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i ABSTRACT

The purpose of this report is to provide general guidelines to be applied

in judging the validity of models used in performance assessment of HLW

repositories. The guidelines are based on a validation strategy that

Sandia National Laboratories (SNL) has proposed to the Nuclear Regulatory

Commission's Office of Nuclear Regulatory Research. This strategy

focuses on the demonstration that performance assessment models are

adequate representations of the real systems they are intended to

represent given the pertinent regulatory requirements rather than proving

correctness from the purely scientific point of view. This report

discusses (1) the definition of validation in the context of performance

assessment for HLW repositories, (2) the need for validation, (3) a

validation strategy, and (4) an approach to validation proposed by SNL.
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FOREWORD

This report presents the views of the author and Sandia National

Laboratories on the validation of models for performance assessment of

HLW repositories. These views are not necessarily those of the Nuclear

Regulatory Commisslon (KRC). Therefore, it should not be construed that

following the guidelines presented in this report will result in

acceptance of specific performance-assessment models by the NRC in the

licensing process.
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SUBTASK 2.4(A) FORMAL REPORT

GUIDELINES FOR JUDGING THE VALIDITY

OF PERFORMANCE ASSESSMENT MODELS

1.0 INTRODUCTION 1

2

In order to obtain a license for a high-level radioactive waste (HLW) 3

repository, the Department of Energy (DOE) will carry out a program of 4

site characterization and performance assessment analyses to demonstrate 5

with *reasonable assurances that burial of HLW wastes will pose no undue 6

risk to the public health and safety. No direct means of assessing the 7

behavior of a repository system exists due to the size of the area of 8

regulatory concern (100 square kilometers) and time scales involved 9

(10,000 to 100,000 years). Therefore, it is expected that DOE will use a 10

wide variety of mathematical and numerical models, and associated 11

computer codes, to complete the required analyses. Rendering the 12

analyses defensible will require the models and data used for the 13

performance assessments to be representative of the repository system, 14

including the engineered barrier and the natural barrier. DOE is 15

responsible for ensuring the validity of the models and codes used, the 16

quality of data, and the adequacy of the overall analyses. 17

* ~~~~18

The Nuclear Regulatory Commission (NRC), on the other hand, is 19

responsible for evaluating DOE's license application and deciding whether 20

or not to grant such license. Therefore, the NRC must be able to judge 21

whether or not DOE has demonstrated, with reasonable assurance, that the 22
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DOE models are representative of the repository system conditions. 1

Sandia National Laboratories (SNL) has been responsible for developing 2

and testing models that the NRC could use in an independent evaluation of 3

a HLW repository. Therefore, the NRC requested that SNL provide them 4

with this document on model validation. The intended use of this 5

document is to provide the NRC with the author's philosophy on model 6

validation and insights into the validation process. 7
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2.0 DEFINITION OF VALIDATION 1

2

There are several definitions for the term 'validation;' following are 3

several examples. NRC (1984) defined validation as the process of 4

obtaining assurance that a model, as embodied in a computer code, is a 5

correct representation of the process or system for which it is 6

intended'. DOE (1986) defines validation as la process whose objective 7

is to ascertain that the code or model indeed reflects the behavior of 8

the real world". Others (e.g., Borgorinski and others, 1988) follow the 9

International Atomic Energy Agency's definition that validation is 10

confirmed when the model and computer code "provide a good representation 11

of the actual processes occurring in the real system'. All the 12

definitions are consistent, although derived from different perspectives. 13

That is, they all are concerned with providing assurance that a model 14

represents reality. This is different from the classical scientific 15

approach which consists of proposing a hypothesis and then designing 16

tests to disprove that hypothesis. Thus, science is not concerned with 17

validating models but, rather, invalidating them. A model can be 18

declared 'invalid' or Onot invalid"; however, it is the premise of this 19

report that one can never say for sure that a HLI performance assessment 20

model is 'valid". Hore than 30 years ago Popper (1958) perceived that 21

'...whenever we propose a solution to a problem, we ought to try as hard 22

as we can to overthrow our solution, rather than defend It.' This idea 23

also has a basis in ordinary statistics whereby one proposes an idea, 24

then attempts to disprove it by testing the null hypothesis. This 25

philosophy has a counterpoint in judicial history where the null 26
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it
hypothesis is that one is *not guilty". A jury must either fail to 1

reject the null hypothesis (the individual is Onot guilty"), or reject 2

the null hypothesis (not "not guilty"). Clearly, just because an 3

