvae of the fissure, the first
term, which expresses the change in mass of the liquid due to compres-

; eion in the fissures and changes in the volume of the fissures in some
element of the rock. is small as compared to the second term, which ex.
presses changes in the mass of the liquid caused by the inflow of the
liquid along the fissures through the boundary of this element. There-
f fore, relation (2.1) can be disregarded. Inserting Equation (1.1)

; (Darcy's law) into Equation (2.1). taking into consideration the fact
that the liquid is slightly compressible so that

; ' ~~~~~~~~~~~~~~~~~~~~~pmpo+F4P , ~ vqnp a- Po + pap

(po is the density of the liquid at some standard pressure, for instar.ce,
the initial pressure in the stratum. S is the coefficient of compress-

* ibility of the liquid, Sp is the change in the pressure relative to the
standard pressure), assuming that the medium is homogeneous and regIect-

*; ing the sIIll higher-order terms, we obtain

klAp& + a (Ps - Ps)O ( s. Laplae operstor) (2.3,.

2 Further, the equations of conservation of mass of the liquid which is
present in the pores can be written thus*:

'1 ' f . *' *- trictly spekintg, In Equation (2.4). a: will aot represent the
porosity of the blocks but the ratio of the volume of the pores to

* - , .
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*1
UE a

.. ~~~~I

r. -$ 5mLP 9 div pY 2 +- qO J (2.4)
I.

so that the quantity of liquid which flows into the fissures equals the
quantity of the liquid which flows out of the blocks.

'4 In view of the low permeability of the blocks, the second tena of
;. | Equation (2.4). which expresses changes in the mass of the liquid within

the porcs in oom element of the rock, due to the inflow of liquid along
~.atum the pores through the boundaries of the element, can be disregarded as

14 compared to the first term which represents changes in thiass'of the
liquid in the pores due to its expansion, and also to changes in the

ierv- volume of the pores. Therefore, Equation (2.4) can be reowritten as

.+m O (2 5)
Furthermore, the porosity of the blocks a in the case of a constant

; pressure of the upper strata of the rocks on the roof of the stratum de-
pends, generally speaking, oan the pressure of the liquid in the fissures
p1 and the pressure of the liquid in the pores ps. Howevew, t40 volume-ofIe the fissures in the rock is considerably smaller than the volume of the
pores. It can be assumed that, in contrast to the liquid located in the

*e } pores, the liquid located in the fissures does not participate in support-
ing the upper strata of the rock formations. Therefore, the influence of
the pressure of the liquid in the fissures p1 on the porosity of the

4 blocks can be disregarded as compared to the influence of the ressures
of the liquid in the pores p2 and it can be assumed that

: 3M WAdp (2.6)

4nce, where As2 is the coefficient of compressibility of the blocks. Taking
into consideration. also, relatioas (1.3) and (2.2) and neglecting small
terms of higher order, we obtain

it.¢c- . + mj3) Ps+ (ps - pi) O 0 _2a7)

where a is the magnitude of the porosity of the blocks at standard pres-
- 3) sure. Equations (2.3) and (2.7) describe the motion of the liquid in

h~~~~~X is

the vetire i olue of the rockl Ircludig te v olume of the fissures *re
howee entir. e vouew of the roo. rilutive olute of the fssurte comsreds
to the relative volume of the pores, a2 can be considered La repre-

; senting the porosity of tbo Individual blocks.

.. I
-. ! ,~~

:, _
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fissured rocks. Eliminating from these equations pS, we obtain for the
pressuie of the liquid in the fissures p, the equation

The coefficient c represents the coefficient of piezo-conductivity of
the fissured rock; it is interesting that this does not correspond to

O* .the permeability of the system of fissures k, but to the porosity and
compressibility of the blocks. The coefficient q represents a new
specific characteristic of fissured rocks. If q tends to zero, it cor-
responds to a reduction of the block dimensions and an increase in the
degree of fissuring, and Equation (2.8) will obviously tend to coincide
with the ordinary equation for seepage of a liquid under elastic condi.

r1~ tions.
.
a An approximate estimate of the possible magnitudes of the coefficiezt

; will be tade. The dimensionless coefficient a, characterizing the in-
tensity of the liquid transfer between the blocks and fissures, depends

; on the permesbility of the blocks k2 and the degree of fissuring of the
rock, as a measure of which it is obvious to take the specific surface
of the fissures a, i.e. the surface of the fissures per unit of volumte
of the rock. 7he quantity a has the dimension of the reciprocal of len-tL.

* g ton the basis of dimensional analysis we obtain

*. a k~o': (24')
. ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ C .- . .

Fron this and Equation (2.8) we obtain

: .k . .

where I is the average dimension of a single block (the specific surface
of the fissures is inversely proportional to the average dimension oi a
single block). Evaluations show that for various rocks the parameter I
will assume values within wide limits - from a few caa to values of the
order of 1010 cmt.

Determination of the parameter ; should be carried out by means of
data for the steady-state flow of liquids in fissured rocks. lhus, wLte
natural strata are involved. &termination of this parameter should .e
carried out only on the basis of investigations of the behavior of tle

¶ : stratum under non-steady-state conditions and not on the basis of tests
0 ! carried out on rock specimens brought to the surface.

3. Equations of notion of a hooageneous liquid tn a medium with double
*orosity. The systen of equatlons (2.3), (2.7T)represents a particular

. ..

.9~~~~~~~~~~~~~~~~~~~~~



eSepaet of hseageAesua liquids ia fisfured reocs 1293

j case of the system of equations of *otion of a homogeneoUS liquid il a

s diud with double porosity. in some cases the latter equations may be

of interest end, therefore. we will deal briefly with their derivation.

-t i Tho motion of a uniform liquid to a Odoublo* porous edium Wil1l be

considered: the first porous sedium Consists of relativelY wide paors of
.of | the first order - fissures and blocks; the relative Volume of the pores

< of the first order, the porosity of the first order. equals a1. The
i blocks la themselves are porous, consisting of grains which are separated

; I~by fine pores of the second order; together they form the second porous
m medium. The porosity of this eodium - the porosity of the second order -

i is designated by a2 . It la pointed out that, generally speaking, a can-
as tot be considered equal to the porosity of the blocks. since *t repro-
I..

sents the ratio of the volume of the second-order pores to the total
% volume of the elements of the rock In which a known space Is occupied by

the fissures - poreos of the first order. In the case where the upper
strata exert a constant pressure oa the root of the stratum, both poro-
n-siti. Al and Ma2 Will depend on the Pressure4 of the liquid 1i the

13 po res of the first and second order, pl and P3. so that

-i&th - Xwhere 8,l' 2 P.. P are positive constant coefficients.

The equations for conservation of ass of the 1lquid for both media
z are of the form (2.1) and (2.4). respectively. Assuming that the flow of

the liquid in the first medium (and thus also In the second medium) la

I inertialess, the Darcy law for both media can be written as

Vaus g-rad P. Vs -- rad PA (3.2)

..

ICIM where k1 Is the porosity of the system of pores of the first order at

k 2 the porosity of the system of pores of the second order.

6 lBy inserting Into uquations (2.1) and (2.4) relations (3.2). Expres-
tica (1.3) for the liquid flow from one medium to tho other (which will

* obviously remain valid even iS this more general cae), relation (2.2)
i for the density of the liquid and relation (3.1) for the (differentials

-,rm | of the porosity), and discarding small quantities of higher order for

the pressures of the liquid la botb media p, and f, the following
system of equations 1i obtained:

'hI. ; S~p m"-tL ++

,, k.-~~~~~~~~~~~P W-(C;-U JaP P Sa~~~~~~~k

.. l1

$

I
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* where a, and a: are the values of the first and second order porosity ;:

standard pressure.

It the pressure p, chances. say decreases. at a constant pressure of

$12 the uaper strata on the roof, the porosity of the first order will in.

crease on the one hand, as a result ot the compression of tho block.
and, on the other band, It will decrease as a result of compression by

the overlying strata. These effect& will apparently compensate each o:eer
to some extent. The situation Is similar for the secood-order porosity

i In the case of a change In the pressure pi, It Is, therefore, advis.
able to consider the model of the double porosity of the medium for Whc&
the porosity o5 each order depends only oan the appropriate Pressure. so
tthat the coefficient JS and P.. in Equation (3.1) can be considered s:z:;

and the appropriate terms In Equation (3.1) can be disregarded.

