
SOFTWARE

QUALITY ASSURANCE

PLAN

LLNL YUCCA MOUNTAIN PROJECT

Revision 0
14 December 1989

t '-.,'()t 4'.: t l4--2 '2i)o - 5 -
PEIR WAS-TE
W-AI1 Pr VW

Revision 0
Page ii of ix

:1 4 . . - ., , --̂. - :.

:P -"'''-, -'

Revision 0

Page iii of ix

LLNL YUCCA MOUNTAIN PROJECT

Software

Quality Assurance
Plan

14 December 1989

Author:

Approved:

Approved:

Approved:

Approved:

Naryye Cummins

R er Aines Technical Area Leader

David Short Quality Assurance Manager

Leslie Jar e O-LLNL Technical Project Officer

YMIO Quality ssurance

date

124r 4

date

izI/4 / 9
date

,

date

datD
date

I (I

Revision 0
Page iv of ix

.- (-.:.e.9)�,, >, . - air. ,..;,. ;,,
; :. ,,. ,. A- : ! :-,:.-s,, so

,:. , ' :- *j.:. �, . _ ' I'' ' � . _ .'. -', J -' �

< i \ a; _ ,, ;. f t, _. .,j,, ,_,.
f _ _ u (:- -,7 1 .,

'v. - ' ' .' . ' t ,'t
. . .

. . I.1 i

Revision 0

Page v of ix

SOFTWARE : :: :TABLE OF -CONTENTS-

SOFTWARE QUALITY'ASSURANCE PLAN .. i

LLNL YUCCA MOUNTAIN PROJECT Software Quality Assurance Plan iii

TABLE OF CONTENTS V

LIST OF EFFECTIVE PAGES I viii

LIST OF INCORPORATED CHANGE REQUESTS ix

1.0 PURPOSE 1...............

2.0 APPLICABILITY ... 2

3.0 RESPONSIBILITIES .. . 3

3.1 Technical Area Leader (TAL) 3

3.2 Task Leader (TL) .. 3

3.3 Principal Investigator (PI) 3

3.4 Software Quality Manager (SQM) and Software Quality Technician (SQT). . 4

4.0 CONFIGURATION MANAGEMENT (CM) SYSTEM.... 5

4.1 Configuration Identification.. 6
4.1.1 Configuration Item Identifier (CII). 7

4.1.2 Release Identifier ... 7

4.1.3 Identifier Examples 7

4.2 Configuration Change Control 10

4.2.1 Registered User Distribution Log 10

4.2.2 Error Report/Change Request Tracking (ER!CRT) System Procedure(s) 11

4.3 Configuration Status Accounting and Reportng 12

4.3.1 Master Log 13

5.0 SOFTWARE RECORDS MANAGEMENT S STE N1 (SRMS) 14

5.1 Documentation Storage 14

5.2 Media Control and Storage 15

5.2.1 Physical Media 15

5.2.2 Software Librarian 1.................................... 15

6.0 REQUIREMENTS 16

6.1 Software Category and Individual Software I'.in 18

6.1.1 Software Category 18

6.1.2 Individual Software Plan (ISP) 31

6.2 Software Development (Reference) Life Cycle .. 32

6.2.1 When to Use Life Cycle .. 32

Revision 0
Page vi of ix

; " " I . r �� ��

i � : _q - I I

! � I . ; �. . I
Z: .1

T ABLE OF CONTENTS (Continued)
6.2.2 Individual Software Plan (ISP)

6.2.3 Life Cycle Phases

6.2.4 Reviews ;

6.3 Acquired, Existing, and Commercial Software .

6.3.1 Purchasing

6.3.2 Existing Software

6.3.3 Configuration Management (CM)

.

.

.

.

.

.

.

6.3.4 Test, Debug, and Verification

6.3.5 Software Conversion

6.4 Scientific Software Notebook (Notebook)

6.5 Software Documentation

6.5.1 NUREG-0856 Documentation

6.5.2 Life Cycle Documentation

6.5.3 Categories

6.6 Certification of Software for Analyses

6.6.1 Criteria for Use in Analysis

6.6.2 Application (User) Requirements

6.7 Application Verification

6.8 Validation ..

6.9 Software Product Completion

6.9.1 Product Release

6.9.2 Completion Memo and Software Product Summary.

6.9.3 Distribution and Transfer

6.9.4 Records ...

6.9.5 Post-Release Maintenance

......................

. .

33

34

.43

44

44

45

46

47

48

49

50

50

51

5 1

54

55

56

57

59

61

61

61

61

61

62

.

.

...............

...............

Revision 0

Page vii of ix

TABLE OF COrrErTS (Continued)

APPENDIXES

Appendix A Definitions A-1

Appendix B Requirements for Software Documentation .. B-I

B.1 Software Requirements Specification (SRS) B -3
B.2 Design Documentation B-s

B.3 Software Test and Verification Plan (STVP) B-7

B.4 Software Test, Debug, and Verification Report (STDVR) B-8

B.5 Theoretical Manual - Mathematical Models and Numerical Methods B-9

B.6 User's Manual . .. f3-12

B.7 Source-Code Listings .S... -5

B.8 Code Assessment and Support Documentation B-15

B.9 Continuing Documentation I B-16

Appendix C Software CategorySelection C-1

Appendix D Documentation Checklist D-1

Appendix E LLNL YMP Software Summary E-1

Appendix F Software Quality Checklist and Submittal F-1

SOFTWARE QUALITY CHECKLIST AND SUBMITTAL
- SES IN-HOUSE - .. F-3

SOFTWARE QUALITY CHECKLIST AND SUBMITTAL
- SES ACQUIRED, EXISTING, AND COMMERCIAL - F-5

SOFTWARE QUALITY CHECKLIST AND SUBMITTAL
- CALCULATIONAL NON SES IN-HOUSE - F-7

SOFTWARE QUALITY CHECKLIST AND SUBMITTAL
- CALCULATIONAL NON-SES -

ACQUIRED, EXISTING, AND COMMERCIAL F-9

Appendix G Statement of Analysis - Specified Software Certification G-1

FIGURE

Figure 6.1. Software Process Flowchart . .. 17

TABLE

Table 6.1. Software Categories .. 19

Revision 0
Page viii of ix

LIST OF EFFECTIVE PAGES

PAGE/SECTION

NUMBER

CHANGE

IN EFFECT

PAGE/SECTION

NUMBER

CHANGE

IN EFFECT

ithrough ix

1.0

2.0

3.0

4.0 .

5.0

6.0

Appendix A

Appendix B

Appendix C

Appendix D

Appendix E

Appendix F

Appendix C

Revision 0

Revision 0

Revision 0

Revision 0

Revision 0

Revision 0

Revision 0

Revision 0

Revision 0

Revision 0

Revision 0

Revision 0

Revision 0

Revision 0

Revision 0

Page ix of ix

LIST OF INCORPORATED CHANGE REQUESTS

CHANGE
NUMBER

*SIGNATURE OF

VALIDATING PERSONDATE TITLE AND/OR BRIEF DESCRIPTION

Revision 0

Page of 62

1. 0 PURPOSE

The purpose of this Software Quality Assurance (SQA) Plan is to establish the
requirements for the planning, development, testing, tracking, documentation, and control
of software used in support of the Lawrence Livermore National Laboratories (LLNL)
Yucca Mountain Project (YMP) and to assign the responsibilities for implementing these
requirements. The requirements are intended to ensure the control of software quality
and to provide the Nuclear Regulatory Commission (NRC) staff with part of the basis on
which they will evaluate the soundness of the physical and mathematical principles
implemented within these software codes relative to their use to support license
application to the same level of requirements as used to perform direct design analyses.

This plan uses guidance from NUREG-0856, and meets the requirements of LLNL QAPP,
Section 3.0 and Appendix H. This plan is a revision controlled planning document.
Changes to the SQAP or deviations therefrom will be submitted for Project Office
approval.

Revision 0
Page 2 of 62

2.0 APPLICABILITY HY§ - - -i-;.

This plan describes the controls which- address the requirements specified in QP 3.2,
"Software Quality Assurance" and applies to software developed or used in support of
analyses performed at Quality Assurance Level I and II. Although this Plan does not
apply to analyses performed at QA Level III, it may be applied if desired.

For the purpose of this plan, software is categorized into three (3) types which are
subdivided into two (2) groups. Table 6.1., "Software Categories", lists the types of
software and the applicable sections of this plan. This plan states specific requirements
for software in each of these types.

It may not be possible to meet the documentation requirements described in this plan for
commercial software. Efforts must nevertheless be made to gather the information
identified in this plan to aid in the use of the software and as proof of its credibility. The
results of such efforts must be included within the required documentation.

Any modifications made to acquired, existing or commercial software that could affect
the integrity of output must be planned, developed, documented, and tested under the
same requirements as those for the in-house software in the same category.
Configuration management requirements apply to acquired or commercial software.

The terms "software," "computer code," "code," "computer program," and "program"
are used interchangeably throughout this plan. Databases are considered to be a type of
software and are not discussed separately. Appendix A contains definitions of terms used
throughout the plan.

Revision 0

Page 3 of 62

3.0 RESPONSIBILITIES ^_jg'- t . I -

This-sectioft outlines the responsibilities of the Technical Area Leader, Task Leader,
Principal Investigator, Software Quality Manager, and Software Quality Technician.
Upper levels of management recognize that SQA is a vital part of software development
and that the individuals involved require their support to implement the actions of this
Plan. This recognition by upper management must be translated into a commitment

through policies that set software quality goals; establish SQA functions; and authorize
the necessary resources to perform the tasks.

3.1 Technical Area Leader (TAL)

The TAL is responsible for the review and approval of the Individual Software Plan (ISP)
[See Section 6.1.2 and Section 6.2.21.

3.2 Task Leader (TL)

The TL is the person responsible for actions pertaining to the development, correction, or
change of -a particular version of software. The TL understands the structure, control,
and available options of the software (or will be able to find this information).

The TL will implement, where applicable, the software development life cycle. Most of
the software documentation requirements will be written or created under the auspices of
the TL, and the verification processes will generally be performed with his help. The TL
will also decide when a software should receive a new version or release number.

3.3 Principal Investigator (PI)

The PI is responsible for a particular analysis or programming activity. The PI must
ensure that all requirements for the software used in the analysis are met and that all
documentation is in place for supporting analysis. It is the PIs responsibility to evaluate
the impact of errors on previous calculations and determine the appropriate corrective
action. It is the direct responsibility of the PI to oversee the software documentation
required in Section 6.5 and to ensure that the certification process has been carried out to
the extent appropriate to an analysis (see Section 6.6). The PI and the TL may be the
same person.

Revision 0
Page 4 of 62

3.4 Software Oualitv Manager (SOM) and Software Quality Technician (SOT)- Y. .

The Software Quality Manager is assigned by the Deputy Project Leader and is
responsible for overseeing implementation of this plan. The Software Quality Technician
is assigned by the TAL responsible for the project and assists the Software Quality
Manager. The duties that make up these tasks are described below:-

3.4.1 The Software Quality Manager is familiar with this plan and will serve as
consultant regarding its use.when requested -

3.4.2 The Software Quality Manager is responsible for the collection or receipt of all
documentation and written materials submitted to fulfill the requirements
outlined in this plan. -.

3.4.3 The Software Quality Manager is familiar with the software development-life
cycle described in this plan and will serve as consultant regarding its use where
required.

3.4.4 The Software Quality Manager is responsible for implementing, maintaining,
and coordinating the configuration management system described in Section
4.0 of this plan.

3.4.5 The Software Quality Manager and the Software Quality Technician aid in
preventing duplicate work from being performed by different PIs. For
example, if more than one group is attempting verification of a particular
model, they will make the groups aware of the other efforts.

3.4.6 The Software Quality Technician is responsible for working with the P to
determine whether the documentation collected for the software meets the
requirements in this plan.

3.4.7 The Software Quality Technician is responsible for the storage of all
documentation in accordance with the specification in Section 5.0, "Software
Records Management System".

3.4.8 The Software Quality Technician ensures (with the records management
personnel) that the storage of the formal released software product is
maintained according to QP 17.0, "Records Management."

3.4.9 The Software Quality Technician ensures that documentation is completed in a
timely manner and that records are complete.

3.4.10 The Software Quality Technician informs the TL when problems exist and
maintains software records.

Revision 0

Page 5 of 62

4 0 CONFIGURATION MANAGEMENT (CM) SYSTEM ''

As implemented at LLNL, software configuration management is the LLNL management
process for: (1) assuring that the product is accurately described by the descriptive
planning and product control documents; (2) assuring that changes are subject to a
revision control process which provides comparable verifications and approvals as the
original; and (3) providing status identification on the product, or on documentation
traceable to the product.

The Configuration Management System described here is designed to assure positive
identification of items (i.e. documents, programs, etc) or products and their baselines and
for control of all products or item baseline changes. Configuration Management applies
to Large and Medium SES and Calculational Non-SES. Configuration Management for
categories of software which use notebooks is accomplished within the notebook (See
Sections 6.1.1 .A through 6.1.1 .J).

A. Baselines

Configuration Management establishes two types of baselines. A baseline is a
document or a set of documents containing a list of all configuration items or
products formally designated and fixed at a specific time during a life cycle. A
baseline, plus approved changes/updates specify the most current configuration
identification for the item or product.

One type of baseline is the Confiouration Item Baseline and the other is the
Software Product Release Baseline. The former is established when the item is
initially submitted to Configuration Management, while the latter is established
when the software product is (formally) released. The Software Quality Manager
receives documentation and software from the TL during the software life cycle.
The Software Quality Manager records receipt of the original software or
documentation in the corresponding baseline document; all subsequent versions or
revisions to the originals constitutes updates to the original baseline. The software
Product Release Baseline is the suM of all the Configuration Item Baselines that
constitute the Software Product at relcase. A Master Log is kept of both baselines.

B. Notebook

The Notebook will provide a path so that the reviewer can follow the work that is
being done or was done. A Configuration Item Identifier (CII) will be assigned
each item, as described in section 4.1.1, and be recorded along with version
numbers and program names in the Notebook. Error Resolution and change
requests will also be documented within the Notebook.

Revision 0
Page 6 of 62

The Softwar'e Quality Manager is responsible for the initiation, implementation, and
maintenance of the Configuration Management procedure(s) and the Cnfiguration
Management system: Configuration Management is a system of controls, verifications,
approvals, and authorizations which provide change control and traceability for software-
and documentation. Configuration Management also provides a means for 'error
reporting, resolution, and tracking. -

Configuration Management documentation when completed is submitted to the Software
Records Management System for archiving.

4.1 Configuration Identification - - : -

A configuration item baseline is established at the completion of each phase of the
software development cycle. Elements of the software product placed under
Configuration Management are called configuration items, and each is assigned a
unique identifier. Items so identified, include software and documentation, are listed
in the Configuration Item Baseline document, and are not changed without
authorization. Approved changes to a baseline are added periodically to the baseline
as updates. Updates are incorporated into subsequent baselines. Both baselines and
updates are defined by their composition of software configuration items.

A labeling system for configuration items will:

* Uniquely identify each configuration item.

* Identify changes to configuration items by revision, version, change, or release
number.

* Placed the configuration item in a relationship with other configuration items.

* Provides the ability to reconstruct the configuration of the software or documents
from the requirements document to the present time.

A software product ready for release is assigned a unique identifier and is placed on
the Software Product Release Baseline, and is not changed without proper
authorization.

Each Configuration Item is assigned an identifier. That item is baselined. The Item
Baseline consists of the original item and its update(s) (e.g. version number for
software, revision number for documentation).

Each product has a release identifier. When a product is completed, that product is
the sum of all the configuration item identifiers (because it is the sum of all the
configuration item baselines for that product). The baselines can be cross-referenced
from item to product and vise-versa.

"_ _- - ... --____ � 11 1. - -1. - - -- _1 ... � . � . � � -_ _! . ___ . -.- -._-- -� I - 1. . 1. I �--- - - -. .- _ . . . _. I __ . I � � - I - . � I . . .1 -.

Revision 0

Page 7 of 62

Section 4.1.3, "Identifier Examples", shows one method for tracking changes to an
original item or product. The implementation details will be in a TIP.

4.1.1 Configuration Item Identifier (CII)

The Software Quality Manager receives from the TL the review reports,
documentation, and/or software at the completions of each phase. Each document
or software received is assigned a unique Configuration Item Identifier and is
placed on the Configuration Item Baseline.

-. 1.2 Release Identifier

The Software Quality Manager assigns release identifiers and monitors all released
software products. The initial software product release is identified by a unique
release identifier. This release identifier appears on all items of the software
product (i.e. software and documentation) and is updated at each subsequent
release. The Software Product Release Baseline is also updated to reflect the
change.

4.1.3 Identifier Examples

This section describes a numbering system for identifiers, both Item and Release,
and their changes. Each document or program is given a unique alpha-numeric
item identifier by the Software Quality Manager upon entering configuration
management. Also a unique alpha-numeric release identifier is assigned at the
time of product release. The item identifier is composed of four (4) sections:
Type, Descriptor, Numeric Sequence, and Status.

