1ec'd und hellev dtd 6/30/93

SUMMARY OF U.S. NUCLEAR REGULATORY COMMISSION AND U.S. DEPARTMENT OF ENERGY TECHNICAL EXCHANGE ON VOLCANISM STUDIES June 9, 1993, Las Vegas, Nevada

On June 9, 1993, representatives of the Nuclear Regulatory Commission, U.S. Department of Energy (DOE), State of Nevada Nuclear Waste Project Office, and Clark and Nye Counties, Nevada, participated in a technical exchange on the status of DOE's volcanism studies. The purpose of the technical exchange was to hold discussions on DOE volcanism studies and to comment on a DOE Contractor (Los Alamos National Laboratory) preliminary draft report, "Status of Volcanic Hazard Studies for the Yucca Mountain Site Characterization Project." The technical exchange agenda is included as Attachment 1 and the list of attendees is Attachment 2 to this summary. Copies of presenters' handouts are Attachment 3.

Dr. Bruce Crowe, principal author of the volcanism status report, presented a brief overview of the report and provided preliminary conclusions related to characterization of volcanic features near Yucca Mountain and the probability of occurrence of magmatic disruption of a potential repository at Yucca Mountain.

Technical staff of the NRC and its contractor, the Center for Nuclear Waste Regulatory Analyses, provided discussion and comments on the NRC's major areas of concern, including the consideration of alternative petrologic models and alternative approaches to probability calculations. The NRC staff noted the need for integration of volcanic/magmatic studies with other ongoing and proposed tectonic studies as input into alternative tectonic models. The need for geophysical testing to support volcanism studies was also a concern discussed by the NRC staff.

Technical investigators from the University of Nevada, Las Vegas, also provided comments on the draft report for the State of Nevada. State of Nevada presenters discussed concerns related to the consideration of alternative tectonic and petrologic models for volcanic activity in the Yucca Mountain region. A State of Nevada presenter also provided comments on the uncertainties related to risk calculation for volcanic and other events.

Following all presentations time was allotted for questions and discussion by representatives of the NRC, DOE, State of Nevada, and other technical exchange attendees. DOE representatives discussed future plans to collect data for volcanism studies to address site suitability (10 CFR Part 960) and licensing issues (10 CFR Part 60).

9307150137 930630

PDR

WASTE

PDR

WM-11

102.8

The DOE and its contractors will revise the draft report, taking into account concerns expressed by the NRC and State of Nevada at the technical exchange. DOE participants propose to issue the final contractor report in September, followed by yearly updates. NRC comments to revisions of Study Plans 8.3.1.8.5.1 and 8.3.1.8.1.1 will also be considered in revisions to the draft report.

The Alrans 6/30 93

Charlotte Abrams, Sr. Project Manager Repository Licensing and Quality Assurance Directorate Division High-Level Waste Management Office of Nuclear Material Safety and Safeguards U.S. Nuclear Regulatory Commission

6/29/93

Christian Einberg Regulatory Integration Branch Office of Civilian Radioactive Waste Management U.S. Department of Energy

GENDA	
-------	--

U.S. DEPARTMENT OF ENERGY - U.S. NUCLEAR REGULATORY COMMISSION TECHNICAL EXCHANGE ON VOLCANISM STUDIES June 9, 1993 Las Vegas, Nevada 8:00 a.m. - 5:00 p.m.

8:00 a.m.	Welcome/Protocol/Opening Comments	DOE/NRC/State of NV/Affected Counties
8:15 a.m.	Current status of DOE Volcanism Studies	DOE
8:45 a.m.	Overview of draft status report Chapter 7 (risk assessment)	DOE
9:45 a.m.	BREAK	
10:00 a.m.	Comments on status report	NRC
12:00	LUNCH	•
1:00 p.m.	Comments on status report	State of NV
2:00 p.m.	Discussion of status report	A11
3:00 p.m.	BREAK	
3:15 p.m.	Overview and discussion of SCA and Study Plan open items	DOE/NRC
4:00 p.m.	Open discussion	A11
4:45 p.m.	Closing remarks	DOE/NRC/State of NV/ Affected Counties
5:00 p.m.	Adjourn	ATTECLEU COUTLIES

Ţ	NAME (PLEASE PRINT)	COMPANY	TITLE
1	E.V. TIESENMAUSEN	eccr	ENG. SPEC.
2	C. Einberg	DOE/HQ	Engineer.
3	J. S. TRAPP	NRC	SR. Goolobis
4	PAULW. TOHEROY	ACNWAR	Metriser -
5	Chily-1tsiang 1.to	UNLV	Math.
6	Bakr Ibrahim	NRC	Goophysicst
7	RAYMOND H. WALLACE, JR.	USGS/H&	HYDROLOGIST/DOE LIAISON
8	Steve McDuffie	NRC	Geologist
9	Sim Dayaid	MEO/INTERA	Hydrogeologist
	BRITTAIN & HIL	CNWRA	RESEARCH SCIENTIST
11	BILL BARNARP	NWTRB	EXEC. DIRECTOR
12	Charlow le Abrams	NRC	5 Proj Mar
13	Edward O'Donnell	NRC	Deologist
14	Jim Yurk	WESTUN	5r, Ceuse, entist
15	Fephen Nelson	LEFS	5. Grassientist
16	Debbie Torez	M+0/WCPS	5. Geoscientist
17	Greg Valentine	LANL	Geologist
18	Russ Dyer	DOE/YMPO	Drv. Dre.
19	James 6. MILLE JE	UNUS/EVTS	ROSSTAN PSESSINTS
20	TIM BRADSHAW	UNIC /CVTS	RESEARCH ASSOCIATE
21	MARSHALL WEAVER	Mio/Duke	Interactions Manager
22	Lynn Bruker	LANL	Research Tech
23	ERIC SHISTAD	DOE	PHYSICAL SC/GEOL
24	Jerry Boak	DUE	Technical Analysis Branch Ching

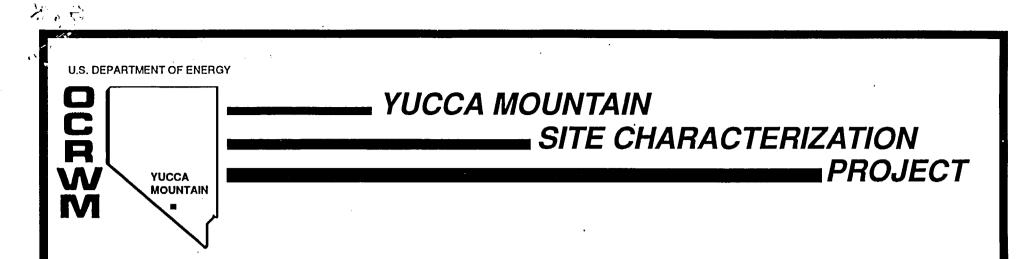
. -

¥ 2

DOE/NRC TECHNICAL EXCHANGE V D L C A N I S M JUNE 9, 1993

	NAME (PLEASE PRINT)	COMPANY	TITLE
1	Stere Le Ray	Duke/M70	Senior Scientist
2	LINDA DESELL	DOE-HQ	Ch, Reg Integration
3	Gene Roseboom	6	Deputy Assist Director Son Eng. Grad
4	MILLAN V-HCNZE	1	MEMBER
5	GI. L. STEREWALT	CNWRA	PRIN her SCIENTINT
6	C.B. CONVOR	CNWRA	Sr. Res. Sci.
7	Kemeth Foland	ACNW	Consultant
8	MARTHA PENDLETON	WEFS	SENIZOR SCIENTIST
9	Olne frity	UNLV	GEULOPIST
10	Dave Fenster	M&O/WCFS	Geologist Mgr., Requirements Analysis
11	Jane Summerson	DOE-1HQ	Geologist
12	DAVID TILLSON	NEVADA	CONSULTAN T
13	Longell Juigitter	TRAC.	Leslouest.
14	ALI HAGHI	MEC/Duke	Engineer
15	WG Melsm	NWTRB	Volcanologist (Snithsuran)
16	Wylliam W. Dudley Jr.	U565	Hydrologist
17	Stry Mishit	Mic Al	ins-12 Engineer
18	Russell Patterson	DOE-YMPO	Phys. Scialist
19	SUSAN JONES	DOE-YMPO	Chief-Regulatory Interactions (YMP)
20	Fin Deenig	NR	ACNN STAP
21	ABtath	Mio	Site Chan.
22			
23	·		
24			

• *


· -

DOE/NRC TECHNICAL EXCHANGE V D L C A N I S M JUNE 9, 1993

	NAME (PLEASE PRINT)	COMPANY	TITLE
<u>`</u> 1	Frank Perry	LANL	
2	Inlie Panepa	LANL	TPD
3	CARL JOHNSON	NEVADA	MGR-TECH. PROGRAMS
4	Marvis Johnson	Neurad o	
5	HOMI MINWALLA	WESTON	Task Lay, Nuc Licening
6	Joe R BERGQUIST	USGS	GEOLOGIST
7	Grain Scherschel	LANL	Research technician
8	PHILIP JUSTUS	USNEC	ON-SITE REP
9	AOLIVER	USAS	Geophysicist
10	ABE VAN LUIK	Mto	MGR, PERF. ASSESS.
11	MARK C. TYNAN	DOF	Physical Scientist
12	MAL INNERHY	Hys Courts	Degulation & Lizerain Alman
13	Haly Dockery	SUL	<u> </u>
14	•		
15			
16			
17			
18		-	
19			
20			
21			
22			
23			
24			

> DOE/NRC TECHNICAL EXCHANGE V D L C A N I S M JUNE 9, 1993

•

OBJECTIVES AND STATUS OF DOE VOLCANISM STUDIES

PRESENTED TO NRC TECHNICAL EXCHANGE ON VOLCANISM

PRESENTED BY DR. JEANNE COOPER YUCCA MOUNTAIN SITE CHARACTERIZATION PROJECT

JUNE 9, 1993

OBJECTIVES AND STATUS OF DOE VOLCANISM STUDIES

Purpose of this presentation

A

- Clarify the regulatory basis for presenting the volcanism information contained in LANL draft report
- Provide a broad look at volcanism issues being addressed by DOE studies, to understand the context and focus of specific NRC concerns
- Communicate DOE's understanding of what volcanism studies have achieved so far and what they must achieve in the future

DOE/NRC TECHNICAL EXCHANGE ON VOLCANISM

• Objectives of DOE volcanism studies

• . ^ .