Equations (3.2) for such a model of a porous medium with double poro.
sity will be of the form similar to the equations for heat transfer it a
heterogeneous medium considered by Rublashtein 12-1:

ka ___- ((Act + wp! * (P&-pi

I . Bp - ,::. ,. -

Disregarding to Equations (3.2) the terms representing a change ti

the sass of the liquid due to the compressibility of the first mediut
1, zand the compression of the liquid In the pores of the first order, and

the changes In the mass of the liquid as a result of the seepage Inflot

. along the pores of the second order. we again obtain the equations of
motion of a liquid in a fissured porous medium (2.3) and (2.7).

4. Basic boundary-value problems of tbe theory of non.
steady-state seepage in fissured rocks. Equation (2.8). to wi6

* ' . corresponds the pressure distribution of the liquid in the pores pl. car

be written as

P' ;- div [1grad p1+ q3o 6rad pi] 0

where PO is the total effect of compressibility equalling Pc2 + aoB
This form of writing the basic equation indicates that-motion in the
system of fissures can be considered as the motion of a liquid in a

.t ; porous medium with a total compressibility coefficient J9, and the cx-
pression for the velocity of seepage of the liquid can be written as

V= ra -p %grad p& ,; (4.2)
~. ( - - p a p

I.
;

c *

_% 44101-UPOWNWO mm G� 11 M Mr- - __ __ -___ - - _. -
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isity at I he initial and the boundary conditions have to be added to EquationI (2.8). As in the theory of seepage in a porous medium, the steady-state
4.-i r i t initial conditions are of greatest interest in the given case (i.e. the
-O t harmonic initial distributions pI, which satisfy Equation (4.1)). Among

the possible types of boundary conditions the most important are the
t.on by following:
tb other 1) The pressures p at the boundary of the rock of volume a under con-
.sdl0ty sideration are given (first boundary-value problem):

ior which i
*1. o pi Is ~A(S. (43a;rse so
Md smallrdt sazll { 2) At the boundary s the flow of the liquid is given (second boundary-
A value problem), the following quantity being given, in accordance with

| what was stated above, at the boundary of the surface S:

jig- * I; + a - ( f(S. t) (4.4)

.4~ - i (a/Bn is the derivative along the normal to the surface S), and, finally.

3) At the boundary a linear combination of the pressure and the flow
of the liquid, generally speaking with variable coefficients A and B. is
given (mixed problem):

?:and

.4 oS 1 If the initial pressure-distribution is zontinuous and the boundary

; conditions are consistent With the initial ones (i.e. the boundary values
of the initial distribution on approaching the boundary points equal to

j which the boundary values of the corresponding functions at the initial instant
can j of time), the solutions of the above-stated boundary-value problems will

; be the ordinary classical solutions (4.1). However, if the initial pres-
I sure distribution is discontinuous or if the initial and the boundary

- (4.1; t. conditions are unrelated, then the derived distributions will also be
; discontinuous and there is no classical solution for the boundary-value

problems formulated above; it is necessary to seek a generalized solution
in the sense of Sobolev [13 1. To proceed further it is necessary to do-:the rive the conditions at the discontinuities. It is sufficient to considerf the one-dimensional case, since in the neighborhood of the given point

* ex- the iurface of discontinuity can be considered ea being plane. Thus, it
.. 3 , .is assumed that within a sufficiently small vicinity on both sides of the

., ; isolated discontinuity surface s a 0 (z is the direction of the normal to
j ,d.2) I the surface of the discontinuity), the function p, is continuous, has

a appropriate continuous derivatives and satisfies the equation

.n
.-8

';I..'. ..
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. In the region G(- h C x < h, O c t c 7), where h isa small number,
the terms in the expression Lp' are piece-wise continuous. By means of

. ' , term-by-term integration of Ll along the region G we obtain

J. (4."..

.
~Lpdz dt 9 J,(.T -p1' (k. 0) z'd

0: For h - 0 the first integral tends to zero and the preceding equality
-- ryields

where as usual the sign [ I designates the difference between the values
of the function on both sides of the discontinuity surface. Since T is
arbitrary and the expression under the integral sign is a continuous
function of time, it follows that the expression wider the integral sip

r equals zero:

.~~~~~~~~~~~~~~ .f,[8E t% + At a a2 re a ]h >[S* ___~~~~~~~~~ I,.It

.~~~~~~~~~~~~~,p FtV0i a.I '''[2F

i.e. the condition of continuity at the surface of discontinuity of the
:* * total flow of the liquid (d/2s was replaced by a/an). To obtain the
7 .second condition, Equation (4.6) is nultiplied by s and integration is

carried out rver the same region G:

, zLp& dt di p. (Z. T). JD p (Z') dX

i: T -

As h . 0, the firat and second integrals will become zero, and thus
we obtain

t . :. *

*. .

t ,-

.

.;*
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~~~~~~~~I
SO that the second condition at the surface of discontinuity is obtained

486) in the form

#,f , 0~~~~~~~~~~~p [n~+1 P.+l k>, v'[.0 (

yimer. 41
.is of

For V a 0 the basic conditions at the surface of discontinuity (4.9) and
(4.11) will change into the condition of continuity of the function and

J t4.7) its derivative along the normal to any surface, i.e. the condition of
absence of discontinuitieas which is well known in the theory of heat
conduction and the theory of seepagp in a porous medium. -

I Integrating (4.9) and (4.11). we obtain the conditions at the discon-
<iaality tinuities in the form

IP*.1 .8) [P.I.[,a etr-wII>. [o] [ -a 1 4(4.12)
4

so that the pressure jumps and normal derivative of pressure which occur,
tvalues due to the discontinuity or due to inconsistent initial conditions, will
,-T i.s not be eliminated instantaneously as in a porous medium (and as is the
QU case for jumps in temperature and heat flow in the theory of heat con-
41 sign | duction) but will decrease in accordance with the law #-,h/ .4this pro-
*, perty is a characteristic qualitative feature of the mathematical de-

t seription of non-steady-state flow in fissured rocks, which is comparable
' L4 9) ; with flow through a porous medium.

s. Some specific problems of non-steady-state flow in
of o * fissured rocks. General qualitative conclusions. 1. Non-steady-
o a .i state flow of liquid in a gallery. From the literature the importance of
~ i s ,the study of non-steady-state seepage in drainage galleries is well known.

ibis problem is formulated as follows: at the initial instant the pressure
of the liquid in a semi-infinite stratum (O C x < *)P is conStant; the
pressure at the boundary x a 0 suddenly assumes the value PI. differing
from P., and then remains constant. lhe problem of determining seepage
flow requires the solution of the equttion

.a 3
In obtaining the second law of conservation in a uediua with a varl-
able pere ability coefficient A1 it is necessary to sultiply both
parts of Equation (4.6) by

;

., .

