Davis-Besse Nuclear Power Station

IMC 0350 Meeting

Davis-Besse Nuclear Power Station

Desired Outcome

- Provide an Update on Plant Performance and Management & Human Performance Progress Since the Last Meeting
- Provide Information Concerning Decision on the High Pressure Injection Pump
- Provide an Update on the Quality Oversight Perspective
- Provide Status on Several Engineering Design Issues
- Status our Overall Schedule and Performance Indicators

Lew Myers FENOC Chief Operating Officer

FENOC

2

Davis-Besse Nuclear Power Station

Meeting Agenda

Pressure Test Results; Containment Closure	Mark Bezilla
Management & Human Performance Plan Update	Lew Myers
Electrical Distribution; SFAS Relays	Jim Powers
HPI Pump Modification; Corrective Action Program Performance	Bob Schrauder
Quality Assessment Activity	Steve Loehlein
Remaining Issues Focus	
Schedule Milestones	Mike Stevens
Restart Action Performance	Clark Price

FENOC

3

Davis-Besse Nuclear Power Station

Reactor Coolant System Pressure Tests and Containment Closure

Mark Bezilla Vice President/Plant Manager

Davis-Besse Nuclear Power Station

June 3, 2003

FENOC

Reactor Coolant System Pressure Tests and Containment Closure

Desired Outcome

- Demonstrate increased confidence in the Reactor Coolant System and Support System
- Provide an update on Containment Activities

5

Davis-Besse Nuclear Power Station

Reactor Coolant System Pressure Tests

- Completed 50 psig Leak Test May 6, 2003
- Completed 250 psig Leak Test May 25, 2003
- Accomplishments:
 - Determined that we could only "heat up" the Reactor Coolant System (RCS) due to decay heat, to <140 degrees
 - Placed Makeup and Purification System in service
 - Verified Pressurizer Heaters and spray functions
 - Ran each Reactor Coolant Pump
 - Gained confidence in the performance of the RCS and support systems

Containment Closure

- Containment Health Actions
- Containment Work
- Containment Closure
- Containment Ownership Turnover from Containment Health to Operations

Davis-Besse Nuclear Power Station

Lew Myers FENOC Chief Operating Officer

Davis-Besse Nuclear Power Station

June 3, 2003

OC

FirstEnergy Nuclear Operating Company

Desired Outcome

- Demonstrate Strong Actions Taken to Date to Address Management and Human Performance
- Demonstrate Plan for Site Alignment and Leadership Going Forward

9

June 3, 2003

Davis-Besse Nuclear Power Station

Actions to Date

- FENOC Corporate Organization Changes
- Davis-Besse Management Changes
- Independent Quality Assessment Organization
- Established and Communicated Standards
- Added/Enhanced Internal Oversight Groups
 - Engineering Assessment Board
 - Project Review Committee
 - Corrective Action Review Board
 - Management Review Board

Actions to Date (continued)

- Added/Enhanced External Oversight Groups
 - Restart Overview Panel, Company Nuclear Review Board
- Improved Corrective Action Program and Oversight
- Management Observation Program
- All-hands Case Study Training
- Leadership Team Training

Actions to Date (continued)

- Employee Concerns Program Improvements
- Increased Technical Rigor
 - Calculation Program
 - FENOC Problem Solving and Decision Making Nuclear Operating Procedure
 - Operability Evaluations

Actions to Date (continued)

- Initiated Several Employee Communication Mechanisms
 - 4-Cs, Town Hall & All-hands meetings
- Section Specific Improvement Initiatives
- Developed Performance Indicators for Monitoring
 Performance

FENOC Definition Safety Culture

"That assembly of characteristics and attitudes in organizations and individuals which establishes an overriding priority towards nuclear safety activities and that these issues receive the attention warranted by their significance."

FENOC Definition Safety Conscious Work Environment

"That part of a Safety Culture addressing employee willingness to raise issues and management's response to these issues."