Wlhere: TYPE is either "D" for document or "P" for Program.
DESCRIPTOR is an abbreviation of the item (i.e. "TM" for the

Theoretical Manual or "LP" for Library Program).
NUMERIC SEOUENCE is a number that designates the order

received.
STATUS shows the state of the item (i.e. "blank" for Original;

"V" for version; "R" for revision; and "C" for change).

Using the above description the following identifier would be assigned to a
Theoretical Manual which was the fifteenth item received: D-TM-O15 (no status
designation used as this is an original). The following identifier would be assigned
to an original program which was the sixteenth item received: P-LP-016 (no status
designation used as this is an original).

Status indicators establish the state of the item. The following are examples of a
numbering system:

Revision 0
Page S of 62

'tem Identifiers:

Status indicator for Documents:

D-Th4-015.CO01 (First change to Theoretical Manual item number 15)

D-TM-015.C005 (Fifth change to Theoretical Manual item number 15)

D-TM-015.CO010 (Tenth change to Theoretical Manual item number 15)

D-Tm-015.R01 (First revision to the Theoretical Manual item
number 15)

,

D-TMI-015.RO01.CO01 (First change to First revision to the Theoretical
Manual item number 15)

D-TM-01.RO01.C005 (Fifth change to First revision to the Theoretical
Manual item number 15)

D-TMI-015.R01.COO1O (Tenth change to First revision to the Theoretical
Manual item number 15)

D-TIM-015.R002 (Second revision to the Theoretical Manual item
number 15)

Status indicator for Programs:

P-LP-016.CO01 (First change to Library Program item
number 16)

P-LP-016.C005 (Fifth change to Library Program item
number 16)

P-LP-016.C0010 (Tenth change to Library Program item
number 16)

P-LP-016.VO01

P-LP-016.VOO1.C001

P-LP-016.VO01.C005

P-LP-016.VO01.CO010

P-LP-016.V002

(First version to Library Program item
number 16)

(First change to first version Library
Proram item number 16)

(Fifth change to first version Library
Prooram item number 16)

(Tenth change to first version Library
Program item number 16)

(Second version Library Program item
number 16)

Revision 0

Pape 9 of 62

The Release Identifier is composed of four (4) sections: Type, Descriptor, Numeric
Sequence, and Status.

Where: TYPE is "PR" for "Product Release".
DESCRIPTOR is an abbreviation of the product name (i.e. the

activity name).
NUMERIC SEQUENCE is a number that designates a numeric

value established by the activity.
STATUS shows the state of the item (i.e. "blank" for Original;

"R" for revision; and "C" for change).

Using the above description the following identifier would be assigned to a Product
Release which has some "name" and "value": PR-name-999 (no status designation
used as this is an original).

Status indicators establish the state of the product release. The following are
examples of a numbering system:

Release Identifiers:

Status indicator for Releases:

PR-name-999.CO01 (First change to release identifier)

PR-name-999.C005 (Fifth change to release identifier)

PR-name-999.CO010 (Tenth change to release identifier)

PR-name-999.RO01 (First revision to the release identifier)

PR-name-999.RO01.CO01 (First change to First revision to the release
identifier)

PR-name-999.RO01.C005 (Fifth change to First revision to the release
identifier)

PR-name-999.RO01.CO010 (Tenth change to First revision to the release
identifier)

PR-name-999.RO02 (Second revision to the release identifier)

Revision 0
Page 10 of 62

4.2 Configuration Change Control

Configuration Change Control provides the controls necessary to manage and control the
change process. Changes to the software product or configuration item are accomplished
through implementation of an Error Reporting and Change Request Tracking (ER/CRT)
System. Changes to software or documentation are subject to the same level of approval,
review, and verification as the original software or documentation. The ER/CRT system
allows personnel working with the software or documentation to suggest a change to the
software's capabilities or to submit a request for error correction. Normally changes are
requested to accomplish at least one of the following:

* Correct errors.

* Implement new or revised requirements.

* Change testing or design input parameters.

* Add data, results, or functions.

* Remove out-dated information.

The Software Quality Manager in accordance with the Configuration Change Control
process assures that approved changes are documented and incorporated; assures that
changes are assessed for their validity; assures that all changes are approved; monitors
the change status; and informs the TAL, TLs, PIs, developers, and Registered Users of
the error correction or change status.

The Software Quality Technician will maintain a list of all open (unresolved) Error
Reports (ERs) and distribute a list of these along with closed (resolved) ERs on a
quarterly basis. Also the Software Quality Technician maintains a list of all open and
closed Change Requests (CRs) and distributes the list on an annual basis. The
distribution of this list will include the TLs, TALs, QA manager, Project leader, ER or CR
originators.

4.2.1 Reaistered User Distribution Loo

LLNL-YMP will establish a Registered User Log for all Quality Level I and II
software user. The Log will contain the institution/organization name, address,
telephone number(s), and the primary contact of the user. Registered Users will
receive all error/change resolution documents.

Revision 0

Page 11 of 62

4.2.2 Error Report/Change Request Tracking (ER/CRT) System Procedure(s!

ER/CRT system procedure(s) address the process of correcting errors or making
changes, including additions of code in accordance with Section 6.0, to the
configuration item or software product.

ER/CRT System Procedure(s) include steps for identifying discrepancies in writing,
documenting proposed changes, identifying the originating organization, providing
the rationale for the change, reviewing proposed changes for adequacy, reverifying
the affected software, identifying affected baselines and software configuration
items, obtaining approval and authorization for correction/change, and verifying
that the correction/change has been incorporated. Procedures also identify an
accepted time frame for the change to take place. The correction/chang is
formally evaluated by a qualified individual or organization with the ability to
approve or disapprove the proposed correction/change. Assurance is provided that
only authorized corrections/changes are rhade to the configuration item or software
product baselines.

ERJCRT system procedure(s) establish a mechanism for feedback to the users for
information about specific problems and recurrent types of problems. In addition,
the procedure requires users (in-house) to inform the TL responsible for the
product or configuration item when errors are discovered. The TL can examines
and assesses the overall effect of the errors on the code. Users are provided with
sufficient information to determine what effect the errors or changes have had on
previous calculations, applications, or decisions.

The TL is ultimately responsible for the resolution of errors discovered during
development or use and for making recommendations for changes. The TL
assesses the impact of noted errors or changes requested and decides if the impact
of the resultant change will be minor or significant. A significant change requires
reverification. After the significance of the error or change is assessed, the TL
informs all Registered Users of the action planned and the effect of the
correction/change on the results already obtained with the program. Notification
of users will be accomplished in accordance with QP 3.5, "Control of Internal
Technical Interfaces". The assessment of the defects and impact on previous
applications is the responsibility of the Registered User. The assessment of the
defects and impact on previous applications is the responsibility of the Registered
User.

Revision 0
Page 12 of 62

4.3 Configuration Status Accounting and Reporting . .A-

The purpose of Configuration Status Accounting is to develop and maintain records of the
status of the software product or configuration item as it moves through the software life
cycle and to track software applications used in support of level I and HI analyses. The
status of the current baselines including pending, approved, and implemented changes are
recorded. A detailed record of the software product configuration is maintained and
made available to assure that the overall configurations are effectively managed. The
Master Log is the means by which this accounting and reporting is accomplished.

Configuration Management monitors content, format, author, code developer,
distribution, and timing of reports. The following information may be obtained from the
configuration records:

* Current baseline list of configuration items.

* Latest revision and change information for baselined documents, including pending
or approved changes.

* Latest release, version, and change information for baseline software, including
pending or approved changes.

* Audit trail for each configuration item detailing changes of each baseline during the
software product's life cycle.

* Hierarchy of documents.

* Distribution, documentation, and change control information.

* Report on completion of test suite by latest version, and all previous versions, of the
software.

* Latest version of and change information on test suite for a software product.

* Test suite and verification libraries used for testing.

* Applications and their status.

Revision 0

Page 13 of 62

4.3.1 Master Loe

The master log will, establish traceable records regarding new versions, new
releases. and Level I and applications. The Log will contain the following:

a. Each unique version and release will be identified on its own page in
the log. This page will identify the name of the software, the
version and release number, the date of entry into the Configuration
Management system, Configuration Item Identifier number, the name of
the person releasing the item, and the name of the TL. Each use of the
software for a QA Level I or H analysis, or each transmittal of the
software to any group intending QA Level I or II analysis, will be
identified on this page by a unique and traceable designator such as
product number, change number, activity number, or WBS number-

b. Each application will be identified on its own page in the log. This page
will identify the application/analysis to be performed, name of the
software to be used, the software version and release number, and
verification status.

c. Within the log, the most current version of the software will be identified
so that the Software Quality Manager can direct new users of the
software to the appropriate TL.

d. The information maintained in the log will be provided on the Software
Summary (see Appendix E), and by material submitted in
support of verification and analysis efforts.

e. When not in use by the Software Quality Manager, the master log will be
stored in the Software Records Management System in a location setup
by the Software Quality Technician.

...... _- --- _ -, _ - .- . - ____ - .-- ___- __ - ____ _-_-_.'

Revision 0
Page 14 of 62

5.0 SOFTWARE RECORDS MANAGEMENT SYSTEM (SRMS)

The Software Records Management System is a system for controlling, storing, and
providing access and security for documents and software. The following subsections
provide a general description of what is-required for the Software Records Management
System. Detailed description and implementation are- provided by TIPs.

5.1 Documentation Storage

The Software Records Management System will be used to store all software product
material, making it readily available and easy to locate. The Software Quality Manager is
responsible for carrying out the requirements of Software Records Management System,
providing material to the Local Records Center (LRC) at required times, for making
modifications to procedures as needed and providing modified procedures to the central
system.

5.1.1 All documentation required by this plan will be stored within the Software
Records Management System by the Software Quality Technician until
transmitted to the Local Records Center.

5.1.2 Software and documentation will be assigned a unique identifier for storage and
tracking purposes.

5.1.3 Each document or software that is tracked in the Configuration Management
system (see Section 4.0) will have a file for each unique version. This file will
contain all the applicable documentation defined in 6.1 through 6.5, or
references to it. Different releases of the same software version or different
revision of a document will also be stored in that same file but with a clearly
marked separator.

5.1.4 Each analysis effort will have its own unique file location, cross-referenced to
the file containing the software and the documentation for the version of
software it used. This file will contain the documentation defined in 6.6
through 6.9, or references to its location.

5.1.5 Documents may be referenced to in more than one location but need not be
duplicated between the different files. The Software Quality Technician will
store one copy of the document and make certain that all other references to it
are easily traceable to its location.

Revision 0

Page 15 of 62

5.2 Media Control and Storage

The control of physical media, access authorization, and security are the functions that
assure that the stored software is physically retrievable and cannot be lost or
compromised by day-to-day operations or catastrophic events. Typical storage media
includes magnetic disks and diskettes, magnetic tapes, and paper hard copy listings.

5.2.1 Physical Media

The physical media upon which the software is stored is controlled so that the
software is not damaged, altered, or degraded. This is accomplished by providing
adequate safe storage techniques and by software and data backups.

5.2.1.1 Backups

At least two (2) backup copies are produced for data and software. The
number and frequency of backups are to be established. The frequency of the
backups should be set to try to minimize the amount of reworking required by
the developers. Backups are stored in a suitable environmentally controlled
and secure location. Two copies of each backup are made, one is stored locally
and one is stored at a remote location. The Software Quality Technician is
responsible for instituting a Software Backup Log, Schedule, and for initiating
the backups. The Backup Log contains the following information: date; storage
media; medium number; file identification; and the physical location of the
copies. The Backup Log becomes part of the software product.

5.2.2 Software Librarian

The Software Quality Technician is the software librarian and is responsible for
assuring that only the approved versions are distributed and used for analysis, and
that any software changes are made in accordance with established procedures.

Revision 0
Pa2e 16 of 62

6.0 REOUIREMENTS

This section specifies the requiremens for software planning, development, and use. k
flowchart of the software process is shown in Figure 6.1, "Software Process Flowchart".
Sections 6.1 through 6.8 describe all the steps in planning, development, testing, and use.
Section 6.9 describes software product completion and post-release maintenance. Table

6.1, "Software Categories" describes, in brief, the software categories covered by the plan
and sections 6.1.1.A through 6.1.1.J specifies the detailed requirements that each
category of software will meet.

This plan is provided as a basis for the content of all required documentation. Detailed
documentation requirements are described in Appendix B. Format, arrangement, and
style are left to the discretion of the writer as long as all necessary topics are addressed.
If a portion or all of the information called for is already written and located in some
other document, that document may be submitted with the necessary topics identified and
need not be rewritten. Comment lines within a source code listing shall be added to
enhance appropriate portions of documentation called for in the plan.

A checklist showing the detailed requirements for Scientific and Engineering Software
(SES) documentation is included in Appendix D. A copy of the checklist should
accompany each document or review submitted to the Software Quality Manager for
permanent storage.

Depending on the software category, documentation described here must be subjected to
a technical review before it becomes part of a software product's permanent file. These
reviews must be in accordance with the requirements set forth in QP 2.4, "Technical
Review". A copy of each technical review report will be stored by the Software Quality
Manager in the Software Records Management System.

Revision 0

Page 17 of 62

I
i I \1
a i- .-

i��

Activity Plan
- -.t .(Requirements

for Us~

Individual Software
Plan - Software
Categorized

_< , m j. T

TAL = Technical Area Leader Review/Approval Required
TL = Task Leader Review/Approval Required
TPO = Technical Project Officer Review/Approval Required

Figure 6.1. Software Process Flowchart.
(Reference Life Cycle and Development Process)

.... - ------

Revision 0
Page 18 of 62

6.1 Software Category and Individual Software Plan

The software category selection and individual software plan are required items and are
completed prior to the start of any work.

6.1.1 Software Category

The first step of the Software process is to assess what category the software falls
under. Software is divided into three (3) types and each type is subdivided into
two (2) groups. Table 6.1., "Software Categories," lists all the applicable sections
that each type must complete. After the TL or PI has made this decision, the TL

or PI will submit a memo to the TAL regarding this decision. The form shown in
Appendix C. "Software Category Selection" will be used. This form will be
approved by the TAL under whose WBS this work is funded. This approved form
is a precursor to the Individual Software Plan (see section 6.2.2). The approved
form will be sent to the Software Quality Manager and stored in a file created for
this software within the Software Records Management System. The Software
Quality Manager or Software Quality Technician will send a copy of the approved
form to the responsible TL or PI after the form has been assigned a Configuration
Item Identifier and logged. The software type selection form is required for large
and medium SES, large Calculational Non-SES created in-house, acquired,
existing, or commercial Calculational Non-SES which will be changed in-house,
and Non-Calculational software created in-house. It is the TL's responsibility to
ensure that the Software Category Selection form is filed, with the Software
Quality Manager, for the required software as defined here. Listed in sections
6.1.1.A through 6.1.1.J are the Dcliled requirements for each software category.

Revision 0

Page 19 of 62

In-house Software
(sponsored by YMP)

Acquired, Existing, and
Commercial Software

Large SES (e.g. EQ6, Pandora, Tough)..

Multiple person efforts greater than 5000
lines or 6 months.

- SP is required
- Full life cycle required.
- Life cycle documents stand alone and are

under configuration management.

Medium SES.
* Efforts of less than 5000 lines or 6 man

months.
All one-person efforts greater than.500:
lines' and less than 5000 lines long are-.'.'..'
Medium SES.

- Life cycle required (notebook may be
used). .

- ISP required.
- NUREG-0856 documentation required.
- Configuration Management required.

Small SES
Less than 500 lines

- NUREG-0856 and Life cycle
documentation required (Notebook may:-''':'"'
be used).

- Controlled under activity plan by TLas
appropriate for activity. -

-- i- Large SES.
Includes all codes larger than 500
lines.
Handled same as-in-house SES
following acquisition (e.go.
configuration management).

- ISP and Acquisition-plan required.
.- Verification required.

- Available documentation of
development obtained.

- NUREG-0856 documentation
required.

-i ~ ~~~~~ ~~

. 4 - i. .

[Medium SES -
- No medium SES category is defined

for acquired. existing, and
-: commercial software.

Small SES
::'.*. Same definition as in- house small

SES.
-i Handled same as in- house once

.. acquired
- :-Acquisition controlled under. :

.... normal purchasing: controls.
NUREG-0856 documentation

. .required(Nolebook'may be used).. .

Large Calculational Non-SES-

Laree efforts greater than 500 lines
- ISP required
- Life cycle required (notebook may be

used)
- NUREG-0856 Documentation required.
- Configuration management required.

Small Calculational Non-SES . -
* Less than 500 lines.'
- Controls as specified in activity .: i

plan when critical to QA I or IIwork:':..-:

_ r r ,r : :.

All Calculational Non-SES

Configuration management if
changes are to be made.