individual is judged not guilty does not mean that the person is 4

innocent. It simply means that there was enough evidence for the jury to 5

fail, beyond a reasonable doubt, to reject the null hypothesis. Hence, 6

from a regulatory perspective, declaring a model not invalid does not 7

guarantee validity. It only provides a means for the modeler to 8

demonstrate reasonable assurance that the model is not incorrect. 9

10

The desire for validated models arises from a decision-making framework. 11

either for designing a repository or for providing assurance that the 12

assessment of long-term repository performance is meaningful. In 13

licensing a HLW repository, the distinction between a scientific approach 14

to developing and testing models and a regulatory approach to validating 15

models is critical. For one, the scientific approach generally would ask 16

for a complete and detailed explanation for all observed phenomena, 17

whereas the regulatory approach would ask only for an adequate 18

description of the phenomena for a given purpose (e.g., for the licensing 19

of a repository). Thus, a bounding or conservative model may be valid 20

for regulatory purposes but, by definition, not provide a detailed 21

description of all phenomena. This is not to say that the scientific 22

processes is not followed in the validation of models used in the 23

regulatory arena. However, the final decision as to the validity of a 24

model will be based on regulatory. not scientific considerations. 25

26
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Performance assessment models are a combination of the site-specific 1

data, that describe a particular geologic setting or experiment, and the 2

physical process models contained in the relevant computer codes. Hence. 3

the term model, as defined herein, includes the conceptual model, the 4

mathematical model, the computer code and its associated input data. 5

Therefore, validation of performance assessment models is ultimately a 6

site-specific issue. However, the testing of models of various geologic 7

media will aid in gaining (or losing) confidence that the process models 8

contained in the codes are adequate representations of what is occurring 9

in nature. 10

11

Both NRC and DOE define validation as a process and not as a fixed 12

product. Thus, the goal of a model-validation exercise should not be 13

viewed as providing a set of Ovalidated" models. Rather, the goal should 14

be obtaining added assurance that the models are able to simulate the 15

behavior of real system. Thus, the regulatory focus should be on: 1) 16

well-defined problems that test key processes, with less concern placed 17

on the type and location of the specific media involved in a given 18

experiment and; 2) site-specific application of the models to the 19

proposed repository system. 20

21

The final point to make about the definition of validation is that NRC 22

and DOE are not asking for absolute proof that models are perfect 23

representations of reality. Instead, they are asking only that assurance 24

be provided that the models are adequate representations of the real 25
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system (i.e., that compliance with current regulations can be shown). 1

The decision of model validity should be based on: 2

3

(1) whether or not the types of validation tests are relevant to the 4

intended use of the model; 5

6

(2) how well the models were able to simulate the validation tests; 7

8

(3) how many validation tests are sufficient before the models can 9

be applied to a particular site; and 10

11

(4) how well the site-specific information conforms with the model's 12

description of the site. 13

14

It cannot be overemphasized that model validation is a site-specific 15

issue based on the intended use of the model. Moreover, the modeler and 16

regulator alike should realize that the ultimate decision on model 17

validity will be, to a large degree, subjective and will be based on an 18

acceptable level of uncertainty. 19

20
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' 3.0 WEED FOR VALIDATION 1

2

The need for model validation in the U.S. HLW program arises from at 3

least two sources. First, NRC and DOE have Interpreted the need for 4

validation to be implicit in the U.S. Environmental Protection Agency 5

(EPA) and NRC regulations (40 CFR Part 191 and 10 CFR Part 60, 6

respectively) that require DOE to provide assurance that the proposed 7

site will meet the stated performance criteria. In fact, it is stated 8

explicitly in 10 CFR Part 60.21(c)(1)(ii)(F) that Analyses and models 9

that will be used to predict future conditions and changes in the 10

geologic setting shall be supported by using an appropriate combination 11

of such methods as field tests, in-situ tests, laboratory tests which are 12

representative of field conditions, monitoring data, and natural analogue 13

studies." Second, intervenors could use validation as an issue in 14

litigation against either DOE (before a license application for 15

construction of a repository) or NRC (after a license is granted). In 16

fact, the issue of validation was the basis for the decision in a court 17

case involving the State of Ohio and the EPA (23 ERC 2091). In that 18

case, the Sixth Circuit of the U.S. Court of Appeals ruled that EPA had 19

acted arbitrarily in using the CRSTER computer code (EPA, 1977) as a 20

basis for establishing limitations on sulfur dioxide emissions from two 21