15

Davis-Besse Nuclear Power Station

Site Integration Plan: May-December 2003

Timeline		Site Alignment and Leaders	hip Development Interventions	8				
May –	Response to Haber Report	Development Plans for Directors	3–Day SMT Intervention	One-on-One Coaching Starts with				
July		and Managers completed and	(Haber Report Review)	SMT Members and Managers				
·	Interviews with SMT members	approved						
	and Managers		3–Day Intervention w/Mgrs	Facilitative Leadership Training?				
		Exelon Benchmark						
	Transition / Restart Plan		360° Feedback (SMT and Mgrs)	SCWE Training				
		Management Observation Prog.						
	Work Management Safety-Focus	Improvement Rollout	Fill Open Supv. Positions	Cross-functional 1 day all-site				
	Process			training day				
		Focus on Safety as a Leadership	Form Design Team for Cross-					
		Team	functional 1-day all-site trg					
August –	1-2 Day Intervention with both	Assessment Process for	1 – Day SMT Follow Up	2 – Day All Site Large Scale				
September	SMT and Managers	internalizing capabilities to assess	Intervention	Meeting (Vision Map?)				
		supervisors						
	All-Leadership Session - Supvs.↑		1 – Day Managers Follow Up	Leadership Academy for SMT and				
	Bi-monthly	Form Cross-Functional Design	Intervention	Managers (Pilot?)				
		Team for 2-Day All-Site Large						
	FENOC internal Safety Culture	Scale Meeting	Reinstate MRM, Business Plan,	Long-term Safety Culture				
	Tool format to use post restart		Performance Indicators	Improvement Plan				
October -	1 – Day SMT Follow Up	SCWE – 6 month follow-up survey	All Leadership Session – Supvs. ↑	1–Day All Site Large Scale				
December	Intervention		Bi-monthly	Meeting				
		QA focused-assessment of safety						
	1–Day Managers Follow Up	Culture	Form Cross-Functional Design					
	Intervention		Team for 1-Day All-Site Large					
			Scale Meeting	16				
$\overline{X} \overline{X} \overline{X}$				16				
Davia P	2552			EENIOC				

Nuclear Power Station

June 3, 2003

Upcoming Safety Culture Actions

- Improve the Work Management Safety Oversight Process
- Facilitated Site Alignment Activities
 - Leadership development and coaching
 - Department/section activities
 - All-site meetings
- Site Safety Conscious Work Environment Training
 - Prior to Mode 2 during all-site training day

17

Upcoming Safety Culture Actions (continued)

- Focused Organizational Development Activities
 - Engineering
 - Maintenance
- Continued Employee Communications
 - Reinstate weekly manager's meeting
 - Initiate monthly department/section meetings
 - Continue monthly site meetings
 - Conduct weekly Senior Management Team strategy meetings

Safety Culture Monitoring

- Safety Conscious Work Environment Surveys
 3rd quarter 2003, then annually for 2 years
- Internal Quality Assurance Assessments
 - 4th quarter 2003, then annually for 2 years
- FENOC Internal Safety Culture Assessment
 - Prior to Mode 4 (Restart Readiness)
 - Prior to Mode 2 (Restart Readiness)
 - Prior to restart from subsequent outages
 - FENOC going-forward process

Other Activities

- Create a New Vision Map
- Align Station Business Plan Activities/Incorporate into Monthly Review Meeting
- "Future State" Stand-down

20

Davis-Besse Nuclear Power Station

Electrical Distribution and Safety Features Actuation System Relays

Jim Powers Director - Engineering

Davis-Besse Nuclear Power Station

June 3, 2003

Electrical Distribution

Emergency Diesel Generator (EDG) Issues/Resolution

- Completed
 - Operations accepted Operability Evaluation on May 15
 - EDGs operable for all Modes
- Plant Start-up
 - Revise EDG Steady State Loading Calculation
 - Revise EDG Transient Loading Calculation
 - Prepare and issue USAR change; in draft
 - Define acceptance criteria for EDG voltage and frequency response
- Post-restart
 - Evaluate actions to improve EDG voltage and frequency response during Safety Features Actuation System load sequencing

Davis-Besse Nuclear Power Station

Electrical Distribution

AC System Issues/Resolution

- First Mode 4
 - Prepare Electrical Transient Analysis Program (ETAP) calculation
 - Complete Evaluation Impacts of plant equipment
 - Complete independent industry team review of ETAP analysis
 - Evaluate conditions with unusual lineups to determine actions necessary going forward

