
Department of Energy
Washington, DC 20585

MAY 27 1993

Mr. Joseph J. Holonich, Director
Repository Licensing & Quality Assurance

Project Directorate
Division of High-Level Waste Management
Office of Nuclear Material Safety

and Safeguards
U.S. Nuclear Regulatory Commission
Washington, D.C. 20555

Dear Mr. Holonich:

Enclosed are the Department of Energy's (DOE) responses to two
U.S. Nuclear Regulatory Commission's (NRC) comments and one
reference requested in NRC's letter dated January 28, 1993, Phase
I review of the subject study plan (enclosure 1). Enclosure 2
contains the response to these comments. Enclosure 3 is the
reference that was required.

The NRC: (1) identified an internal inconsistency in the study
plan with respect to technical procedures, and (2) inquired how
work will be coordinated between the subject study plan and Study
Plan 8.3.1.2.2.9 (Site Unsaturated-Zone Modeling and Synthesis).
Both inquiries are responded to in Enclosure 2.

If you have any questions, please contact Ms. Sheila Long at 202-
586-1447 or Mr. Chris Einberg of my office at 202-586-8869.

Sincerely,

Dwight .Selor
Associate Director for

Systems and Compliance
Office of Civilian Radioactive
Waste Management

Enclosures:
1. Ltr, 1/28/93, Holonich to Roberts,

w/encl
2. Response to NRC Comments
3. Reference
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cc w/enclosures:
C. Gertz, YMPO
T. J. Hickey, Nevada Legislative Committee
R. Loux, State of Nevada
D. Bechtel, Las Vegas, NV
Eureka County, NV
Lander County, Battle Mountain, NV
P. Niedzielski-Eichner, Nye County, NV
W. Offutt, Nye County, NV
C. Schank, Churchill County, NV
F. Mariani, White Pine County, NV
V. Poe, Mineral County, NV
J. Pitts, Lincoln County, NV
J. Hayes, Esmeralda County, NV
B. Mettam, Inyo County, CA
C. Abrams, NRC
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Mr. John P. Roberts, Acting Associate Director
for Systems and Compliance

Office of Civilian Radioactive Waste Management
U. S. Department of Energy
1000 Independence Avenue, SW
Washington, D.C. 20585

Dear M1r. Roberts:

SUBJECT: PHASE I REVIEW OF U.S. DEPARTMENT OF ENERGY
FLOW IN UNSATURATED FRACTURED ROCKM

(DOE) STUDY PLAN FLUID

On September 15, 1992, DOE transmitted the
Unsaturated Rock* (Study Plan 8.3.1.2.2.8)
Commission for review and comment. NRC ha!
this document using the Review Plan for NR(
Revision (December 6, 99O).

study plan, 'Fluid Flow in
to the U.S. Nuclear Regulatory

; completed its Phase I Review of
C Staff Review of DOE Study Plans,

I.

.'

o 1

Comment 1

The material submitted in the study plan was considered to be consistent, to
the extent possible at this time, with the NRC-DOE agreement on content of
study plans made at the May 7-8, 1986, meeting on Level of Detail for it
Characterization Plans and Study Plans. The study plan states (Section 7.1,
number 5) that the technical procedures are listed in Section 3 of the study
plan. The staff found no such list in Section 3. The staff did not consider
that the absence of such information compromised its ability to conduct its
Phase I Review of the material provided. However, the NRC staff requests that
a list of applicable technical procedures and their status be provided to NRC.

Among the references listed for this study plan the staff has identified one
that is not readily available in the public domain. We therefore request that
DOE provide the NRC with the reference listed in the Enclosure.

A major purpose of the Phase I Review is to identify concerns with studies,
tests, or analyses that, if started, could cause significant and irreparable
adverse effects on the site, the site characterization program, or the
eventual usability of the data for licensing. Such concerns would constitute
objections, as that term has been used in earlier NRC staff reviews of DOE's
documents related to site characterization (Consultation Draft Site
Characterization Plan and the Site Characterization Plan for the Yucca
Mountain site). No field tests will be conducted under this study; therefore,
it does not appear that the conduct of the activities described in this study
plan will have adverse impacts on repository performance and the Phase I
Review of this study plan identified no objections with any of the activities
proposed.

Reference
equest

Enclosure 1
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Mr. John P. Roberts 2

After completion of the Phase I Review, selected study plans are to receive a
second level of review, called a Detailed Technical Review, based on the
relationship of a given study plan to key site-specific issues or NRC open
items, or its reliance on unique, state-of-the-art test or analysis methods.
Based on these criteria, we have decided not to proceed with a Detailed
Technical Review of this study plan at this time. The NRC staff will
reevaluate this decision after it receives and reviews the closely related
Study Plan 8.3.1.2.2.9, "Site Unsaturated-Zone Modeling and Synthesis." The
subject study involves the development and validation of conceptual and
numerical flow models of the unsaturated zone over various scales. The SCP
describes study 8.3.1.2.2.9 as developing-models for site-scale analyses. It
also refers to code testing and code verification. Both studies refer to the
development of conceptual and numerical models. It is not clear how work will
be coordinated between these studies in the development of conceptual models,
code development, and verification, and the development, application, and
validation of numerical models.