1..i

.- * 1, -
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for the uncoordinated initial and boundary conditions

PI (XI. 0) M Pe, PI (- 0 i) -Ps (5J2) Iftsel
varinDI4

(the boundary pressure is given iumediately to the left of the boundary
x - 0). At the initial instant there will be a pressure jump at the
boundary equal to (P, - P )a ccording to (4.12). at time t this jump
will equal (P - p 1)e-'" so that the pressure of the liquid imediate.
ly to the riTht of the boundary will equal

PI(+ O-t) P, + (P _ Sic- (5.3)

To find the pressure distribution at any desired instant of time t,
the Laplace transform with respect to time t is applied. We set

U ;

From

PA (a, t)

P. (,. t) Pe - (Pe - PS) U (s, t) 0 (5.4)

Then, for determining uCs, t) (t:" 0. 04 x < es), we obtain the bound.
ary-value problem -.

l~~t -
u(+0,)=1~~A. (V,0)=O (5.5)

* Since
di fffren.
£O.-.Iy c.
en~iated

* eacpressi,
x za

LI(z, A)=CSr1u(;5)d*
po

Applying the b place transform to Equation (5.5) we obtain

OU 1, - -0, U(, X I. 1
dx' -*Ai-I-. ~x -)

U (oo, ) = 0 (5.G)

U=, odKioh ru iV .1.= L

whence, on t&b basis of. the known rule of inversion [14 3. wq obtain'
I'4V. g

TIt is
ate solu
This rel
for the

P I

(5.7)

I The evolution of the integral on the right-hand side of the previous
equation yields
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.X,~ ~ ~ ~ ~ ~~~~~2- !ieS k

,(5. 1) * 90i-2s i i (Vi&2) G Q _ (5>.8)

*I(S.2) ' aserting this exinto Equation (5.7) And substituting the
; | ~~~rariablC3 o/(l - ) v, we obtain

izndary u(zt)81_32 - st snV p (-i) dv I -1exp(-Xs

to. n : . dn Sl xp I+s exp dv (5-9)

(5.3)
.* From this and from Equation (5.4) we finally obtain

pi (zL -PI + UPXP(-PI)r-jBrI'i ij);i dv"-r - 5. 10)

(5.4) s-
+ (Pe PI) On - ¶

P bound-
I Since the integral in Equation (5.10) and the integral obtained after

differentiation with respect to s under the integral sign are both uni-
Q (5.5) , formly convergent, the expression given by Equation (5.10) can be differ-

entiated with respect to z. Hhnco, from Equation (5.10) we obtain the
* 1 expression for the flow of the liquid through the boundary of the stratum

*, , F Z. ZO1
? cozo

C4 kg OPIN ~~~~~~2(Pt- 'k V'2S

I . ~~~~~~~~~~~2 (Pe - Pi)ka p

, (5.6) j A Y
s. ~ ~~~~~~~~~~~ ; j exp( x ) 11 dt 5 1

I S~~~~~~n
A~~~~~~~

;X - S It is interesting to compare the derived solutions with the appropri-
ate solution of the problem of the theory of seepage in a porous medium.
7 his well-knovn self-siilazr solution is obtained from Equation (S.10)

a (5.7) for tho cuse hen .O

:ti* .f Il ( ,, pi ( p 3 e + () + (e PI I G 1)

.~~~~~~~~~~~~~~~~~~~~~~~(.2

A( is~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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where ( is the syibol of the Kramp function. For comparing the pressures,
Equations (S.10) and (5.12) which correspond to fissured and ordinary
porous media, respectively, the distribution quantities u(x. t) - (Pt -
P 1)/(Pg - PI) for various values of the parameter ot/q have been plotted If

as a function of the self-jimilar variable ( in
Fig. 2. (The calculations were carried out by A.
L. Dyshko at the Computing Center of the Academy
of Sciences, USSR). It can be seen that with we o'
increasing set/q the pressure distribution in a
fissured rock tends to the self-similar distribu.

°rout seolux tion which is obtained in an ardinary porous me
medium.

1. \7_ DWFS _2. Non-steady-state
>_j zainfiltration of a liquid

I - fron a well ditchargino
LT ti _cat a constant rate. I ncon
' L.4 - J .*addition to the proble -

Ii ___ >>5s~sXconsidered previously, the
n, _I_ . x i _ _problem of non-steady-

1- ___f2^s _ _> _ _ - astate infiltration of a
liquid from a well of in-

to to iO a I finitely small radius
with a constant yield is To

rig. 2. of considerable interest. Lapla
It is formulated as follows: an infinite torizontal attatum of -constant form:
thickness h is penetrated by a vertical well of negligibly small radius.
At the initial instant, the pressure of the liquid in the stratum is con.
stant and equal to P. Then, a liquid begins to flow in or out at a con.-
stint volume rate Q.

The pressure of the liquid in the fissures p(r, t) (r is the distance
from the axis of the well) satisfies the equation

inver
with the initial conditions -

p(re O) s P ( 4

-in accordance with Equation (4.4) the boundary conditions can be ex- reve:
pressed as form

We obtain therefroM
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.eisures, i
!nary ilt (Y -,+AO

P. ;ed I ntegrating the last relation and applying the condition
*e ? in
.t by A. (ra'P/3r),.+. = 0 rn 9 - 0
-ecademy
with we obtain the final formula for the boundary conditiona
i in a
?1istribu-

7 ou5 o &Setting ( I - (1- (5.15)

'state + U(P, (5.16)

we obtain the following boundary-value problem for determining thei func-

ade § § ~ n ; ittion nP. x1:
Asly, the ?a:&81 Din 8 I aPa

i of a a Ou (5.7)
of in- u(P. O) O. PM -

-eld is To solve the boundary-value problem (5.17) we agpin revert to the
iterest. Laplace transform, the relations (5.17) being reduced to the following
)ftstant form:
.Xadius. * I d _ dU 1 10 (5.18)

- i Taking into Consideration, also, the condition U(- A) - 0 we obtain

jisance {t(. ()=' Aex T ^ajr,( ). P (5 19)

w (5.13) (iKO is the symbol of the Macdonald function), and by the general rule of
inversion (14]1 we obtain

' (5.14) u~ r K) -(1 /:r 3 l55Eizi5Fj.@( r )d (5.20)

ex* In an cntirely analogous manner, after calculating the integral and
ex reverting to the variable p1 we obtain the pressure distribution in the

form

(r. 8) p.( + -5 ( [I exp ( dv] (5.21)

2.

.t -.9 . ........
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The known self-similar solution of the corresponding problem of the
theory of seepage in a porous medium is obtained from Equation (5.21)
for 1 u Q:

M �-' �

Q 0(r, 1) = P j�y& � (5-22), � !J� (I - c-ow) dv - P - 1L EiV Tirk-sh
a

i

I

. . i

I
i

i
It can be seen, in the same way as in the previous problem, that for

increasing values of oct/q. thc solution (5.21) of the problem of seepage
in a fissured rock tends asymptotically to the solution (5.22) of the
problem of seepage in a porous medium.
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It can also be seen from the examples investigated that the most
charactetistic property of the non-steady-state flow of liquids in
fissured rocks is the occurrence of some delay in the transient processes;
the characteristic time of this delay is

I

ST-/K = 1(5.23)

Thus, the following general conclusion can be advanced: in consider.
ing processes of non-steady-state infiltration in fissured rocks, the
ordinary equations of non-steady-state flow in a porous medium can be
applied only if the characteristic times of the process under consider-
ation are long compared to the delay times r. However, if the character-
istic times of the process are comparable to r, it is necessary to apply
the model and the basic equations presented in this paper. 7he estioates
which have been carried out have shown that fissuring nust be taken into
consideration in may cases when investigating such processes as the re-
storation of pressure in shut-down wells and, generally, transient pro;
cesses.during changes of the operating conditions of the well.

In conclusion, the authors thank A.P. Krylov for his attention to the
work and A.A. Abramov, M.G. Neigauz and A.L. Dyshko for their useful re-
marks and for carrying out the calculations.
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Unsteady-State Pressure Distributions Created by a
Well With a Single Horizontal Fracture, Partial

Penetration, or Restricted Entry

ALAIN C. GRINGARTEN'

HENRY J. RAMEY. JR.
MEMBERS SPE.AIME

ABSTRACT

iltI.,.ugb there haue bhen many studies . n
*, :,0idv bhcbavsor of u rells with vetecal fracturas.