Safety Features Actuation System Relays

- Originally Characterized as an Obsolescence Issue

 Supplier stopped manufacturing replacements
- Reviews Found the Predominant Reason for Replacement was Coil Related
 - Replacements were random with respect to age
- Testing of Installed Relays has been Conducted
 - Outliers were removed and will be replaced
 - Relay population will gain improved reliability
- Action Plan has been approved
 - Obtain replacement relays from another utility

Safety Features Actuation System Relays

- Technical Evaluation (TE) is in Progress
 - Industry experts are reviewing maintenance history
 - Average replacement rate has been at relatively the same level of 2% per year for about the last 20 years
 - Temperature related aging does not appear to be an issue; further tests are under way to confirm
 - Relay material condition is being assessed to further confirm suitability to function for another fuel cycle
 - Independent review of TE will be conducted
- Conclusion
 - Operability evaluation will contain technical evaluation and confirm operability
 - Confirm that relays are acceptable for operation through the next operating cycle

High Pressure Injection Pump Modification and Corrective Action Program Performance

Bob Schrauder Director -Support Services

Davis-Besse Nuclear Power Station

June 3, 2003

26

- Background
 - Identified an issue that fine debris could impact the existing internal pump clearances
- Selected Approach
 - Modify the existing pump to add internal strainer to prevent debris from entering hydrostatic bearing
 - This will allow the pumps to perform all design functions without replacement
- Project Milestones
 - Strainer design and testing
 - Pump performance validation
 - Field implementation

- Strainer Design and Testing
 - Strainer allows water to pass through and supply the hydrostatic bearing and seal
 - flushes strainer surface
 - Relocate ports that supply water to the hydrostatic bearing
 - supported by testing performed by pump manufacturer, Pump Guinard of France
 - reduce debris concentration at strainer
 - MPR Associates performing design work
 - mock-up testing at Wyle Labs to verify performance

Davis-Besse Nuclear Power Station

June 3, 2003

29

- Pump Performance Validation
 - Rotordynamics analysis performed to predict satisfactory pump operation
 - includes worn condition after debris service
 - In-plant testing is being performed to validate rotordynamics model
 - Post-modification testing will be performed prior to returning the pumps to service

- Field Implementation
 - Both pumps must be removed; each weighs 6,000 pounds
 - Removal of HPI pump 2 requires detailed planning due to its location in the Emergency Core Cooling Pump Room
 - A team involving six different craft disciplines will be used to remove the pumps and interference
 - Design and Plant Engineering are key groups involved with the removal plans

31

Davis-Besse Nuclear Power Station

A full scale pump mock-up was used to determine rigging needs and pathway

Davis-Besse Nuclear Power Station

June 3, 2003

Rigging needs determined through the use of a full scale HPI pump mock-up

33

Davis-Besse Nuclear Power Station

Summary

- Implementation of this Modification will Resolve the Debris Issue
- Current Schedule shows completion supports Pressure Test in mid-to-late July

34

Davis-Besse Nuclear Power Station

Corrective Action Program

Corrective Action Program Review Items

- Corrective Action Categorization
- Corrective Action Quality
- Corrective Action Timeliness
- Rollover Process

Corrective Action Program

Categorization

- New Process Effective March 1, 2003
 - Issued revision to NOP-LP-2001, 'Condition Report Process'
 - New Condition Reports issued since $\sim 2,500$
- Restart Goal is to Maintain a 12-Week Rolling Average Level of 90% or Better
- Management Review Board Upgrades
 - Category changed to a higher level ~5%