Comment 2

If you have any questions concerning this letter, please contact Charlotte
Abrams (301) 504-3403 of my staff.

Sincerely,

11411�ewj

Joseph J. Holonich, Director
Repository Licensing and Quality Assurance

Project Directorate
Division of High-Level Waste Management
Office of Nuclear Material Safety

and Safeguards

Enclosure: As stated

cc: R. Loux, State of Nevada
T. J. Hickey, Nevada Legislative Committee
C. Gertz, DOE/NV
M. Murphy, Nye County, NV
M. Baughman, Lincoln County, NV
D. Bechtel, Clark County, NV
D. Weigel, GAO
P. Niedzielski-Eichner, Nye County, NV
B. Mettam, Inyo County, CA
V. Poe, Mineral County, NV
F. Sperry, White Pine County, NV
R. Williams, Lander County, NV
P. Goicoechea, Eureka County, NV
L. Vaughan II, Esmeralda County, NV
C. Shank, Churchill County, NV
E. Holstein, Nye County, NV
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NOT READILY REFERENCE FOR STUDY PLAN 8.3.1.2.2.8

Voss, R. F., 1985, Random fractals: Characterization and measurement,
Proceedings NATO A.S.I. Scaling Properties of Disordered Media, Geilo,
Norway, April 1985.
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DOE RESPONSES TO NRC PHASE 1 COMMENTS ON STUDY PLAN 8.3.1.2.2.8

NRC Comment No. 1

The study plan states (Section 7.1, number 5) that the technical procedures
are listed in Section 3 of the study plan. The staff found no such list in
Section 3. The staff did not consider that the absence of such information
compromised its ability to conduct its Phase I Review of the material
provided. However, the NRC staff requests that a list of applicable
technical procedures and their status be provided to NRC.

DOE Response

Study 8.3.1.2.2.8 is a modeling and interpretive study which relies on data
collected from other studies, most notably Study 8.3.1.2.2.4, but which
collects no data in itself. No technical procedures, as they have been
applied to study plans concerned with data gathering in the field or the
laboratory, will be used for modeling and interpretive activities, although
this was not clear at the time the SCP description for Study 8.3.1.2.2.8 was
written. The recent renegotiation of the DOE/NRC Study Plan level-of-detail
and review process agreement was undertaken primarily to construct a study
plan format for describing the conduct of modeling synthesis or interpretive
activities that is more appropriate for this type of work. Numerical modeling
work does have specific software quality assurance and recordkeeping
procedural requirements, but these procedures are not technical procedures.

DOE notes the error identified by NRC in the comment and will delete the cross
reference between Section 7.1 and Section 3.0 if a revision to the study plan
is warranted for other reasons. Such a minor administrative change alone does
not warrant initiating a revision.

NRC Comment No. 2

The subject study involves the development and validation of conceptual and
numerical flow models of the unsaturated zone over various scales. The SCP
describes study 8.3.1.2.2.9 as developing models for site-scale analyses. It
also refers to code testing and code verification. Both studies refer to the
development of conceptual and numerical models. It is not clear how work
will be coordinated between these studies in the development of conceptual
models, code development, and verification, and the development, application
and validation of numrical models.

DOE Response

The subject study plan (8.3.1.2.2.8) will develop and test the specific models
that permit estimation of the unsaturated hydrologic properties of fractured
porous materials. The evaluation of the accuracy and limitations of continuum
models as applied to unsaturated fractured rock to further elucidate modeling
alternatives for the hydrologic behavior of such media is also involved.
Although such fracture flow results are important, they are but a part of the
entire spectrum of features and processes involved in the overall site
analyses. The necessary overall site analysis models involving the whole
spectrum of features, events, and processes are described in Study Plan
8.3.1.2.2.9 (Site Unsaturated-Zone Modeling and Synthesis). This study plan
is now in the final approval stage within DOE. Study Plan 8.3.1.2.2.9 is the
overall modeling study that will use results from the fracture flow study
(8.3.1.4.2.2, Characterization of the Structural Features within the Site
Area) and from several other studies to model the entire unsaturated zone.
Specifically, Study Plan 8.3.1.2.2.9 will provide the necessary analyses
through combined hypothesis testing and sensitivity analysis to enhance
confidence in modeling results through ongoing testing, identify alternative
conceptual models, and guide code selection and verification.