-;.� I/ibigb there ros at one time a conlrofrsy
... , ng the occurrence of borizontal or vertical

*.rte's ns a result of hydraulic fracturing, to date
of -eas been published no study of the unsteady

*. .at ,, of t uwell containing a hor,:ontal fracture.
; i. s partieularly surprising because such a study

* , Its.e indicated significant differences betwueen
! p. rformance of uells with horizontal fractures

-..J tibse witb vertical fractures. The purpose of
:. x .tudy Ites to fill that existing gap in knouledge

t ralturcd well behavior.
In analytical solution was developed by means of

'if esrflpt of instantaneous sources and Green's
.. ". tforls. The analytical solution modeled the

Jat jsrar of con stantmrate production from a well
'Pit.-ining a single, horizontal fracture of finite

:i .4n1ess at any position uithin a producing
*n rt el in an infinitely large reservoir u itb
p-P'mrrfcable upper and louer boundaries. This

§10...ral solution also contained solutions for the
*1 % *a Of (t) a single, plane (zero thickness)

.r':sirttal fracture. (2) partial penetration of the
t.Juci-ng formnation. and (3) limited flow entry
"-ugl'out a producing interval. Although those are

-.tr trsting solutions. tbe main purpose of this
,:I'di uas to inrestigate tbe horizontal fracture
* bz . The analytical solution for this casef uas
.* uloatced by coirputer to produce tables of
*.':e'nrsionless pressures vs dimensionless times
* ./riernt /or wcll test analysis purposes.

i careful analysis of the general solution for a
i-naontal fracture indicated the existence of four
Jsre""t flow periods. It appears that during the
',I period all production originates w'ithin the
".it lure, causing a typical storage-controlled period.

t saI munaseript reelived In Sociey of Pee.leum tLnginee,.
its- r ?iov. 30, 1t71. Revised manuseript ,ecetved Jan. 21. 1974.
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This period is folloued by a period of Vertical.
linear flow. There then follou s a transitional period.
after which flow appears essentially radial. During
the last period. the pressure is the same as that
created by a line-source ucll uith a skin effect.
The skin effect is independent of time. but does
depend upon the position of the pressure point. It
u as found that there is a radius of injlucnce beyand
which flou- is essentially radial for all times.
Approximating solutions and appropriate time limits
/or approximate solutions tiere derived.

INTRODUCTION

Hydraulic fracturing has been used for improving
well productivity for the last 20 years and is
generally recognized as a major development in
well-completion technology. There was considerable
discussion in the early 1950's about the orientation
and the number of fractures created by this type of
well stimulation. It is now generally agreedl that a
vertical fracture will result if the least principal
stress in the formation is horizontal, whereas a
horizontal fracture will be created if the least
principal stress is vertical. Further, data collected
and reported by Zemanek et al2 shows that hydraulic
fracturing usually results in one vertical fracture,
the plane of which includes the axis of the wellbore.
This conclusion appears widely held today. Thus,
most studies of the flow behavior for fractured
wells consider vertical fractures only.

However, the existence of horizontal fractures
has been proved in some cases, and various authors
have considered them. The steady-state behavior of
horizontally fractured wells has been studied
numerically by Hartsock and tazren. 3 Their model
assumed the reservoir to be homogeneous, of
constant thickness, of anisotropic permeabilities,
and completely penetrated by a well of small radius.
A single, horizontal, symmetrical fracture of
negligible thickness and finite conductivity was
located at the center of the formation. Radial flow
was assumed beyond a critical radius four times as
large as the fracture radius, and there was no flow
across the drainage radius. The only flow into the
well itself was through the fracture. ith this model,
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skin effect factors that were independent of the
drainage radius could be calculated for various
combinations of parameters. Hartsock and Varten
concluded that a poorly designed fracture treatment
could reduce productivity, and that the apparent
skin factor curves could be used in fracture
treatment design.

Further knowledge of the transient pressure
behavior fot horizontal fractures with a uniform
flux distribution located at the center, top, or bottom
of the formation was presented by Warren 4 in his
discussion of Coats' mathematical model5 for water
movement about bottom-watet-drive reservoirs. Warren
gave an expression for the skin factor that depended
upon the fracture radius, the well radius, the
reservoir thickness, the ratio of the horizontal
permeability to the vertical permeability, and a
geometric constant obtainable from Coats' results.
:lo study of the unsteady-state behavior of wells
with horizontal fractures has yet appeared.

It is our purpose here to develop a mathematical
model for investigating the unsteady-state behavior
of horizontally fractured wells. The solution has
been found to be applicable to plane horizontal
fractures and to wells with partial penetration or
limited flow entry. For each case, the dimensionless
pressure drop function has been analyzed, and
different flow periods have been recognized.

MATHEMATICAL MODEL

A cross-section of the idealized reservoit-fracture
model is shown in Fig. 1. The following assumptions
are made:

1. The reservoir is horizontal, homogeneous, and
has anisotropic radial and vertical permeabilities,
hp and A., respectively. It is of thickness h, porosity
4 of infinite extent, and completely penetrated by
a well of radius r,, which will be represented as a
line source.

2. A single, horizontal, symmetrical fracture of
radius r, and thickness h/ is centered at the well,
and the borizontal plane of symmetry of the fracture
is at an altitude zt.

3. A single-phase, slightly compressible liquid
flows from the reservoir into the fracture at a
constant rate w which is uniform over the entire

volume of the fracture.
4. There is no flow across the upper and lower

boundaries of the reservoir, and the pressure
temains unchanged and equal to the initial pressure
as radial distance approaches infinity.

An analytical expression for the ptessute
distribution created by the fracture may be obtaineji
by means of the Green's function and proil,,,
solution method presented by Gringarten and Ramo;
in Ref. 6. In this method, the idealized reserv.,,
system is visualized as the intersection of ..,
infinite solid cylinder source, with an infinite
horizontal slab source in an infinite horizontal sl.h
reservoir with impermeable upper and lowc,
boundaries, as sketchedin Fig. 2. The instantitan..,%
source function for such a system is equal to the
product of the instantaneous source function i..r
the slab source in the slab reservoir (Ref. ,..
Table 2):

10

Whe:

.and

h f

L n-i.

n
n

exp( 2 ) Ai

I -

hf ~Zf
sin n-r -2 cos n -- cos nr-I,

2h h I

. . . . . . . . . . . . . . . . (ls*

with the instantaneous source function for the
infinite solid cylinder in an infinite reservoir (Rei.
6, Table 1, thick-wall cylinder with rt - 0):

2f
r r

C4

exz(P 2-) r'drJ.

The pressure distribution in
given by6

. . . . . . . .1!1

the system i% thl-

Il tZ
T
h

- - -- - - - I - I - - -

Zf i \.Frocture kt,
I ~ - I

hp (r, zt) 1

n-1

n27F2n,( tf)
exp sin W

2
h

il

FIG I -CROSS-SECTION OF HORIZONTAL FRACTURE
MODEL.
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.11 Z f

nlrf hcos
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I 0

qf - rj2 I q .......

Substituting the total withdrawal tate (cam the
fracture,

. (4)

Ie

and the dimensionless variabics

rD = rtrf 0 . . . . . (5)

- 4rn (E-P~)r
r'dr'j dt'

f r7 = - ,_
D rf Y lz , . . . (6)

. . . . . . . . . . . . . . . . . .(2)

wshere q(t) is the withdrawal rate pet unit volume
01 source. In this study q(t) is assumed constant,
sad uniform over the fracture. Thus, Eq. 2 can be
rinetn as

, -

k t
t r
D Oizcr 2 .. .. (7)

.

I I
but

_ q 1

Vic I

n 2If2n to
h2

i £ f [ 1 i -

nwh.

sill 21i CO.

I~ |m.,r i ;

PD('DI AJ)1 tD)

II

'Iff
2nk h

U q~ Al I(11', -41,L)-i V r,,C

z.

It

2r
41tj to

. . . . . . . . . . . . . . . . . . . . (8)
into Eq. 3, we obtain the dimensionless pressure
drop at any point in the reservoir:

2r

t- z

r
ni

Po(rDD' tD)

tu cxp (- -

C,_

2
It

rdr]
C nre7'

. 2 nI I'
r

tL . . . . . . . *(3) [ 7
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I .

I Solid cylinder

I
I
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I I* to1
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FIG. 2 - PRODUCT SOLUTION VISUALIZATION.
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by the introduction of the following functions, which
have been described elsewhere. 6-9

1. The P function:
2

n- 2h c n7;f .z n
n',nr2h -" Ii h co.. n 1 n i J dt;

P (rD, tl)) -

'2)
cxp( r-D4D)

exp(- rD )

2CD

I

10(f1K) D
0

.

. . . . . . . . . . . . . . . . . . (9)

Eqs. 5 and 7 define PD and tD in terms of rl,
rather than in terms of the conventional r. In Eq.
9, the ratios hf/b. z1/h, and z/6, already dimen-
sionless, have not been modified; tj and rb refet
to the dimensionless variables of integration. bD
represents the dimensionless reservoir thickness
and is derived from Eq. 6.