.. -:Available documentation must be
sufficient to determine suitability for

.. :.
.i .:I4-Acquisition controlled under normal

purchasing controls.,a

62
9=

co

&D

Non Calculational Software Non Calculational Software

- Controls specified in activity plan. - Controls specified in activity plan.
- SP required when identified in - ISP reQuired when identified in

activity plan. activity plan.
- Acquisition controlled under normal

purchasing controls.

Table 6.1 Software Categories
Note:' "Lines" are to be considered single instructions, exclusive of

comments or other descriptive material.

Revision 0
Page 20 of 62

6.1.1A Laroe In-House SES (or Large SES sponsored b LLNL-YMP).

Scientific and Engineering Software is software that specifies operations according to
a physical or mathematical -model or that uses a numerical method and supplies
primary data or analysis used in support of Level I and II activities.- This category
includes scientific, engineering, and mathematical modeling software that use a
numerical method. Typical functions for this software include ge6chemical models,
repository or waste package performance assessment, safety and reliability studies,
engineering design, etc. Commercial software packages applied to these types of
activities are included. This category includes mathematical subroutine libraries used
in SES.

Large SES is long and written by multiple authors. This necessitates detailed planning
and controls on implementation. Large SES is: any SES software written by more
than one person which is more than 5000 lines (instructions) long or which requires
more than six (6) man-months to code.

1. Category/ISP - Required.

2. Life Cycle - Full life cycle implementation, with separate documents for
requirements, design, verification, and validation summary. Individual
modules may have their own life cycle components. Rapid prototyping
may be part of development cycle.

3. Configuration Management - Full management of coding and life cycle
documents.

4. Documentation - Full life cycle documents, preferably as UCID's where
feasible. Full NUREG-0856 documentation prior to software release,
with exception of validation summary (provided later).

5. Certification - May be certified for certain uses after the Test, Debug, and

Verification Phase.

6. Verification - Plans for verification to be included, or referenced for future
development, in ISP. Verification fully documented and results
reviewed under document review rules. Planning for verification must
be documented with results to ensure adequate review.

Revision 0

Page 21 of 62

7. Validation - Validation efforts will be documented in published reports,
reviewed by document review methods. Validation plans for work
conducted by LLNL specifically for validation typically will be in a SIP
and Activity Plan, but may be addressed in the Individual Software Plan.
Other work may also be included in validation reports. Summary or
compilation of all validation efforts will be provided at licensing time as
part of "code assessment and support" clause of NUREG-0856.

8. Completion - Completion Memo is required (progress will be logged
through the use of the master log; when all requirements have been met,
the completion memo will be filed).

Revision 0
Page 22 of 62

6.1.1.B Medium In-House SES -.

Medium SES is shorter than Large SES, or is written by a single individual. This
permits scientific notebooks to be used in the documentation of the coding activities.

Medium SES is written by only a single individual (and is greater than 500 lines and is
less than 5000 lines); or when written by more than one person is less than 5000 lines
long or requires less than six (6) man-month to code.

1. Category/ISP - Required: the TAL must sign to ensure that effort is
- actually in this category. Should the effort grow into large category, all

requirements for Large SES must be met. This category is intended to
provide reasonable control of development, and adequate documentation
that if the effort should grow, the large SES requirements could be met
by preparing the documents using the notebook records.

2. Life Cycle - Life cycle must be met, with the notebook containing the
information sufficient for review of the product. Notebooks are subject
to the normal notebook review and verification procedures.

3. Configuration Management - Required (notebook records may be used).

4. Documentation - Life cycle documentation is contained in the notebooks
(may be in a number of locations in the notebook but must be
complete). Full NUREG-0856 documentation required, with Individual
Software Plan defining what manuals will be written (in most cases
software of this size will only have one document describing them).

5. Certification - May be certified after the Test, Debug, and Verification
phase.

6. Verification -Required (Notebooks may be used).

7. Validation - Recorded in notebook or as document (preferred), validation
planning must be approved as for large SES, but may be carried out and
recorded in a notebook by TL approval.

8. Completion - Same as large SES.

Revision 0

Page 23 of 62

6.1.1.C Small In-House SES

Small SES is less.than 500 lines long and is verifiable by direct inspection. It may
readily be documented by the use of comments written within the software.
Additional controls may be required in the activity plan.

1. Category/ISP - This software must be recorded and controlled as specified
in the activity plan. The TAL must approve the classification to ensure that
the effort is actually in this category. Should the effort grow into a medium
or large category, all requirements for Medium or Large SES must be met.
This category is intended to provide reasonable control of development,
and adequate documentation that if the effort should grow, the medium or
large SES requirements could be met by preparing the documents using the
notebook records.

2. Life Cycle - Life cycle must be met, as specified in the ISP, with the
notebook containing the information sufficient for review of the product.
Notebooks are subject to the normal notebook review and verification
procedures .

3. Configuration Management - Must have unique identifier attached.

4. Documentation - Life cycle documentation is contained in the notebooks
(may be in a number of locations in the notebook but must be complete).
Full NUREG-0856 documentation is required, with the activity plan
defining what manuals will be written (in most cases software of this size
will only have one descriptive document).

5. Certification - Must be certified for use in Level I or II analysis by review
for suitability if activity plan identifies this software as critical to the
Level I or II analysis (if it is the principal software used in the analysis,
for instance). This type of software should be primarily controlled
under the activity plan.

6. Verification - Direct inspection (Software which is not verifiable by
inspection should be handled as Medium SES).

7. Validation - Only required as per an activity plan.

8. Complete - Does not apply, unless specified in the an activity plan.

Revision 0
Page 24 of 62

6.1.1.D Acquired. Existing, or Commercial Large SES

Acquired, Existing, or Commercial Large SES are equivalent to the large and medium
in-house SES categories. (Notebook control is not used for acquired, existing, or
commercial software). -.

1. Category/ISP - Required, submitted with acquisition plan (which serves as
ISP for acquired software).

2. Test, Debug, and Verification - As specified in the ISP.

3. Configuration Management - Must have unique identifiers. If the software
is to be modified or used at LLNL, it must be placed under
configuration-management. In general the version number on a
commercial product will be sufficient.

4. Documentation - Available documentation regarding development is to be
obtained. Acquired software must meet NUREG-0856 documentation
requirements either from vendor documents or LLNL supplements. If
the software as acquired does not meet the NIREG-0856
documentation requirements, the acquisition plan or an update thereto
will describe the plan to meet the requirements.

5. Certification - Same as in-house SES.

6. Verification - Acquisition plan describes the verification activities to be
performed by the vendor as part of the purchase agreement and any
verification activities to be conducted by LLNL. Results of the
verification activities are to be substantially the same as for in-house
SES of the same size.

7. Validation - Same as in-house SES

8. Complete - Same as in-house SES

Revision 0

Page 25 of 62

6.1.1.E Acquired. Existing or Commercial Small SES

Small Acquired, Existing, or Commercial SES is less than 500 lines long and is
verifiable by direct inspection. It may readily be documented by the use of comments
written within the software. Additional controls may be required in the activity plan.

1. Category/ISP - This software must be recorded and controlled as specified
in the activity plan. An Acquisition Plan will be submitted (which serves as
an ISP for acquired software).

2. Test, Debug, and Verification - May be recorded as part of activity records
as appropriate.

3. Configuration Management - Must have unique identifier.

4. Documentation - Available documentation regarding development is to be
obtained. Acquired software must meet NUREG-0856 documentation
requirements either from the vendor documentation or LLNL supplements.
If the software as acquired does not meet the NUREG-0856 documentation
requirements, the acquisition plan or an update thereto will describe the
plan to meet the requirements.

5. Certification - Same as in-house SES.

6. Verification - Required as defined in an activity plan. Software that is not
verifiable by inspection should be treated as large acquired SES.

7. Validation - Required as defined in an activity plan when critical to the
analysis.

8. Complete - Does not apply, unless specified in an activity plan.

. . .

Revision 0
Page 26 of 62

6.1.1.F Large In-House Calculational Non-SES

Large In-House Calculational Non-Scientific and Engineering Software (SES) is
greater than 500 fines. Calculationai Non-SES is software that can contain complex
mathematics, but does not involve modeling of scientific or engineering investigation
or design applications. Some examples include statistical packages, graphics

packages, esh generators, spread-sheet programs, software operating analytical
instruments, embedded codes, etc.

All efforts of more that 500 lines are in this category.

1. Category/ISP - Required.

2. Life Cycle - Life cycle must be met, with notebook containing the
information sufficient for review of the product. Notebooks are subject
to the normal notebook review and verification procedures.

3. Configuration Management - Required (notebook records may be used).

4. Documentation - Life cycle documentation is contained in notebooks (may
be in a number of locations in the notebook but must be complete). Full
NUREG-0856 documentation required, with Individual Software Plan
defining what manuals will be written.

5. Certification - May be certified after Test, Debug, and Verification phase.

6. Verification - Required (Notebooks may be used).

7. Validation - Does not apply, unless specified in the ISP.

8. Complete - Completion memo is filed at end of effort.

Revision 0

Page 27 of 62

6.1.1.G Small In-House Calculational Non-SES

Small In-House Calculational Non-SES is less than 500 lines. Calculational Non-SES
is software that can contain complex mathematics, but does not involve modeling of
scientific or engineering investigation or design applications.

1. Category/ISP - Does not apply. This software does not have to be recorded
or controlled unless specified in the activity plan as critical to a level I or
II analysis (then it must be certified for use).

2. Life Cycle - Does not apply, unless specified in an activity plan.

3. Configuration Management - Must have a unique identifier attached.

4. Documentation - Documentation sufficient for review for use should be

included in the source code. No other documentation required.

5. Certification - Must be certified for use in Level I or II analysis by review
for suitability, if activity pian' identifies this software as critical to the
Level I or II analysis. This type of software should be primarily
controlled in the activity plan.

6. Verification - Software which is not verifiable by inspection should be
handled as large Calculational Non-SES.

7. Validation - Only required as per an activity plan.

8. Complete - Does not apply, unless specified in an activity plan.

Revision 0
Page 28 of 62

6.1.1.H Acquired. Existing. or Commercial Calculational Non-SES

-Acquired, Existing, or Commercial Calculational Non-SES is software that can
contain complex mathematics, but generally does not involve modeling of scientific or
engineering investigation or design applications.

All Acquired, Existing, or Commercial Calculational Non-SES is handled similarly.

1. Category/ISP - Does not apply. This software does not have to be recorded
or controlled unless specified in the activity plan as critical to a level I or
II analysis (then it must be certified for use).

2. Test, Debug, and Verification - May be recorded as part of activity records
as appropriate.

3. Configuration Management - Must have unique identifiers. If the software
is to be modified or used at LLNL, it must be placed under
configuration management. In general the version number on a
commercial product will be sufficient.

4. Documentation - Available documentation regarding development is to be
obtained. Available documentation must be sufficient to determine
suitability for use.

5. Certification - As specified when identified in an activity plan.

6. Verification - Activity plans or purchasing documents describe
verification activities to be performed by the vendor as part of purchase
agreement and any verification activities to be conducted by LLNL.

7. Validation - As specified \shen identified in an activity plan.

8. Complete - As specified W\hen identified in an activity plan.

Revision 0

Page 29 of 62

6.1.1.I In-House Non-Calculational Software - .

Non-Calculational software is software that performs data or symbol manipulation but
not mathematical calculations. Examples include compilers, word processors,
operating systems, etc.

All Non-calculational software is handled similarly.

1. Category/ISP - Required when specified in the activity plan.

2. Life Cycle - Does not apply, unless specified in an activity plan.

3. Configuration Management - Must have a unique identifier attached.

4. Documentation -- Documentation sufficient for review for use should be
included in the source code. No other documentation required..

5. Certification - Must be certified for use in Level I or II analysis by review
for suitability, if activity plan -identifies this software as critical to the
Level I or II analysis. This type of software should be primarily
controlled under the activity plan.

6. Verification - When identified in an activity plan.

7. Validation - Only required as per an activity plan.

8. Complete - Does not apply, unless specified in an activity plan.

Revision 0
Page 30 of 62

6.1.1.J Acquired, Existing, or Commercial Non-Calculational Software

Non-Calculational software is software that performs data or symbol manipulation but
not mathematical calculations.

All Non-calculational software is handled similarly.

1. Category/ISP - Does not apply. This software does not have to be recorded

or controlled unless specified in the activity plan as critical to a level I or
II analysis (then it must be certified for use).

2. Test, Debug, and Verification - Does not apply, unless specified in an
activity plan.

3. Configuration Management - Must have a unique identifier attached.

4. Documentation - Available documentation should be acquired, but need
not be supplemented unless inadequate to review for suitability for use.

5. Certification - If critical, handle as In-House Non-Calculational.

6. Verification - Required, when defined in purchasing documents.

7. Validation - Does not apply, unless specified in an activity plan.

8. Complete - Does not apply, unless specified in an activity plan.

Revision 0

Page 31 of 62

6.1.2 Individual Software Plan (ISP

Individual Software Plans are required before beginning software related work.
Individual Software Plans describe the methods to be used in complying with the
SQA plan, and to conform with the requirements of activity plans (See QP 3.0,
Appendix A - "Suggested Content and Format for Activity Plans") for software
development activities. Individual Software Plan's are required for Large SES
(in-house and acquired), Medium SES (in-house), Large Calculational Non-SES
(in-house), and Calculational Non-SES (acquired) that will be changed at LLNL.
For acquired Large SES, the Individual Software Plan contains the plan for
acquisition of the software. For existing software, the Individual Software Plan
describes how the requirements of this plan will be met. Individual Software Plans
are approved at LLNL by the TAL with the concurrence of the Software Quality
Manager using the same mechanisms as activity plans (See QP 3.0.8, "Reviewvand
Approval").

Individual Software Plans describe . software controls which arise from
requirements of the SQA plan and any additional requirements that arise from the
TALs review of the activity plan. The TAL will specify additional controls for
critical software. These additional controls will arise particularly for small
categories of software which are critical to a specific scientific investigation. The
uses of software of any category are subject to verification in the course of
technical review of the scientific activity.

When software development is a large activity, the Individual Software Plan may
contain the information required for the activity plan as well as software
information. The Individual Software Plan may also only address software
development in conjunction with an existing activity plan.

The specific material regarding software required in the Individual Software Plan
is:

a. Software Category. Sufficient information should be included that the TAL
may evaluate the final use and condition (i.e. size) of software. Module
additions to existing codes retain the category of the original software even if
the module is smaller in size.

b. Life Cycle. Describe how the reference life cycle will be implemented. (See
Section 6.2). Describe hold points and products which require approval of
TL. The ISP addresses implementation of the SQAP requirements.

c. Test, Debug, and Verification. Describe for acquired, existing, and
commercial software.

Revision 0
Page 32 of 62

d. Configuration Management. Describe the configuration management system
to be used (e.g. Configuration Management will be accomplished in
accordance with Section 4.0 of the SQAP.).

! e. Documentation. Describe the documentation to be provided at the
completion of each phase and when work is finished.

f. Certification. If certification for use is planned prior to completion of the
development, describe the anticipated use and project condition at that point.

g Verification. Describe plans for verification in general terms.

7-';e-- h. Validation. Describe plans for validation in general terms or provide a
reference to the documents (e. ., SIP, Activity Plan) describing these plans.

Individual Software Plan's are to be applied to software in such a way as to provide
easily reviewed packages of software. This may be individual software, packages
of software, or codes and database. The TAL determines appropriate Individual
Software Plan packaging.

6.2 Software Development (Reference) Life Cycle

Software development (reference) life cycle is a process by which software is planned and
developed in phases, with a specific product or output, associated documentation and
review at each phase. The goals of the life cycle process are: 1) to increase quality of the
product and productivity of the personnel; 2) establish traceability throughout the process;
and 3) establish a good documentation base for critical software. The life cycle process
provides continuity for programming efforts so extensive that the same personnel may not
be working on the effort throughout its life.

6.2.1 When to Use Life Cvcle

Software development is under the life cycle process when the programming effort has
not begun or when acquired, existing, or commercial software needs modification or
error correction. Life cycle is required as specified in Table 6.1, "Software
Categories". Software which was originally categorized as not requiring life cycle will
later require life cycle if during development the software changes classification or
size and the new classification or size requires life cycle. The TL or PI is required to
meet all life cycle requirements as specified by the new category. The criteria for
deciding the level of detail to be used during the life cycle process are based on the
size and criticality of the programming effort and are specified in this plan.

Revision 0

Page 33 of 62

If the software does not meet the criteria established in Table 6.1 the TL or PI must
write a memo that documents this decision. This memo must be approved, prior to
the beginning of coding, by the responsible TL or TAL and the QA manager. The
approved memo will be sent to the Software Quality Manager and stored in the file
created for the software within the Software Records Management System. The
Software Quality Manager or Software Quality Technician will send a copy of the
approved memo to the responsible TAL, TL and PI.