electric utility plants. The Court decided that EPA had failed to 22

establish the accuracy or trustworthiness of the model as compared with 23

the actual discharge from the plants. In other words, EPA did not 24

perform a site-specific validation of the model. 25

26
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4.0 VALIDATION STRATEGY 1
i .

2

Given enough time and resources, all of the models used to assess the 3

performance of a HLW repository could be validated using site-specific 4

data. However, limitations in time and resources lead to alternative 5

approaches to validation. Foremost, they lead to the use of as many 6

relevant experiments as possible to test the models. Thus, a validation 7

strategy should include the use of so-called generic validation 8

experiments as well as experiments performed at the proposed repository 9

location. In general, both generic and site-specific experiments will 10

include laboratory tests, field tests, and natural analogs. 11

12

4.1 Use of Laboratory Experiments 13

14

Laboratory experiments are useful in testing the processes controlling 15

the behavior of the repository system because (1) they are performed in a 16

controlled environment that minimizes uncertainty in initial and boundary 17

conditions, and (2) the experiments can be performed on samples that 18

exhibit relatively little geometric variability (i.e., homogenous). 19

However, the use of laboratory experiments in validation efforts is 20

limited due to (1) the inability to perform tests on either long time 21

scales or large spatial scales experiments, (2) the difficulty in testing 22

coupled processes, and (3) the possibility that the samples used are not 23

representative of field conditions. 24

25

26
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4.2 Use of Field Experiments 1

2

Field experiments overcome the problem of representativeness of data and, 3

to a degree, the spatLal-scale problem that plague laboratory 4

experiments. To a certain degree, field experiments can be direct 5

surrogates of repository performance (e.g., field heater tests and tracer 6

tests). However, the usefulness of field experiments is limited by 7

uncertainties in initial and boundary conditions and, to a large degree, 8

by the possible conceptual misunderstanding of the field conditions. 9

10

4.3 Use of Natural Analogs 12

12

In some sense, nature could be considered to have initiated experiments 13

that could be used for validation. Transport of radionuclides from 14

uranium deposits and transport and deposition of minerals along fractures 15

are a few examples. These "experiments" have the advantage of having 16

taken place on temporal and spatial scales that are comparable to the HLW 17

repository system scales. In addition, coupled processes are often 18

involved that are difficult to produce in either the laboratory or the 19

field. Uncertainty in initial conditions, boundary conditions, and the 20

temporal evolution of the physical system, however, limit the usefulness 21

of natural analogs in validating models. 22

23
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5.0 PROPOSED APPROACH TO VALIDATION 1

2

The following steps outline a generic approach to model validation that 3

is consistent with the philosophy discussed above. 4

5.1 Definition and Prioritization of Kodels to be Validated 6

7

Licensing of a HLW repository requires that certain performance standards a

be met. The regulations do not explicitly provide specifications as to 9

what, if any, models must be used; nor are there unique models for a 10

given HLW application. On the contrary, many models exist that purport 11

to be capable of simulating some aspect of repository system. The choice 12

of which models to use is up to the applicant (DOE) for the license 13

application and up to the regulator (NRC) for the license evaluation. 14

Therefore mapping between the performance standards and models that could 15

be used to evaluate the repository system is the first step in model 16

validation. This process involves defining a strategy for demonstrating 17

compliance with a given standard and then developing conceptual models; 18

choosing, developing, or modifying a computer code to implement the 19

conceptual model; and obtaining the data required by the model. A 20

conceptual model is simply the combination of all of the assumptions 21

about the repository system that are required to adequately simulate the 22

behavior of the system. A mathematical model is a numerical expression 23

of the conceptual model. It consists of a set of equations that describe 24

the initial and boundary conditions, the governing processes and the 25

solution of the equations. The mathematical model may or may not be 26
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implemented in a computer code. As stated previously, the combination of 1

all of these is what is herein referred to as a model. Once the models 2

are chosen they can be tested against the relevant experiments. 3

4

Limitations of resources and time do not permit testing of all possible 5

models required in HLW performance assessments. One possible approach to 6

deciding the priorities of which models to test first would be to follow 7

the strategy given by Price and others (1990) on the review of 8

performance assessment models. That strategy focuses first on processes 9

that could directly lead to a release of radionuclides and proceeds to 10

processes that reduce the chance that radionuclides would be released. 11