The study of the behavior of Eq. 9 is simplified

rD dr. . . . . . . . * .(lo)

is proportional to the instantaneous source fuaction
for a solid cylinder source in an infinite reservoir.
The pressure distribution created by a continuou.4
solid cylinder source is given by7.9

i
I

TABLE 1-pD D) VALUESFORACONTINUOUS UNIFORMFLUx SOLICYLINOERSOURCEINANINFINITE
POROUS JMEOIU&M'

I

0 0.25 0.50 0.75 1 2 3 5 10

1.10-2 0.0200 0.0200 0.0200 0.0197 0.0096
2.10- 0.0400 0.0400 0.0399 0.0380 0.0189
3 10-2 0.0600 0.0600 0.0595 0.0547 0.0280
4.10-2 0.0800 0.0799 0.0787 0.0705 0.0370
6 10 2 0.1197 0.1191 0.1151 0.0996 0.0544
t.10 -2 0.1585 0.1570 0.1494 0.1265 0.0714 0.0001

1.10-1 0.1960 0.1932 0.1817 0.1517 0.0879 0.0004
2.101 0.3586 0.3494 0.3194 0.2614 0.1651 0.0047
3.10-1 0.4855 0.4718 0.4289 0.3521 0.2343 0.0141 0.0003
4.10- 0.5879 0.5711 0.5194 0.4296 0.2965 0.0272 0.0015
6 10_1 0.7466 0.7259 0.6633 0.5568 0.4036 0.0597 0.0055
8:10-1 0.8673 0.8444 0.7753 0.6587 0;4930 0.0958 0.0134

1 0.9646 0.9402 0.8668 0.7437 0.5693 0.1327 0.0243 0.0003
2 1.2820 1.2544 1.1715 1.0332 0.8389 0.2986 0.0994 0.0070
3 1.4747 1.4459 1.3596 1.2156 1.0136 0.4292 0.1799 0.0244
4 1.6135 1.5841 1.4960 1.3491 1.1432 0.5342 0.2541 0.0489 0.0002
6 1.8111 1.7811 1.6912 1.5412 1.3312 0.6960 0.3802 0.1060 0.0017
8 1.9524 1.9221 1.8312 1.6797 1.4675 O.8166 0.4828 0.1642 0.0059

10 2.0624 2.0319 1.9405 1.7880 1.5745 0.9171 0.5686 0.2195 0.0130
20 2.4062 2.3753 2.2827 2.1283 1.9122 1.2372 0.8614 0.4401 0.0741
30 2.6080 2.5769 2.4839 2.3289 2.1119 1.4308 1.0454 0.5964 0.1471
40 2.7513 2.7202 2.6270 2.4717 2.2542 1.5701 1.1798 0.7161 0.2169
60 2.9535 2.9224 2.8290 2.6733 2.4554 1.7682 1.3729 0.8940 0.3383
80 3.0971 3.0659 2.9724 2.8166 2.S98S 1.9097 1.5119 1.0252 0.4383

1.102 3.2085 3.1773 3.0838 2.9277 2.7096 2.0199 1.6205 1.1291 0.5226
2.102 3.5551 3.5238 3.3402 3.2741 3.0555 2.3640 1.9615 1.4604 0.8121
3.102 3.7578 3.7265 3.6328 3.4767 3.2580 2.5658 2.1623 1.6580 0.g950
4 102 3.9016 3.8703 3.7766 3.6204 3.4017 2.7092 2.3052 1.79.92 1.1288
6.102 4.1043 4.0730 3.9793 3.8230 3.6043 2.9115 2.5070 1.9993 1.3213
a.10 4.2481 4.2168 4.1231 3.9668 3.7481 3.0551 2.6503 2.1418 1.4600

1.103 4.3596 4.3284 4.2346 4.0784 3.8596 3.1666 2.7616 2.2526 1.5685

i

I
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PI) (t)I 1t 0 ) r 2
At

P(r,,tt D) dt;-

., .... ,...U .... . .. . (11)

and is listed in Table 1.
2. The Z function 6

22
D 7

. xp(- --- 5-) cs r.' I-- c08to.

*D (1.). . . . . . . . . .(

Second, the pressure distribution created by a
line-source well with psttial penetration or limited
entry may be obtained from Eq. 13 by taking the
limit of the P function as pi- 0. The result is 7

D

4h '
I + -

A E

zf )
M

exp (- 2- )
Iit

sin nr
n

PO (rD ?DI DD) a

CD

ifhf

2h1

eD
e 2 6CD

7 II to hC
712'20 dc I

COS 8 e CS n;,.,Z . .(12)Cos n cs nr ;

is proportional to the instantaneous source function
br an infinite horizontal slab source in an infinite
horizontal slab reservoir 8 with impermeable
boundaries. tt accounts for the partial penetration
f the solid cylinder source in the reservoir.

The pressure-drop distribution created by the
torizontal fracture is thus given by

Isstr n U'L tD)

N .

.. . . . . . . . . . . . . . . . . . . . (16)

with

r > rf ......

This can also be written as

.. . . . . . . . (17)

PD (r DtzD' t)
- Ei

2 4tD I
CD

2 f
0

P (r. t;) Z i -D. Iif hjIdl)

Fa .

rsin nr 2h
7

c osje ... It Cc

+4h

Trh

z
)s nr -r

.. .................. . (13)

AAy variation in the fracture radius, i1, affects
4oly the P function; whereas any variation in the
bacture thickness, h, affects only the Z function.

'TWO important appications follow immediately.
First, the pressure distribution created by a plane
(Etta thickness) horizontal fracture is obtained from
F4. 1 by taking the limit of the Z function as ht
*0. The result is6

P(rID'ZD, tD) &

a 1 ~ ~- 1 8

rD
4 tD

. (18)

which is identical with the solution derived by
HantushlQ by integrating Lord Kelvin's instanta-
neous point source solution. The pressure
distribution is thus the same as that created by a
totally penetrating line-source well plus a "skin."
This result can be extended to the fracture case by
writing Eq. 13 as

tD

i f Pr D'tY, ID

hD

o Zf z) D

.(14)

S~qt*

'If -S Z 1 2
I) 2rIi I1 );+ n-J

;%tat. 6§7,

pD)(r DgzD'tD) W P.D(rD,)CD))

+ o(rDezDD)(1

where PD (,D. t0)O given by Eq. 11, represents the
pressure-drop distribution created by an infinite
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solid cylinder source. The function VCID, ZD I tD) ;s
given by

K> a(rD ZDs tD)
r

SC 2f tD

0

I

P( (Dt IDt) 1 Z 12

|dt; .' . . (20)

for the fracture case, or when

25 r'.. . .2

for a well with partial penetration or limited enftr
('D 21 and PI infinitely small).

Therefore, the slope of the pressure curve become,
equal to % within I percent as time increases, whe,
Eqs. 22 through 25 are satisfied, and the fl..
becomes radial. The form of the ptessuce imp
function itself is obtained from Eq. 19: at lhn4
times, defined by Eqs. 24 and 25, PD (PD. t') con
be approximated by6

v-
C:l

l1 Zf
uf ~ f, _* 9~ ' h

and will be called a "pseudo skin function" by
analogy with the skin factor introduced by van
Everdingenil and by Hurst.12 The skin factor is
defined as a constant additional pressure drop
across a damaged "skin" at the wellbore. The
pseudo skin function, o (r,, zD, tD). represents an
additional time-dependent pressure drop in a zone
of finite radial extent, as will be proved later.
The pseudo skin function becomes a skin function
in the case of a well with partial penetration or
limited entry. Brons and Martingl 3 actually coined
the term "pseudo-skin" in their study of partial
penetration and limited entry. There is a difference
in the use of the term "pseudo-skin" factor by
Brons and Marting and the term "pseudo skin
function" in this study.