ENWOSURr L



Reference for Study Plan 8.3.1.2.2.8

Enclosure 3
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RANDOM FRACTALS: characterization and measurement

Richard F. Voss
IBM Thomas I. Watson Research Center
Yorktown Heights. NY 10598

and
Harvard University, Division of Applied Science
Cambridge, MA 01238

ABSTRACT

%landeibrocts fractal geometry provides both a description and a mathematical model
for many of the seemingly complex shapes found in nature. Such shapes often possess
a remarkable invariance under changes of magnification. This statistical self-similart
may be characterized by a fractal dimension D, a number that agrees with our intuitive
notion of dimension but need not be an integer. A brief mathematical characterization
of random fractals is presented with emphasis on variations of Mandelbrot's factional
Brownian motion. The important concepts of fractal dimension and exact and statis-
fical self-similarity and self-affinity will be reviewed. The various methods and diffi-
culties ot estimatine the fractal dimension and lacunarity from experimental mages or
point sets are summarized.

random fractals: an introduction

%landelbrot's fractal geometry [11 has revolutionized the application of geometrical
constructs to the natural sciences. Fractals provide the proper mathematical framework
for a treatment of the irregular, seemingly-complex shapes round in nature from the
small scale structure of disordered systems and percolation clusters to coastlines,
mountain ranges. clouds. and the distribution of stars in the night sky. Some of the
building blocks of fractal geometry oriminated in the exactly self-similar mathematical
monsters (such as the Koch curve and Seirpinski gasket) of the early 1900's. Al-

though such exact deterministic constructs serve as useful tools in building under-
standine and intuition about scaling properties. the fractal shapes found in nature
possess a tatistical rather than exact self-similarity. The following sections present an
expository summary of the major mathematical definitions and relations used in the
characterization and measurement of random or statistical fractals as condensed from
Mandeibrotl I1. A detailed discussion of the algorithmic considerations in generating
or simuiating such random fractals is found in [2].

"EANCLOSURE- X



fractional Brownian motion

One ot the most useful mathematical models for the random fractals found in nature
(such as mountainous terrain and clouds) has been the fractional Brownian motion
(fBm) of Mandelbrot and Walfis[1,3]. It is an extension of the central concept of
Brownian motion that has played an important role in both physics and mathematics.
Sample traces of Bm are shown in Fig. 1. Almost all computer graphics fractal
simulationsl21 are based on an extension of fBm to higher dimensions such as the
fractional Brownian landscape of Fig. 2. Fractional Brownian motion is also a good
starting point for understanding anomalous diffusion and random walks on fractals.

A fractionai Brownian motion, VH(t), is a single valued function of one variable, t
(usually time). Its increments VH(t2)-VH(tI) have a Gaussian distribution with vari-
ance

< I V(t 2) - VH(t) 12> . I t 2 t 12H (1)

where the brackets < and > denote averages over many samples of VH(t) and the pa-
rameter H has a value O<H<1. Such a function is both stationary and isotropic. Its
mean square increments depend only on the time difference t2-t and all t's are statis-
tically equivalent. The special value H=1/2 gives the familiar Brownian motion with
AV

2
it.

As with the usual Brownian motion, although VH(t) is continuous, it is nowhere
differentiable. Nevertheless, many constructs have been developed (and are relevant
to the problem of light scattering from fractals) to give meaning to "derivative of frac-
tional Brownian motion" as fractional Gaussian noises 1,31. Such constructs are usually
based on averages of VH(t) over decreasing scales. The derivative of normal Brownian
motion. H = 1, 2. corresponds to uncorrelated Gaussian white noise, and Brownian mo-
tion is said to have independent increments. Formally, for any three times such that
t1 <t< t. v pt-Vq(t,) is statistically independent of VH(t2)-VH(t) for Hs1/2. For
H> 1; 2 there is a positive correlation both for the increments of VH(t) and its deriva-
tive fractional Gaussian noise. For H<I/2 the increments are negatively correlated.
Such correlations extend to arbitrarily long time scales and have a large effect on the
visual appearance of the fBm traces as shown in Fig. 1.

VHt) shows a statistical scaling behavior. If the time scale t is changed by the factor
r, then the increments AVH change by a factor rH. Formally,

<AVH(rt) > r <AVH(t) >. (2)

Unlike statistically self-similar curves (such as the coastlines in Fig. 2), a VH(t) trace
requires airferent scaling factors in the two coordinates (r for t but r for VH) reflecting
the special status ol the t coordinate. Each t can correspond to only one value of VH
but any specific Vt1 may occur at multiple Vs. Such non-uniform scaling is known as
selffatinit rather than self-similarity.