6.2.2 Individual Software Plan (ISP)

The reference life cycle process is shown in Section 6.2.3, "Life Cycle Phases". If the
software effort requires the use of life cycle those portions of Section 6.2.3 that are
applicable to the effort must be performed. The life cycle or portion of the life cycle
to be used must be planned out in advance by the P or TL and specified in -the
Individual Software Plan. The Individual Software Plan is a precursor to starting any
work (i.e. software requirements specification, other documentation or coding). The
approved plan will be sent to the Software Quality Manager who will enter the plan in
the Configuration Management system and store it in a file created for the software
within the Software Records Management System. The Software Quality Manager or
Software Quality Technician will send a copy of the approved and recorded plan to the
PI or TL who originated the plan.

The Individual Software Plan will address the complete life cycle. The content items
of the reference life cycle are required and must be addressed, even if the specific
reference life cycle names and terminology are not used. Review(s) are specified in
the plan within each life cycle phase. The Software Quality Manager when reviewing
this plan will consider whether it adequately implements software quality achievement
and practices which are applicable to the particular software development effort. It is
anticipated that Individual Software Plans will contain life cycles which differ from
this reference life cycle but all phases described here must be addressed in any
individual plan.

Review: The Individual Software Plan review assures that the planning is complete and
consistent. The review also assures that there is sufficient detail to address all phases
of development and use.

When the Individual Software Plan is ready for review the developer submits the
document to the TAL. The TAL reviews the Individual Software Plan and documents
that review. The documentation for the review contains a record of the review
comments and their resolution, a plan and timetable for implementation of the
resolution, and the personnel responsible for the resolution. The TAL then authorizes
the ISP for use.

Revision 0
Page 34 of 62

6.2.3 Life Cycle Phases

Each phase of the life cycle is to be controlled and documented. The following
subsections detail the requirements for each phase. It is recognized that there may
well be iterations, or revisions in each phase of the life cycle which would then have
impacts on the logically subsequent phases of the life cycle. Revisions might be
caused by new knowledge of physical processes or end user requirements, or by
problems revealed when the earlier phases are implemented in the later phases.
Requirements in the following subsection implement these generic requirements
(among others):

1. Work during a later phase in the life cycle is always based on a product of an
earlier phase, which product is recorded, subject to review, and authorized by

the TL for such use.

2. A revision establishing a new recorded and authorized product of a life cycle
phase is subject to the same review and authorization steps as the original
product.

3. Staff working on a later phase are made aware of the latest authorized product
of earlier life cycle phases, and will conform their work and products to this
latest authorized product.

4. Upon any authorized revision, work already done in later phases is reviewed as
to whether changes in the later phase work are required.

Revision 0

Page 35 of 62

6.2.^3A. REQUIREMENTS PHASE

This phase. of software development. documents why this software project was
initiated and what the software must accomplish. The Individual Software Plan
must be completed prior to initiating this phase.

The Software Requirements Specification (SRS) may be developed, used, and
reviewed in modules, if the software requirements can be structured in
modules. In this case, the top-level modular structure of the SRS, including
interconnections, and the specification of one or several modules can be
completed first; the following phases can start on these modules.

Requirements modeling and rapid prototyping are among the software
development techniques which may be used in developing and confirming the
suitability of the requirements. Software developed by rapid prototyping is not
the final soft\vare product. The use of rapid prototyping must be specified in
the kidividual Software Plan.

Output: Software Requirements Specification SRS)

The RS will explain the following: the purpose, scope, intended users, format
and anguage that is understood by the programming organization and the user,
and erminology for the required software product. The SRS includes a general
description of the design constraints, functional specifications, attributes,
interface(s), and performance requirements. The SRS includes, as appropriate,
all :ie detail covered in Appendix B.1. This document contains enough
detai:ed information for objective erification of the requirements. This
docu-nent does not prescribe the software design.

Review: The SRS review assures that the requirements are complete, verifiable,
consistent, and formatted to provide traceability of requirements throughout the
life ycle process. The review also assures that there is sufficient detail
available to complete the software design.

When the SRS is ready for review the developer submits the document to the
TL (r next management level if the developer is the TL). The TL reviews the
SRS and documents that review. The documentation for the review contains a
record of the review comments and their resolution, a plan and timetable for
implementation of the resolution(s), and the personnel responsible for the
resolution. Review documentation becomes a permanent record. The TL then
auth3rizes the SRS for use as a basis of the software design phase.

Revision 0
Pase 36 of 62

The TL may authorize the SRS for provisional use as the basis for the design
phase before the review is complete. If the review results in changes to the
SRS, then -vork already done, in the design phase is reviewed as to whether
changes in the design are required by the changes in the SRS.

Phase Completion: The SRS phase is completed when the SRS is submitted by
the developer as containing the required content, is ready for review, and the
SRS is authorized by the TL (or next management level if the developer is the
TL) foruse-as the basis of the software design phase.

Configuration Management(CM): At phase completion the SRS is submitted
to the Software Quality Manager and becomes an element of the Configuration
Management system. The SQM assigns a Configuration Item Identifier at this
time and the SRS becomes baselined. Any later approved, revised SRS--also
becomes an element of the Configuration Management system. If a document
is approved for provisional use it will be entered into the Configuration
Management system by becoming a-Configuration Item and will be assigned a
Confiouration Item Identifier.

6.2.3.B. DESIGN PHASE

This phase of the software development documents the programming strategy
that was decided on. describes the major components of the design with the aid
of items such as structure charts, flow diagrams, decision table, or pseudocode
and relates the design to the SRS thus ensuring traceability. The design
documents may be developed, used, and reviewed in modules, if the software
desian can be structured in modules.

Design models and rapid prototype may be used to develop and confirm the
suitability of portions of the design. Software developed by rapid prototyping is
not the final software product. The use of rapid prototyping must be specified
in the Individual Software Plan.

The design documentation may be a single document called the Software
Design Description (SDD) or may be two documents called the Software
Preliminary Design (SPD) and the Software Detailed Design Description
(SDDD). The end result (the level of detail) of the documentation is the same.
The design documentation includes, as appropriate, all the detail covered in
Appendix B.2.

Revision 0

Page 37 of 62

Optional Output: Software Preliminary Design SPD)

Included in. this document are items such as the overall description of the input
and output data, the flow of information and data, external files and databases,
control flow, control logic, data structures, and design limitations. This
document expands on the SRS to describe the approach for how the
requirements will be met.

Optional Output: Software Detailed Design Description (SDDD)

This document extends the design down to the module level, giving a clear
description of the major tasks and processing that occurs within a module.
Included is all data input, data output, allowable tolerances for inputs and
outputs, interfaces with other modules, and verification activities.

Output: Software Desi2n Description (SDD)

This document contains all the detail mentioned in the two previous documents.

Reviewv: The design documentation review assesses and verifies the technical
adequacy of the selected design approach; checks the design compatibility with
the functional and performance requirements of the SRS; verifies the existence
and compatibility of all interfaces between software, hardware, and user or
between database and user; reviews compatibility with the software interface
with which the database is required to interact; and assures that the design
addresses all the elements in the software requirements specification. This
review also assesses the technical risks of the product's design. The complexity
of the software design may require the performance of multiple design
reviews.

When the design documentation is ready for review the developer submits the
design documentation to the TL (or next management level if the developer is
the TL). The TL reviews the design documentation and documents that review.
The documentation for the review contains a record of the review comments
and their resolution, a plan and timetable for implementation of the
resolution(s), and the personnel responsible for the resolution. Review
documentation becomes a permanent record. The TL then authorizes the
design documentation for use as a basis of the programming phase.

Revision 0
Page 38 of 62

The TL may authorize the Software Design Description for provisional use as
the basis for the programming phase before the review is complete. If the
review results in changes to the design documentation, then work already done
in the programming phase is reviewed as to whether changes in the coding are
required by the changes in the design documentation. If the review results in
changes to the design documentation that in turn need to be reflected in the
SRS, the SRS is revised, reviewed and authorized for use.

Phase Completion: ' The design phase is -- completed when the design
documentation is submitted by the developer as containing the required
content, is ready for review, and the design documentation is authorized by the
TL (or next management level if the developer is the TL) for use as the basis of
the programming phase.

Configuration Management (CM): At phase completion the design
documentation is submitted to the Software Quality Manager and becomes an
element of the Configuration Management system. The SM assigns a
Configuration Item Identifier at this time and the design documentation
becomes baselined. Any later approved, revised design documentation also
becomes an element of the Configuration Management system. If a document
is approved for provisional use it will be entered into the Configuration
Management system by becoming a Configuration Item and will be assigned a
Configuration Item Identifier.

6.2.3.C. PROGRAMMNG PHASE

This phase of software development translates the design into a computer
language. Also during this phase due to design changes made while coding,
modification of the SRS, of the design documentation, and of the design based
test cases occur, with the modif iction subject to the same level of review and
authorization for use as the oricinal documentation.

Output: Source Code

This document is a listing (on computer-readable or human-readable media
such as microfiche, microfilm, or paper) of the source code and of system
commands needed to run the code. The source code shall be appropriately
commented.

Revision 0

Page 39 of 62

Review: The review examines the source code for adherence to coding
standards and assures that the source code correctly embodies the design as
specified by the design documentation and the SRS.-

When the source code is ready for review the developer submits the source
code to the TL (or next management level if the developer is the TL). The TL
reviews the source code and documents that review. The documentation for the
review contains a record of the review comments and their resolution, a plan

- and timetable for implementation of the resolution(s), and the personnel

responsible for the resolution. Review documentation becomes a permanent
record. The TL then authorizes the source code for use as a basis of the test,
debug, and verification phase.

The TL may authorize the Source code for provisional use as the basis for the
next phase before the review is complete. If the review results in changes to
the source code, then work already done in the test, debug, and verification
phase is reviewed as to whether changes in the next phase are required by the
changes in the source code. If the review results in changes to the source code
that in turn impact the design documentation and the SRS, the design
documentation and the SRS are revised, reviewed, and authorized for use.

Phase Completion: The programming phase is completed when the source
code is submitted, by the developer, containing the required content, is ready
for the review and the source code is authorized by the TL (or next
management level if the developer is the TL) for use as the basis of the test,
debug, and verification phase.

Configuration Management (CM): At phase completion the source code (on
appropriate permanent media) along with the "Software Summary" form (see
Appendix L) is submitted to the Software Quality Managier and becomes an
element of the Configuration Management system. The SQM assigns a
Configuration Item Identifier at this time and the code becomes baselined. Any
later approved revised source code becomes an element of the Configuration
Management system. If a document or code is approved for provisional use it
will be entered into the Configuration Management system by becoming a
Configuration Item and will be assigned a Configuration Item Identifier.

Revision 0
Page 40 of 62

6.2.3.D. TEST, DEBUG, AND VERIFICATION PHASE

This phase of software development tests, debugs, and verifies the program
(i.e. source code) to determine whether the code accurately performs the
requirements described in the SRS. All verification activities will be
documented. Verification shall assure that the software performs the intended
function and does not perform any degrading or unintended functions. The
goal of test, debug, and verification is to develop a set of test cases that have
the highest probability of detecting the most errors in order to identify under
what conditions the software does not perform properly. This phase can start
on a modular basis when the module of source code is complete (submitted for

v review and authorized by the TL for use in this next phase). A driver of the
module for test purposes, or a skeleton of the whole program, may be used as a
test driver.

The skeleton should contain the full implementation of the top-level design of
the program, and may contain stubs for other modules that are not yet
implemented. For stubs modules that interact with the module under test, the
stubs should provide data transfer features mimicking those in the final
modules. A sufficient subset of the tests shall be repeated when the full source
program is completed.

Writing of a Software Test and Verification Plan (STVP), and development of
test problems, should begin earlier in parallel with other phases, using and
exchanging available information. The Test, Debug, and Verification Phase
does not preclude informal and unrecorded testing by a developer or by several
developers whose work is related, during the Programming Phase.

The Test, Debug, and Verification Phase really has two subelements: debugging
and final verification tests (acceptance tests). The debugging phase overlaps
with the programming phase. Progress of debugging during the programming
phase may be an appropriate subject for archiving in a large software project,
but not required unless called for in the Individual Software Plan or the
Software Test and Verification Plan (STVP). Final verification testing includes
a sufficient set of tests on the final source code, and review of completed tests
on earlier development versions of the source code. Such reviews will consider
whether the tests are verifying elements of the code that have not been further
modified or impacted by code changes leading to the final source code.

Model validation is addressed in Section 6.8. Model validation is application
dependent. Model validation is not complete at this phase as it is an ongoing
effort, which continues until licensing.

Revision 0

Page 41 of 62

Software testing and verification documentation include a plan that describes
the tasks and criteria for accomplishing the verification of the source code and
a report that details the results of the testing and verification activities. The
testing and verification documentation may be a single document called the
Software Test and Verification PlarL/Report" or may be two documents called

the "Software Test and Verification Plan (STVP) " and the "Software Test,
Debug, and Verification Report (STDVR)". The end result (the level of detail)
of the documentation is the same. The documentation includes, as appropriate,
all the detail covered in Appendix B.3 and B.4.

Optional Output: Software Test and Verification Plan (STVM

This document specifies the hardware and system software configuration(s) for
which the software is designed. The plan relates test and verification activities
directly to the SRS and design based test cases. In those cases where testing is
used to ensure that requirements were met in the software design, the plan
provides traceability from requirements to design as implemented in the source
code.

Optional Output: Software Test. Debug. and Verification Report (STDVR)

This document reports the results of the execution of the test and verification
-activities. It reports all tests run that verify that the program functions
correctlv. It also reports exercises of all possible paths and the use of valid and
invalid data during testing. The report also includes the results of all reviews
-and audits, and contain a summary of the status of the software.

Output: Software Test and Verification Plan/Report

This document contains all the detail mentioned in the two preceding
documents. Standard output is the Software Test and Verification Plan/Report
that contains the information specified in Appendix B.3 and B.4.

Review: The test and verification documentation review assesses the adequacy
of the test planning, the validity of the test cases, and the completeness of the
test and verification planning. The review also verifies the accuracy of the
results, as stated in the report, and assesses the completeness of the test and
verification activity.

Revision 0
Page 42 of 62

When the test, debug, and verification documentation is ready for Technical
Review the, developer submits the documentation to the TL (or next
management level if the developer is the TL). The Technical Review is
conducted in accordance with QP-2.4, "Technical Review" or QP 3.3, "Review
of Technical Publications". The reviewers assigned will be independent of the
performance of the original work. The TL reviews the documentation and
documents that review. The documentation for the review contains a record of
the review comments and their resolution, a plan and timetable for
implementation of the resolution(s), the personnel responsible for the
resolution, and a statement regarding the completeness of this verification
effort. Review documentation becomes a permanent record. If the review
results in changes to the plan or to the planning part of the plan/report, then
work already done for the report is reviewed to see whether the changes in the
planning will cause changes in the work done for the report. Changes are rhade
in accordance with Section 4.2, "Configuration Change Control".

Phase Completion: The test, debug,, and verification phase is completed when
the test, debug, and verification documentation is submitted by the developer to
the TL as containing the required content, is ready for review, and the
documentation is authorized by the TL (or next management level if the
developer is the TL) for use.

Configuration Management (CM): At phase completion the test, debug, and
verification documentation is submitted to the Software Quality Manager and
becomes an element of the Configuration Management system. The SQM
assigns a Configuration Item Identifier at this time and the test, debug, and
verification documentation becomes baselined. Any later approved revised
documentation also becomes an element of the Configuration Management
system. If a document or code is approved for provisional use it will be entered
into the Configuration Management system by becoming a Configuration Item
and will be assigned a Configuration Item Identifier.

Revision 0

Page 43 of 62

6.2.4 Reviews

The documentation produced in accordance with the life cycle plan will be reviewed at
times specified by the Individual Software Plan (See Section 6.2.2).. These reviews
will be conducted by at least one person who is qualified to judge the progress and
direction of the, programming effort, usually the TL unless the TL has participated in
the work being reviewed. The reviews will consider both the technical adequacy of the
documentation and its adherence to the Individual Software Plan. Documentation of
the results of each review will be given along with the reviewed documentation to the
Software Quality Manager for inclusion in the Software Records Management System.

6.2.4.1 Review of Manuals

The Th responsible for the development of the Theoretical and User Manuals
or any other manuals reviews and approves the final manual or manuals in
accordance with QP 3.3, "Review of Technical Publications". The TL
responsible for the development of additional documentation due to the
inadequacies of manuals from acquired, existing, or commercial software
reviews the new documentation and approves its final form. The review of the
additional documentation is documented. The documentation for the review
contains a record of the review comments and their resolution, a plan and
timetable for implementation of the resolution(s), and the personnel
responsible for the resolution. Review documentation becomes a permanent
record.

Configuration Management (CM): After the review is completed, the review
documents and the manual(s) are submitted to the Software Quality Manager
and becomes an element of the Configuration Management system. The SQM
assigns a Configuration Item Identifier at this time and the documentation
becomes baselined. Any later revised, reviewed, and approved documentation
also becomes an element of the Configuration Management system. If a
document is approved for provisional use it will be entered into the
Configuration Management system by becoming a Configuration Item and will
be assigned a Configuration Item Identifier.

Revision 0
Page 44 of 62

6.3 Acquired. Existing, and Commercial Software

This section establishes the criteria for purchasing, configuration management, and test,
debug, and verification of acquired, existing, and commercial software. This section
establishes criteria for software conversion.