0 4 rD 4 1 : PD (r D 9tD

2(in tD + 1.80907 - r2),
Is*

as I

I 5

Thg

Jlec

(note that "[.80907" is correct in Eq. 26) for r
solid cylinder of finite radius (r/ large)

n >. 1 : PD(rtD)

LONG-TIME PRESSURE BEHAVIOR

In well-test analysis, the pressure drop at the
well is generally gtaphed vs the logarithm of time.
In the case of a slightly compressible fluid, a
straight line of slope % per In cycle (1.1515 per
log base 10 cycle) is obtained after a certain time,
which defines the beginning of the transient flow
period. I

If we make such a graph in the case of a horizontal
fracture, a curve results, the slope of which varies
with time and is given by

3(Ln t,))

2 (In 2 + 0.80907),

rD

t1,

rf n 0

. . . . . . . . . . . . . . . . ( .

for a solid cylinder, and a line source well 0'
infinitely small).

The integrand in Eq. 20, which define- i! p
pseudo skin function, o, approaches zero as the .

function approaches unity. Therefore, the r..r,!.'
skin function becomes constant when ID -10

2. This constant, defined as the pscutlu -- 6
factor, is the maximum value of the pseudo h.-,
function and is given by

5hD

a(rD§ZD* 7

dte
* I)

I

* li.

I

"I.n
"'I

tn

2t D 11 (rD, tD)Z I)

?t Z ), li > 0
2 7i,9 h 'If

. . . . . . . . . .. . . . . . (21)
As time increases, the Z function approaches unity
whithin 1 percent, when

tD 5 I2 (22)
D ' _2 iD . . . . . . . .o r

or, in tetms of real variables,

5
fI2

2

0

h2
hD tI

h !, I

k
3 2 ; . .(23)6

. .

*.-)11 dtD * * . * - I

The pseudo skin factor cannot be expresse'l M' .'
of tabulated functions, except for the calc It "
with partial penetration or limited entry., "'
case,

S P

,,'I

and the P function is equivalent to [/4tD when

t 3 12.5(?r + 1) .... .. (24)6
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ht where 80 represents the dimensionless vertical
f distance from the pressure point to the closest

2i 7jI (upper or lower) horizontal face of the fracture. Eq.
33 represents vertical linear flow into the fracture
with a storage effect caused by the finite thickncss
of the fracture. The storage constant is equal to
1 bf. The pressure-drop function becomes negligible

(29) when

t .4 .-. . .. . . . .(34)

or. in cemis of real variables,

. . . . . . . . .

I t;Cen in Ref. 10.

SHORT-TINIE PRESSURE BEHAVIOR

i
I

I

I
L

rue shotr-time behavior of the pressure
jistribution function is obtained by ineans of Eq.
13 irotn the short-time behavior of the Z and P
functions, which have been described elsewhete. 6 ' 1

rge results are summarized in the following
ranqrtphs.

liogIZONTAL FRACTURE
The P function becomes constant as time

Jtetesses, within L percent when

'i ' 20
.. . . . . . . (35)

Inside the fracture, the Z function becomes
constant at very catly times and the pressure-drop
function can be approximated within I percent by

P (O - r < 1;Zs-,-zcZ£C 2'

(D - 20
ID 'IC 20

r 1 .(30)
tc) r 

2 II t. . . (36)
If .

-.ni4 In r % I 0-( 1
'n (

when Eq. 34 is satisfied.
Substitution of real variables into Eq. 36 yields

she constant is unity for 0 S PD < 1; one half for
to * 1; and zero for tD > I

Therefore, at very catly times, Hlow occurs only
i the 0 5 rD S I region. The pressurc-drop function,
VI. 13. then becomes

PD(0 1< r D < I . z I'tJ D)

Pi- -(rzt)

qf t

2
!-r, Ift4C

.1(37)

all
the

which is a volumetric balance assuming
production originates within the volume of
fracture. The rate of decline is given by

ti)

i..
I) f *fZ(It Tt ' Ii-, f) dr ;. . . .(32)

1)~~~~~~I

Oich is independent of 'D and indicates vertical
1SACA1 flow into the fracture. The carly-rime behavior
of El. 32 depends upon die form Of the Z function,
thich in tum depends upon b/.

Iforzon tal fracture of Finite Thickness
(b 1 , 0)

Above or below the fracture, at very early times,
Sh pressure-drop distribution function is equivalent

11 (0 ' tD < 1, ZD~t:) 8lt
D Do,

A -fl -. ( 7 f . . . . . . . .t38)
dt W~~Ur 2 II C.(

and is constant and inversely proportional to the
fluid-filled pore volume of the fracture.

On the horizontal faces of the fracture (8 - 0).
the pressure drop is one-half that within the
fracute at very early times, when

kzt

2~ % .(39)-le 2 20 . .. ...

Therefore, at very early times. the only flow is
within the fracture, and is of a storage type. A
straight line of unit slope is obtained when the
pressure drop is plotted vs time on log-log
coordinates. As rime increases, the linear vertical
flow into the fracture becomes important, and a
straight line of slope X is obtained on log-log
coordinates. The length of this last straight line is
limited by the distance from the pressure point to
the closest upper or lower reservoir boundary

I crf c -f - 4 7rt'R

2

( - 6c) I
4li,

.. . . . . . (33)
0o
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(boundary effects), and by the distance from the
pressure point to tr, because the P function does
not remain constant when Eq. 30 is no longer
satisfied.

Planse Hon:ontal Fructure (b .a 0)

At very early times, the pressure-drop function is
given by7

PD (O 4 r 1) c IZ ) tD) n

pressure drop is one-half that given by Eq. j

when Eq. 39 is satisfied.

RADIUS OF INFLUENCE

The pseudo skin factor, O('b 0 ZO, 5hVA/2), Refi..e
by Eq. 28 is independent of time, but does deren
upon the position of the pressure point. it ,

possible to define a radius of influence, P,, so tsar

V(?D'rD' 54/07) is zero for r > Pi. That is, ,,
points beyond the radius of influence, the pessu..
skin factor due to the fracture (or the skin fact,,

due to the limited entry or to the partial penetrati. 1
is essentially zero, and the effect of the fracr4.,.
(or of the restricted entry or partial penetrati. e
has disappeared. The pressure drop is the same
that created by a solid cylinder source of radius
or even a line source.

In the fracture case (fl large), the P function
negligible at all times at distances so that

IF-_.
(- 2

r DI

vd~e

.An

*~c In

.Alth

The'

,a ghi

ftactiu

ra Vt

At:

4dAk
1'an'
LmJ a,

-hD z erf -zI.. .(40)

which represents linear vertical flow without
storage into the fracture, and PD becomes negligible
when

(rD - 1)2 > 20 t .D .(

k~Zt L

¢,lc<zz z)2 20k 0 Z~( .(41)

Graphing the pressure drop vs time on log-log
coordinates yields a straight line of slope % whose
length is limited as in the case of a finite-thickness
fracture.

WELL WITH PARTIAL PENETRATION
OR LIMITED ENTRY

In this case, the P function is no longer constant
at early times, and the early-time behavior of the
pressure is solely determined by that of the Z
function. Above or below the well opening, the Z
function is negligible when Eq. 35 is satisfied
and there is no flow in that region of the reservoir.

At the level of the well opening, the pressure-drop
function can be approximated by

hf

PD(rD If 2 < Z < zf + 2' tD '

r 2
I h E r ( D ) .(42)

f D

when Eq. 34 is satisfied.
In teims of real variables, Eq. 42 can be written

as

2r k hf r .
qf ~AP ~ EL (- w )...(3

which indicates that the well behaves as if the
total sand thickness were equal to h1. 13

At the top or bottom of the well opening, the

420

from Eq. 30.
If Eq. 22 is also satisfied, that is, if

t ~,,5 h2
tD f2 lIDe . ......... . .

the pseudo skin factor vrD ,z 0 5h2/,12) is w-
Because y( ez o. 5b2/n2) is the maximum I
the pseudo skin function (which is always positive-.
the pseudo skin function itself is zero, and 'ar
pressure drop at all times is the same .as eat
created by a solid cylinder.

The radius of influence is obtained by combing
Eqs. 44 and 22, which yields

r ' I + 10 h
riD It D

or, in teans of teal variables,

r rf g ..;

Therefore, the distance (pi - '/) depends only;
the reservoir thickness, h.