Following a similar strategy, model validation studies could be forced to 12

test the most important models first. 13

14

5.2 Identification and/or Definition of Relevant Experiments 15

16

Once the required models are identified, a combination of laboratory, 17

field, and natural analog experiments should be identified that test the 18

range of expected repository conditions (both current and future). It is 19

likely that a sufficient range of experiments are currently available. 20

Therefore, experiments should be performed that test the remaining 21

processes or conditions not covered with existing experiments. 22

23

It cannot be overemphasized that the chosen experiments should be 24

relevant to repository performance irrespective of the model's reported 25

capabilities. In other words, model purpose should be #the focus of 26
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validation efforts not model capability. Too many past validation 1

efforts (experiments and modeling) have not addressed licensing 2

requirements but have focused instead on testing a given model. In fact 3

many Zgenericf validation experiments have tested models or parts of 4

models that will never be used to assess compliance with the relevant 5

regulations. The pitfall of such an approach is beyond merely wasting 6

resources. First, the potential exists co develop false confidence in 7

the model because the experiment is not relevant. Second, equal 8

importance is the possibility of invalidating a model that is acceptable 9

for repository performance but is unable to reproduce results of an 10

experiment that tests conditions not found in a repository environment. 11

12

A point needs to be made here concerning experiments that have been 13

performed prior to the validation effort. First, and perhaps most 14

important, there is a great tendency to turn the validation effort into a 15

calibration effort. This is because the data describing the results of 16

the experiment are available prior to, during, and following the modeling 17

effort. Thus, the modeler has a tendency to fit (or calibrate) their 18

results to the experimental results instead of using the input data to 19

predict" the experimental results. This type of an effort affords some 20

degree of confidence in the model if the results agree well. However, it 21

is by no means validation because the degrees of freedom for model input 22

are generally so large that a *reasonable fit can be obtained with many 23

very different models. The reason that so many degrees of freedom exist 24

is not a criticism of the experimental program but results instead from 25

the reason for the experiment in the first place. Namely, most past 26
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experiments were not specifically designed to test a validation issue. 1

Thus, it is likely that not all of the information necessary to 2

'validate' a model was obtained. Ideally, the validation effort would 3

rely only on specific validation experiments that are part of the 4

repository program. However, this is not possible given the limited 5

resources and time, and for the case of natural analogs, obviously, not 6

possible at all. 7

5.3 Definition of Performance Measures that are Based on the 9

Intended Use of the Model 10

11

In order to judge the performance of the model relative to the 12

experimental results, some representative measure(s) of the system 13

response must be defined. A performance measure must be a quantity that 14

is of regulatory interest or directly related to a quantity of regulatory 15

interest. For the licensing of a BLW repository, the regulatory 16

interests are such factors as concentrations of contaminants, integrated 17

quantities of contaminants, and/or travel time of contaminants through 18

the geosphere. Regulatory analyses require these parameters to be 19

predicted over distances of kilometers and times of 1,000's to 10,000's 20

of years. Because this is not possible, validation studies must rely on 21

Indirect measures of repository performance. Indirect performance 22

measures are quantities like ground-water velocities and fluxes. Other 23

performance measures that are even more removed from regulatory 24

requirements (e.g., pressure and moisture content distributions) should 25

only be used as a last resort because of the potential for 26

-13-



misinterpretation of the model validation results. For example, a model 1

may be judged invalid if it cannot reproduce a three-dimensional 2

distribution of moisture content. However, the same model may provide a 3

perfectly adequate prediction of regulatory quantities, such as ground- 4

water flux or contaminant concentrations. 5

6

5.4 Ouantification of the Uncertainty AsFoclated with the Incut Data 7

and the Data Available for Comparison with the Model Output 8

9

The ability of a model to adequately predict the performance measures 10

cannot be judged without consideration of the uncertainty of the input 11

parameters and the accuracy of the experimental results. There are 12

several types of error that could be associated with the data. These 13

include data collection errors (e.g., instrument error, human error) and 14

interpretation errors (e.g., fitting a Theis curve). Some types of 15

errors are quantifiable while others can only be estimated subjectively 16

by the experimentalists. In any case, the responsibility of quantifying 17

the errors associated with input parameters and experimental results lies 18

with the experimentalists and not with the modelers. 19