2
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Figure I. Sample traces of statistically self-iffine fractional Brownian motion. (a) Ince--
ments are negatively correlated. (b) Normal Brownan motion with uncorrelated-incre-
ments. (c) Increments are positively correlated.
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FiI ure 2. Cobmputer realization of a statistically sf-affine fractional Brownian landscape
iit h 11=0.8 D=2.2 at various magnifications. The altitude variations along any straight

line pth crie a fBm trace such as Fig. I(c). Successive frames show magnified view of the
black oulinc from the previous frame and demonstrate that the landscape's coastline is
tatisticdh slf-similar.
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self-similar s seLf-affine fractals.

The distinction between sinilarity and affinity is important. By way of summary, a
self-similar object is composed of N copies of itself (with possible translations and ro-
tations) each of which is scaled down by the ratio r in all E coordinates from the whole.
More formallv, consider a set S of points at positions x 3 (XI, ... , XE) in Euclidean
space of dimension E. Under a simiarity transform with real scaling ratio O<r<1, the
set S becomes rS with points at rx - (rxl, ... , rE). A bounded set S is self-similar
when S is the union of N distinct (non-overlapping) subsets each of which is congruent
to rS. Congruent means identical under translations and rotations. The fractal or sim-
ilarity dimension of S is then given by

=NrD or D = logN (3)
log 1/r (3

This relation leads to several important methods of estimating D for a given set S.

For topologically one-dimensional fractal "curves", the apparent "length", varies with
the measuring ruler size. If the entire self-similar curve is of maximum size Lmaxthen,
on a smaller scale L - rLax, the curve consists of N - I/rD segments of length L
Thus, for D I

LENGTH - L x N L x (L,,,/L)Dc l/LD-l. (4)

The fractal dimension D also characterizes the covering of the set S by E-dimensional
"boxes" of linear size L. If the entire S is contained within one box of size Law, then
each of the N = I IrD subsets will fall within one box of size L rLma. Thus, the
number of boxes of size L, Nbox(L), needed to cover S is given by

Nbo(L) - (Lm/L)D or N, 2(L) el/LD. (5)

This definition of box dimension is one of the most useful methods for estimating the
fractal dimension of a given set. The box dimension can be conveniently estimated by
dividing the E-dirnensional Euclidean space containing the set into a grid of boxes of
size LE and counting the number of such boxes Nbox(L) that are non-empty. It is
useful to examine as large a range of L as possible and to average over various origins
for the boxes.

One can also estimate the "volume" or "mass" of the set S by a covering with boxes
of linear size L. If one considers only distances of order L about a given point in S. one
finds a sinele box of size L with E-dimensional volume LE. If the distance scale about
the same point is increased to LmasL/r, one now finds a total of
N= I r =(L,,, LD boxes of mass LE covering the set. Thus, the mass within a dis-
tance Lx u some point in S. M(Lmx) = NxM(L) M(L)x(Lmax/L)D or

DM(L) L. (6)

The fractal dimension D, thus, also corresponds to the commonly used mass dimension
in physics. %lass dimension also has a strong connection with intuitive notions of di-
mension. he amount of material within a distance L of a point in a one-dimensional

4
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object increases as L. For an E-dimensional object it varies as LE. The ma dimen-
sion is another extremely useful method for estimating the fractal dimension of a given
object.

The set S is also self-similar if each of the N subsets is scaled down from the whole by
a different similarity ratio r. In this case, D is given implicitly by

N
1 ' 7, T. . (7)'

nl

which reduces to the familiar result in Eq. (3) when all of the r. re equal.

The set S is srauisticall self-similar if it is composed of N distinct subsets each of which
is scaled down by the ratio r from the original and is identical in all statistical respects
to rS. The similarity dimension is again given by Eq. (3). In practice, it is impossible
to verify that all moments of the distributions are identical, and claims of statistical
self-similarity are usually based on only a few moments. Moreover, a sample of a ran-
dom set (such as a coastline) is often statistically self-similar for all scaling ratios r. Its
fractal dimension is usually estimated from the dependence of box coverings Nbox(L)
or mass M(L) on varying L as in Eqs. (5) and (6).