6.3.1 Purchasing

Software deemed appropriate for use at LLNL that was developed outside of
LLNL-AN4P may be acquired or purchased. Software which is considered large SES
requires an approved Individual Software Plan which contains an acquisition plan for
the software. Only large SES requires an Individual Software Plan and an acquisition
plan; all other acquisitions are controlled under normal purchasing controls.

Requests for software acquisition include appropriate criteria to enable the software
received to comply with required sections of this Plan. Those sections not met by the
software are completed by the acquirer (user) in the relevant phase of the life cycle
that is incomplete or, if that is not possible, the reason is documented and maintained
with the software and distributed to all users. The following documentation is required
for Acquired or Commercial software:

* The documentation, including User's Manuals, provided by the vendor or
supplier and a record of its local physical location.

* A record of the software version number.

* A record of the documentation revision number(s)

The user responsible for purchasing or acquiring software is also responsible for
assuring the accuracy of results, identification of software errors, assessing the impact
of software errors discovered by other users, or while verifying the software. The
problems and errors encountered during application are reported to responsible TL
and to the vendor or supplier, as appropriate.

Procurement of software is accomplished in accordance with requirements found in
procedure QP 4.0, "Procurement Document Control", and in procedure QP 7.0,
"Control of Purchased Materials, Equipment, and Services", as applicable.

Revision 0

Page 45 of 62

K\- .I Anti''6.3.1.lAcquisition Plan

The Acquisition Plan contains a brief description of the software, its intended
use, and the conditions that the software is expected to be in when it is received
(including all documentation to be received). The plan also states the software
category. The plan describes the requirements for bringing documents into
compliance with the required documentation of the Software Quality Assurance
Plan. The plan also describes the verification activities to be applied to the
software. The plan states what vendor verifications are to be supplied (i.e.
benchmarks, test cases and results, integration and/or operational checks) and
what additional or confirmatory verification activities are to be performed by
LLNL. Finally, if further development is to be conducted at LLNL, the plan
contains all necessary requirements for in-house development, when - not
addressed by an Individual Software Plan. Acquisition. plans are reviewed in
accordance with Section 6.2.2, "Individual Software Plan (ISP)", subsection
"Review".

6.3.2 ExistinE Software

Existing software is software that was written prior to the approval of the Software
Quality Assurance Plan and will be used in level I and II activities. A Software
Category Selection form, Appendix C. is required for existing software. For large
SES an Individual Software Plan is required. The plan contains a description of the
software, its intended use and the existing documentation. The plan describes the
method(s) for bringing the documentation into compliance with the requirements of
the Software Quality Assurance Plan. The plan also describes the verification
activities, confirmatory testing, and additional checks to be applied to the software. If
further development is to be conducted at LLNL, the plan contains all the
requirements for in-house development.

Revision 0
Page 46 of 62

6.3.3 Confieuration Management (CM)

Configuration Management for acquired or existing software at the Configuration Item
Baseline level, for large SES software acquired under the controls of this SQAP,
occurs at the start of work evaluating the received items. Received documentation,
software, and anv other items of information, plus the acquisition plan and Software
Category Selection form, if applicable to that software type, are submitted to the
Software Quality Manager for entry to Configuration Management and recording in

''the'MasterLog.- Software is entered into the Configuration Management system by

submitting the Software Category Selection form (See Appendix C) to the Software
; Quality Manager. For commercial software other than large SES, this will be done as

soon as a decision to use the software has been made and the software is loaded and
working on the computer system. A new Software Category form is to be submitted

for each new version or release and when the technical contact is changed. Changes
made to acquired, existing, or commercial software that are not for compatibility or

portability concerns are required to be treated as new software and are under the
constraints of new software.

Revision 0

Page 47 of 62

6 3 4 Test. Debug and Verification^

Acquired and existing software and changed acquired and existing software will be
tested and debugged by the assigned software developer prior to its release. The test,
debug, and verification activity determines whether the software accurately performs
the functions and mathematics desired for software developed outside of the life cycle
process. The functional bases for developing the tests are the theoretical manual as
required by NUREG-0856 and the requirements identified in the acquisition plan.
Verification shall assure that the software performs the intended function and does not
perform any degrading or unintended functions. Verification involves conditions
necessary to exercise the software, identify boundary conditions, and provide a
suitable benchmark for installation. If the verification requirements cannot be met,
then that portion of the code shall be identified and controlled. The extent to which
the software is tested is determined largely by the complexity of the software. A
simple code performing algorithms generally accepted as correct can probably be
completely and accurately verified by the programmer using ordinary debugging
techniques. Examples of these techniques are 1) a line-by-line inspection; 2) testing
of individual modules or subroutines of the program; and 3) comparing computed
results against hand-calculated numbers. Generally, number 3 is considered the final
test of a program accuracy for simple codes. The effort that the programmer goes
through to test, debug, and verify the software will be documented along with the
results.

For software that includes complex and original modeling approaches, the test and
debug approach to verification will generally be insufficient for determining the
desired accuracy of the software for the full range of its possible application, because
calculating more than a few results by hand to compare the program's output may be
too time consuming. For this type of software, further verification is called for by
Section 6.7, "Application Verification".

If the software was developed commercially or before the initial issue of this plan, the
test, debug, and verification activities that were previously performed must be
described. If this information is not available verification as described above will be
done. Widespread use of the software may be cited as evidence providing additional
support for its accuracy.

Model validation is addressed in Section 6.8. Model validation is application
dependent. Model validation is not complete at this phase as it is an on going effort
which continues until licensing.

Revision 0
Page 48 of 62

6.3.5 Software Conversion

Software conversion is the task of altering software designed to be used on a computer
system and/or peripheral hardware other than that for- which it was designed.
Conversion includes all modifications and tests made to input/output or the source
code or additional software written to run the original software on the new system and
verification activities necessary to assure that the software operates properly and does
not perform any degrading functions. The conversion process is documented and
maintained for the specific version of the software and the computer system on which
it is installed. Documentation includes, but is not limited to, the following:

A. Software name and version/release number and the hardware make and
model number(s) that the software originally operated on.

B. Software conversion number (if the developer re-identified the software
with a LLNL-YMP number)

C. New hardware make and model number(s).

D. Description of what was done. The description contains enough detail so
that the process can be repeated and describes the test cases used.

All documentation concerning the conversion process and verification activities are
reviewed. This review -assures technical adequacy of the documentation and the
conversion process. This review is documented. The documentation for the review
contains a record of the review comn-.ents and their resolution, a plan and timetable
for implementation of the resolution, ani the personnel responsible for the resolution.
All conversion documentation, includine review documentation, is a permanent
record. Configuration management applies to converted software using the original
product as the initial baseline. Contiguration management records document the
conversion and include any modification, configuration changes, or additional
software required to make the softwarc functional. Changes to converted software are
evaluated and performed in accordanlc with Section 4.2.

Revision 0

Page 49 of 62

6.4 Scientiic Software Notebook (Notebook)

This sectioii establishes the criteria for the use, configuration management, and review of
the Notebook. Notebooks are used for Medium SES and Large Calculational Non-SES
but may be used in other areas also. The Notebook is a method for reducing the number
of controlled documents but must contain the same types of information as required when
individual Hf` cycle documents are used. For Medium SES that will be used externally,
the required NUREG-0856 documentation will have to be provided separately (i.e. not in
a Notebook) The Notebook is used to record data, information, analysis, and work
progress on a daily or as appropriate basis. It is the principal recording document from
which work-related to an activity can be traced. Notebooks are used in accordance with
QP 3.4, "Scientific Notebook". The appropriateness of use of the notebook will be
considered by the TAL in review of the Activity Plan.

The Notebook is used by qualified individuals who are using a high degree of professional
judgment or. trial and error methods, or both, in their work. The extent of documentation
in the Notebook is such that another qualified individual can use the Notebook to retrace
the investigation and confirm the results or repeat the investigation and achieve the same
results without recourse to the original investigator.

The Notebook is intended to be the primary recording document from which work can be
traced. The Notebook is securely bound and suitable for-photocopying of the contents.
Entries comply with legibility and permanency criteria specified in QP 3.4.

A Notebook contains, in addition to the requirements of QP 3.4, the following: the content
of the referenced lifecycle (even if other terminology or phases are used) and a list of all
program names, their version number and Configuration Item Identifier. The purpose of
Notebooks is for review of the work and to provide a road map of how the task was
completed.

Notebooks are assigned a unique identification number by Document Control.

Configuration Management is handled within the Notebook. All Configuration Item
Identifiers (See Section 4.1) are assigned and recorded in the Notebook. Error resolution
and change control is documented in the Notebook.

Notebooks may incorporate SQA Plan required documents by reference. If so, such
documents shall be submitted to the Software Records Management System for identifier
assignment and for archiving. The notebook references this identifier of the document.

Periodic reviews of work conducted under notebook control are accomplished by the TL
in accordance with QP 2.4, "Technical Review". The Individual Software Plan specifies
when these reviews are to be conducted. Review of a Notebook is completed in
accordance with QP 3.4, "Scientific Notebooks".

Revision 0
Page 50 of 62

6.5 Software Documentation

This section describes the documentation required for each category of software (See
Section 6.5.3). Appendix B through G give detailed instructions and provide the forms
which support the documentation requirements. Appendix B gives a detailed explanation
of the content of these documents. Appendix C contains the Software Category Selection
form, the instruction for completing the form, and a brief description of the different
software categories. Appendix D contains the Software Documentation Checklist for SES
documentation required by NUREG-0856. The checklist will be submitted with the
documentation. Items requested that are not applicable should be marked as not
applicable (N/A). Appendix E contains the Software Summary form and directions for
completing the form. Appendix F contains the Software Quality Checklist and Submittal.
Appendix G contains the Statement of Analysis - Specified Software Certification.

Documentation must be submitted for independent technical review before being
submitted to the Local Records Center. The review will be performed and documented by
the TL. QP 2.4, "Technical Review" is to be used for material that will not be published
or released with the software and QP 3.3, "Review of Technical Publications" will be used
for documentation that will be published or released with the software.

Documentation is divided into two categories: one is the documentation required by
NUREG-0856; and the other is the documentation required by life cycle. All
documentation should be written in an amount of detail that would allow a potential
reviewer or user with knowledge of the intended application to evaluate or use the
software effectively. The Individual Software Plan specifies how the various items of
documentation are combined.

6.5.1 NREG-0856 Documentation

NUREG-0856 documentation consists of material meeting the following categories:

A. Theoretical Manual: What the program does (i.e., its purpose) and How the
program performs its purpose (i.e., algorithms, sort routines, etc.).

B. Users Manual: How to use the program. Appendix B.6 may be used as a
guide.

C. Source code listings: Specifically, a paper hard copy (option: a copy on
microfiche), and a computer-readable copy on magnetic tape or floppy disk.

D. Software Summary (See Appendix E).

E. Code assessment and support (See Appendix B.8): Verification and

Revision 0

Page 51 of 62

validation activities de riptions, results summaries and references
Summary of any'independent reviews of the models and methods used.
Summary description of software maintenance program, differences among
software versions, and QA program.

F. Continuing Documentation (See Appendix B.9).

(Appendix B may be used as a guide but for complete requirements refer to
NUREG-0856)

6.5.2 Life Cycle Documentation

Life cycle documentation consist of the following:

A. Individual Software Plan (See Section 6.1.2 and 6.2.2)

B. Software Requirements Specification (See Section 6.2.3.A).

C. Design Documentation (See Section 6.2.3.B).

D. Verification Documentation (See Section 6.2.3.D).

E. Software Category Selection (See Section 6.1.1).

F. Software Documentation Checklist (See Section 6.5).

G. Software Quality Checklist and Submittal (See Section 6.5).

;- H. Statement of Analysis - Specified Software Certification (See Section 6.5).

For a commercial or acquired software, an effort must be made to obtain documentation
from the vendor/supplier or to have this documentation produced. The TL assigned to
that software must justify the missing documentation or furnish the required (new)
documentation. The SRS and Design Documentation for commercial software are
expected not to be available.

6.5.3 Cate2ories

6.5.3.1 In-House Lar2e SES

For Large SES, the minimum documentation consists of one manual (or the
required information contained in several manuals) that includes all documentation
required by NUREG-0856 (See Section 6.5.1) and Life Cycle (See Section 6.5.2).

Revision 0
Page 52 of 62

6.5.3.2 Acquired. Existing and Commercial Large SES

For Acquired, Existing, and Conmercial Large SES, the minimum documentation
consists of one manual (or the required information contained in several manuals)
that includes all documentation required by NUREG-0856 and the following:

1. Acquisition Plan

2. Software Category

3. Available development documentation (e.g. SRS, Design Documentation,
etc.)

4. Software Summary

5. Documentation as specified in Appendix F, as appropriate.

6.5.3.3 In-House Medium SES

For medium SES, the minimum documentation consists of one manual (or the
required information contained in several manuals) that includes all documentation
required by NUREG-0856 (See Section 6.5.1) and Life Cycle (See Section 6.5.2).
This may be contained within a Notebook.

6.5.3.4 In-House Lar2e Calculational Non-SES

For in-house large calculational non-SES, the minimum documentation consists of
one manual (or the required information contained in several manuals) that
includes all documentation required by NUREG-0856 and documentation specified
in Appendix F, as appropriate.

6.5.3.5 Acquired. Existing. and Commercial Calculational Non-SES

For Acquired, Existing, and Commercial Calculational Non-SES codes, the
minimum documentation consists of:

1. A user's manual, obtained from the vendor or supplier.

2. Source-code listings, on paper and on a computer-readable medium, if
obtainable.

3. Documentation specified in Appendix F, as appropriate.

Revision 0

Page 53 of 62

65.3.'6 In-House Non-Calculational Software

`d;85For non-calculational software identified as critical in an activity plan, the
minimum documentation consists of the following:

1. Individual Software Plan if specified in the activity plan.

.. 2. Software Category Selection (Appendix C) and Software Quality
Checklist and Submittal (Appendix F)

-3. Statement of Analysis - Specified Software Certification, unless the
Individual Software Plan provides an alternate means of controlling
authorization for use.

6.5.3.7 In-House Small SES

For Small SES category of software developed in-house, the minimum
documentation consists of one manual (or the required information contained in
several manuals) that includes all documentation required by NUREG-0856 (See
Section 6.5.1) and Life Cycle (See Section 6.5.2).

6.5.3.8 Acquired. Existin2. and Commercial Small SES

For acquired, existing, and commercial Small SES, the minimum documentation
consists of one manual (or the required information contained in several manuals)
that includes all documentation required by NlJREG-0856 and the following:

1. Acquisition Plan

2. Software Category

3. Available development documentation (e.g. SRS, Design Documentation,
etc.)

. �;. , "ql 4

� 1. o I �

4. Software Summary

5. Documentation as specificd in Appendix F, as appropriate.

6.5.3.9 Small Calculational Non-SFS and Non-Calculational Software

For Small Calculational Non-SES fand Non-Calculational categories of software
developed in-house or acquired software (including existing and commercial) no
documentation is required unless specified in the activity plan.

Revision 0
Page 54 of 62

6.6 Certifiction of Software for Analyses - i-;?iW a.' -

Whenever software is used to perform a QA Level I or II analysis (which includes running
the software to perform verification, validation, or a design or performance analysis), the
investigator must submit a Statement of Analysis-Specific Software Certification (See
Appendix G) for that software for that use. This statement contains:

a. The name, version, and release number of each piece of software to be used in
the analysis.

b. An identifying number associated with the analysis, and the Quality Assurance
Level. -

c. A description, with references, of work already completed for meeting the
requirements listed in section 6.7, "Application Verification" and section- 6.8,
"-Validation" .

d. Future plans, if any, for performing additional application verification and
validation to lend support to the conclusions reached in item "g" below.

e. Tentative plans for efforts to ensure that the results of the analysis will be
compared with the results of future application-verification and validation work.
The plans must assign responsibility for the comparison. The purpose of these
plans is to ensure that future results do not change the conclusions reached in
item "g" below.

f. Assurance that sections 4.0 and 6.1 through 6.3 (where applicable) have already
been completed.

g. A summary which states the software to be used, in its present state of
development and documentation, is appropriate and adequate for the intended
analysis. This statement is detailed enough to assure the user that the software
adequately meets the objectives of the analysis and allows the user the ability to
assess whether the input data and assumptions are valid and traceable. This
statement contains, in addition to the evidence cited in item "c" above, the limits,
ranges, and tolerances associated with the analysis, any specific quality related
items not mentioned previously, and any features of development of the software
(e.g. the use of expert judgment) that have helped to ensure its quality.

Revision 0

Page 55 of 62

:-'': h For ntem analysis the summary must include a review of the specific analysis
to verify that required software options will not call incompleted code segments
and that incompleted code segments are ade f'ronth& 'utilized
routines or modules so as to preclude affecting the validity and accuracy of the
interim calculation. Thestatus of the results o the interim analysis shall be
stamped or otherwise marked to qualify use and limitations of incompleted
documentation, validation or verification and clearly stated in the preface of all
results (See OP 3.5, "Control of Internal Technical Interfaces").