20

5.5 Definition of Aecetance Criteria or Acceptable Model Error Based 21

on Regulatory Requirements and Uncertalnty in Experimental Results 22

23

This is one of the most difficult steps in the validation process because 24

the question of the adequacy of the model predictions relative to the 25

experimental results is ultimately subjective. In judging the validity 26
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of model results, the uncertainty in experimental results should be taken 1

into account. That is, the model can only judged relative to the 2

accuracy of the measurements. Accounting for errors in the experimental 3

results can be accomplished directly by defining acceptance limits which 4

correspond to a band defined by the experimental measurements, plus and 5

minus their associated error. 6

7

Accounting for the uncertainty in input parameters is more difficult than 8

accounting for measurement errors in the experimental results. To 9

illustrate this difficulty, consider the following two extremes. First, 10

the input parameters could be known with complete certainty. Given that 11

the model is an accurate representation of the real system (i.e., the 12

conceptual, mathematical, and computerized aspects of the model are 13

valid), then the model results should agree with the experimental results 14

within the accuracy of the experimental measurement error. However, if 15

the model does not agree with the experimental results, the model is 16

invalid. Second, consider the other extreme, that is, the input 17

parameters are completely uncertain. This situation can occur when a 18

particular parameter is not measured during an experiment. In this case, 19

the modeler is free to assign any value to this parameter in an attempt 20

to obtain agreement between model and experimental results. In the event 21

that the modeler is unable to obtain agreement in this manner, the model 22

is invalid. Normally, however, the modeler is able to achieve some 23

degree of agreement between the model and the experimental results. This 24

does not mean that the model is valid; it only indicates that the model 25

is not invalid. Thus, uncertainty in the model input must be taken into 26
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account but the judgment about the validity of the model should be 1

tempered by this uncertainty. In other words, the more data uncertainty 2

with which the modeler is faced, the more difficult it is to conclude 3

that the model is valid. 4

In addition to the data uncertainty described above, the other main 6

source of uncertainty is in the model structure. The model structure is 7

the inherent structure of the conceptual, mathematical, and computerized 8

portion of the overall model; that is, all aspects of the model except 9

the input data. Model-structure uncertainty arises from an incomplete 10

knowledge of the driving processes, a limited knowledge of complex 11

natural geometries, and mathematical and computational limitations given 12

the current state of the art. 13

14

Consideration of these two types of uncertainty, model structure and 15

model input data, leads to the definition of at least two acceptance 16

criteria for a given case. The first one is a measure of the accuracy of 17

the model input parameters relative to the experimental results, while 18

the second is a measure of the adequacy of the model structure in 19

describing the system behavior. To illustrate the two types of criteria 20

consider a simple tracer tests through a column with a steady-state 21

uniform velocity field and a constant inlet concentration. In this 22

example, the conceptual model to be tested is a homogeneous isotropic 23

porous medium, the behavior of which is assumed to be governed by the 24

classic convective-dispersion equation. 25

26
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9 i To elucidate the criterion used to judge the adequacy of the model input 1

data, assume that the underlying model structure is correct. For the 2

example described above, this means that the model and experimental 3

results both display the classic S-shaped contaminant breakthrough curve. 4

Now consider the possibility that the model predicts that the contaminant 5

arrives earlier than it really did. Depending on how close the two 6

curves are, the model results could still be acceptable. The proposed 7

acceptance criterion is based on a combination of the distance between 8

the curves, the uncertainty in input values, and the uncertainty in 9

experimental results. Given these results, several possibilities arise. 10

11

First, it is possible that there is no overlap between the model- 12

predicted values and the experimental results (taking into account the 13

uncertainty in the experimental results) regardless of what combinations 14

of model input parameters are used. In this case, the model is invalid 15

and the invalidity arises out of errors in or incomplete knowledge of the 16

values of the input parameters. If this happens the experimentalists 17

should attempt to make additional parameter measurements. The next 18

possible condition for this acceptance criterion is that the model 19

results agree with the experimental results. That is, some combination 20

of input parameters results in model predictions that lie within the band 21

created by the plotting of the experimental results and the associated 22

experimental error. In this case, one cannot state that the model is 23