Under an affine transform, on the other hand, each of the E coordinates of x may be
scaled by a different ratio (rl, ... , rE). Thus, the set S is transformed to r(S) withpoints
at r(x ) - (rIx 1, ... , rExE). A bounded set S is seif-affine when S is the union of N
distinct (non-overlapping) subsets each of which is congruent to r(S). Similarly, S is
statistically self-affine when S is the union of N distinct subsets each of which is
congruent in distribution to r(S). The fractal dimension D, however, is not as easily
defined as with self-similarity.

the relation of D to H for self-affine fractional Brownian motion

The assignment of a fractal dimension D to a self-affine set can be illustrated with a
trace of fractional Brownian motion VH(t) from above. Consider, for convenience, a
trace of VH(t) covering a time span AtmI and a vertical range AVH=1. VH(t) is sta-
tistically self-affine when t is scaled by r and VH is scaled by r H. Suppose the time span
is divided into N equal intervals each with At= I/N. Each of these intervals will contain
one portion of VH(W) with vertical range AVH = AtH - I/NH. Since O<H<l each of
these new sections will have a large vertical to horizontal size ratio and the occupied
portion of each interval will be covered by I&VH/At - (I/NH)/(1/N) _ N/NH square
boxes of linear scale L= 1/N. In terms of box dimension, as t is scaled down by a ratio
r= I /N the number of square boxes covering the trace goes from I to N(L) - number
of intervals x boxes per interval or

'. (4)

by E-dimensional
of size Lax, then
rLmx. Thus, the

(5)
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D 2-H for a trace of VH(t).

Consequently. the trace of normal Brownian motion has D - 1.5.

(9)
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It is important to note that the association of a similarity dimension D with a self-affinc
fractal such as tBm is implicitly fixing a scaling between the (otherwise independent)
coordinates. rc result depends strongly on whether one is looking at scales large or
small compared to this (artificially introduced) characteristic length. IThe difference is
particularly clear when one attempts to estimate D for a trace of fBm from Eq. (4).
As above. one can divide the t axis into N segments of size At = 1/N. For each of these
segments the typical V variation will be AV _ AtH. The length along each segment is
typically = (At2 + AV2)1J2 and the total

LENGTH = N x a (1 + AV 2/At2) 1 2 c (I + l/At2 2 H)I/a (12)

On small scales with At C< 1. the second term dominates and LENGTH 1/AtI-H
so D 2 2-H by comparison with Eq. (4) and in agreement with Eq. (9). On the other
hand, on large scales with t >> 1, LENGTH is independent of At and D 1.

The zeroset of fBm is the the intersection of the trace of VH(t) with the t axis, the set
of all points such that VH(t) - 0. The zeroset is a disconnected set of points with
topological dimension zero and a fractal dimension Do D-1 I-H that is less than
I but greater than 0. Although the trace of VH(t) is self-affine, its zeroset is self-
similar.

trails of fBm

Consider a particle undergoing a fractional Brownian motion or random walk in E di-
mensions where each of the coordinates is tracing out an independent fBm in time.
Over an interval At each coordinate will vary by typically AL - AtH. If overlap can be
neglected. the mass" of the trail M At c LI/H. In comparison with Eq. (6), the trail
of fm has a fractal dimension

D e 1/H (13)

provided I/F < E. Normal Brownian motion with H=0.S has D=2. I/H is known
as the latent fractal dimension[4,51 of a rail of fBm. When /H > E overlap cannot
be neglected and the actual D _ E. When /H - E the trail is critical and most quan-
tities will have important logarithmic corrections to the usual fractal power laws. Note
that although the trail of a Bm in E dimensions is self-similar, each of the E coordi-
nates has a %elf-affine trace vs time.

self-affinitv in higher dimensions: Mandelbrot landscapes and clouds

The traces of fm. particularly Fig. 1(c) with H=0.8, bear a striking resemblance to a
mountainous horizon. The modelling of the irregular Earth's surface as a generalization
of traces of fm is first proposed by Mandelbrot. The single variable t can be re-
placed by coordinates x and y in the plane to give VH(x,y) as the surface altitude at
position x.y as shown in Fie. 2. In this case, the altitude variations of a hiker following
anv straight line path at constant speed in the xy plane is a fractional Brownian motion.
In analogy with Eq. ( 1).

< I YZ(x Z) y') - VH(XI, YI I > c[(X 2 -X) 2 + (Y2 - yl)2]H (10)

6
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The intersection of a vertical plane with the surface VH(iY) is a self-affine ffr tracr_
with D=2-H, smaller by one than the value of Eq. (11). Similarly, the Zeoset of
VH(XY). its intersection with a horizontal plane, also has a fractal:di&nson-
Do= 2-H. This intersection, which produces a family of (possibly disconnected) tnzves;
forms the coastlines of the VH(x,y) landscape. Since the two coordinates x and-y arer
however, equivalent, the coastlines of VH(xy) are self-similar, not self-iffne=Figure-
2 demonstrates how the coastline remains statistically invariant under changesof ma-.
nification.