This result is valid if pi 0 for a well
partial penetration or restricted entry for which

10 .

This result can be verified from the Anslt#*
expression of the skin factor equation (1i.
which is negligible when the Bessel functiw' K..

negligible.

WELLBORE PRESSURE FOR
HORIZONTALLY FRACTURED WFI.L*

Clearly, Eq. 9 does not yield a uniform lfinte'

pi

-(VI

-h1
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the fracture (for a S Vo S I and z; - bt/2 5
4. b /2), except at very early times. However,

4. potential variation is small, and the fracture
sa be considered as similar to one having a very
Sh permeability.

- n infinite conductivity fracture can be obtained
is indicated in Ref. 6, by dividing the fracture into
a number of elements, each with uniform flux, and

gbtuined as the intersection of an elementary
ihick-wall cylinder with an elementary slab source.
Tke condition of infinite conductivity and the flux
jsrtibution ate obtained from the condition of equal
pessure drops in the source elements, and that of
Wnsunt production rate at all times.

Thc solution for a uniform flux fracture presented
b this paper is useful, however. In the reservoir,
away from the fracture, there is little difference
bnween the behavior of an infinite conductivity
fictutre and that of a uniform flux fracture. Further-
*oe. our solution appears to match the behavior of
S well intersecting a natural horizontal fracture
vhew computed at the center of the source lr a 0,
g . el). I[ that case, the analytical expression for
prvsiure drop is much simplified.

Along the fracture axis (t a 0), the P function
CsA be expressed in terms of tabulated functions,
Oa a simple analytic expression can be obtained
Ix the pseudo skin factor as a function of the
bflowing reservoir parameters:

hf f 0 . . . . . .... (50)t

The transient pressure along the fracture axis,
obtained when Eqs. 21 and 23 are satisfied. is equal
to

PwD 2 ['(A t * 1.80907
.2

( * D' I ) ]) ( ) . . . . . . .

(note "1.80907" is correct)

where ZD is such that

-f <Z Z +-f
f 2 f 2

and the corresponding analytical expression of the
pseudo skin factor at the weilbore for a horizontal
fracture of finite thickness is

a n 2 -- _ )
D Itfh

z.
- (_

II
+j z)

K>
1

4t
P(OtD) " 1 - e

1 nf + 1 2

.. . . .. . (48)

PD(Ot ) - - E1 ( )

_1

+ 2te(I - e D. . . .(4)

nz ,.D, tD) a

8hD

r,2
hn
hEf

n-1

1 sin
, n

hlf
T ZIa Cos

h

Cos air Z K (Kr) . . . . tS2)
II II0

Rh 1

nul

Ir hD |2

l2 n2

6
I

0

1 - C

n2 z2t
_ D

h tI

The pseudo skin factor, a, is thus a function of hD,
h A, z,/A, and sxb only. The Bessel function

. decreases rapidly when the argument increases,
and the infinite sum can be neglected for hb < 1.

Taking the 'limit of Eq. 52 as bI, * 0 yields the
pstudo skin facto, at the wellbore for a plane
horizontal natural fracture:

Cr = 1 h 1 - 3 h ( -

. Lb 1:'I; hur) +
h0

exp

(whi2

u --

' u > sln

.J. t~. ,..

4 I

n-1

1 2 Z(- Cos WiT-
n I

K1 (D ).

2 Cos h cos nur L.
.... . . . . . . . . . . . . . . . . . ... (53)

2at



a is a function of ho and z/b only, which is
symmetrical with respect to :1/ 7b . The pseudo
skin factor is graphed in Fig. 3 vs bD for different
values of the parameter :1/6.

Only one other expression appears in the literature
for the transient pressure drop created by a plane
horizontal uniform flux fracture. It has been derived
by Tjrren4 from a study of bottom-water-drive
reservoirs by Coats5 and represents an average
value over the area of the fracture, when the
fracture is at the center, top, or bottom of the
formation. Defining the average pressure in the
fracture as

pVD =- t pD(r tztD) 21r r> dr

0V~~
0

... .... ............. . (54)
and the average pseudo skin factor as

Tjrten's results4 can be written in a similar wjv ,

(2 ' tU + 080907) + z
(Ca ; . . . . . . . . . . . .av i

where

h
!ID A(2 0.654S,- if Ze f

(7 av)l.?...

2hi AC-) * 0.6545, if
D 2

12

1a- 1 a(rD ZfIh 2 ) r rD dr,C., ;z,-)2i rdJ . OD fO" i2 1) 1

0

.(.. ..... . . . . . . . . . . . . .. (55)
it follows from Eq. 26 that the average transient
pressure in the fracture is given by

o r - f h .... . . e,

in which A(hD) is a geometrical constant given I,,
Table 2 of Coats' paper. A comparison has ber.,
made in Fig. 4 between the numerical values of the
average pseudo skin factors from this study an i
those in Ref. 4, for different values of (he
dimensionless reservoir thickness bD. in the c.811
of a fracture at the center of the formation; there as
excellent agreement.

For the steady-state case, values of the u1al
skin factor have been presented by Hartsock -aI
Tarren 3 as a function of the following dimensionl.e.
Darameters:

Pa T-(Iin t +
aD D

0.80907) + I + o4 av h r
r|kz

rf
V r

; (kh)I/r if Fkk
..... ........ ....... . (56)

(k0), being the fracture flow capacity. Hartsok ma,'

and Warren mentioned that there was in infin f
number of combinations of these parametert I'
would yield the same value for the skin fictor.
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FIG. 4 - AVERAGE PSEUDO SKIN FACTOl.. *
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AT CENTER OF FORMATION.
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FIG. 3 - PSEUDO SKIN FACTOR. a. AT WELLBORE
(PLANE HORIZONTAL FRACTURE).

30CiiTv or PETROLEUM~ ENG4INVO:LR' I"'l 14 IUS



tcually. this should not be so, and Hattsock
id farren's calculated skin effect should be a

tjque function of bD and the (tacute/formation
capacity ratio,(br(h, because the well
sappatently has no significant influence on

K.~Vtessure distribution. As a check, Hartsock
id Tirrens values of skin factor, SOW. were used

a compute a pseudo skin factor, aH.W, as defined
this study:

rf 1
JIM * IS + An - - - - - . . . (60)

has been plotted in Fig. 5 as a function of
fot two values of the fracture-formation flow

qacity ratio - 10 and infinity. Except for some
Cttering of the data, the relationship for the
tudo skin factor is indeed unique for each (kb)ll

), value.
These relationships, as obtained from Hartsock

ad Warren's paper, are not quite correct, however.
Me pseudo skin factor, a. from Eq. 53 has also
*on plotted in Fig. S. for a fracture at the center
lithe formation (z * h/2). It is difficult to reach a
:0clusion from the comparison of the a and cr iw
=nes for ho values less than 2 because of
ustcring of the data. The fact that there is no
tenement for bD values greater than 2 may result

be Hattsock and Warren's assumption of a radius
sinfluence equal to four times the fracture radius,

'A. according to the present study (Eq. 45),
n yes implicitly that hi - 0.3w. Because the

e of the radius of influence is determined by
Xs precision required for the numerical computa-
dss, one can conclude that Hartsock and Warren's
Iilsts are valid for bD values between unity and

is$ study
twts% sd wenim3l 6 (hhm~ /I I k*k

0 (1114 I tkh),

4

".W

TV~~~~~~~~~~O

7A~~~~~~~S

|~~~~~~~~~~~* *5 < 5 * S

.4~~~~~~
i 01th~aL iEt" ' s 6 i ah

-01111hStONLIESS RECEAR011 THICKNESS. ft*

W-ELLBORE PSEUDO SKIN FACTOR, a. VS
adOR A SINGLE PLANE HORIZONTAL FRACTURE

AT CENTER OF FORMATION.jilT * a ,,

2. In particular, it is apparent that Hartsock and
Warren's data leading to negative oH W values in
Fig. 5 are not accurate, the pseudo skin function
being essentially positive.