The form shown in Appendix G, Statement of Analysis-Specific Software Certification,
shall be used to submit this information. It must be initialed by the software developer or
Software Qualitv Manager as confirmation that the statement in item "f" is correct. It
must also be approved by the Task Leader, TAL, and the TPO (if for a QA Level I effort
which has not completed verification), who by their signatures express their agreement
with the certification statemerit signed by the TL. The completed form must be submitted
to the Software Quality Manager. The Master Log is updated with this information, and a
copy is placed in the appropriate file for this particular analysis.

6.6.1 Criteria for Use in Analvsis - -; -? -.

Given that all requirements have been met and that the appropriate "Statement of
Analysis - Specified Software Certification", Appendix G, has been completed, the
user may then use this software for Quality Assurance Level I and II analysis.
Software may be used for analysis upon completion of verification activities (Section
6.2.3.D or 6.3.3 and 6.6(3)). Software used in analysis must be reviewed according to
this section regardless of its state of development. Validation is an on going and
application specific activity.

Revision 0
Page 56 of 62

5.. .S ON

6i - ; X - -

_ 3 i.6.2 Application (User) Requirements - ' ;

Procedures' are established for user's to provide reasonable assurance that the
* 4 .' _f; 5, . - . ..- .

software used is appropriate for the intended application and that the results produced
by these" applications are accurate and can be independently reproduced. Procedures
are also established for documenting and reviewing software applications that perform

-technicalcalculationi. 'Docurmentation appropriate for a given application or analysis
includes the assumptions or approximations employed to develop the input data, input
and output files, the software used, and appropriate user documentation for
performing the application or analysis. Review of software applications will assess the

adequacy of the documentation, the validity of the assumptions or approximations and
the accuracy of the results. Review documentation contains a record of the review
comments and their resolution, a plan and timetable for implementation of the
resolution, and the personnel responsible for the resolution. The application-, and
attendant documentation including review documentation are subject to Configuration
Management and are considered a permanent record.

Application(s) whose verification activities are not complete will state so in their
documentation. This statement will contain the limits and ranges for which the
verification activity has been successfully completed, states what activities have not
been completed and describes the risk involved with using the results of the
application. Application/analysis results will be distributed to registered users.

Revision 0

Page 57 of 62

1-<...> , - .- t,.

6.7 Application Verification A r

Application verificatiQn is an extension of section 6.3.4, "Test, Debug, and Verification"
for Existing, Acquired and Commercial Software in that it ascertains that the program
correctly performs the mathematics intended and accurately corresponds to its
documentation. However, application verification is generally applied to software of
greater complexity whose accuracy for the (application-specific) combination of options
and input value ranges cannot be determined to the desired level using ordinary testing
and debugging techniques. For the purposes of this plan, application verification is
considered to be a particular kind of analysis; it is performed by the in-house end user
and allows the user to verify the program for his particular application and its associated
range of input.

There are three methods of application verification most commonly used:

1) Comparison of results computed by the program with those calculated by hand or
analytically.

2) Use of a "Proof of Correctness". (See The Science of Programming, written by
David Gries and published by Springer-Verlag in 1981; ISBN 0-387-90641) This
technique employs a form of mathematical induction to prove that every portion
of a software product is depicted correctly.

3) Benchmarking the program against other software (See Appendix A for definition
of "Benchmarking").

An application verification effort may use one or more of these techniques in establishing
the desired accuracy of a code. The optimal approach may vary from application to
application.

For acquired, existing, and commercial software, verification functions described in the
theoretical manual will be done by means similar to those for in-house SES. Verification
of particular combinations of options or particular ranges of inputs, which go beyond the
scope of the general verification and are needed for a particular application, can be done
during Application Verification.

Revision 0
Page 58 of 62

Verification 'efforts will be fully documented. The documentation must include the
method, actual steps taken, tests run, and the results. These documents must be
subjected to a review-in accordance with QP 2.4, "Technical Review" or QP 3.3, "Review
of Technical Publications". If the verification effort or its review reveals that additional
changes are needed to the software, these changes will be handled by the TL of the
software. These changes. and indeed all changes are handled in accordance with Section
4.2. "Configuration Change Control" to ensure that the altered software is assigned a new
version or release number, any needed additional verification or reverification efforts are
performed, and all documentation is kept up to date. The TL for each "Application
Verification" exercise will supply to the Software Quality Manager all the documentation
resulting from the exercise or an appropriate cross-reference for inclusion in the Software
Records Management System. The Software Quality Manager will make certain that any
findings brought out through the verification process are distributed among the registered
users.

Revision 0

Page 59 of 62

0 ~~6.8' VaIidatiorA ---it-5.-rtn 8¢=-4 ;atg;

\alidation is the process of judging that a model is a sufficiently accurate representation

of a real sstem for a specified application. Validation provides the support required in

paragraph 60.21(c)(1)(ii)(F) of 10CFR Part 60. The validation activity shall be supported

by using an appropriate combination of such methods as field tests, in-situ tests,
laboratory tests which are representative of field conditions, monitoring data, and natural

analog studies. Validation will meet the requirements of NUREG-0856. Validation may
use comparisons of model predictions, using appropriately chosen values and boundary
conditions input to the software embodying the model (but not values calibrated on the

measurements to be compared against), with verified and traceable data from laboratory
experiments, field experiments, in-situ testing, and natural analogues. Specific sets of

data used in the validation process are identified, and justification is documented for their
use. These comparisons and conclusions will usually be published. Validation may also
use previous comparisons contributing to validation of equations, concepts, etc., that are
components of the model. The final judgment of adequacy of the model for the intended

application and of the information supporting this conclusion, may be done by a peer
review panel. The DOE-OCRWM Validation Oversight Committee is developing

approaches and guidelines for adequate validation.

The activity of validation is broader than software development, involving as it does the
identification or development of laboratory or field data, and evaluation of comparisons.
The planning, description, review, and control will be addressed in the scientific
investigation planning documents and handled in accordance with LLNL-YMP Quality
Procedures. The details of the process of Model Validation is not within the scope of the

SQAP (See QP 3.0, "Scientific Investigation Control").

The software development activity will have references to the validation activities and
resulting documents. For software that embodies a model, validation documentation will

include available referenceable information that indicates the limitations and capabilities
of the model - i.e., the conditions for which the model is considered to be valid for the
specified application.

Revision 0
Page 60 of 62

Validation activities will be documented in accordance with the Code Assessment section
of the NUREG-0856. All information regarding the conditions for which the model is
valid will be documented. If the validation effort or its review reveals that additional
changes are needed to the model, these changes will be handled by the TL. Once
validation is initiated, any software changes must be evaluated through both the
verification and validation processes to the degree that the change impacts the model and
the code. The model being validated is that which is embodied in the code. Changes to
the software are accomplished in accordance with Section 4.2, "Configuration Change
Control" to ensure that the modified model and associated software are assigned a new
version or release number, any additional needed validation efforts are performed, and all

documentation is kept up to date. The Software Quality Manager collects and stores all
documentation, software, and references in the software's permanent file and make
certain that summary information of the validation process is distributed among all
registered users.

Revision 0

Page 61 of 62

6.9 Software Product Completion

This section establishes the criteria for. Software Product completion and post-release
maintenance. When the requirements in Section 6.1 through 6.8 have been completed for
a particular task (activity) the TL responsible for that task (activity) will submit a "Memo
of Completion of Software Quality Requirements" (Completion Memo) to the SQM and a
"Software Product Summary" to the TAL.

All software quality requirement efforts for a task (activity) must be completed before the
results of the tasks (activity) are used in support of an application for a license from the
Nuclear Regulatory Commission.

6.9.1 Product Release

The Product Release is verified in accordance with QP 2.4, "Technical Review".

6.9.2 Completion Memo and Software Product Summary

The Completion Memo lists all the requirements, their resolution, and location of
documentation. The memo is submitted to the SQM for approval and archiving.

The Software Product Summary lists all items associated with the product and the
location of all documentation. After the Summary is approved, the TAL will send the
approved summary to the Software Quality Manager for archiving. The Software
Quality Technician makes a copy of the approved Summary and forwards it to the
developer. The purpose is to provide a map of the software product.

6.9.3 Distribution and Transfer

The Software Quality Technician maintains a Registered Users Distribution Log to
record YMP recipients of the LLNL developed software product. The log contains a
record of the material transmitted and the baseline identifiers. The Log is updated
each time the software product is distributed.

Software being transmitted from one location to another is verified to see that the
software was transmitted correctly. Appropriate test cases and their results are
transmitted along with software to be used to verify that the software performs
correctly.

6.9.4 Records

All records retained by the Software Records Management System are turned over to
the Local Records Center in accordance with QP 17.0, "Quality Assurance Records".

Revision 0
Page 62 of 62

* a 9. . *t 6.9.5 Post-Release Maintenance

The TL responsible for the software product is responsible for the post-release
maintenance. Post-Release maintenance consists of investigating, documenting, and
resolving errors and changes (either in the software, or the associated documentation)
that are reported by Registered Users. Error correction is accomplished in accordance
with Section 4.2, "Configuration Change Control". The TL also notifies Registered

Users that an error has been reported and of the error's resolution in accordance with
. OP 3.5, "Control of Internal Technical Interface".

Revision 0
Page A-1 of 5

K-I
.I- 7 . .

Appendix A

Definitions

This Appendix contains the "Definitions" of terms used in this Plan.

Revision
Page A-2 of 5

Revision
Page A-3 of 5

! ,17 , APPENTDIX A;-- DEFINITIONS
; 2 - , rF 'is a

Acquired Softwar& Software obtained from a source outside LLNL-YNM.

Application verification: An advanced phase of verification for software that is so complex
that not all combinations of options and input ranges can be verified. When using such
software, the end user must verify the software for the particular conditions of the
application.

Benchmarki/7g: The comparison of the results of a particular test case run on a software
package with the results of the same test case run on a different software package, where
both codes were designed to solve comparable problems.

Calculational. Non-SES: Software that can contain complex mathematics, but does not
involve modeling of scientific or engineering investigation or design applications. Some
examples include statistical packages, graphics packages, mesh generators, spread-sheet
programs, software operating analytical instruments, and embedded codes.

Commiercial softivare: Software that is not sponsored by LLNL. It is available to the public
on a fee or no-fee basis, and may be used outside of the YMP project.

Computer program, computer code, code: Is a set of computer instructions for performing
the operations specified in a numerical model.

Configuration item: Elements of the software product placed under Configuration
Manacemenz are called configuration items, and each is assigned a unique identifier.
Items so identified, include software and documentation.

Configuratior 'Management (CM): As used for computer software: (1) A system for orderly
control of software, including methods used for labeling, changing, and storing software
and its associated documentation. (2) The systematic evaluation, coordination, approval,
and implementation of all approved changes in an item of software after establishment of
its configuration.

In-house software: Software developed under LLNL-YvP auspices to fulfill a particular
LLNL requirement. Includes software developed under contract to LLNL but does not
include software developed independent of YNT.

Life cycle: See Software Development Life Cycle

Revision 0
Page A-4 of

APPENDIX A (continued) . -

Model: A representation of a physical system. The following hierarchy is used in
discussing models in this plan.

1 Physical Process/System is the real world.

Physical Model: A representation of a physical system, based on scientific
principles and laws, that describes the transformation of one set of input
information into another set of output information.

3 Mathematical model: A mathematical representation of a system or process.

4. Numerical model: A representation of a process or system using numerical
methods.

Non-calculational software: Software that performs data or symbol manipulation but not
mathematical calculations. Examples include compilers, word processors, operating
systems. etc.

Principal Investigator (PI): The person with assigned responsibility for conducting the
activities described in the Activity Plan, which can include development and use of
software.

Registered User: Software user involved in Quality Level I and II activities for YMP that
are identified in the Registered User log.

Release: A unique issue of the software product that generally has different capabilities or
contains corrections to errors that existed in the previous issue of the software product.

Revision: A unique issue of documentation that generally contains corrections to errors
that existed in the previous issue of the documentation.

Scientific and Engineering Software (SES): Software that specifies operations according to a
physical or mathematical model or that uses a numerical method and supplies primary
data or analysis used in support of Level I and II activities. This category includes
scientific, engineering, and mathematical modeling software that use a numerical method.
Typical functions for this software include geochemical models, repository or waste
package performance assessment, safety and reliability studies, engineering design, etc.
Commercial software packages applied to these types of activities are included. This
category includes mathematical subroutine libraries used in SES.

Software: A set of computer operations specified in any compiler language that can be
translated unambiguously into machine language. (Operations specified in machine
language are also software.) This definition includes databases.

Revision 0
Page A-5 of

ib '.'APPENDIX A (continued)

Software Quality Manager (SQM): The SM is 'assigned by the Deputy Project Leader and
is responsible for overseeing implementation of this plan. The SQM's tasks are described

in Section 3.3 of this plan.

Software Quality Technician (SQT): The ST is assigned by the TAL responsible for the
project and assists the SNI. The SQT's tasks are described in Section 3.3 of this plan.

Software Development Life Cycle: A method of project planning and documentation for the
development of a software product. Life cycle allows optimal traceability regarding the

goals, restrictions, decisions made, and current progress of a code for efforts so extensive
that the personnel involved may change during the life of the effort.

Technical contact: The technical professional identified on the software summary form,
usually the author of or current expert on the software.

Technical review: A documented critical review using QP 2.4, "Technical Review"
performed by personnel who have technical expertise at least equivalent to that required

for the original work.

Validation: The documented confirmation that the model under review is suitable for an
intended purpose. alidation includes assurance that a physical model. as embodied in

software, is a sufficiently accurate representation of the intended physical system or
process.

Verification: The documented confirmation that the software performs correctly the
mathematical and logical operations described in documents pertaining to the software.

Version: A unique implementation of software that generally has different capabilities or
contains corrections to errors that existed in the previous implementation of the software.

.:..... .. .

Revision
Page B-1 of 17

Appendix1B

,Requirements

Softurare Dor

D2humentation

S e t i~ n d i 6C
n t a i n 5 t h e " R e q u i r e m e n ~ f r ~ t v r e D C m n

Secr0 ~ 62 3of th s Plan.
sfrSfiae

ou~t

"1On" called out in

Revision 0
Pace B2 of 17

.: D --- . .

Revision 0
Page B-3 of 17

APPENDIX B REQUIREMENTS FOR SOFTWARE DOCUMENTATION ' i

B. Software Requirements Specification (SRS)

The SRS identifies the capabilities the software must possess and the constraints within
which it must operate. Each requirement is defined in such a way that its achievement
can be verified and and to the extent possible validated. A specific capability of software
can be called a requirement only if its achievement can be verified by a prescribed
method. The SRS contains the following:

B.1.1 Design Constraints

The SRS defines the design constraints that are imposed on the software by
existing standards and regulations, hardware limitations, operational
considerations, database and software interaction considerations, or the natur of
the software.

B.1.2 Functional Requirements

The SRS defines the output which is to be obtained from the input to the software
and the definition, units, limits and tolerances associated with the inputs and
outputs. The functional specification of the relationship of the output to the input
requires the unambiguous description of concepts and mathematical statement of
problems. These statements and concepts describe the model of the physical
processes, and the logical and physical relation of the outputs to the inputs. They
do not describe solution algorithms, unless the algorithm is needed to specify the
concept, or the purpose of the program development is to implement a designated
algorithm. Modularity and decomposition into sub-modules are encouraged in
developing the functional requirements. Parameters transferred between modules
are described by definition, units, limits, and tolerances. The SRS includes the
criteria for comparison of the results to the physical system or process that the
software represents, and that can be used for validation.

The SRS describes the source of each data item so that the information in the
database can be traced. The Level of Quality Assurance of each data item is also
specified where applicable. If coefficients or parameters are included in the data,
the equations for which the data apply are identified. Uncertainties in the values
of numerical data are included, when available. Index files defined for the
database are described.

Revision 0
Page B-4 of 17

APPENDIX B (continued) .< -- ' ' ' . .At i.

B.1.3 Attributes

The SRS defines the attributes of the software pertaining to non-time-related
issued such as portability, efficiency, security, or maintainability.

B.1.4 Interfaces

The SRS defines the interface requirements, if any, imposed on the software to

satisfy user, hardware, and communication needs.

B.1.5 Performance Requirements

The SRS define the time-related requirements of the software (i.e. processing

speed, recovery time, or throughput) as well as any size-related requirements-such
as storage requirements; the number of simultaneous user to be supported; number
of files and records to be handled; and sizes of records, tables, and files.

B.1.6 Verification and Validation Requirements of Software

The SRS references any generic requirements on verification or validation. Any
project-specific requirements on types and degree of validation, methods of
verification or validation or comparisons of output results to a physical system or
process are stated. The degree of accuracy desired or required, any qualifications
or quantitative requirements of the comparisons, are also stated.

Revision 0
Page B-5 of 17

APPENDIX B (continued) X . - .