- Objectives of specific volcanism Study Plans
- DOE's view of the current status in meeting these objectives

OBJECTIVES OF DOE VOLCANISM STUDIES

- Support DOE site suitability evaluations per 10 CFR 960 and, if appropriate, the recommendation to the President required by the Nuclear Waste Policy Act, as ammended
- Provide a basis for the safety analysis required by 10 CFR 60 to support the license application, including 60.122 evaluations

OBJECTIVES OF SPECIFIC STUDY PLANS

"Characterization of Volcanic Features" Study Plan 8.3.1.8.5.1--confirms that volcanism is a potentially adverse condition [10 CFR 60.122 (c)(15)], and generates additional data needed to refine calculated event probabilities

- Geochronology
- Geochemical models
- Evolutionary patterns

OBJECTIVES OF SPECIFIC STUDY PLANS

(CONTINUED)

"Probability of Magmatic Disruption of the Repository" Study Plan 8.3.1.8.1.1--calculate event probabilities for input to assessment of PACs (10 CFR 60.122)

- Determine structural and tectonic controls on basaltic volcanism
- Evaluate possible presence of magma bodies
- Calculate the probability for basaltic igneous events (E1 and E2)

OBJECTIVES OF SPECIFIC STUDY PLANS

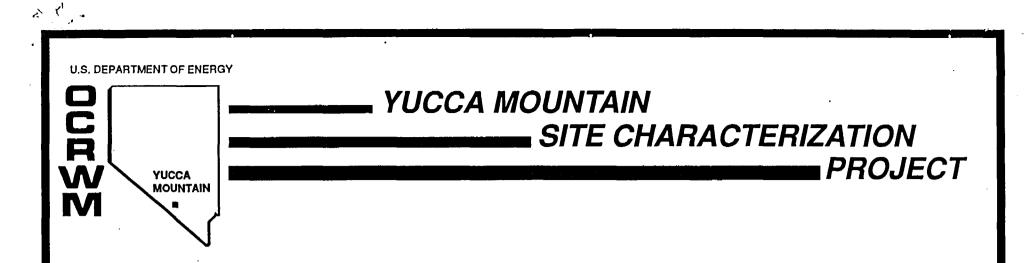
(CONTINUED)

"Physical Processes of Magmatism and Effects on the Potential Repository" Study Plan 8.3.1.8.1.2--generate data to complete the evaluation required by 10 CFR 60.122(a)(2) of PACs related to basaltic volcanism

- Eruptive effects
- Subsurface effects
- Magma system dynamics
- Interface with Performance Assessment

DOE'S VIEW OF THE CURRENT STATUS IN MEETING THESE OBJECTIVES

What has been accomplished


- Looked carefully at E1 and E2 for eruptive events
- Site data collected
- Studies to support early site suitability

DOE'S VIEW OF THE CURRENT STATUS IN MEETING THESE OBJECTIVES

(CONTINUED)

What is left to do

- Continue to collect data for volcanism studies that are currently planned to address site suitability concerns and to begin assessments required by 60.122(a)
 - Drill 3 magnetic anomalies
 - Geochronology studies to refine the age of basaltic volcanic centers
 - Complete field mapping
 - Continue geochemistry studies to assess models for generation and evolution of basaltic magmas
 - Initiate work under Study Plan 8.3.1.8.1.2

OVERVIEW OF DRAFT VOLCANISM STATUS REPORT

PRESENTED TO NRC TECHNICAL EXCHANGE ON VOLCANISM

PRESENTED BY DR. BRUCE CROWE PRINCIPAL INVESTIGATOR, LOS ALAMOS NATIONAL LABORATORY

JUNE 9, 1993

Discussion topics

- Overview of Volcanism Status Report
 - Highlights of each chapter
- Volcanic risk assessment: framework of the problem
 - Tripartite probability
 - Present state: analytical models of tripartite probability
 - -- Emphasis: repository disruption
 - -- Bounds approach versus mean or most likely values
 - YM site is not unsuitable: repository disruption associated with eruption
 - -- Low occurrence probability
 - -- Mean value: < 1 in 10000 in 10000 yrs

NRCTEBCP1.123/6-9-93

Next steps

- Formal applications of methods of risk assessment
 - Pdf 's: key variables
 - Risk simulation models
 - Sensitivity analyses $\Leftrightarrow \Rightarrow$ characterization studies
 - Expert opinion panel: refine pdf's/completeness of alternative models
 - Yearly updates: probabilistic risk assessment
- E3 studies: Study Plan 8.3.1.8.1.2
 - Eruptive effects
 - Subsurface effects
 - Magma dynamics

Data feeds are to probability studies and performance assessment

Evolutionary patterns of basaltic volcanic fields

PRELIMINARY DRAFT

NRCTEBCP2.123/6-9-93

Program organization: volcanism

Three parts

- Characterization of volcanic features (F. Perry, PI)
 - Data gathering
 - Field and laboratory studies
- Probability of magmatic disruption (B. Crowe, PI)
 - Occurrence probability (E1, E2)
 - Presence of magma bodies
- Effects of volcanism (G. Valentine, PI)
 - E3 (eruption, subsurface)
 - Magma dynamics

Assume careful reading and general understanding of the Volcanism Status Report

Discussion of *possible differences* based on past reviews

Chapter 1: Introduction

Chapter 2: Geologic Setting of Basaltic Volcanism

- Regional perspective of volcanism studies (concern by State of Nevada)
- Basalt episodes/cycles
- Status of information for each volcanic center (increasing information with decreasing age)
- New chronology results
 - K-Ar, cosmogenic helium, paleomagnetism

Chapter 3: Tectonic Setting: Basaltic Volcanism

- Overview of tectonic models
- time-space patterns of basaltic volcanism (migration, CFVZ)
- geophysical data

PRELIMINARY DRAFT

NRCTEBCP4.123/6-9-93

Chapter 4: Petrology of Basaltic Volcanism: Great Basin

- Time-space waning (volume)
- Asthenospheric and lithospheric sources
- Polycyclic volcanism (monogenetic versus polycyclic)
- Decreasing eruptive volumes/increasing chamber depth/ increased frequence

Chapter 5: Segregation, Transport, and Storage of Basaltic Magma

- Segregation, compaction, ascent equations
- Dikes, magma-formed fractures
- LNB, intrusion forms
- Dike reorientation

Chapter 6: History of Volcanism Studies

- Initiated in 1979, ongoing
- Long history of studies, extensive literature

PRELIMINARY DRAFT INFORMATION ONLY

NRCTEBCP5.123/6-9-93

Chapter 7: Risk Assessment

Chapter 8: Future Studies

- Drill holes/silicic volcanism
- Geochronology and field studies nearing completion
- Evolutionary patterns of basaltic volcanic fields
- Structural models \$\Rightarrow\$ in progress with tectonics/geophysics studies
- Geophysical review: magma bodies
- Probability calculations:
 srisk simulation
 sexpert opinion
- Data feeds to performance assessment
 - Occurrence probabilities
 - Intrusion/eruption scenarios

PRELIMINARY DRAFT

Key Discussion Points (opinion differences):

Mean versus worst case attribute values

- Mean: well defined central tendency of data (mean, geometric mean, median, most likely ...)
- Worst case: not defined
 - Propagates undefined conservatism
 - Physically unrealistic values
- Risk simulation: well defined methods of defining attribute sensitivity

Reasonable assurance versus undefined conservatism

Small data sets: low risk => increased uncertainty

- NO: robust data sets tests for goodness of fit
- Probability bounds, analog comparisons

Program issue present in virtually all studies

PRELIMINARY DRAFT

NRCTEBCP7.123/6-9-93

Chapter 7: Risk assessment

- Modifications of probability model
 - Adapted to intrusion and eruptive events (... but no evidence of difference in E1 distribution)
 - Variable definitions of E2 (repository, controlled area, region)

Current data: site characterization

- Event = new volcanic center
- Polycyclic and monogenetic models (important only for E3)
- E1: Use multiple models
 - Time trend, cone counts, magma output rate
 - Bound versus mean or most likely values
 - Modified repose and time-volume diagrams
 - Non-robust data set: bounds from analog basaltic volcanic fields

2.6 x 10⁻⁶ events yr⁻¹ limited model sensitivity

PRELIMINARY DRAFT INFORMATION ONLY

NRCTEBCP8.123/6-9-93

Chapter 7 (continued)

- E2: Disruption ratio
 - Same approach as E1 \Rightarrow multiple models to define data distribution
 - Limited data: robust calculations impossible
 - Random disruption models
 - Structural models (forced intersection)
 - Structural models (disruption bounds)
 - Analog basaltic volcanic fields

2.5 x 10⁻³

E2 models must be evaluated for compatibility with E1

Probability of magmatic disruption: Pr(E2 given E1)Pr(E1)

6.5 x 10⁻⁹ yr ⁻¹ (repository) 9.4 x 10⁻⁸ yr ⁻¹ (controlled area) 8.8 x 10⁻⁷ yr ⁻¹ (region . . . approaches E1)