This generalization of fBm can continue to still higher dimensions to produ- for ex-
ample. a self-affine fractal temperature or density distribution V(xyz). Hrthm
variations of an observer moving at constant speed along any straight line pathn Space=
generate a fBm and the fractal dimension

D = 4- H for a fractal cloud VH(YYz). (12)_

The zeroset VH(x,y,Z) = constant now gives a self-similar fractal with Do-3-RL

To summarize. a statistically self-affine fractional Brownian function, VH of x - (x1,
.... XE) in E Euclidean dimensions satisfies

2 _ j I 2H.
I VH(X2 - VH(X I > I 2 (13)

and has a fractal dimension

D-E+ 1-H. (14)

The zerosets of VH(x) form a statistically self-similar fractal with dimension Do -
E-H.

perimeter vs area scaling

The fractal dimension of the coastlines of VH(XY) can also be estimated from the per-
imeter area scaling of the islands. Eq. (4) gives the LENGTH or perimeter of a fractal
object of size Lm. when "measured" with a ruler of size L Consider a population of
such islands with the same coastline D and all measured with the same ruler L For a
given island. perimeter P Q. from Eq. (4). Provided the coastline D < 2, each is-
land will have a well-defined area A ¢ Ibe and

P s AD/2 (15)

A studv of P vs A scaling is a useful method of estimating a coastline D for a population
of fractal objects.

spectral densities for fm and the spectral exponent A

Random functions in time V(t) are often characterized[6,7] by their specatr densities
Sv(f). If V(t) is the input to a narrow bandpass filter at frequency f and bandwidth

7
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-if. then Sv(f) is the mean square output V(f) divided by Af, Sv(f) = IV(f)I 2/Af.
Sv(f) gives information about the time correlations of V(t). When Sv(f) increases
steepiv at low f. V(t) varies more slowly. If one defines V(fT) as the Fourier transform
o a speclic sample of V(t) for O<t<T,

V(fT) = TI V(t)e dt, then Sv(f)a:T I V(fT) 2 as T - . (16)

An alternate characterization of the time correlations of V(t) is given by the 2 point
autocorrelation function

2GV(r) - <V(t)V(t + r)> - <V(t)>.

Gv(T) provides a measure of how the fluctuations at two times separated by r are re-
lated. Gv(r) and S(f) are not independent. In many cases they are related by the
Wiener-Khintchine relation(6,7]

GV(r) fsv(f) cos(2vfr) df. (17)
fo 

For a Gaussian white noise SV(f) constant and GV(r) c AV 28(r) is completely un-
correlated. For certain simple power laws for Sv(f), Gv(r) can be calculated exactly.
Thus. for

SV(f) 1/Il with 0<P<1, Gv(T) *'. (18)

Moreover. Gv(T) is directly related to the mean square increments of fBm,

< I V(t + r) V(t) 12> - 2[<V> - Gv('r)]. (19)

Roughly speaking. Sv(f) /fU corresponds to GV(v) ri-P and a fBm with
2H=8- I from qs. (1) and (19). Thus, the statistically self-affine fractional Brownian
function. \ '((x . with x in an E-dimensional Euclidean space, has a fractal dimension
D and spectral density S(f) I/P, for the fluctuations along a straight line path in
any direction in E-space with

D - E+ -H E+ - (20)
2

This result arees with other "extensions" of the concepts of spectral density and
Wiener- Khinrchtne relation to non-stationary noises where some moments may be un-
defined. Moreover. it provides an extremely useful connection between D, H and for
finite smulations. For H in the range <H<1, E<D<E+1, and <13<3. The value
H X 8 is a ood choice for many natural phenomena.

Although the formal definition of fBm restricts H to the range <H<I, it is often
useful o consider integration and an appropriate definition of "derivative" as extend-
ing the rance ot H. Thus, integration of a fBm produces a new fBm with H increased
by I, while "differentiation" reduces H by 1. When H- . the derivative of fBm looks
like a Bm with H .. In terms of spectral density, if V(t) has S(f) /fP then its

8



(O) _ I V(f) 2/af
!en Sv(f) increases
: Fourier transform

s T--c. (16)

iven by the 2 point

derivative dV/dt has spectral density f2/fA = 1/p-2. In terms of Eq. (20), differen-
tiation decreases by 2 and decreases H by 1.

measuring fractal dimensions: Mandelbrot measures

Numerical simulation or experimental image analysis often produces a geometrical ob-
ject defined by a set S of points at positions x - (xI, .. , xE) in an Edimesional
Euclidean space. Lacking other information, all of the points may be assamedlto be
equivalent and all points are equally probable origins for analysis. Thespatia-ar--
rangement of the points determines P(mL). P(mL) Is the probability that hee-ware m
points within an E-cube (or sphere) of size L centered about an arbitrary point In S.
P(m.L) is normalized

arated by r are re-
are related by the

(17)

) is completely un-
calculated exactly.

(18)

f MEm.