B.2 Design Docunientation

The design documentation (the Software Preliminary Design (SPD) and Software Detailed
Design Description (SDDD) or the Software Design Description (SDD)) determines the
architecture of the final software. Its purpose is to separate the software into functional
parts so that each part achieves, as independently as possible, the capabilities defined in
the SRS. The design documentation provides a functional decomposition of the software
into its components, and thus determines its logical structure.The design is described in a
manner that is easily traceable to the SRS. The design documentation contains the
following:

B.2.a. Exposition of the algorithms and equations of solution methods, and their
limits, the logic controlling the solution scheme, and the data operations that
are to be performed within the software are included. All functional
requirements, as specified in the SS, are addressed.

B.2.b. Exposition of the structure of the program, in terms of its subroutines or
equivalent modules, including: 1) the logic concerning the calling sequence of
subroutines; 2) the data elements transferred into or out of each subroutine,
whether via the calling statement or via internal and external databases, and 3)
the functions of each subroutine. The relation of the functions in subroutines
to the functional requirements in the SRS is stated. The data elements in the
SDD cover the parameters (i nput, output, and transferred between major
functional modules) described in the SRS and may include additional
parameters introduced in the SD for control or calculational purposes.
Attributes of data, expanding hev und the attributes described in the SRS, may
include type, word length, array size, where stored in the program's data
structure, and source (e.g., in[ut from where, or where created or modified).

B.2.c. A description is provided for the following: the format, content, and
allowable tolerances of the input and output files; input and solution checks;
output reports; all interfaces, andi databases (both internal and external) that
are to be used.

B.2.d. Design constraints, such a the type and size of the hardware and the
computer language to be used, identified in the SRS are addressed.

B.2.e. The methods for achieving the software attributes and performance
requirements as specified in the SRS are described.

Revision 0
Page B-6 of 17

APPPNTFUY B

A (PENcontinued) -

B.2.f. The coding standards to be used are specified.

B.2.g. A description of the designed-based test cases is provided and verification
activities as specified in the SRS are addressed.

_:: ~4 ,' ., '. t ; ._o ^, .-* , , * , ; ,_ ;, , ,, by or

B.2.h. The methods for implementing interfaces between the database and other
software or between the database and the user are described.

B.2.i. All functional requirements and design constraints, as specified in the SRS
(for a database), are addressed.

B.2.j. The methods for achieving the database attributes and performance
requirements, as specified in the SRS, are described.

B.2.k. The methods to be used for verifying the information contained in the
database are described.

B.2.1. The methods for implementing the database itself are described.

B.2.m. The methods for gathering data are described.

Revision 0
Page B7 of 17

APPENDIX B (continued)

B. 3 Software Test and Verification Plan (STVP) -

The Software Test and Verification Plan describes the test and verification approach and
methods of performance, specifies how errors will be reported and documented, specifies
the level of detail at which test and verification will be carried out, and establishes the
degree of rigor to be imposed. The Software Test and Verification Plan is organized in a
manner that allows traceability to both the software requirements and the software design.
The Software Test and Verification Plan contains the following:

B.3.a. Provisions for the verification or test of separately identifiable components
of the software.

B.3.b. Describes methods to be used to verify that the requirements in the SRS are
implemented in the design (as expressed in the design documentation), the
design expressed in the design documentation is implemented in the software,
and that the software produces accurate and stable results relative to the
problems to be solved.

B.3.c. Describes the tasks, methods, and criteria for accomplishing test and
verification of the software.

B.3.d. Identifies the test documentation that is to be prepares for each module and
the system.

B.3.e. A verification matrix, in which the requirements of the SRS are referenced
to their corresponding Software Test and Verification Plan section.

B.3.f. Provisions for the verification of separately identifiable data sets.

B.3.g. Describes the tasks, methods, and criteria for accomplishing test and
verification of the database.

Revision 0
Page B-S of 17

AP i-s PENDIX B (continued) . . -

- .- 4 Software Test. Debug, and Verification Report (STDVR) -

The Software Test, Debug, and Verification Report describes the results of the execution
of the Software Test and Verification Plan. This includes all reviews, audits, and tests
required. The Software Test, Debug, and Verification Report summarizes the status of
the software as a result of the execution of the Software Test and Verification Plan. It
describes any major deficiencies found; provides the results of the reviews, audits, and
test; and recommends whether the software is ready for use.

B.4.1. For verification of a database, all experimental data are either peer
reviewed, confirmed through the use of corroborative data, redetermined by
confirmatory testing, or collected under an equivalent QA program.
Experimental data items that have been previously peer reviewed are accepted
without further review.

B.4.2. For verification of the database, the results of comparing entries in the
database with the original source data are required.

Revision 0
Page B-9 of 17

APPENDIX B (continued)- .,.,

B.5 Theoretical Manual- Mathematical Models and Numerical Methods

The purpose of the Theoretical Manual is to provide a complete explanation of methods

used, including a derivation of and justification for the model along with its capabilities
and limitations. Use extensive references to publications and point out new procedures
developed for the software.,

This documentation should be complete enough to serve as a sole basis for review of the
methods used in the code. The Theoretical Manual contains the following (as extracted

from NUREG-0856) and shall comply with all the requirements of the NUREG.

1. Overall Description

Describe the purpose of the model. Indicate in general terms the data input and
output of the model.

2. Structure

Briefly describe the role of each component model (logically distinct subset of the
model). Show the contribution of each to the overall solution of the problem. Use
flow charts and block diagrams or equivalent to describe the mathematical solution
strategy.

3. Numerical Procedure

Describe the numerical solution strategy and computational sequence. Use
flowcharts and block diagrams or equivalent. Give references for the basic
numerical procedure. If the method solves a large set of equations, show the
structure of the equations and how the coefficients were determined; reference
sources of all coefficients. Show the relationship between the numerical strategy
and the mathematical strategy (e.g. how boundary conditions are introduced).

4. Component Models

For each component model, provide the following descriptions:

a. Purpose. Describe the purpose and scope of the component model. State
the input to and output from the model in general terms and the way the
information is processed. State under what circumstances the component
model is executed.

Revision 0
Page B-10 of 17

APPENDIX B (continued) ..

b. Assumptions and limitations. Describe the assumptions and limitations of
the component model. Include simplifying assumptions about the geometry
'and behavior of the'system. Include the known ranges of validity of the model
for all variables. For models based partially or wholly on observed or
experimental data (empirical or semi-empirical models), state the range and
type of data. State any known uncertainty about the model's validity.

C. Notation. Identify all algebraic variables that represent parameters within
the equations being programmed. (This requirement does not apply to
temporary storage arrays and temporary variable names. Identify only those
variables necessary to allow complete tracing of data through the software.)
Give the mathematical symbols used in the fundamental equations, their
equivalents in the numerical formulation and the computer variable name.

d. Derivation. Cite the original publication in which the component model
appeared and any subsequent references that present modifications that lead up
to the present form. Depict the derivation starting with generally accepted
principles. Justify each step in the derivation, noting how assumptions and
limitations are introduced and how any experimental data were used. State

clearly the final mathematical form of the model. If published material
contains an adequate derivation, a copy of this may be included instead of a
new derivation.

e. Application. Discuss how the component model applies to a an analysis.
Point out restrictions on extraIpolation of the model or use out of range.
Describe any restrictions on the use of the model. Discuss any unusual or
extreme conditions that would affect the validity of the model.

f. Numerical method tpe. ldcntifv any numerical methods used that go
beyond simple algebra (e.g., nite-difference method).

2. Derivation of numerical model Derive the numerical procedure from the
mathematical component model. civing references for all numerical methods.
State the final form of the numerckal model and explain the algorithm. Explain
how intermediate results are used.

h. Location. Show where the component model is located within the software.

b. Stabilitv and accuracy. Discuss the stability and accuracy of the numerical
model. distinguishing between aspects of stability and accuracy that have been
proven mathematically and those that have been observed in practice only.

Revision 0
Page B-11 of 17

APPENDIX B (continued) r - .

c. Alternatives. Discuss briefly any alternatives to the component model that

were considered and why this one was selected.

5. Perf rmance Evaluation

Discuss the overall performance of the entire model, noting under which conditions
the model gives acceptable results. Point out specific component models known to

perform poorly under certain circumstances. Give any recommendations to follow
when executing the model.

Revision 0
Page B-12 of 17

APPENDIX B (continued) - - .

B.6. . User's Manual , -.. ..,

The user's manual allows the user to understand modeling results, and to install and run
the software on the user's computer. This manual, along with hard-copy listings, should
be sufficient to instruct a user on how to set up and run problems and resolve any
difficulties encountered. -

Comments within the code or self-documenting features may be referred to in place of a
detailed description in the user's manual if the information is complete enough to enable
a new user (with programming experience) to run the software and resolve errors. The
User's Manual contains the following (as extracted from NUREG-0856) and shall comply
with all the requirements of the NUREG.

1. Program Considerations

a. Program paths. Describe the purpose of each subroutine. Use flowcharts
and block diagrams or equivalent to explain the paths the program can take.
Show how the computational sequence and solution strategy described in
Section B.5.3 "Numerical Procedure" are related to the program flow.

b. Program options. Discuss the function of each program option, giving
special attention to effects of combinations of options. Relate options to the
input values that control them.

c. Data structures. Discuss how data are stored during computation. Describe
the purpose and content of important common blocks and arrays. State the
array dimensions and describe the indexing algorithm if dynamic dimensioning
is used. This information, along with the hard-copy listing, should be
sufficient to allow the user to follow the flow of data through the computational
sequence.

d. Initialization. List any values automatically assigned to important variables,
including values of physical significance and parameters that affect program
execution. Show where the values are initialized and whether they are default
values or fixed.

e. Restart. Describe any restart capabilities of the code and how they are
used.

f. Error Processing. Describe the origin, likely causes, and corrective action (if
any) of all error messages (fatal or nonfatal), error switches, and abnormal
stops.

Revision 0
Page B-13 of 17

K .

-~~ ~ ~~ -- ~ ;..- .- '.e ...~.-.g
APPENDIX B (continued) : F

2. Data Files

a. Contgnt. Outline the general content, purpose, and organization of each
data file.§

b. Use bv program. Describe how and when the files are read and written by
the program.

- - ,0, -Ac. xuxiliarv processing. Describe any available auxiliary programs that create,
-. modify, or use the files.

3. Input Data

a. General considerations.

(1) Techniques. Describe any special input techniques and requirements
such as blank fields, order, or field delineation.

(2) Consecutive cases. If the code is able to retain input data from
- > .;- a. previous cases, give conditions for retention and reinitialization'.

(3) Defaults. Give the general conventions governing default values.

b. Individual input records.

(1) Record identifier. Give the line identifier, if any, for this type of
record.

(2) Input variables. State the code variables that will contain data given
- on this record.

(3) Format. Specify the format of this record, if any.

(4) Need. Specify for each variables whether input is necessary or
optional for both start and restart runs.

(5) Repetition. State how many of these input records are required.

(6) Units. For each field, state the dimensional units.

(7) Default. State the default value for each field, if any.

(8) Description. Define each variable and discuss its use within the
code. State how to assign values in setting up a run.

(9) Range. State the limits for each variable.

Revision 0
Page B-14 of 17

!~~ - - - A; *>--;;- ;;-X;X-- - .;-vi -

V z e air APPENDIX B (continued)' - - .

4. System Interface

a. Svstem-dependent features. List the external references in the program
that must be supplied by the system, and state the purpose of each. Include
plot and mathematical libraries, utility programs, and statistical packages,
identifying the manufacturer and version used. Omit any intrinsic functions
which are standard to the compiler being used.

b. Compiler requirements. Identify all compilers used and any special load or
compiler options that are necessary - e.g., large-core-memory addressing.

c. Hardware requirements. Describe all hardware features needed to execute
the code and the amount of memory required for a typical case, along with a
general rule for determining the necessary memory for varied cases.

d. Command files. Describe the command files necessary to control program
initiation, manipulation of files, and interaction with other programs. Give
detail appropriate to the degree to which command files contain logic affecting
program flow, manipulation of files, and communication among programs.
Give examples.

5. Output

Discuss the code output and relate edited output to input options. State the origin
and meaning of the output variables. Describe any normalization of results and
list associated dimensional units. Describe any graphical capabilities of the code.

6. Sample problems

Include sample problems which demonstrate how the software is used. These
problems need not have known solutions or experimental data, but they should
exercise a large portion of the available programmed options. These sample
problems should use only a reasonable amount of computer time. Input listings
and sample output should be given. Discussion on options selection and
corresponding results should be included.

Revision 0
Page B-15 of 17

APPENDIX B (continued)

B.7 Source-Code Listings . ' - .;

Listings of the source code should be submitted on each of the following media:

'1 Print on 8-1/2 by 11" paper - - . . ' 'a

- 2. Microfiche,.- ,.:. i X A

3. A computer-readable media, such as magnetic tape or floppy disk

Include these copies for every version and release of the program that is controlled by the

Configuration Management system.

B.8 Code Assessment and Support Documentation

This collection of documentation is intended for review and licensing purposes, per
NUREG-0856. This document(s) has the purpose of describing all work which sheds
light on the adequacy of the software. The goal of the document for licensing purposes is

to ensure that the software has been extensively reviewed, verified, and validated. In

addition, the document describes steps the applicant is taking to ensure that software

performance will not be degraded by future changes. Existing life cycle documentation
may be used where it fills the need. The topics in this category called for by

NUREG-0856 are:

1. Model review: Describe any projects for independent review of the methods
used in the model. Include past and ongoing programs as well as planned ones.
Summarize the results of past reviews. Describe any plans for modification of
the model as a result of the revievs. Give references for publications.

2. Verification and validation: Describe the program for verification and
validation of the software. Include past, ongoing, and planned future activities.

Give descriptions, input files, and results for specific tests. The input files
should be appropriate for the sotiware version delivered to NRC. State what
aspects of the software each test demonstrates and discuss how well the
software performed. Describe any plans for modification of the model as a
result of the tests. It is acceptable to provide reproductions of publications,

output, and reports documenting the tests. The above should be given for two
classes of tests:

a. Tests by the software developer; and

b. Independent assessment.

Revision 0
Page B-16 of 17

I. . APPENDIX .B (continued) - -

.. , ,,~, .t', - , -" i*; . -

3. Maintenance and Quality Assurance: Often there are several versions of
software, each with different modifications, capabilities, and limitations. For

licensing purposes, it is not necessary to completely verify and validate each
version as though it were a separate code. However, it is necessary to ensure

that each version is as correct as possible and that an orderly procedure exists

for keeping track of the differences between versions. Since this procedure
relates directly to the adequacy of the software for licensing purposes, provide
a description of the maintenance and quality assurance programs for the

software. Include a brief chronology of the software versions.

B.9 Continuing Documentation

Continuing documentation is required by the NRC for their use of the software. Software
generally continues to evolve even after a standard version has been released. This

evolution includes the development of new capabilities, the detection and repair of errors,
and application-oriented modifications. In order to ensure that licensing decisions are
made on the basis of up-to-date information, it is necessary that users be kept informed
of changes in the software.

Continuing documentation includes the preparation of new material and revision of the
existing documentation and error reporting. It also includes computer-readable and
paper listings of the current version and new versions as they are released.

1. Updated software summaries. Submit a new software summary form when the

information it contains changes. when new software versions are released, or
when the Technical Contact changes.

2. Technical contact. Identify a person whom the user can contact directly with
technical questions about installing and running the software. The user should

be informed whenever a new person is given this responsibility.

3. Documentation revisions. Revise the documentation sent to the user as needed
when changes are made in the software, when errors are found in the existing
documentation, when new limitations of the model are found, or when new
results of the assessment program described in Appendix B.8 appear.

4. Error reporting. When errors or omissions that could affect the validity or

appropriateness of the model itself or specific instances of its use are found,
these errors must be reported to the user promptly. This includes input errors.

Report action taken to correct the errors. State the significance of the error in
past, current, and future modeling activities.

Revision 0
Page B-17 of 17

APPENDIX B (continued)

5. Computer files. Send the user computer files containing the current software
version. new version as they are released, and necessary updates as they are
determined. Include the input files for the sample problems (See Appendix
B.6(6)). Include all necessary library routines. The means of transmittal may
be any reasonably standard medium. The information should be in a standard
format readable by a variety of computer systems. All files should be
accompanied by a printout from the runs which created them.

6. Paper listings. Provide printed listings of the current version, new versions as
they are released. and updates.

7. Description of udates and new versions. All updates and new versions
delivered to the user should be accompanied by descriptions of the changes.

S. Response to user questions. Provide responses to questions by the user
concerning the model, its use, or installation. Questions will state whether
written response. response by telephone, or a meeting is required.

Revision 0
Page C-1 of 4

_/ >: ' ~ ~ " ' ; R : - -: - ~ - -. : ,: -,. . -- i . :

K1 -.

Appendix C

Software Category

Selection

This Appendix contains the "Software Category Selection" form and an explanation on
how to complete the form. A new form is to be submitted for each new version or
release.

i

Revision 0
Page C-2 of 4

42

Revision 0
Page C-3 of 4

~~. . . .