Corrective Action Program Categorization

CONDITION REPORT CATEGORY ACCURACY

Davis-Besse Nuclear Power Station

June 3, 2003

37

Corrective Action Program Corrective Action Review Board

• Apparent Cause - CARB Acceptable Rate ~ 62%

Davis-Besse Nuclear Power Station

June 3, 2003

38

Corrective Action Program Corrective Action Review Board

• Root Causes - CARB Acceptable Rate ~ 90%

Davis-Besse Nuclear Power Station

June 3, 2003

39

Corrective Action Program Timeliness

• Goal: < 5% overdue corrective actions

Davis-Besse Nuclear Power Station

June 3, 2003

2

40

Corrective Action Program Investigation Timeliness

• Goal: < 5% overdue corrective action investigation

Davis-Besse Nuclear Power Station

June 3, 2003

FirstEnergy Nuclear Operating Company

Corrective Action Program Supervisor Review Timeliness

CONDITION REPORT SUPERVISORY REVIEW

Goal > 90%

• Goal: 90 % or more supervisor reviews completed one day or less - 89% completed within one day or less

Davis-Besse Nuclear Power Station

June 3, 2003

42

Corrective Action Program SRO Review Timeliness

• Restart goal: > 95% of the SRO reviews to be completed within one day

- 86% of SRO completed within one day

Davis-Besse Nuclear Power Station

June 3, 2003

Corrective Action Program

Rollover Process

- Rollover Definition
 - The method of transferring the evaluation (complete or partial) of issues(s) addressed in one Condition Report (CR) to another, more encompassing CR
- Difficulties Identified
 - Paper trail is hard to follow at times
 - Exacerbated by the large number being processed
 - Generally concentrated in specific areas
 - Few isolated cases actually have not been effectively resolved
- Recommended Improvements
 - Perform independent assessment
 - Recently revised NOP-LP-2001, Condition Report Process, has rollover criteria
 - Strengthened rollover criteria in future Nuclear Operating Procedure revision based on lessons-learned

Steve Loehlein Manager - Quality Assessment

Davis-Besse Nuclear Power Station

June 3, 2003

C

45

Independent Review of Condition Reports

- Led by Nuclear Quality Assessment
- Team Members from other Departments and other FENOC Sites
- Scope Includes all 0350 Restart Condition Reports/Corrective Actions

Objectives

- Confirm that Initially Identified Condition has been Evaluated
- Track/Confirm that Issues Rolled to Another Condition Report were not lost
- Document any Resulting Concerns in the Corrective Action Process for Resolution

Status of Review (as of May 27)

- 1783 0350 Restart Condition Reports (CRs)
- 7700 Associated Corrective Actions (CAs)
- 510 Associated Rollovers

Reviews Completed to date (as of May 27)

- 5057 CAs reviewed (includes Rollover CAs)
 - 4379 CAs found to be acceptable (87% of those reviewed)
 - 678 CAs continue in review (13% of those reviewed)
- 510 Rollover CAs (100%)
 - 415 Rollover CAs found to be acceptable (81%)
 - 95 Rollover CAs continue in review (19%)

Identified Concerns

- Weaknesses in Documenting Resolution of the Identified Concern
- Evaluations that do not address Full Scope of Identified Issue
- Two Isolated Examples of incorrect Actions
- Concerns have been Identified with the involved Department and reported on Condition Reports

50

Davis-Besse Nuclear Power Station

Recent Key Activities

- Assessment of Activities for 50 psig and 250 psig Reactor Coolant System leakage Walkdowns
- Assessment of Emergency Preparedness
 Dry Run Exercise
- Observations of Technical Issues Resolution
- Quality Control Oversight of Vendor Activities

51

Davis-Besse Nuclear Power Station

Current Activities

- Focused Assessment of Corrective Action Program
- Continue Emergency Preparedness
 - Training drills, controller briefs, actual exercises
- Management Decision-Making, Safety Culture, Radiation Protection, and Regulation Driven Changes to the Security Program

Remaining Issues/Focus

Mike Ross Restart Director

Davis-Besse
Nuclear Power Station

June 3, 2003

53

Remaining Issues/Focus

Plant Support Center

- In Full Operation
- Issue List Developed
- Action Item Database
- Issues Needing Decision brought to Senior Management Team in Timely Fashion
- Developed Issue Resolutions with Fragnet Transferred to Outage Control
- Director, Nuclear Supply Chain on Site and Part of Plant Support Center Meeting to expedite Supply Requests
- Listing of Modifications