(19)

and a fBm with
ractional Brownian
a fractal dimension
traight line path in

NX P(m,L) = I for all L
m-l

(21)

P(mL) is directly related to other probability measures as used by Mandelbro41,8,
Hentschel and Procaccia[9], and others. This particular definition of P(mL) is, how-
ever, particularly efficient to implement on a computer.

The usual quantities of interest are derived from the moments of P(mL). ITe mass di-
mension,

N
M(L) = m P(mL).

n-l
(22)

The number of boxes of size L needed to cover S.

N

Nbo,(L) = Z P(m,L).
m-l

(23)

The configurational entropy when space is divided into cubes of size L

N
S(L) = , log m P(mL).

m-l

For a fractal set M(L) L Nbox(L) = /L , and e(L) e L .

In fact. one can define all moments

(24)

(20)

7ectral density and
ments may be un-
een D. H and ) for
<<3. The value

<H<I. it is often
,vative" as extend-
i with H increased
ative of fBm looks
(f) c 1/f then its

II

I

I

i
i

N

Mq (L) = In qP(mL),
m-l

(25)

for q*o (the q=0 case is given by Eq.(24) above) and one can then estimate D from
the logarithmic derivatives

log Mq(L)D = 1 < a log L > for q . (26)

and

9



D - < aS(L) > forq=0. (27)

A double loganthmic plot of Mq(L) vs L is an essential tool in verifying whether a
fractal interpretation is valid for S. One expects a fractal to have power-law behavior
of M(-) over a wide range of L.

For a uniform fractal (fractal set) as the number of points examined, N _ a the dis-
: *: tribution is expected to take the scaling form P(mL)-o. f(m/LD) and all moments give

the same D. For a non-uniform fractal (a fractal measure such as a Poincare map) the
moments satisfy the relation[9J that Dq, < Dq2 for q1 < q2.

Iacunaritv

It is obvious from the above discussion that the fractal dimension D characterizes only
.. **part of the information in the distribution P(mL). Different fractal sets may share the

same D but have different appearances or textures corresponding to different P(m,L).
As an initial step toward quantifying texture, Mandelbrot 1, chapter 34) has intro-
duced the parameter lacunariry, A (lacuna is Latin for gap). Although the qualitative
visual effect of changing lacunarity at fixed D is quite striking [1], to date there have
been no quantitative measurements of the lacunarity of various random fractals and
Mandelbrot I II offers several alternative definitions. The most useful derives from the
width of the distribution P(m,L) at fixed L. Given Mq(L) as defined by Eq. (25),

<M2 (L)> -<M(L)>2
A (L) 2 (28)

<M(L)(

When P(m.L) takes the scaling form f(m/LD), A is just the relative mean square width
of the distnbution f. A = <f2>/<f>2
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UNITED STATES
NUCLEAR REGULATORY COM MISSION

WASHINGTON, D.C. 2055540D1

APR 2 7 1993

MEMORANDUM FOR: Joseph J. Holonich, Director
Repository Licensing and Quality Assurance

Project Directorate
Division of High-Level Waste Management

FROM: Charlotte Abrams, Senior Project Manager
RepositoryLicensing and Quality Assurance

Project Directorate
Division of High-Level Waste Management

SUBJECT:

DATE:

TIME:

FORTHCOMING NUCLEAR REGULATORY COMMISSION/U.S. DEPARTMENT OF
ENERGY (DOE) YUCCA MOUNTAIN SITE VISIT *

May 25-26, 1993

May 25 - 8:30 a.m. - 5:30 p.m.
May 26 - 7:00 a.m. - 5:30 p.m.

LOCATION:** Yucca Mountain Project Office Field Operations
Yucca Mountain area

Center and

PURPOSE: To hold discussions on DOE progress on Quaternary fault
studies, exploratory studies facility mapping, and the
seismic initiative. Discussions will take place at the site
of data gathering activities and will include preliminary
results. Participants will be allotted time to view fault
trenches and trench logs.***

PARTICIPANTS:

NRC State of Nevada

C.Abrams
J.Trapp
K.McConnell

T.Bjerstedt
S.Jones
S.Leroy

C.Johnson
J.Bell
T.Hickey, NV Legislative
Committee

4_1_� >. 01 rcl-7- 5P,



Joseph J. Holonich 2

Affected Local Governments

L.Bradshaw, Nye County, NV M.Baughman, Lncoln County, NV
D. Bechtel, Clark County, NV F.Sperry, White Pine County, NV
V.Poe, Mineral County, NV P.Niedzielski-Eichner, Nye County, NV
C.Schank, Churchill County, NV L.Fiorenzia, Eureka County, NV
R.Williams, Lander County, NV L.Vaughan II, Esmeralda County, NV
B.Mettam, Inyo County, CA E.Holstein, Nye County, NV
M.Murphy, Nye County, NV

Charlotte E. Abrams, Senior Project
Manager

Repository Licensing and Quality
Assurance Directorate

Division of High-Level Waste Management

cc: S.Goldberg, OMB
D.Weigel, GAO
P.Meyer, NAS
W.Barnard, NWTRB
A. Kadak, ACORN

Enclosures: Site Visit itinerary
Site access form

* Interactions between NRC and DOE are open to members of the public,
Petitioners, intervenors, or other interested parties wishing to attend
as observers pursuant to the spirit of "Open Meeting Statement of NRC
Staff Policy," 43 Federal Register 28058, dated June 28, 1978, which
details the open meeting policy for applicants and licensees.