- Analog volcanic fields
 - Low recurrence rates, low probability of disruption

PRELIMINARY DRAFT

INFORMATION ONLY

PRELIMINARY DRAFT **INFORMATION ONLY**

Opinion differences (continued)

Poisson versus non-Poisson distribution models

- Cannot be tested with limited data
- Time-space distribution of volcanism: does not fit a Poisson model

waning volcanism can define error term of Poisson assumption differences with other distribution models \Rightarrow insignificant

Uncertainty

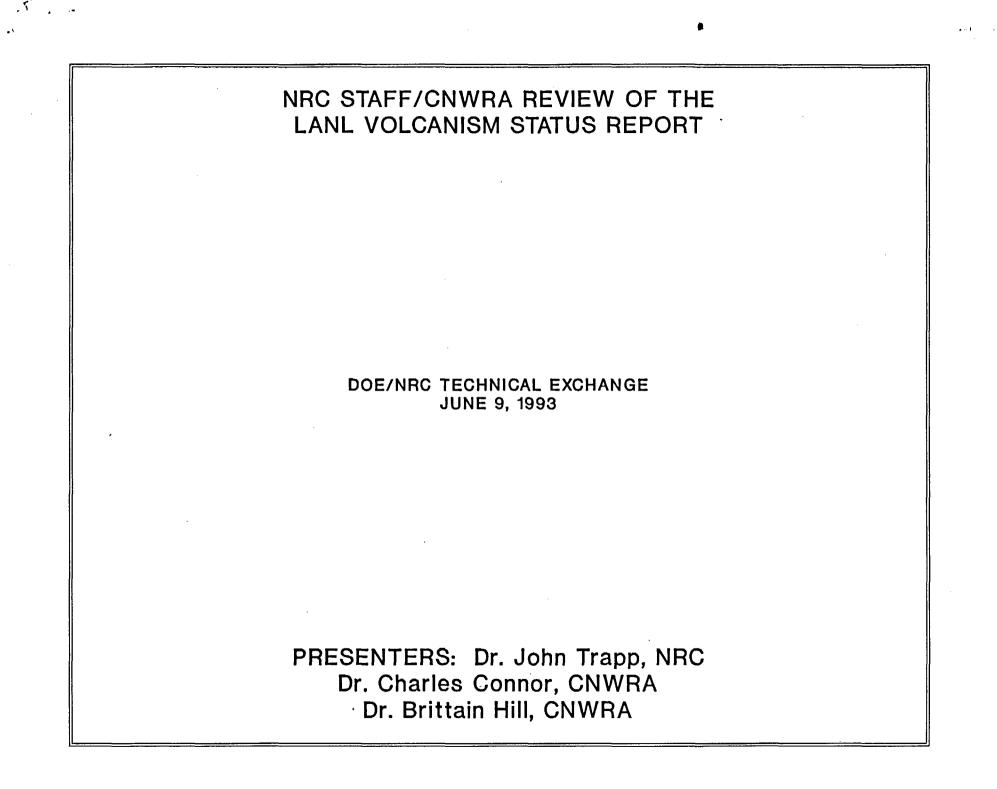
- Small data set: decreased risk \Box
- Large data set: increased risk

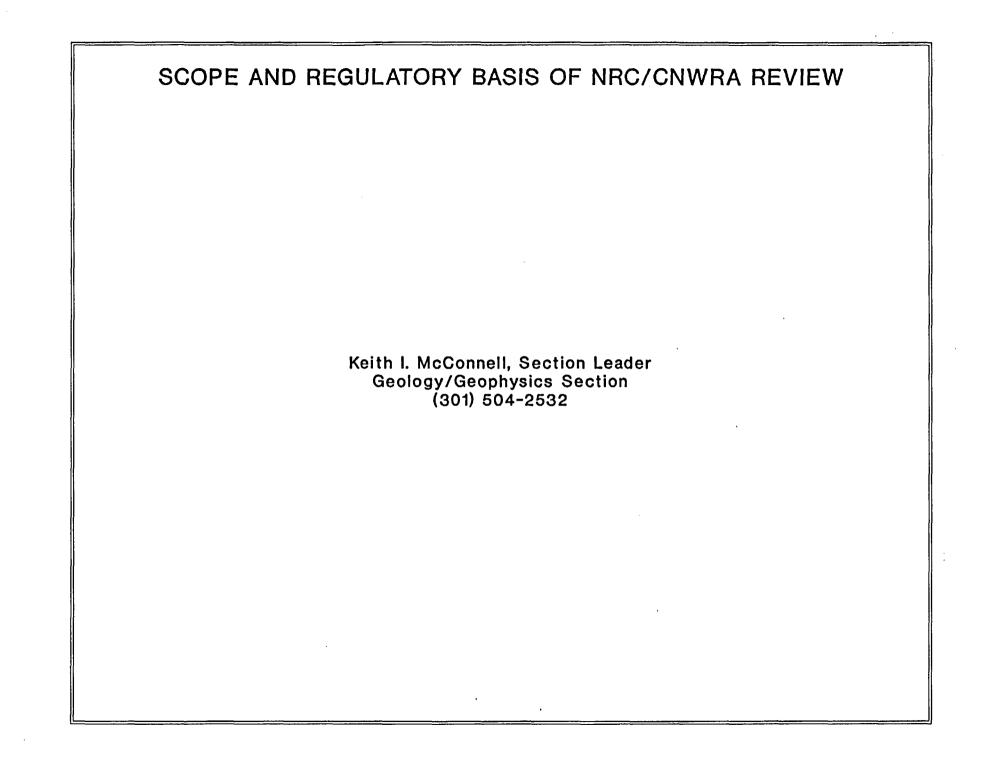
increased uncertainty

decreased uncertainty ⊑>

GAMBLERS RUIN: risk of low probability events (... can you afford a run of bad luck)

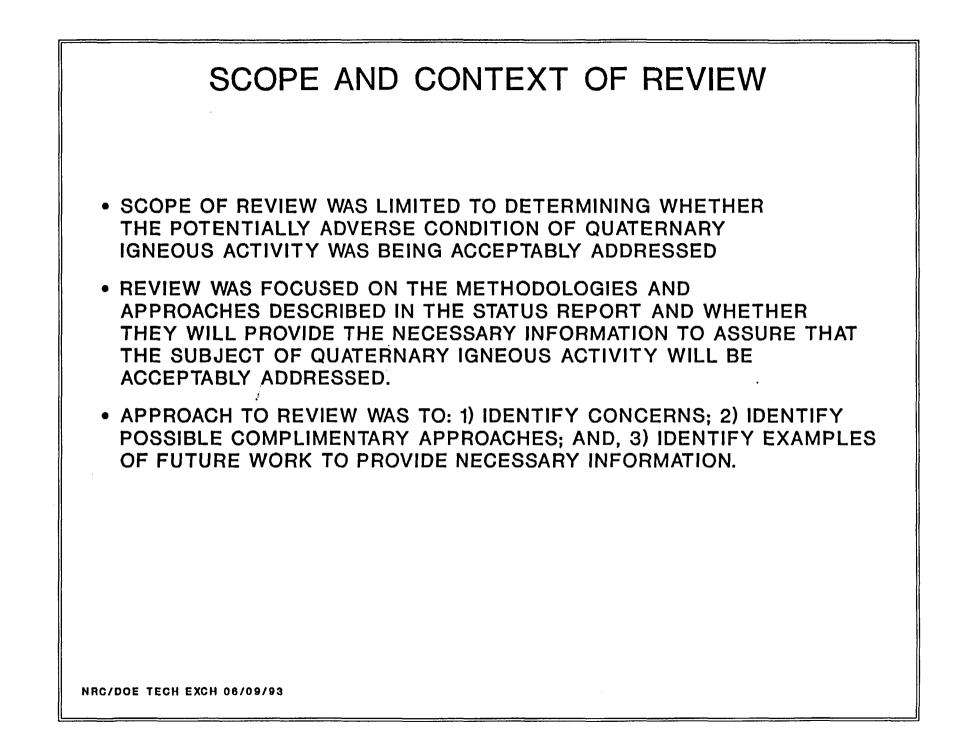
Solcanism issue: recurrence, location and effects NRCTEBCP 10.123/6-9-93


PRELIMINARY DRAFT INFORMATION ONLY


Data completeness:

- Probabilistic approach ⇒ iterative
- Quaternary volcanic centers are not difficult to identify
 - Geomorphic stability
 - Aeromagnetic data
- Number of undetected intrusions would have to be large
 - Factor of 3-5 to be significant
- Low velocity teleseismic anomaly
 - Long-lived feature

Do differences of opinion change attribute distributions? Status report: defined distributions Review: examine differences for effect on attribute distributions


NRCTEBCP11.123/6-9-93

· ?

.

REGULATORY BASIS FOR STAFF REVIEW

- 10 CFR Part 60.21 Content of License Application
- 10 CFR Part 60.122(c) Potentially Adverse, Conditions (PAC)
 - 1) Will there be sufficient information to determine whether and to what degree the PAC is present?
 - 2) Will there be sufficient information to determine the extent to which its presence may be underestimated or undetected?
 - 3) Will the lateral and vertical extent of data collection be sufficient to determine the presence of the PAC?
 - 4) Will assumptions and analysis methods be used that will adequately describe the presence of the PAC and the ranges of relevant parameters?

NRC/DOE TECH EXCH 6/9/93

REGULATORY BASIS FOR STAFF REVIEW (Continued)

- 5) Will the analyses and models used to predict future conditions in the geologic setting be supported by an appropriate combination of methods such as field tests, in-situ tests, laboratory tests that are representative of field conditions, monitoring data, and natural analog studies?
- 6) Are the analyses methods used to determine the hazard related to igneous activity sufficient to determine compliance with 10 CFR 60 Performance Objectives?

NRC/DOE TECH EXCH 6/9/93

NRC COMMENTS ON LANL REPORT "STATUS OF VOLCANIC HAZARD STUDIES FOR THE YUCCA MOUNTAIN SITE CHARACTERIZATION PROJECT"

OVERVIEW

JOHN TRAPP, NRC JUNE 9, 1993

MAJOR AREAS OF CONCERN

COMPLIANCE DETERMINATION

VOLCANIC PETROLOGY

STRUCTURE / TECTONICS

PROBABILITY

PRIMARY ASSUMPTIONS OF REPORT

WANING VOLCANISM

HOMOGENEOUS POISSON MODEL

CFVZ - STRUCTURAL CONTROL

ONGOING CONCERNS

TRIPARTITE PROBABILITY COMMENT 8, STUDY PLAN 8.3.1.8.1.1. DEFERRED UNTIL AFTERNOON SESSION

COMBINATION OF MUTUALLY EXCLUSIVE MODELS/EXPERT OPINION COMMENT 12 AND 13, STUDY PLAN 8.3.1.8.1.1 DEFERRED

REGULATORY BASIS

METHODOLOGY NOT SUFFICIENT TO FORM THE BASIS FOR OVERALL SYSTEM PERFORMANCE DEMONSTRATION

3

VOLCANIC PETROLOGY CONCERNS

UNDERSTANDING OF PROCESS MODELS

WANING MAGMATISM

POLYCYCLIC/POLYGENETIC MAGMATISM

WESTERN GREAT BASIN MAGMATIC PROVINCE

REGULATORY BASIS

APPROPRIATENESS OF ANALYSIS POSSIBILITY OF UNDERESTIMATION OF EFFECTS EXTENT OF DATA COLLECTION

4

STRUCTURE / TECTONIC CONCERNS

INTEGRATION OF STRUCTURE / TECTONICS AND MAGMATISM

ADEQUACY OF GEOPHYSICS PROGRAM

STATUS OF PROGRAM

REGULATORY BASIS

DEGREE PAC PRESENT

RESOLUTION CAPABILITIES AND EXTENT UNDETECTED

APPROPRIATENESS OF ANALYSIS

POSSIBILITY OF UNDERESTIMATION OF EFFECTS

5

PROBABILITY CONCERNS

ALTERNATIVE MODELS

HOMOGENEOUS POISSON MODEL

PATTERN RECOGNITION AND TESTING

REGULATORY BASIS

APPROPRIATENESS OF ANALYSIS POSSIBILITY OF UNDERESTIMATION OF EFFECTS EXTENT OF DATA COLLECTION

HOMOGENEOUS POISSON MODELS

REPORT JUSTIFIES THE APPLICATION OF HOMOGENEOUS POISSON MODEL TO VOLCANISM BY COMPARISON WITH USE IN SEISMIC HAZARD ANALYSIS.

LESSONS LEARNED FROM APPLICATION OF POISSONIAN MODELS IN SEISMIC HAZARD STUDIES. (EPRI REPORT "APPLICABILITY OF THE POISSON EARTHQUAKE-OCCURRENCE MODEL")

"THE POISSON-BASED ESTIMATE IS A VALID ENGINEERING ESTIMATE [AS] IN ALL BUT A SMALL SUB-SET OF CASES...THE... APPROXIMATION IS UNCONSERVATIVE BY A FACTOR OF NO MORE THAN THREE."

APPLICATION TO VOLCANISM DOES NOT APPEAR TO BE JUSTIFIED

RELATIONSHIP OF SEISMIC DESIGN VALUE TO MAGMATIC DESIGN VALUE

FACTOR OF SAFETY

Models of Waning Magmatism in the Crater Flat Region, Nevada, may Underestimate Effects of the PAC: Alternative Petrologic Models

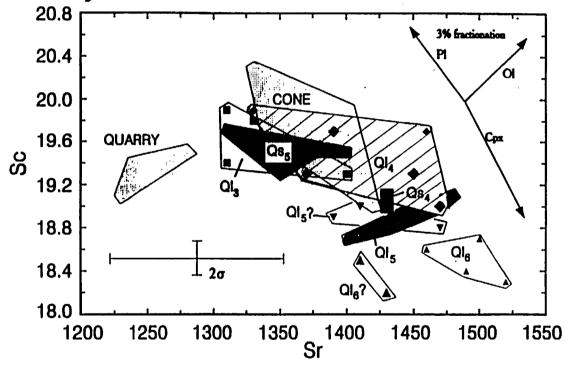
Presented by Dr. Brittain E. Hill

Volcanologist Center for Nuclear Waste Regulatory Analyses Southwest Research Institute San Antonio, Texas (210) 522-6087

> June 9, 1993 Las Vegas, Nevada

Summary of Waning Magmatism Concerns

- 1) The eruption of inhomogeneous mafic magma is not an unusual feature of historical eruptions and does not necessarily require polycyclic, polygenetic volcanism or waning magmatism.
- 2) In addition to pressure, the mineralogy of mafic magmas is controlled by the temperature, composition, and water content of the system. Waning magmatism in the Crater Flat system cannot be concluded on a mineralogical basis.
- 3) Mafic eruption rates may have been relatively constant since about 10 Ma, but were perturbed by the anomalously large eruption of Thirsty Mesa. Observed time-volume relationships do not require waning magmatism in the Crater Flat system.
- 4) The Crater Flat system is widely recognized as part of the Western Great Basin (WGB) magmatic province. Geochemical trends in the adjacent Basin and Range magmatic province are not directly applicable to this system. Waning magmatism is not supported in the WGB.


۴.

1 1

2) SUMMARY

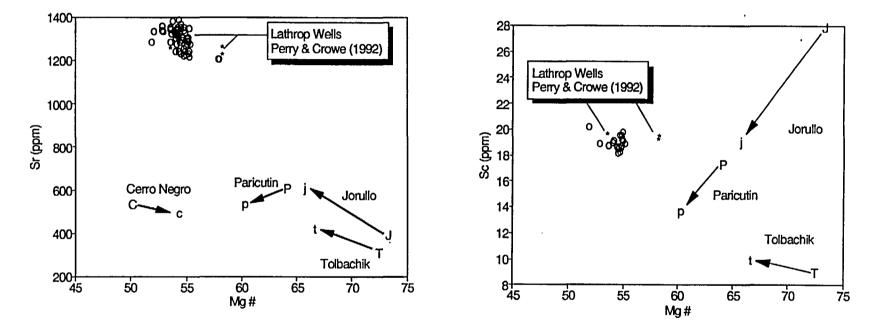
1: Waning magmatism and polycyclic/polygenetic volcanism

Intraunit variations at Lathrop Wells are very similar to interunit variations

Modified from Perry and Crowe (1992) to include all Ql4 samples in one field and to emphasize distinctions between units Qs5 and Ql5.

All eruptive units are not compositionally distinct
 Intraunit variations exceed 2σ error
 3) MAFZONEA

<u>1: Waning magmatism and polycyclic/polygenetic volcanism</u> Compositional zonation does not require polycyclic eruptions


Historical, zoned mafic eruptions include:

- Tolbachik, Kamchatka (1975-76), 72 days
- Cerro Negro, Nicaragua (1971), 12 days
- Parícutin, Mexico (1943-1952), 9 years
- Jorullo, Mexico (1759-74), 15 years

These eruptions each constitute a single event in the geologic record and are considered monogenetic

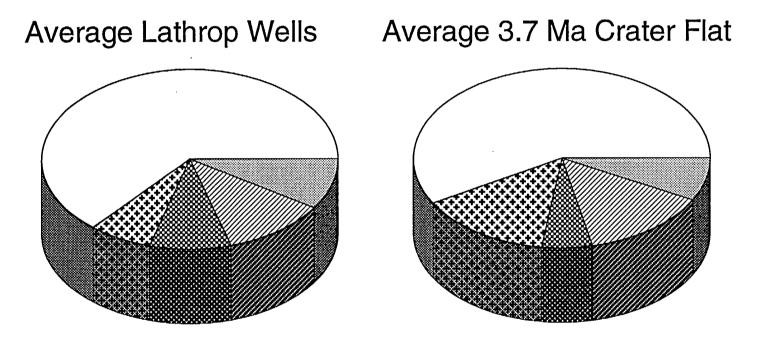
1: Waning magmatism and polycyclic/polygenetic volcanism

Compositional variations at Lathrop Wells are less or equal to historic zoned eruptions

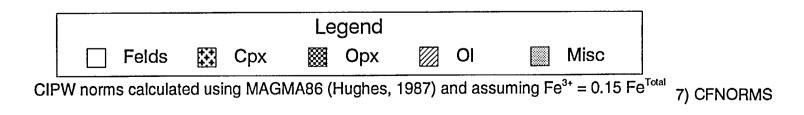
 $Mg\# = Mg/(Mg+Fe^{2+})$, assuming $Fe^{2+} = 0.85 Fe^{Total}$

UPPERCASE = Early eruption; lower case = late eruption

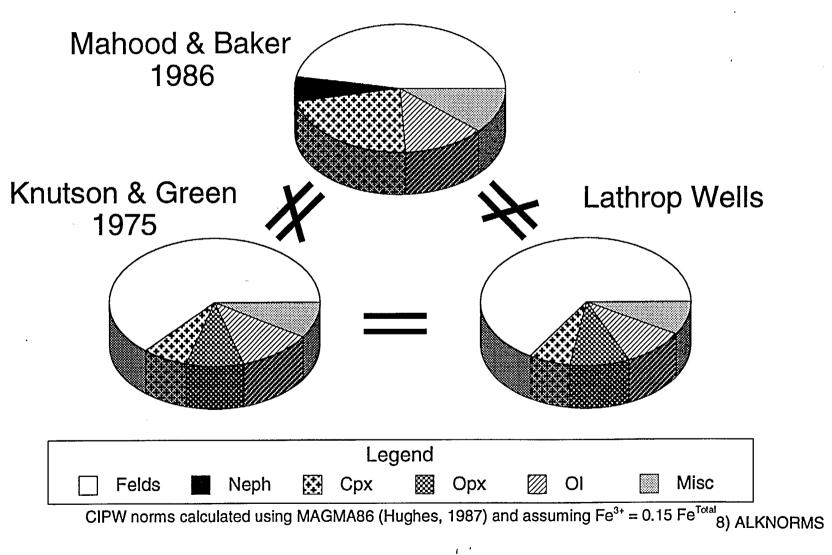
The geochemical variations at Lathrop Wells are not unusual for mafic eruptions and do not require polycyclic or polygenetic volcanism

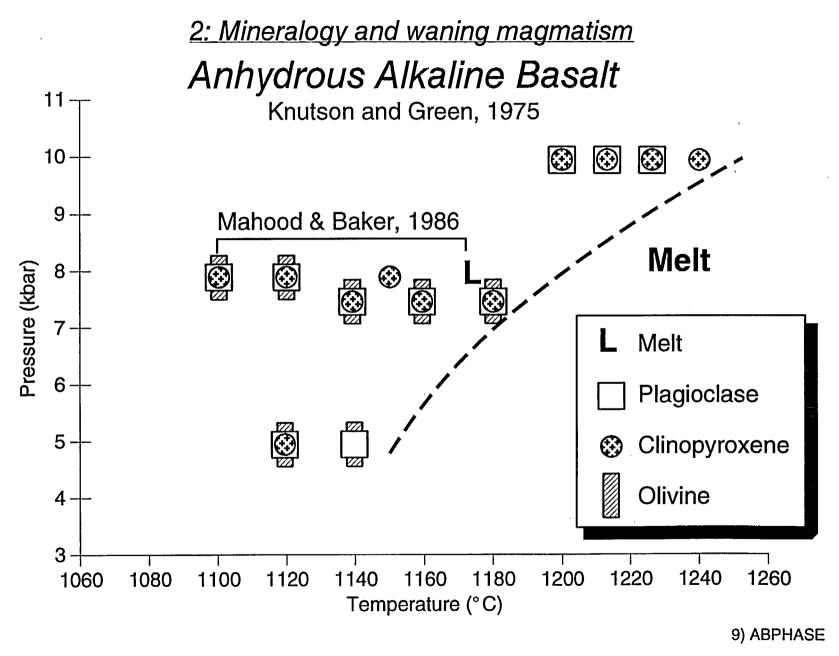

5) MAFZONEC

2: Mineralogy and waning magmatism

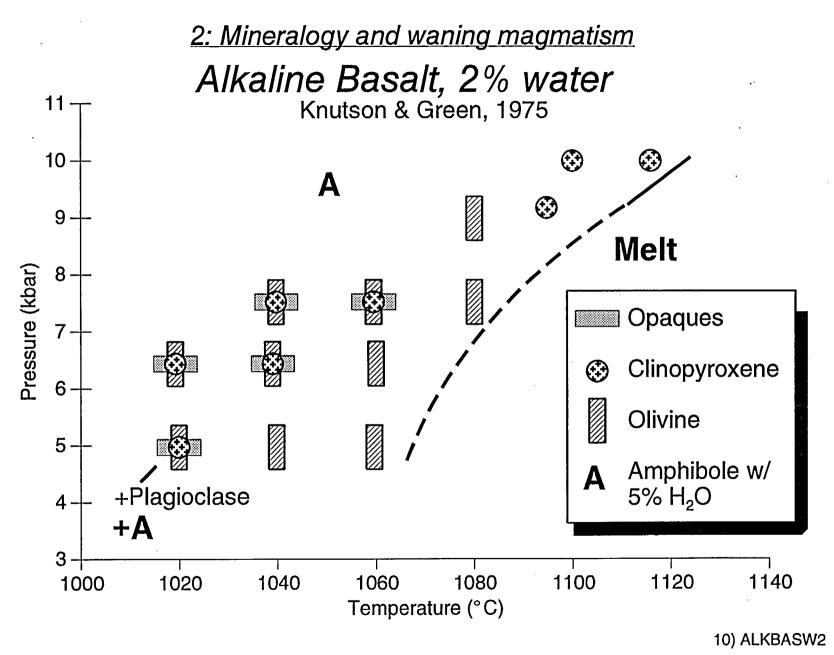

Multiple extensive and intensive variables control the mineralogy of magmas:

- Temperature
- Pressure
- Water Content
- Bulk Composition
- All of these variables must be constrained before the effects of one variable can be identified
- Multiple hypotheses besides an increase in depth can explain changes in the Crater Flat basalt mineralogy 6) CFMIN


2: Mineralogy and waning magmatism Normative Mineralogy



Vaniman et al., 1982; Crowe et al., 1986



2: Mineralogy and waning magmatism Normative Mineralogy

í '

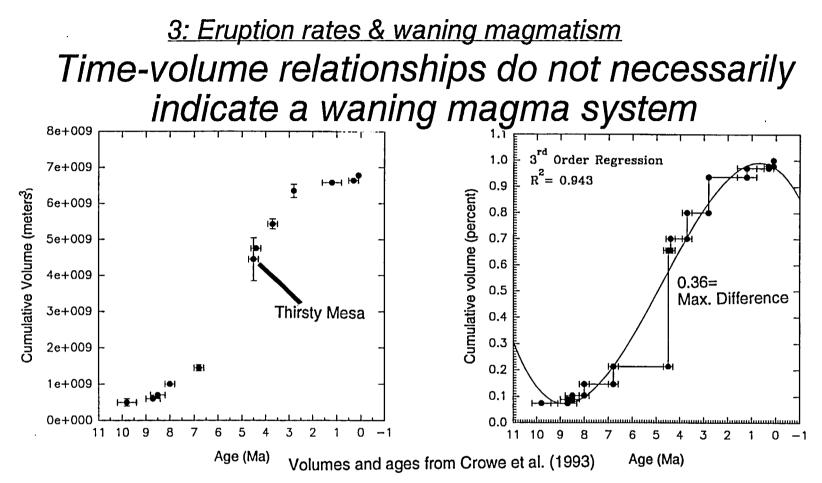
1.1

2: Mineralogy and waning magmatism

Apparent problems in the mineralogy of Quaternary basalt

 Arguments for an increase in depth with time critically depend on the absence of plagioclase (e.g., p. 165). However:

"Lathrop Wells unit Ql₆ also contains plagioclase as a phenocryst phase" (p. 168)

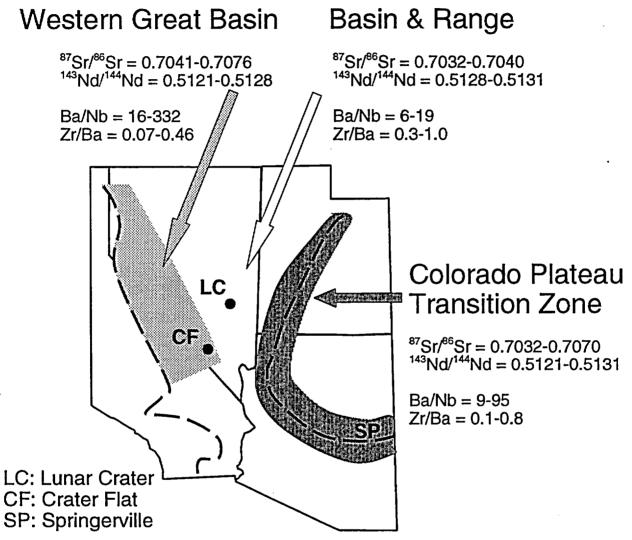

At Lathrop Wells, U-Th dates utilize coarse and fine grained plagioclase in unit Ql_4 (p. 68)

Zreda et al. (1993) also report plagioclase phenocrysts at Lathrop Wells

• Amphibole is a trace phenocryst in numerous Quaternary basalts. Amphibole may be present but undetected in basalts examined with thin-section petrography. Detailed heavy-mineral separations are required to detect small trace phases in vesicular basalt.

1 '

11) MINPROBS



- Pliocene rate is strongly controlled by Thirsty Mesa, follows 2.2 Ma hiatus
- 10-6.5 Ma rates are very similar to <4 Ma rates
- Thirsty Mesa is distinct from expected trend using 2-tailed Kolmogorov-Smirnov test at 90% confidence interval
- Magma supply rate may be steady-state. Pliocene could represent recovery from eruption hiatus back to steady-state rates, i.e., not waning.
 12) VOLUME1

1

4: Regional trends & waning magmatism

The Western Great Basin is distinct from other Basin & Range magmatic provinces

Schematic diagram, modified from Kempton et al. (1991).

- WGB systems do not show distinct petrogenetic shifts at 5 Ma.
- WGB magmas still have lithospheric mantle signatures, <5 Ma B&R are asthenospheric
- CF is petrogenetically distinct from LC & SP systems & does not show a trend of waning magmatism

13) WGBB

Several alternative hypotheses to waning magmatism

- Magma supply rate has increased in the Quaternary, resulting in a crustal density that is lower and inhibits the eruption of the higher density, more primitive magmas
- The system has been steady-state since about 10 Ma. Magma ascent is occasionally inhibited (6.7-4.5 Ma), resulting in larger eruptions as the system returns to a steady-state eruption rate
- Increasing magmatic volatile content with time results in higher ascent rates and smaller, more frequent Quaternary eruptions with no change in magma supply rate
- Like other Western Great Basin systems, Crater Flat has yet to change to an asthenospheric magma source. Other nearby Basin & Range systems have at least several million years of activity after this transition.

Conclusions

- Small geochemical variations at Lathrop Wells do not require the polycyclic eruption of discrete magma bodies in a waning system.
- Mineralogic and petrologic variations attributed to changes in depth also could represent changes in temperature, composition, or water content of the system and do not require a waning magmatism.
- Observed time-volume relationships do not require a waning magma system. Volcanism could be steady-state or waxing in the Crater Flat system.
- The Crater Flat system is part of the Western Great Basin (WGB) magmatic province. Petrogenetic trends in the Basin and Range province are not directly applicable to this system. Waning magmatism in the WGB is not supported by analogy to Basin & Range systems.

Under 10CFR60.122, a potentially adverse condition such as Quaternary Igneous Activity must be adequately investigated so as to not underestimate its effects on the repository. Alternative hypotheses are possible to many of the conclusions reached in the Volcanism Status Report. These hypotheses significantly affect probability and consequence models in the repository area.

1 '

15) CONCLUS

HOMOGENEOUS POISSON MODELS MAY UNDERESTIMATE THE EFFECTS OF THE PAC: ALTERNATIVE APPROACHES

Presented by Dr. Charles B. Connor

Volcanologist Center for Nuclear Waste Regulatory Analyses Southwest Research Institute San Antonio, Texas (210) 522-6649

> June 9, 1993 Las Vegas, Nevada

SOME PROBABILITY CONCERNS

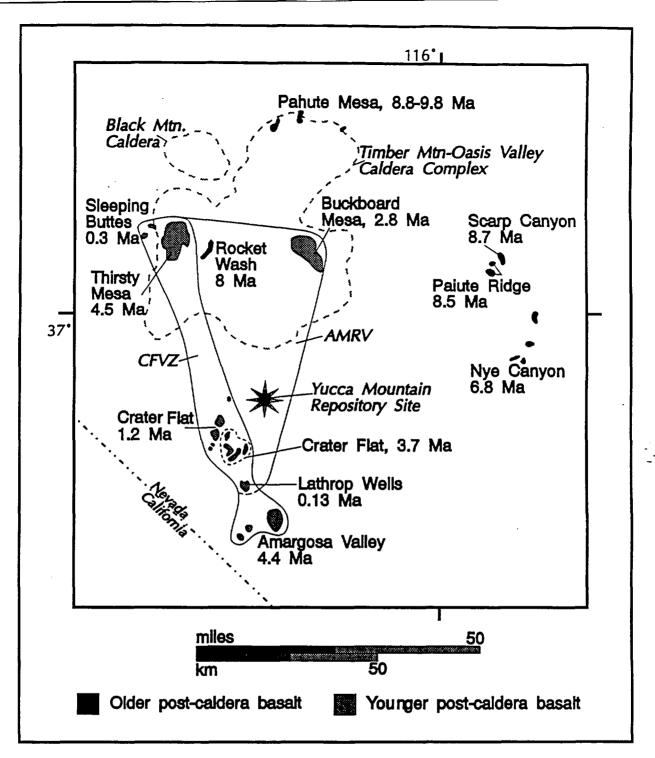
• Several valid estimates of recurrence rate in the YMR are much higher than the range reported [1.6 - 4.0 volcanoes / million years] Recurrence rate has a significant impact on models and must be better constrained.

• Homogeneous Poisson models fail to characterize important aspects of volcano distribution in the YMR. Because YM is close to late Quaternary volcanoes, homogeneous Poisson models tend to underestimate the probability of volcanic disruption.

• Significantly higher probabilities of volcanic disruption are estimated from nonhomogeneous models. Alternative models need to incorporate additional geologic information.

• NNW -trending pattern in cinder cone distribution in the CFVZ is not statistically significant and does not provide evidence of deep-seated structural control on volcanism.

OUTLINE OF TECHNICAL DISCUSSION


- Distribution and ages of volcanoes in the YMR
- Estimates of YMR recurrence rate
- Testing the homogeneous Poisson model
- An example of a spatially and temporally nonhomogeneous Poisson model

1 '

• Alignment analysis of YMR volcanoes

DISTRIBUTION AND AGES OF VOLCANOES IN THE YMR

.

FROM:

CROWE (1990) CROWE ET AL. (1982; 1983) VANIMAN AND CROWE (1981) CROWE AND PERRY (1991) CROWE (1992, WRITTEN COMMUNICATION (NWTRB))

Name	Age (Ma)	UTM easting	UTM northing	Name	Age (Ma)	UTM easting	UTM northing
Amargosa Valley SW	≈4.0	543376	4048820	Hidden Cone	0.3±0.2	523301	4113698
Amargosa Valley	≈4.0	544817	4050859	Thirsty Mesa	≈4.5	528129	4112249
Amargosa Valley NE	4.4	550306	4053139	Rocket Wash	8.0±0.2	535539	4109028
Lathrop Wells	0.13±0.05	543737	4060073	Buckboard Mesa	2.8±0.1	554946	4109111
Crater Flat S	3.7±0.2	541493	4066057	Pahute Mesa W	9.8±0.4	548758	4133489
Crater Flat E	3.7±0.2	543704	4067644	Pahute Mesa	8.8±0.1	554170	4134467
Crater Flat W	3.7±0.2	540584	4067787	Pahute Mesa E	≈9.8	561927	4132182
Crater Flat NW	3.7±0.2	539915	4070959	Paiute Ridge S	8.5±0.3	593698	4101888
Crater Flat W	3.7±0.2	536879	4068573	Paiute Ridge N	8.5±0.3	593611	4103166
Little Cone SW	1.2±0.4	534626	4069423	Scarp Canyon	8.7±0.3	595625	4103906
Little Cone NE	1.2±0.4	534825	4069884	Nye Canyon N	6.8±0.2	603210	4091744
Red Cone	1.2±0.4	537259	4071648	Nye Canyon	6.8±0.2	602370	4085671
Black Cone	1.2±0.4	538257	4074275	Nye Canyon SE	6.8±0.2	600999	4082470
Northern Cone	1.2±0.4	540088	4079455	Nye Canyon SW	6.8±0.2	599557	4083139
Little Black Peak	0.3±0.2	521298	4111346				

Table 1. Locations of volcanic centers and ages used for statistical models. Vent locations from Crowe (1990), and ages from Crowe et al. (1982; 1983), Vaniman and Crowe (1981), Crowe and Perry (1991), and Crowe, B.M., 1992, written communication. Vent coordinates in Universal Transverse Mercator, zone 11, Clarke 1866 spheroid.

1 1

UNCERTAINTY IN CRATER FLAT VOLCANO AGES

.

RED COI	NE				
	VANIMAN AND CROWE: (1981)	1.14 ± 0.3			
	VANIMAN ET AL. (1982)	1.50 ± 0.1			
	ΉΟ ΕΤ΄ AL.: (1991)	0.98 ± 0.1 1.01 ± 0.06 0.95 ± 0.08	WE USE 1.2 ± 0.4 TO ATTEMPT TO REFLECT PRECISION AND		
	SINNOCK AND EASTERLING (AVERAGED) (1983)	1.41 ± 0.6	ACCURACY OF THESE DATES		
NORTHE	RN CONE VANIMAN ET AL :	1.14 ± 0.3			
	(1982)	1.07 ± 0.04			
BLACK CONE					
	VANIMAN AND CROWE (1981)	1.09 ± 0.3 1.07 ± 0.4			
LITTLE C	CONE SW VANIMAN AND CROWE (1981)	1.11 ± 0.3			

('

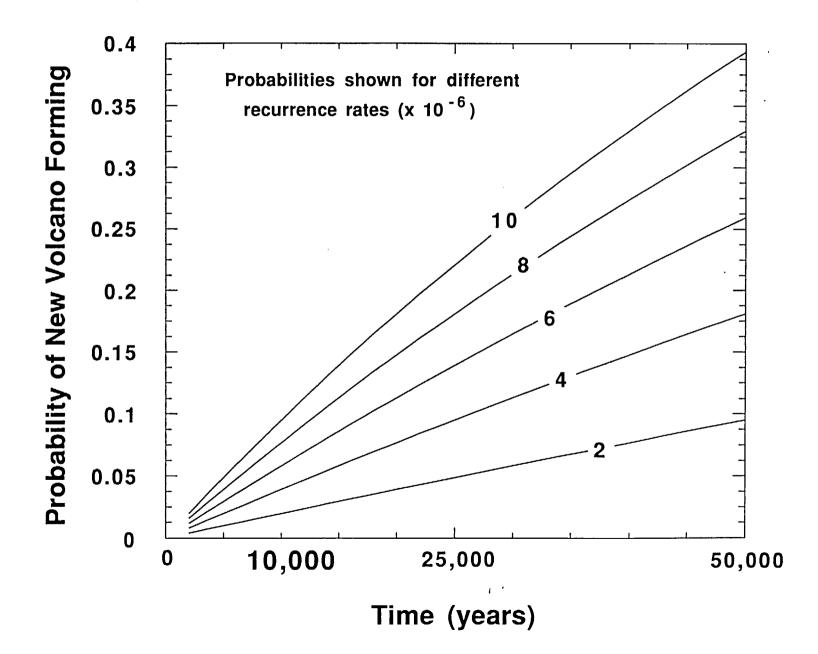
.

UNCERTAINTY IN SLEEPING BUTTES VOLCANO AGES

LITTLE E	BLACK PEAK CROWE ET AL. (1982) CROWE AND PERRY (1991)	$\begin{array}{c} 0.29 \pm 0.11 \\ 0.32 \pm 0.15 \\ 0.24 \pm 0.22 \\ 0.208 \pm 0.134 \\ 0.223 \pm 0.1 \end{array}$	WE USE 0.3 ± 0.2 TO ATTEMPT TO REFLECT PRECISION AND ACCURACY OF THESE DATES
HIDDEN	CONE CROWE AND PERRY (1991)	0.316 ± 0.2	

ESTIMATES OF YMR RECURRENCE RATE

.


1 '

.

SOME ESTIMATES OF YMR RECURRENCE RATE volcanoes / million years

Crowe et al. (1993):	
minimum event rate:	1.6
maximum event rate:	4
most likely event rate:	3.3
geometric mean most likely event rate:	2.6
Ho et al. (1991):	
maximum likelihood estimator:	5-6
Но (1992):	
Weibull process (90% confidence interval):	1.85-12.6

Given the uncertainty in the ages of Crater Flat volcanoes (1.2 \pm 0.4 Ma), seven to eight volcanoes have formed in the last 0.8 to 1.6 million years. YMR recurrence rate is 7 \pm 2 volcanoes / million years, based on time since start of Quaternary activity.

Techcc-11

TESTING THE HOMOGENEOUS POISSON MODEL

1 1

- Ho: VOLCANOES IN THE YUCCA MOUNTAIN REGION HAVE A HOMOGENEOUS POISSON DISTRIBUTION
- H1: VOLCANOES IN THE YUCCA MOUNTAIN REGION DO NOT HAVE A HOMOGENEOUS POISSON DISTRIBUTION

TWO METHODS TO TEST THE NULL HYPOTHESIS

- CLARK EVANS TEST
- HOPKINS F-TEST

CLARK - EVANS TEST:

 $CE = \frac{d-\delta}{s_e}$

$$\delta = 0.5 \sqrt{A/n}$$

$$s_e = \frac{0.26136}{\sqrt{A/n^2}}$$

where: *CE* is the Clark - Evans Statistic *d* is the mean distance between volcanoes δ is the expected distance between volcanoes *A* is the area of consideration (AMRV or CFVZ) n is the number of volcanoes se is the expected standard error

Ho is rejected with greater than 90% confidence for all volcanoes within the AMRV

HOPKINS F - TEST:
$$Hop_F = \frac{\lambda_p}{\lambda_v}$$

minimum distance to
near neighbor i
cinder cone
 $\lambda_p = \frac{m}{\sum_{i=1}^{m} u_i}$
 $\lambda_v = \frac{m}{\sum_{i=1}^{m} v_i}$

Where: u_i and v_i are areas from point to volcano and volcano to volcano, respectively

1 '

m is the number of near neighbors

Hop_{*F*} is the Hopkins statistic

 $Hop_F = 2.4$ to 3.2, H_0 is rejected with greater than 99% confidence

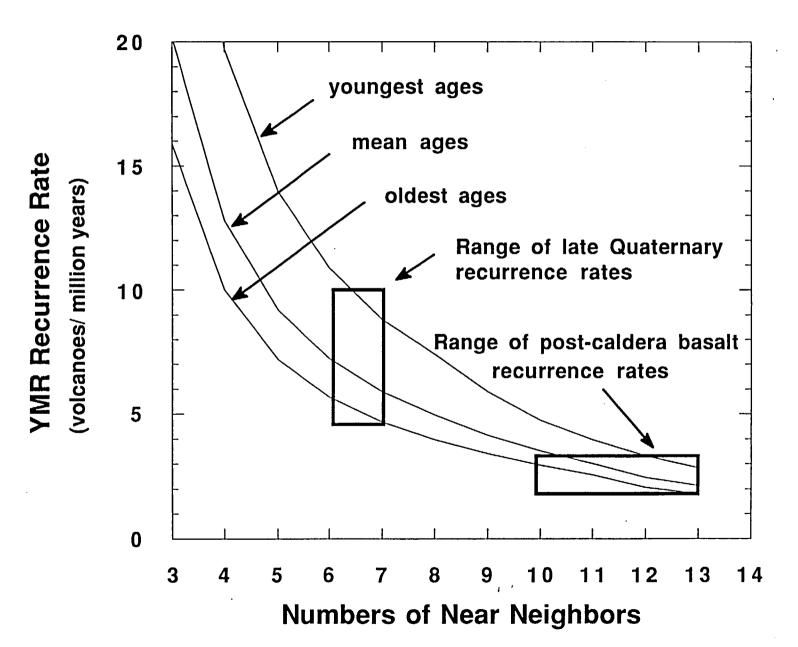
VOLCANOES CLUSTER IN THE YUCCA MOUNTAIN REGION

- RECURRENCE RATE MUST VARY WITHIN THE YMR
- HOMOGENEOUS POISSON MODELS DO NOT ADEQUATELY DESCRIBE VOLCANO DISTRIBUTION

Homogeneous Poisson models will overestimate the probability of volcanism in some parts of the YMR, far from Quaternary volcanoes, and underestimate the probability of volcanism close to late Quaternary Crater Flat volcanoes.

AN EXAMPLE OF A SPATIALLY AND TEMPORALLY NONHOMOGENEOUS POISSON MODEL

Estimating Recurrence Rate in a Nonhomogeneous Model

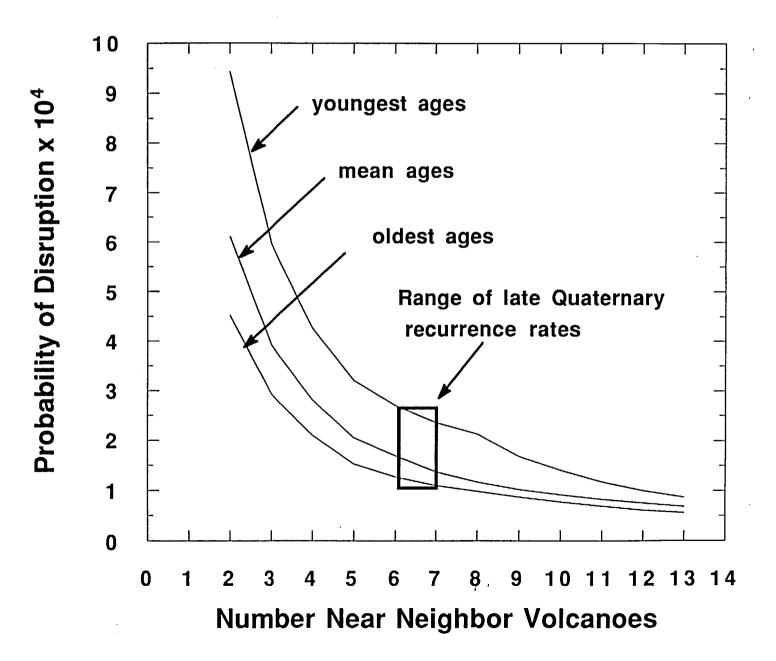

One approach is to use near neighbors: λ_r

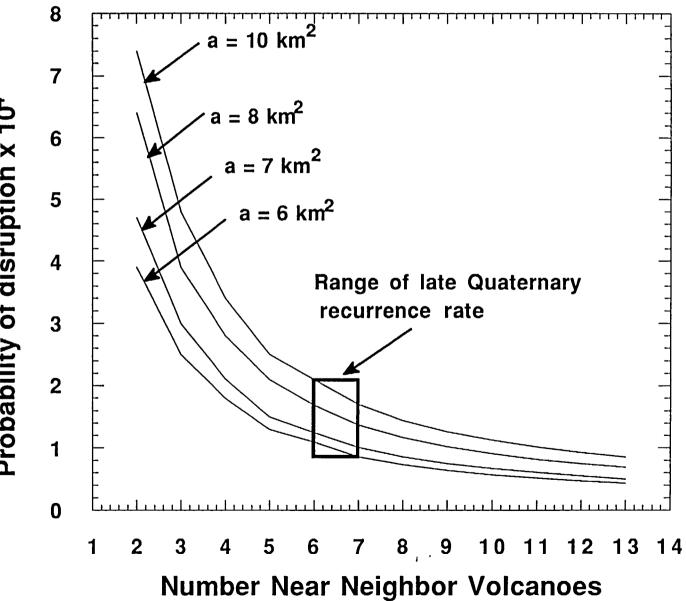
$$= \frac{m}{\sum_{i=1}^{m} u_i t_i}$$

where: λ_r is the recurrence rate at a point t_i is the time since the formation of the volcano and $u_i t_i$ is minimum for the nearest *m* neighbors

The number of near neighbors can be constrained by integrating the recurrence rate over the entire region to estimate the recurrence rate in the YMR, λ_t :

$$\lambda_{t} = \sum_{i=0}^{m} \sum_{j=0}^{n} \lambda_{r}(i, j) \Delta x \Delta y$$


Using a spatially varying recurrence rate, it is possible to estimate the probability of a new volcano forming within or near the repository block:


$$P[N \ge 1] = 1 - exp\left[-t \iint_{XY} \lambda_r(x, y) \, dy dx\right]$$

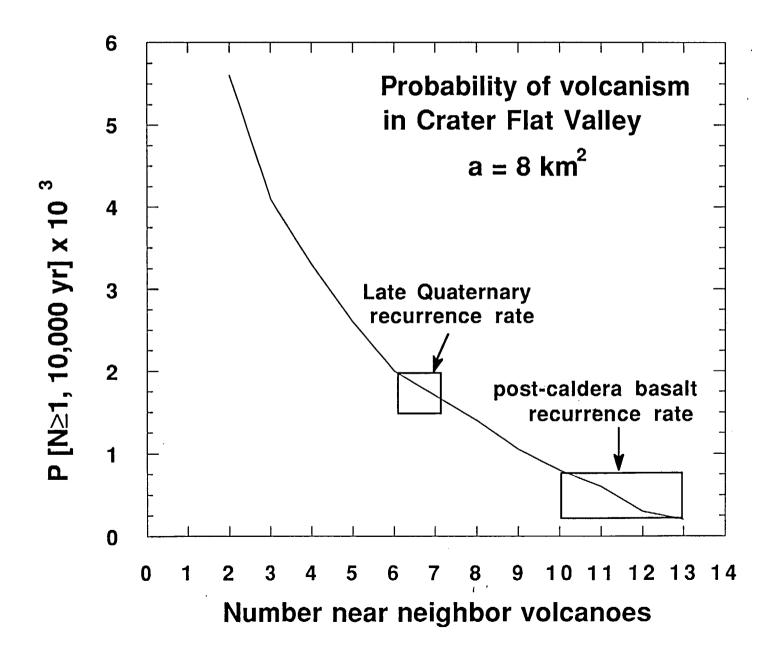
or

$$P[N \ge 1] = 1 - exp\left[-t\sum_{a}\lambda_{r}\Delta x\Delta y\right]$$

where: t = 10,000 years λ_r is the expected recurrence rate at point *x*, *y a* is the area of the repository

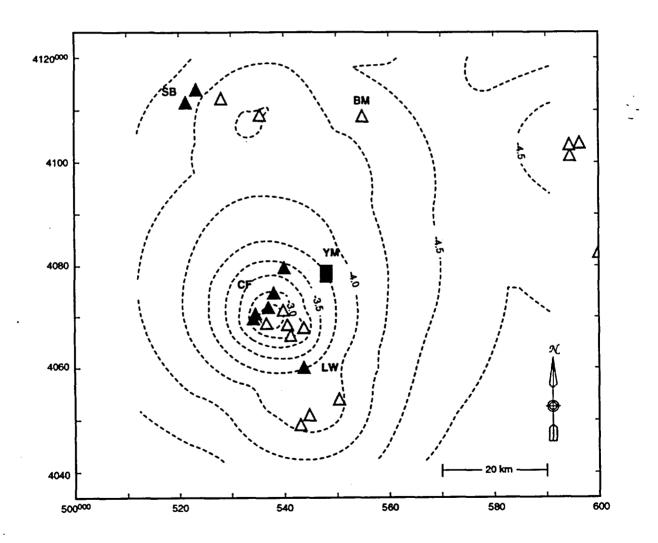
Probability of disruption x 10⁴

PROBABILITY OF DISRUPTION IN 10,000 yr USING NEAR NEIGHBOR NONHOMOGENEOUS POISSON MODEL

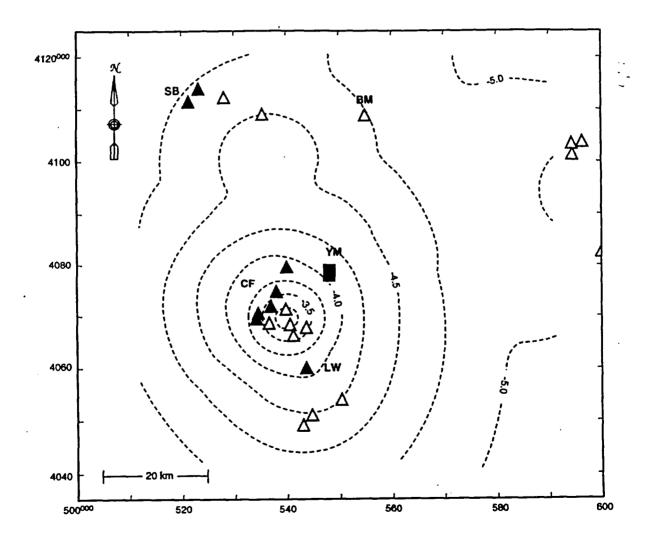

late Quaternary YMR recurrence rate:

 8.0×10^{-5} to 3.5×10^{-4} with most estimates between 1 $\times 10^{-4}$ and 3 $\times 10^{-4}$

1 1


post-caldera basalt YMR recurrence rate:

6.9 x 10⁻⁵ to 9.2 x 10⁻⁵


SIX NEAR NEIGHBOR NONHOMOGENEOUS POISSON PROBABILITY MODEL

- Reflects late Quaternary recurrence rate (7 volcanoes / million years)
- Contour interval is Log(P[N \ge 1, 10,000 yrs, $a = 8 \text{ km}^2$]) (e.g., -4.0 is a probability of 1 in 10,000 in 10,000 year of a new volcano forming within a 8 km² area)

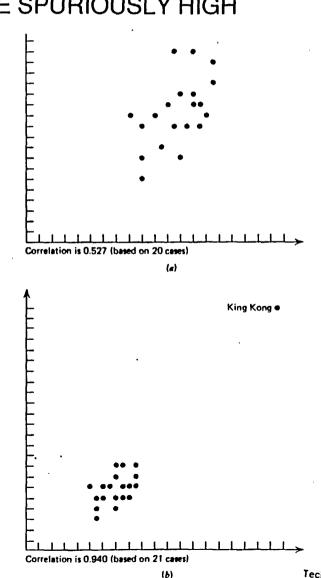
TEN NEAR NEIGHBOR NONHOMOGENEOUS POISSON PROBABILITY MODEL

- Reflects post-caldera basalt recurrence rate (3 volcanoes / million years)
- Contour interval is Log(P[N \ge 1, 10,000 yrs, $a = 8 \text{ km}^2$]) (e.g., -4.0 is a probability of 1 in 10,000 in 10,000 year of a new volcano forming within a 8 km² area)

ALIGNMENT ANALYSIS OF VOLCANOES IN THE YMR

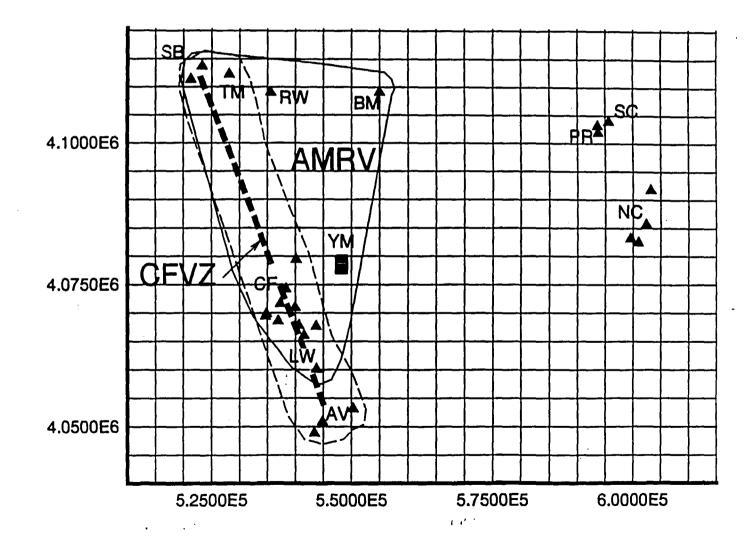
1 1

OUTLIERS AND CORRELATION COEFFICIENTS


1 '

DATA OUTLIERS AND CLUSTERING CAN CREATE SPURIOUSLY HIGH CORRELATION COEFFICIENTS

CINDER CONE CLUSTERING AND ITS EFFECT ON ALIGNMENT IDENTIFICATION HAS BEEN DISCUSSED AT LENGTH IN THE LITERATURE


LUTZ (1986) WADGE AND CROSS (1989) CONNOR (1990) CONNOR ET AL. (1992)

MODIFIED FROM MAKRIDIKAS ET AL. (1983)

REGRESSION ANALYSIS IN THE CFVZ IS CONTROLLED BY SLEEPING BUTTE CLUSTER. THE RESULTING CORRELATION COEFFICIENT IS SPURIOUSLY HIGH.

.

.

SUMMARY OF ALIGNMENT ANALYSIS

- REGRESSION METHODS ARE NOT APPROPRIATE BECAUSE THE VOLCANOES CLUSTER
- IN A PRACTICAL SENSE, 3-4 CINDER CONE CLUSTERS DO APPEAR TO ALIGN IN A NNW DIRECTION.
- TWO-POINT AZIMUTH METHOD INDICATES THAT ONLY NE -TRENDING ALIGNMENTS ARE STATISTICALLY SIGNIFICANT IN THE CRATER FLAT - LATHROP - AMARGOSA VALLEY "CLUSTER"
- ADDITIONAL GEOLOGIC EVIDENCE NEEDED TO JUSTIFY ALIGNMENT MODEL. DISTRIBUTION OF VOLCANOES IN THE YMR DOES NOT PROVIDE EVIDENCE OF DEEP-SEATED STRUCTURAL CONTROL

1 1

SUMMARY COMMENTS

- SOME REASONABLE ESTIMATES OF RECURRENCE RATES ARE MUCH HIGHER THAN IS CONCLUDED BY THE STATUS REPORT. THE PROBABILITY OF FUTURE VOLCANISM IN THE YMR IS MUCH HIGHER THAN THE 8.8 X 10⁻⁷ yr⁻¹ REPORTED.
- HOMOGENEOUS POISSON MODELS DO NOT ADEQUATELY
 DESCRIBE THE DISTRIBUTION OF CINDER CONES IN THE
 YMR OR ELSEWHERE.
- NONHOMOGENEOUS MODELS USING A RANGE OF RECURRENCE RATES AND VOLCANO AGES SUGGEST THAT THE PROBABILITY OF DISRUPTION EXCEEDS 1 IN 10,000 IN 10,000 YEARS.

1 1

3

SUMMARY COMMENTS (CONTINUED)

- THE NEAR NEIGHBOR NONHOMOGENEOUS POISSON MODEL TAKES INTO ACCOUNT ONE BIT OF GEOLOGIC INFORMATION: CINDER CONES TEND TO FORM CLUSTERS THROUGH TIME. ALTERNATIVE MODELS SHOULD INCORPORATE ADDITIONAL GEOLOGIC INFORMATION.
- THE NNW -TRENDING CRATER FLAT CINDER CONE ALIGNMENT IS NOT STATISTICALLY SIGNIFICANT.

1 '