valid, rather that it is not invalid. The statement that the model is 24

valid cannot be made unless the full range of experimental conditions has 25

been tested. For example, the hypothetical tracer test would have to be 26
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repeated under different experimental conditions (for instance, the 1

experiment would have to be repeated under a range of imposed 2

velocities). To illustrate this point, consider a model for tracer 3

movement that treats retardation with a constant retardation factor. 4

Conceivably, the modeler could find a value of the retardation factor 5

that allowed the model to reproduce the experimental results. However, 6

if the retardation factor was actually a function of velocity, then the 7

model would be invalid for all velocities other than the one used in the 8

experiment. Thus, without performing additional experiments one cannot 9

know if the model is truly valid, only that it is not invalid. 10

11

A second acceptance criterion arises out of the need to determine whether 12

or not the model structure (i.e., the underlying conceptual, 13

mathematical, and computer model) is adequate. This criterion is based 14

on the concept that the model will produce a unique form of model results 15

regardless of the model input. For the example described above, the 16

model output is always the classical S-shaped concentration breakthrough 17

curve. If this equation is an adequate representation of the physics 18

governing a particular experiment, then the experimental results should 19

be of the S-shaped form. Deviations from this form indicate an incorrect 20

model structure. For example, the tracer test described above could be 21

affected by diffusion of tracer into dead-end pores. Th1e experimental 22

results, in this case, would display a concentration breakthrough curve 23

which falls underneath the classical S-shaped curve at late times. This 24

phenomenon of dead-end pore diffusion was not included in the model and 25

the acceptance criterion should be designed to test for the differences 26
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it produces. One possible approach is to start with the *best fit' model

obtained in the data-input uncertainty analysis described above. That

is, start with the combination of data input that results in the closest

fit to the experimental results. Using the best fit results as the

representation of the behavior of the model, the approach could be to

search for systematic differences between the model results and the

experimental results. The basis for this is the assumption that random

errors about the model results could be caused by measurement error but

systematic errors result from inherent errors in the model structure.

This search could be accomplished by subtracting the conceptual model

results from the experimental results and testing these so-called

residuals against a model for white noise (i.e.., no trend in the

residuals). Thus, if the residuals do not reveal any detectable trend,

the conceptual model adequately represents the experimental results. On

the other hand, the conceptual model is in error if a trend exists in the

residuals.
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5.6 Simulation of the Experiment

Simulation of the experiment may be done in so-called back-of-the-

envelope fashion or on a computer. Host of the HLW performance

assessment calculations faced by modelers today are s6 numerically

intensive that a computer code is the only reasonable way to arrive at a

solution. However, this is not always true and a simple calculation may

be adequate, depending on the purpose of the model. Regardless of how

the calculations are done, they should include an analysis of the

18
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21

22

23

24

25

26
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uncertainty of the input data. Several uncertainty analysis techniques 1

are available for this purpose (Zimmerman and others, 1990; Doctor, 2

1989). One popular method is to use a Monte Carlo approach based on the 3

Latin Hypercube Sampling (LES) scheme (Iman and ShortencarLer, 1984). 4

Using this approach, one can insure that the entire range of parameters 5

are tested. However, it does not guarantee that the best fit model will 6

be obtained. Inverse techniques do provide a best fit but generally do 7

not provide information about other combinations of parameters that could 8

work equally well. 9

10

5.7 Experimentation 11

12

The field or laboratory experiment should follow the model simulations to 13

assure that the modeling effort is not simply a calibration effort based 14

on the experimental results. This is not possible for many laboratory 15

and field experiments and not possible at all for natural analogs. At 16

any rate, a serious attempt should always be made to simulate the 17

experiments without reliance on the experimental results. 18

19

5.8 Evaluation of Model Results based on the Acceptance Criteria 20

21

In this step, the performance measure (for example, radionuclide 22

concentrations) predicted by the model is compared to the experimental 23

results using the acceptance criteria defined above as the measures of 24

fitness. This allows one to conclude whether or not the model structure 25

is correct and whether or not the model input data have been adequately 26
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estimated. In the event that the model structure and the input data are 1