** Permission to gain access to the facilities at Yucca Mountain must be
obtained from DOE, Yucca Mountain Project Office (YMP). Those persons
wishing to attend should contact Thomas Bjerstedt (DOE/YMP) at (702)
794-7590 or Steve Leroy (702) 794-7836 at least 14 days rior to the
site visit and mail or fax the information requested on the enclosed
form (Enclosure 2) to Ms. Carlene Hill, SAIC, 101 Convention Center Dr.,
Las Vegas, NV 89193, Fax (702) 794-5348, Verify (702) 794-7375. 0

*** Only those persons wearing safety glasses, hard hats, and steel-toed
boots will be allowed to enter pits, trenches, and construction areas.
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ENCLOSURE I

ITINERARY
YUCCA MOUNTAIN SITE VISIT

MAY 25 -26, 1993
FOR NRC STAFF

Tuesday, May 25, 1993

8:30 a.m. Meet at Nevada Test Site (TS) Gate 510

8:30 - 9:00 Badging (Participants need a photo ID)

9:00 - 9:30 Travel to DOE Field Operations Center (FOC)

9:30 - 9:45 Break

9:45 - 10:00 Greeting and opening remarks - DOE, NRC, State of Nevada,
and Affected Counties

10:00 - 10:30 Required safety training

10:30 - 12:00 DOE explanation of progress on Quaternary fault studies,
seismic initiative, and ESF mapping

12:00 - 12:30 Lunch #

12:30 - 1:00 Travel from FOC to NTS Gate 25-4P

1:00 - 1:30 Travel to Busted Butte exposures

1:30 - 2:45 Discussion of additional mapping and preliminary
observations of Paintbrush Canyon fault exposures

2:45 - 3:15 Travel to ESF North Portal construction site

3:15 - 5:00 Discussion of ESF mapping
- Activities to-date
- Presentation of stratigraphy, structures and mapping logs

5:00 - 5:30 Travel to NTS Gate 510

5:30 p.m. Depart for lodging in Beatty, NV

Participants will be expected to provide their own lunches and
beverages. Water will be available.
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ITINERARY
YUCCA MOUNTAIN SITE VISIT

MAY 25-26, 1993
FOR NRC STAFF

Wednesday, May 26, 1993

7:00 a.m. Meet at Steve's Pass in Crater Flat

7:00 - 8:00 Travel to Trench 8 (Solitario Canyon fault)

8:00 - 9:00 Discussion at Trench 8
Discussions at each trench to include:
- stratigraphy
- structure

9:00 - 9:10 Travel to Crater Flats (CF) Trench 1

9:10 - 9:50 Discussion at CF 1

9:50 - 10:20 Travel to Solitario Canyon fault Trench (SCFT) 1

10:20 - 11:00 Discussions at SCFT 1

11:00 - 12:00 Travel to Stagecoach Road Trench (SCRT) 3

12:00 - 1:30 Discussions at SCRT 3 and LUNCH #

1:30 - 1:45 Travel to SCRT 1 and 2

1:45 - 2:45 Discussions at SCRT I and 2

2:45 - 4:30 Travel to Bare Mountain Trench (BMT) 2

4:30 - 5:15 Discussion at BMT 2

5:15 p.m. Travel to Las Vegas via Steve's Pass

Participants will be expected to provide their own lunches and
beverages. Water will be availabli.
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, a
-BADGING INFORMAON REQUIRED FOR ACCESTO THE NEVADA TEST

; SITE FOR U.S. CMZENS ONLY

NAME OF GROUP -DATE OF VISIT

LAST NAME FIRST NAME MIDDLE NmAL (Ml)

(IF NO Ml WRITE NMI)

SOCIAL SECURITY NO.

DATE OF BIRTH- PLACE OF BIRTH.

NATURALIZATION CERTIFICATE NUMBER

JOB TITLE

COMPANY NAME

COMPANY ADDRESS__

PHONE #_

HOME ADDRESS

PHONE #

CITIENSHIP

NOTE: ORIGINAL NATURALZAT1ON CERTIFICATE IS REQUIRED AT TM OF BADGING

rELosum 2-