Remaining Issues/Focus

Focus

- Early Identification of Emergent Issues
- Review of Plant Issues to ensure Proper Prioritization and Resolution
- Issue Receiving Extra Focus
 - HPI Modification
 - Electrical Transient Analysis Program (ETAP)
 - Safety Features Actuation System Relays
 - Air-Operated Valve Program
 - Plant Block Walls Seismic & Tornado Loading
 - Thermal Overload Bypass of Safety Related Motors
- Recent additions to Modification List
 - Containment Spray Cyclone Separator
 - Boron Precipitation Modification

Davis-Besse Nuclear Power Station

June 3, 2003

Schedule Milestones

Mike Stevens Director - Maintenance

Davis-Besse Nuclear Power Station

June 3, 2003

OC

FirstEnergy Nuclear Operating Company

Upcoming Activities

Schedule Milestones

- Complete Electrical Transient Analysis Program for Mode 4
- Refill Main Condenser & Feedwater
- Perform Testing on HPI 1 & 2
- Refill Circulating Water and draw Condenser Vacuum
- Conduct Mode 4 Restart Readiness Review
- Enter Mode 4/Mode 3
- Complete Train 2 work, followed by Train 1 work
- Conduct Startup Readiness Review Meeting
- Startup

Clark Price Owner - Restart Action Plan

Davis-Besse Nuclear Power Station

June 3, 2003

ltem No.	0350 Checklist Item Description	Discovery				Implementation										
1	Adequacy of Root Cause															
а	Penetration cracking and Reactor Pressure Vessel corrosion		Tecl	nnica	Ro	ot Ca	use 02	2-0891								
b	Organizational, Programmatic and Human Performance Issues							100								
2	Adequacy of Safety Significant Structures, Systems and Components															
a	Reactor Pressure Vessel Head Replacement														97	
b	Containment Vessel Restoration following RPV Head Replacement						1								99	
c	Structures, Systems and Components Inside Containment							100							94	
c.1	Containment Emergency Sump							100							100	
d	EOC of Boric Acid in Systems Outside of Containment							100							97	

	Field Complete	In Progress	Id - Plant Conditions N/A -	Not Applicable
ſ				

59

Davis-Besse Nuclear Power Station

ltem No.	0350 Checklist Item Description	Discovery	Implementation
3	Adequacy of Safety Significant Programs		
a	Corrective Action Program	100	100
b	Operating Experience Program	100	100
c.1	Quality Audits	100	100
c.2	Self-Assessments of Programs		100
d	Boric Acid Corrosion Management Program	100	100
е	Reactor Coolant System Unidentified Leakage Monitoring Program		100
f	In-Service Inspection Program	100	100
g	Modification Program	100	100
h	Radiation Protection Program	100	97
i	Completeness & Accuracy of Required Records & Submittals to NRC		60

Field Complete	In Progress	Hold - Plant Conditions	N/A - Not Applicable

Davis-Besse Nuclear Power Station

June 3, 2003

ltem No.	0350 Checklist Item Description	Discovery				Implementation						
4 a-b	Adequacy of Organizational Effectiveness & Human Performance			1		1					90	
5	Readiness for Restart											
a	Review of Licensee's Restart Action Plan				1				1			
b	Systems Readiness for Restart						100				9	1
b.1	Design Calculation Resolution						100	Inc	luded v	/ith 5 b		
С	Operations Readiness for Restart							Re	start Re	adines	s Revie	ws
d	Test Program Development and Implementation										72	
6 a-f	Licensing Issue Resolution			1								100
7 a	Confirmatory Action Letter Resolution					1		CAL	Resolu	tion & F	Restart	Report

Field Complete	In Progress	Hold -	Plant C	Condit	ions	N/A	A - Not	Applic	able

61

June 3, 2003

FirstEnergy Nuclear Operating Company

33.

TOTAL RESTART CONDITION REPORT EVALUATIONS

62

Davis-Besse Nuclear Power Station

June 3, 2003

TOTAL RESTART CORRECTIVE ACTIONS

Davis-Besse Nuclear Power Station

June 3, 2003

63

Closing Comments

Lew Myers Chief Operating Officer - FENOC

Davis-Besse Nuclear Power Station

June 3, 2003