adequate, two questions remain. First, would the same model be able to 2

adequately predict different experimental conditions and, second, are 3

other model structures (conceptual models) also able to adequately 4

simulate the experimental results. Both of these questions can only be 5

answered with new experiments under different conditions. Understanding 6

the differences in conceptual models should allow the modelers to 7

recommend experiments that can only be adequately simulated by one of the 8

models. 9

10

Comparison of model predictions and experimental results may lead one to 11

conclude that the input data were not adequately estimated. Again, the 12

modeler then should be able to provide the experimentalist with a list of 13

the desired data, including some indication as to which data are most 14

important. The most important data could be determined by using 15

sensitivity analysis of the model results. 16

17

Finally, comparison of model predictions and experimental results may 18

lead to the conclusion that the model structure is inadequate for 19

describing the experiment. The modeler would then have to propose a new 20

model structure and repeat the simulations and model comparisons. 21

However, this approach will be just another form of calibration unless a 22

new experiment is performed that follows the final model simulations. 23

24
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6.0 SITE-SPECIFIC MODEL VALIDATION 1

2

The approach outlined above deals with experiments that test only certain 3

models or parts of models and generally over relatively small spatial and 4

temporal scales. However, the site-specific repository performance 5

assessments that are required for licensing will be produced using a wide 6

variety of models. As stated previously, this system of models can not 7

be directly tested because they predict conditions for 1,000's of years 8

over scales of kilometers. While these models cin not be directly 9

tested, certain factors can be evaluated to gain confidence that the 10

models are valid. These factors are outlined below. 11

12

6.1 Agreement of the Model with Site-Soecific Information 13

14

At a minimum the model input data must be site-specific. However, 15

information other than input data is available to check the model 16

validity. Consider a ground-water flow model for example. Not only 17

should the model be based on site-specific hydraulic conductivities but 18

the model results should agree with other site-specific hydrologic 19

information such as hydraulic heads, ground-water chemistry, and isotopic 20

ages of ground-water. Questions will remain, however, as to the 21

sufficiency of the data used for comparison and the degree to which the 22

model must be consistent with other site information. In addition, the 23

check for consistency generally can only be based on comparison with 24

current conditions. Repository conditions (both natural and man-made) 25

may change significantly over time of interest for regulatory compliance 26
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e- (i.e., 10,000 years). Thus, a major effort should be the identification

of sites similar to the repository location that are currently under

conditions different from the repository site. For example, it may be

possible to find a site with similar geology to the repository site but

that is currently under much wetter climatic conditions.

1

2

3

4

5

6

6.2 Justificstion of AssumDtions

The foundation of any model is its assumptions. Therefore, considerable

attention should be paid to the assumptions that are invoked in

simulating the performance of the repository system. If the generic

validation tests had covered all possible conditions of model use, then

this task would involve only choosing those assumptions used with

experiments that were identical to repository conditions. Unfortunately,

experiments of this type are not possible. Therefore, untestable

assumptions will have to be based to a large degree on expert judgement

(Bonano and Cranwell, 1988; Bonano and others, 1990). In no case should

they be based on lack of model input data.

6.3 Treatment of Multiple Conceptual Models

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

No matter how well characterized a site may be, multiple conceptual

models (all consistent with available data) are possible. In fact, the

use of multiple conceptual models in HLW repository performance

assessments should be encouraged to gain reasonable assurance that the

results encompass the true system behavior. Care should be taken,

22

23

24

25

26
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however, that the necessary data were gathered during site 1

characterization to exercise the models as well as test the validity of 2

the models. 3

4
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7.0 CONCLUSIONS 1

2

HEW performance assessment models can not be proven to be valid due to 3

the temporal and spatial scales of regulatory concern. However, 4

confidence in the models can be gained through testing model performance 5

against a combination of laboratory, field, and natural analogs as well 6

as assuring that the models are consistent with site-specific information 7

and that all equally plausible models are used in the final assessment. 8

This confidence arises out of showing that the models are not invalid 9

over a wide range of conditions and by testing the validity of model 10

input data separately from model structure. 11
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