The dimensionless wellbore pressure for a plane,
horizontal, uniform flux fracture at the center of
the formation, given as a function of dimensionless
time for an extensive range of values of the dimcn-
sionless formation thickness hi in Table 2. has been
graphed in Fig. 6 on log-log coordinates to show the
early-time behavior, and in Fig. 7 on semilog
coordinates to show the transient flow period.

Variation of the pressure in the fracture for a
given value of dimensionless formation thickness
is illustrated in Figs. 8 and 9. As can be seen.
pressure is essentially constant for locations from
r ,0 to r w 0.25 r.

CONCLUSIOINS

An analytical study of the pressure distribution
created by a single uniform flux horizontal fracture
in an infinite reservoir with impermeable upper and
lower boundaries has shown that there exist four

IC"

FIG. 6 - DIMENSIONLESS PRESSURE IN THE FRAC-
TURE VS DIMENSIONLESS TIME FOR A SINGLE PLANE
UNIFORM FLUX HORIZONTAL FRACTURE AT CENTER

OF FORMATION (rD °0).

1.
%I%I/ 04p1 1

FIG. 7 - DIMENSIONLESS PRESSURE IN TIHE FRAC-
TURE VS DIMENSIONLESS TIME FOR A SINGLE PLANE
UNIFORM FLUX HORIZONTAL FRACTURE AT CENTER

OF FORMATION ({o a 0).
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FIG. 8 - DIMENSIONLESS PRESSURE IN THE FRAC-
TURE VS DIMENSIONLESS TIME FOR A SINGLE PLANE
UNIFORM FLUX HORIZONTAL FRACTURE AT CENTER

OF FORMATION (ho - 0.05).

different flow periods.
A storage-type flow occurs first, the duration of

which is limited by the fracture thickness and by
the shortest vertical distance from the point at
which the pressure is measured to the fracture
boundaries.

A vertical linear-type low from the reservoir into
the fracture follows, and the duration of this period
is limited by the shortest vertical distance from
the fracture to the reservoir boundaries, and by
the radial distance from the point to the fracture
outer boundary.

*0- 0O.8 .4 . 0
to-NAlt/VAWJ1

FIG. 9 - DIMENSIONLESS PRESSURE IN TIlE lPI
TURE VS DIMENSIONLESS TIME FOR A SINGLE PLA
UNIFORM FLUX HORIZONTAL FRACTURE AT CFN r

OF FORMATION (ho - 5).

Trhe

..,h t
.AMY r
.s4iclrc

a, J b'.

The 0

J.1tA C

Fin
'hiferl

Wertic

tnftic
C~amp.
two 11

lio: '
lh~neAl
1chIra

After a period of transition. the trAnmcl
oseudoradial flow period starts at a time depen.isrl
upon the radial distance from the point .I

measurement to the wellbore axis, and upon th.
reservoir thickness. The flow is radial and thE
pressure is the same as that created by a line-.4.'arL
well with a constant skin. The skin effect II
independent of time, but does depend upon e!-
position of the pressure point, and is negligible as
distances that ate greater than three times eir
reservoir thickness.

If the fracture thickness is small compire.I wt.%
K>1' TABLE 2 -p(.n. ED. ) 1) VALUES FOR A SINGLE PLANE UNIFORM FLUX HORIZONTAL FRACTURE AT CENTER OFFORMATION FOR VARIOUS DIMENSIONLESS RESERVOIR THICKNESSES. hDfro *0; qj -0.5)

V A 6." 0.8 6.1 6.0 C.1 0.1 I I I 6 I a I to_ Z

I.W

*.I.*,

I.se

1.10*1

I

a

I6

.6.901 4.04a ~46.e)4
4.0.1301

I."641

6.0144

6.6104

0. "If5

.0.malI1

.6.190

6.91116

0.13*1

S.U156'

0.8016

e.g.'.

6.1216

0.11919

6. loss

6.1315

6.1116

op.:2

6.1315

0.38*8

6.19SW

6.051O

6.1581

6.6312

6.1)6

0.4166

.6.116

6.6361

61.111,3

6.41184

6.0404

6.1610

11.90II,

1.1042

W.104

44611fs.10l11

6. 10116 1.6361 1.4111

0.048* I 1.6126 1.604s

1.8493 1.9620 11.103

2.3490 3.11,1 1.6*11

#6.34'

11.1901

1. 1644

9.1639

1.29ft

1.1016

1.0441,

4.33161

0.3158

I966es,3
*R.10134

0.6131

40.91141

1. 1186

&.901is

2.6411,

3.931I

6.1611s

4.5*14

110.611

11.16131

9.93,3

k..n06

1.8632

8.9333

3.21)1

1.61'.

0.0116

6. id"

&.b040

9PI.04,6
of. bII30

g 314

I N9

1.016

8 We

3,111"

a.01

q 1980

of -.1 t

*. I **

0"I

6.2110 1.9816
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II [
formation thickness. the fracture behaves like a

55le-plane horizontal fracture; the storage-type
no longer exists, and only the last three flow

.ds are leftI 5 with the same time limits.
e same mathematical model can be applied to

Hive the pressure distribution created by a well
git restricted flow entry or created by a well that
zaly partially penetrates the formation. Again, three

{iferent flow periods can be characterized: (1)
early radial flow into the open zone. the duration

i which is limited by the height of the opening,
ad by the altitude of the point of measurement in
& open interval; (2) a transition period; and (3)
£ gransient radial flow period as in the fracture
&se. These results are summarized in Fig. 10.
F ec time at which the transient radial flow period

Wets is the same in all cases, but the skin is
affeenc in each case. Analysis of pressure buildup

cA can thus be made in a conventional manner if
I straight line has been obtained,1 or - as

wommended by Rameyt4 - if early time data are
enilabCe.
jrinally, we should consider whether important

ftences exist between the behavior of wells
jtb horizontal fractures and that of wells with
jriieal fractures. Russell and TruittI6 in 1964
psented results for a well containing a single
ymcal fracture in a closed square reservoir.
Qmparison of log-log graphs of pi vs to for the
We types of fractures discloses both similarities.

i differences. Both possess an early period of
t Pat flow from the fracture surface. This is

'arstetized by a slope of %4 on log-log coordinates
ofn examples, see our Fig. 6, and Fig. 5 in Ref.
£ But the behavior of the horizontal-ftacture

case differs from that of the vettical-fracture case
for small values of AD, say less than 0.7. There is
an increase in slope from ' toward unity that has
no counterpart for a vertical-fracture case. Because
it appears that bD would be less than 0.7 for
practical cases, it should be possible to identify
horizontal fractures from well-test data.

NOMENCLATURE

The Darcy system of units1 has been used.
c compressibility
b . formation thickness

AeVfracture thickness
k a formation permeability

(kb)f ' flow capacity of fracture
(oh), v radial flow capacity of formation

Ap pressure drop below initial pressure
pi . initial reservoir pressure

POD t dimensionless wellbore pressure drop
PD dimensionless pressure drop

q . withdrawal rate per unit volume of source
1 production rate of fracture

r *dimensionless radius
r awellbore radius

* slkin factor
I a time of flowing

to - dimensionless time of flowing based on P/
z . vertical distance to the reservoir lower

boundary
a vertical distance from the pressure point to

the closest horizontal face of the fracture
a diffusivity constant

a uviscosity

a pseudo skin factor
d * porosity

t,

I

P*,E "Oft~sat.ora SUflACtt 1%3II-~

1 - LVaw
g*..

SUBSCRIPTS

du a areal average
D . dimensionless
f a fracture
i a initial, influence

Ua, twell F

SPECIAL FUNCTIONS

Etror function.tSg.#..

.- rS'V - r;
90

Iht' il
0* a $7

a.-V 111I* 1f

erf (x) 2
V 7.

0
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cdu
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a 10 - ILLUSTRATION OF DIFFERENT FLOW
1°03 FOR HORIZONTAL FRACTURES. LIMITED
nLOW ENTRY, AND PARTIAL PENETRATION.
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Complementary ertor function,

cr.c (:.) *- - crf (:)

o

-u2
du

Exponential integral,
do

r U

- L± {C- x) U du

(r) - modified Bessel function of the first kind
of order 0

Ko (x) - modified Bessel function of the second
kind of order 0

~t(x) . modified Bessel function of the second
kind of order t
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