1-0 I'. RE C or '': 2. D. ate:_

. PI or T: 2. Date:

' - . . I f. '-'.................. : . . -- ..

. Category: -

a. SES l I b. Calculational Non-SES [I
d. Large ' I e. Medium [I

c. Non-Calculational (I
f. Small [I

4. Type: In-hc se [] Acquired [] Commercial []
' If5 " Type" is Acquired or Commercial - fill in item 8 I

Existing [

a. Justification for category and type selected:

=. Program Name(. and version/release number:

'. Configuration Item Identifier and Software Quality Manager/Configuration Management initial

-3. Vendor or supplier:

a. Name:

b. Address:

c. Telephone:

d. Technical Contact:

9. Remarks:

10. Approved By:

a. Title:
Date:

Revision 0
Page C-4 of 4

SOFTWARE CATEGORY SELECTION (Continued)

Software Category Definitions

Calculational non-SES: Software that can contain complex mathematics, but does not involve modeling
or the use of numerical techniques. Some examples include statistical packages, graphics packages,
spread-sheet programs, software operating analytical instruments, and embedded codes.

Commercial software: Software that is not sponsored by LLNL-YMP. It is available to the public on a
fee or no-fee basis, and may be used outside of the YMP project.

In-house software: Software developed under LLNL-YMP auspices to fulfill a particular LLNL-YMP
requirement.

Non-calculational software: Software that performs data or symbol manipulation but not mathematical
calculations. Examples include compilers, word processors, operating systems, etc. .

Scientific and Engineering Software (SES): Software that specifies operations according to a physical or
mathematical model or that uses a numerical method. This category includes scientific, engineering, and
mathematical modeling software that use a numerical rrethod. Typical functions for this software include
geochemical models, repository or waste package performance assessment, safety and reliability studies,
engineering design, etc. Commercial software packages applied to these types of activities are included.

Instructions for "Software Category Selection" form

1. Name of Principal Investigator or Technical Leader, as appropriate.

2. Date form is initialed

3. Check the appropriate box for software category. Refer to section 6.1.1.
t

4. Check the appropriate box for software type. Refer to section 6. 1. 1. If the Type" of software is "Acquired" or

"Commercial" fill in item #8, with the appropriate information.

5. State the reason for the category and type selected. This may be very brief or may continue under item #9.

6. List the names and version or release numbers of all programs. Use item #9 if more space is needed.

7. This item is completed by the Software Quality Manager.

8. This item is used in conjunction with item #4. The name, address, telephone #, and Technical Contact of the

software originator, vendor, or supplier is to be entered here.

9. Additional information for a specific item or any comments may be entered here.

Revision 0
Page D-1 of 4

<-I~~~~~~~x

Appendix D

Documentation Checklist

This Appendix contains the "Document Checklist" form. A new form is to be submitted

for each new version or release.

Revision 0
Page D-2 of 4

...

I . 1. o I . � �-!, - I

Revision 0
Page D-3 of 4

Documentation Checklist
SES Documentation required by NUIREG-0856

Software Name: Date:_

DOCUMENTATION LOCATION

A. Theoretical Manual - Mathematical Models

1. Overall Description

2. Structure

3. Numerical procedure

4. Component models

a. Purpose

b. Assumptions and limitations

c. Notation

d. Derivation

e. Application

f. Numerical method type

g. Derivation of numerical model

h. Location

i. Stability and accuracy

j. Alternatives

5. Performance experience

B. User's Manual

1. Program consideration

a. Program Options

b. Program paths

c. Data structures

d. Initialization

e. Restart

f. Error processing

2. Data files

a. Content

b. Use by program

Revision 0
Page D-4 of 4

Documentation Checklist (Continued)

Software Name:_ Date:_

DOCUMENTATION LOCATION

c. Auxiliary processing

3. Input data

a. General consideration

(1) Techniques

(2) Consecutive cases

(3) Defaults

b. Individual input records

(1) Record Identifier

(2) Input variables

(3) Format

(4) Need

(5) Repetition

(6) Units

(7) Default

(8) Description

(9) Range

4. System interface

a. System dependent features

b. Compiler requirements

c. Hardware requirements

d. Command files

c. Auxiliary processing

5. Output

6. Sample problems

E. Software Test and Verification Plan

F. Software Test, Debug, and Verification Report

G. Source code listings

H. Software Quality Checklist and Submittal

I. Software Summary

J. Other Code Assessment and Support Documentation

Rexv -sIor, Page E-1 of 4

Appendix E

LLNL YMP
Software Summary

This Appendix contains the "Softvare Summary" form and an explanation on how to
complete the form. A new form is to be submitted for each new version or release and
when the responsible software TL is changed.

Revision Page E-2 of 4

¾����

Revision Pa-e E-3 of 4

i
Revision 0 Page E-3 of 4~~~. .

FEDERAL INFORMATION PROCESSING STANDARD SOFTWARE SUMMARY

Summary Date

Yr. Mo . Day

02. Summary Prepared by (Name and Phone)
, I - . .~ -.

03. Summary Action
New Replacement Deletion

Previous Internal Software ID

05. Software Title

04. Software Date

Yr. Mo. Day

07. Internal Software ID

06. Short Title

08. Software Type 09. Processing Mode 10. Applicatio n Area
_ _. IGeneral Specific

Automated Data Computer Systems Management/
System Interactive goSupport/Utility Business

Computer Program z Batch Scientific/Engineering Process Control

m Subroutine/Module 2 Combination z Bibliographic/Textual v Other

11. Submitting Organization and Address 12. Technical contact(s) and phone

13. Narrative

14. Keywords

15. Computer manufacturer 16. Computer operating system 17. Programming language(s) 18. Number of source program
and model statements

19. Computer memory 20. Tape drives 21. Disk requirements 22. Terminals
requirements

23. Other operational requirements

24. Software availability 25. Documentation availability

Available Limited In-house only Available Limited In-house only

26. FOR SUBMITTING ORGANIZATION USE

Revision Paae E-4 of 4

> . - . i. . . Software Summary - Instructions
.. ~.: ..

01. Summary Date: Enter date summary prepared. Use Year, Month, Day - format YYMMDD.
02. Summary Prepared By: Enter name and phone number (including area code) of individual who prepared this summary.
03. Summary Action: Mark the appropriate box for new summary, replacement summarv, or deletion of summary. If this

software summary is a replacement. enter under "Previous Internal Software ID" the internal software identification
as reported in item- 07 of the original summary, and enter the new internal software identification in item 07 of this
form; complete all cther items as for a new summary. If a software summary is to be deleted, enter under "Previous
Internal Software ID" the inte-nal software identification as reported in item 07 of the original summary; complete
onlv items 01, 02, 0,3, and i on this form.

04. Software Date: Enter date software was completed or last updated. Use Year. Month, Day format YYMMDD.
05. Software Title: Make le as descriptive as possible.
06. Short Title: (optional) Enter commonly used abbreviation or acronvm which identifies the software.
07. Internal Software ID: Enter a unicue identification number or code.
08. Software Type: Mark the appropriate box fo- an Automated Data System (set of computer programs), Computer

Program, or Subroutine.Module, whichever best describes the software.
09. Processing Mode: Mark the approoriate box or an Interactive, Batch, or Combination mode, whichever 6est describes

the software.
10. Application Area: General: -Mark he appropriate box which best describes the general area of application from among

the follo%%in_:Comp-_ter System Support/tility, Process Control, Management/Business, Scientific/Engineering,
Bibliographic/Textual, Other. Specific: Specifv the sub-area of application: e.g.: "COBOL optimizer" if the general
area is "Computer System Support/Utilit%; "Payroll' if the general area is Management/Business"; etc. Elaborate
here if the general rea is O:her-.

11. Submitting Organizatior and ddrss: Identifv the orpanization responsible for he software as completely as possible, to
the Branch or Divis on level, but includig.2 Aency Department (Bureau/Administration), Service, Corporation,
Commission, or Co ncil. Fill in complete mailing address, including mail code, street address, city, state, and ZIP
code.

Technical Contract(s) and Phone: (Usually the Technical Leader responsible for the product) Enter person(s) or
, office(s) to be contcte for technical information on subject matter and/or operational aspects of software. Include

telephone area cod-. Provide orcanizaticn name and mailing address, if different from that in item 11.
13. Narrative: Describe conciseiv the probliem adressed and methods of solution. Include significant factors such as special

operatine system modifications. security concerns,rtnationships to other software, input and output media, virtual
memory requireme:-sand uncue hardw-are feature- Cie references, if apropriate.

14. Keywords: List significant Words phrases which refl- lie functions. applications and features of the software.
Separate entries \ra' semicolons.

15. Computer anufactur and Mo l: Identify mainfrae omputeris) on which software is operational.
16. Computer Operating Sst em: Enter name, number and :eleace under which software is operating. Identify

enhancements in the !\arrativc (item 3:.
17. Programming Languageis): Identidv the laneuage(s) i r:.h the software in Titten, including version; e.g., ANSI

COBOL, FORTRAN V. SIMSCRIPT 11.5, SLEI1l H I I, etc.
18. Number of Source Proram Statements: Include staerlknris in this software, separate macros, called subroutines, etc.
19. Computer Memory Reqairements: Enter minimum inter,..-l nemory necessary to execute software, exclusive of memory

required for the oerating system. Specify word'. rles characters, etc.. and number of bits per unit. Identify
virtual memory requirements in the Narrative (it,-: ;

20. Tape Drives: Identify number needed to operate sofen : Specif%, if critical, manufacturer, model, tracks, recording
density, etc.

21. Disk/Drum Units: Ident fv number and size (i same ui: . M .nory" - item 19) needed to operate software. Specify,
if critical, manufacturer. model, etc.

22. Terminals: Identify number of terminals required. S,::%. if critical, type, speed, character set, screen/line size, etc.
23. Other Operational Requirements: Identify peripheral de' ce. support software, or related equipment not indicated above,

e.g., optical character devices. facsimile, compuLer-uulput microfilm, graphic plotters, etc.
24. Software Availability: Mark the appropriate box which vtc describes the software availability from among the following:

Available to the Public; Limited Availability (e.g., fr oiuernrnent use onlv; For In-house Use Only. If the software
is "Available", include a mail or phone contact point. s %kell as the price and form in which the software is available,
if possible.

25. Documentation Availab.lity: Mark the appropriate box \khich best describes the documentation availability from among
the following:Availble to the Public; Inadequate for Distribution; For In-house Use Only. If documentation is
"Available", include a mail or phone contact point, as ell as the price and form in which the documentation is
available, if possible. If documentation is presently Inadequate", show the expected availability date.

For Submitting Organization Use: This area is provided for the use of the organization submitting this summary. It may
contain any information deemed useful for internal operation.

Revision 0
Page F-1 of 9

Appendix F

Software Quality Checklist
and

Submittal

This Appendix contains the "Software Quality Checklist and Submittal" forms. A copy of
this form accompanies the documentation (including review documentation) submitted to
the Software Quality Manager for storage in the Software Records Management System.
A new form is to be submitted for each new version or release.

Revision 0
Page F-2 of 9

Revision 0
Page F-3 of 9

SOFTWARE QUALITY CHECKLIST AND SUBMWFIAL

- SES N-HOUSE -

Name:
Org:

Product:
VERSION OR RELEASE:
ANALYSIS EFFORT (if applicable):

Phone:
Date:

[CHECK THE BOXES THAT DESCRIBE THE MATERIAL SUBMITTED WITH THIS FORM]

1. [Software Category Selection, approved 2. [ISP, approved

3. [Software Requirements Specifications
[Review

4. Design Documentation, approved
[] Preliminary Design

[] Review
[Detailed Design

[Review

5. [] Test, Debug, and Verification
[] Review

6. [LLNL YMP Software Summary

7. Software Documentation (include a copy of Appendix D):
Theoretical Manual - Mathematical Models & Numerical Methods

] Review
[User's Manual

[Review

[I Source code listing
[Code assessment and support documentation

8. [] Application Verification
[Certification
[] Review

9. [] Validation
[I Certification
[Review

10. [Analysis
[] Certification
[] Review

11. [] Software Documentation Checklist

12. [Software Product Summary

13 [] Memo of Completion of Software Quality Requirements, approved

Revision 0
Page F-4 of 9

. .. A

Revision 0
Page F-5 of 9

SOFTWARE QUALITY CHECKLIST AND SUBMITAL
- SES ACOUIRED. EXISTING. AND COMMERCIAL -

Name: Phone:
Org: Date:

Product:
VERSION OR RELEASE:
ANALYSIS EFFORT (if applicable):

[CHECK THE BOXES THAT DESCRIBE THE MATERIAL SUBMITTED WITH THIS FORM]

1. [] Acquisition Plan, approved.

2. [] Software Category Selection, approved

3. [] Existing or Acquired Software
- Test, Debug, and Verification - (not as part of Life Cycle)

Review

4. [LLNL YMP Software Summary

5. Software Documentation (include a copy of Appendix D):
Theoretical Manual - Mathematical \Models & Numerical Methods

[] Review
User's Manual

] Review
Source code listing
Code assessment and support docurn,:iution

6. [] Software Conversion documentation, if .i;'pricible

7. [] Application Verification
Certification
Review

8. [] Validation
Certification
Review

9. [Analysis
Certification

3 Review

10. [] Software Product Summary

11. [] Memo of Completion of Software Quality Requirements, approved

Revision 0
Page F-6 of 9

Revision 0
Page F-7 of 9

SOFTWARE QUALITY CHECKLIST AND SUBMITTAL
- CALCULATIONAL NON SES IN-HOUSE -

Phone:
Date:

Name:
Org:

Product:

VERSION OR RELEASE:
ANALYSIS EFFORT (if applicable):

[CHECK THE BOXES THAT DESCRIBE THE MATERIAL SUBMITTED WITH THIS FORM]

1. [] Software Category Selection, approved

2. [ISP, approved

3. [] Software Requirements Specifications
[Review

4. [] Design Documentation, approved
[] Preliminary Design

[Review
[] Detailed Design

[] Review

5. [] Test, Debug, and Verification
[] Review

6. [] Test, Debug, and Verification (not as part of Life Cycle)
Review

7. [] LLNL YMP Software Summary

8. Software Documentation (include a copy of Appendix D)
User's Manual

[] Review
Source-code listing

9. [] Analysis
[I Certification

] Review

10. [Software Product Summary

11. [] Memo of Completion of Software Quality Requirements, approved

Revision 0 r

Page F-S of 9

-r. ..J

. ~ ~ ~ ~ ~ ~ ~ ~ ~ - ,'; * * A

-.- . ' .=:'

Revision 0
Page F-9 of 9

SOFTWARE QUALITY CHECKLIST AND SUBMITTAL
- CALCULATIONAL NON-SES -

ACQUIRED. EXISTING. AND COMMERCIAL

N ame: Phone:
Org: Dale:

Product:

VERSION OR RELEASE:
ANALYSIS EFFORT (if applicable):

[CHECK THE BOXES THAT DESCRIBE THE MATERIAL SUBMITTED WITH THIS FORM]

1. [] Software Category Selection, approved

2. [LLNL YMP Software Summary

3. Software Documentation
User's Manual

[] Review
Source-code listing

4. [] Software Conversion documentation, if applicable

5. [] Analysis
Certification
Review

6. [] Software Product Summary

7. [] Memo of Completion of Software Quality Requirements, approved

Revision 0
Page G-1 of 4

Appendix G

Statement of Analysis

-Specified Software Certification

This Appendix contains the "Software Quality Checklist and Submittal" forms. A new
form is to be submitted for each new version or release.

Revision 0
Page G-2 of 4

Revision 0
Page G-3 of 4

SN O'---1 STATEMENT OF ANALYSIS-SPECEIED SOFTWARE CERTI'FICATION -

Submitter:

Org:

Program name:

Task:

. Date:

Phone:

Version/Release:

QA Level:

ISP:

Activity name and number:

Describe the Analysis:

This use if for: [] Application verification [] Validation [] Analysis

__-_______________________-________________

I CERTIFY THAT THE ABOVE IDENTIFIED CODE IS APPROPRIATE FOR THE INTENDED
USE. THE EVIDENCE FOR THIS CERTIFICATION IS THE INFORMATION PROVIDED IN
THIS FORM AND THE ACCOMPANYING SUMMARY STATEMENT.

Principal investigator's signature: Date:
_ _- _ -_ _ _

Status of Lifecycle:

Software Quality Coordinator's initials: Date:

-- --------------------

Revision 0
Page G-4 of 4

STATEMENT OF ANALYSIS-SPECIFIED SOFTWARE CERTIFICATION (Continued!)

INCLUDE ADDITIONAL SHEETS IF NECESSARY

Application verification work already completed:

Validation work already completed:

Future plans, if any, for additional application verification or validation:

Tentative plans for efforts to ensure that the results of the analysis will be compared with
the results of future application verification and validation work:

Approvals:

Task Leader: Date:

Technical Area Leader:

.TPO (QA Level I only):

Date:

Date:

