CLINTON POWER STATION DOCKET NO. 50-461

WRITTEN EXAMINATIONS AND ANSWER KEYS (RO/SRO)

Q# 1	Exam BOTH	3	KA # A1.02	RO 2.8	SRO 2.8	LP # 85201	Objective NRS.19	
				2.0	2.0			
Contro	ol Rod an	d Drive Mecl	nanism	Cognitive Level: HIGH				
Abilit	y to predi	ct and/or mor	nitor chang	ges in		CRD drive pressure		
param	eters asso	ciated with o	perating th	ne		_		
CONTROL ROD AND DRIVE MECHANISM								
contro	ls includi	ng:						

Which one of the following is the correct method to raise Drive Water Differential Pressure from 250 psid to 300 psid per Control Rod Hydraulics and Control, 3304.01?

- A. Throttle OPEN CRD Pressure Control Valve, 1C11-F003.
- B. Throttle SHUT CRD Pressure Control Valve, 1C11-F003.
- C. Throttle OPEN CRD Flow Control Valve, 1C11-F002A.
- D. Throttle SHUT CRD Flow Control Valve, 1C11-F002A.

ANS:	Reference Provided:	Reference and Rev:	Question Source:	Ques Rev				
В	None	New	0					
Explanation:								
B is correc	ct, throttling SHUT the P	ressure Control Valve w	rill raise Drive Water D/P).				
A is wrong	g, this will LOWER D/P							
C is wrong, this will raise Cooling Water Flow and Cooling Water D/P								
D is wrong, this will lower Cooling Water Flow and Cooling Water D/P								

Q#	Exam	System #	KA#	RO	SRO	LP#	Objective
2	BOTH	201005	K5.10	3.2	3.3		
Rod C	ontrol an	d Information	System (Cognitive Level: RECALL			
Know	ledge of t	he operationa	al implicat	Rod withdrawal limiter: BWR-6			
follow	ing conce	epts as they a	pply to RC	D			
CONTROL AND INFORMATION SYSTEM							
(RCIS) :						

Why are Rod Control & Information System notch limits enforced ABOVE the Low Power Setpoint?

- A. Prevent exceeding MCPR during a postulated control rod drop accident.
- B. Prevent exceeding MCPR during a postulated control rod continuous withdrawal accident.
- C. Restrict control rod patterns during a power increase to prevent exceeding the Reactivity Anomalies technical specification
- D. Restrict control rod patterns to those analyzed resulting in acceptable fuel enthalpies during a reactor startup.

ANS:	Reference Provided:	Reference and Rev:	Question Source:	Ques Rev
В	None	ITS B3.3.2.1 rev4-8	Bank Perry 97 NRC	1
			#16	

Explanation:

B is correct, Rod Withdrawal Limiter ensures MCPR SL is not exceeded during continuous withdraw from >LPSP

A is wrong, CRDA applies to Rod Pattern Controller, not Rod Withdrawal Limiter.

C is wrong, anomalies are not mentioned in B3.3.2.1.

D is wrong, criteria for CRDA.

NOTE – removed "...and LHGR" from original question.

Q#	Exam	System #	KA#	RO	SRO	LP#	Objective	
3	BOTH	201005	K6.01	3.2	3.2			
Rod C	Control an	d Information	System (Cognitive Level: HIGH				
Know	ledge of t	he effect that	a loss or r	nalfunc	tion	First stage shell pressure or opening of		
		g will have or		a bypass valve(s): BWR-6				
AND	INFORM	ATION SYS	TEM (RC					

While performing control rod scram time testing at 26% reactor power, a main turbine trip occurs.

Why does the rod pattern controller start to enforce control rod insertion AND withdrawal limits?

- A. The End-of-Cycle Recirc Pump Downshift caused reactor power to decrease below the Low Power Setpoint.
- B. The reduction in Feedwater flow resulted in a Recirc Pump Downshift that reduced reactor power below the Low Power Setpoint.
- C. The loss of steam to the turbine caused the rod pattern controller to sense power to be below the Low Power Setpoint.
- D. The bypass valves opening decreased steam flow at the equalizing header to less than the Low Power Setpoint.

ANS: C	Reference Provided: None	Reference and Rev: CPS No.3304.02 rev 15	Question Source: LC 557	Ques Rev 0
Explanation	on: Turbina Trin Caram i	g hymaggad <22 20/2 novy	r rangtar agetinuag ta a	narata

Explanation: Turbine Trip Scram is bypassed <33.3% power, reactor continues to operate. C is correct, Turbine Trip at 26% inplies BPVs can accommodate steam flow .1st Stage Shell Pressure is low because Turbine is tripped, <LPSP signal activates Rod Pattern Controller.

A is wrong, at 26% power EOC-RPT is not active, no RR downshift will occur.

B is wrong, no feedwater flow reduction will occur from a Turbine Trip with Bypass.

D is wrong, steam flow at equalizing header will not change.

Q# 4		System # 202001	KA # A2.20	RO 2.8	SRO 2.9	LP # 87202	Objective .1.24
Recirc	culation S	ystem			Cognitive Level:HIGH		

Ability to (a) predict the impacts of the following on the RECIRCULATION SYSTEM; and (b) based on those predictions, use procedures to correct, control, or mitigate the consequences of those abnormal conditions or operations: Loss of D.C. power: Plant-Specific

The reactor is at 90% power.

DC Control Power is lost ONLY to the 4B breaker for Reactor Recirculation Pump B.

Reactor Recirculation Pump breaker 5B will (1), the procedure for this situation is (2).

(1) (2) A. trip 4100.01 Reactor Scram.

B. trip 4008.01 Abnormal Reactor Coolant Flow.

C. remain closed 4201.01 Loss of DC Power.

D. remain closed 3302.01 Reactor Recirc FCV Lockout Reset.

Q#	Exam	System #	KA#	RO	SRO	LP#	Objective
5	ВОТН	209001	K2.02	2.5	2.7		
Low	Pressure C	Core Spray Sy	stem	Cognitive Level: RECALL			
Knov	vledge of e	electrical pow	er supplie	Valve power			
follov	ving:						

AB MCC 1A3 is de-energized, which one of the following valves is affected?

- A. LPCS Injection Valve, 1E21-F005
- B. RHR C Minimum Flow Valve, 1E12-F064C
- C. HPCS Injection Valve, 1E22-F004
- D. RCIC Injection Valve, 1E51-F013

ANS:	Reference Provided:	Reference and Rev:	Question Source:	Ques Rev					
A	None	3313.01E001 rev 11	Modified INPO	0					
			19084 LaSalle						
Explanation:									
A is corre	ct, powered AB MCC 1A	A3							
B is wron	g, powered AB MCC 1B	2							
C is wron	C is wrong, powered 1E22-S002								
D is wron	D is wrong, powered DC MCC 1A								

Q#	Exam	System #	KA#	RO	SRO	LP#	Objective
6	BOTH	211000	A1.06	3.8	3.9		
Stand	by Liquid	Control Syst	em	Cognitive Level: RECALL			
param	eters asso	ct and/or more ociated with o QUID CONT	perating th	Flow indication: Pla	ant-Specific		
includ	ing:						

Which of the following verifies Standby Liquid Control Injection flow into the reactor?

- 1. SLC Squib A and B CONTINUITY LIGHTS LIT
- 2. SLC Suction Valves from SLC Storage Tank OPEN
- 3. SLC Pumps A AND B START
- 4. SLC Pump Discharge Pressure slightly ABOVE Reactor Pressure
- A. 1, 2, and 3 ONLY
- B. 1, 3, and 4 ONLY
- C. 1, 2, and 4 ONLY
- D. 2, 3, and 4 ONLY

ANS:	Reference Provided:	Reference and Rev:	Question Source:	Ques Rev				
D	None 4411.10 rev 4 NEW							
Explanation:								
D is correc	D is correct, normal injection indication, 1 is incorrect, this light EXTINGUISHES							
A is wrong	g, 1 is incorrect, this ligh	t EXTINGUISHES						
B is wrong, 1 is incorrect, this light EXTINGUISHES.								
C is wrong	C is wrong, 1 is incorrect, this light EXTINGUISHES.							

Q#	Exam	System #	KA#	RO	SRO	LP#	Objective
7	BOTH	211000	K2.02	3.1	3.2		
Star	ndby Liquid	Control Syst	em	Cognitive Level: RECALL			
Kno	wledge of e	electrical pow	er supplie	Explosive valves			
foll	owing:						

AB MCC 1A1 120 V Fire Protection Distribution Panel is deenergized.

Which one of the following components lost power?

- A. Standby Liquid Control Pump 1B, 1C41-C001A
- B. Standby Liquid Storage Tank Outlet Valve, 1C41-F001A
- C. Standby Liquid Control Squib Valve, 1C41-F004A
- D. Standby Liquid Storage Tank Operating Heater, 1C41-D002

ANS:	Reference Provided:	Reference and Rev:	Question Source:	Ques Rev		
C	None	3314.01E001 rev 9a	NEW	1		
Explanation:						
C is correc	C is correct					
A is wrong	A is wrong, powered AB MCC 1A1, not the Fire Protection Distribution Panel					
B is wrong, powered AB MCC 1A2						
D is wron	g, powered AB MCC 1H					

Q#	Exam	System #	KA#	RO	SRO	LP#	Objective
8	BOTH	212000	A3.01	4.4	4.4	87409	.1.3.2
Reactor Protection System						Cognitive Level: HIGH	
	•	tor automatic OTECTION			Reactor power		

A reactor startup is in progress.

Which one of the following combinations of IRM readings will result in a reactor scram?

A.	A 122			D 110				
B.	105	124	109	110	122	116	108	112
C.	110	108	125	116	112	118	122	109
D.	109	108	119	120	105	116	118	121

ANS:	Reference Provided:	Reference and Rev:	Question Source:	Ques Rev		
В	None	3306.01 rev 10a	NEW	1		
Explanation: Must know trip setpoint and required coincidence.						
B is correc	B is correct, trips at 120/125, this selection has a Div 2 (B) and a Div 1 (E) trip.					
A is wrong, both trips given are Div 1 (A and E)						
C is wrong, both trips given are Div 3 (C and G)						
D is wrong	g, both trips given are Di	v 4 (D and H)				

Q#	Exam	System #	KA#	RO	SRO	LP#	Objective
9	BOTH	212000	K5.01	2.7	2.9	87411	.1.1.4
React	or Protect	ion System				Cognitive Level: R	ECALL
Knowledge of the operational implications of the					Fuel thermal time c	onstant	
following concepts as they apply to REACTOR							
PROT	ECTION	SYSTEM:					

Which one of the following RPS trip signals is filtered with a time constant?

- A. APRM Fixed Neutron Flux High
- B. APRM Flow Biased Simulated Thermal Power High
- C. APRM Neutron Flux High, Setdown
- D. IRM Neutron Flux High

ANS:	Reference Provided:	Reference and Rev:	Question Source:	Ques Rev			
В	None	87411 rev 2	NEW	0			
Explanation:							
B is correc	B is correct, reference states verbatim						
A, C, and D are wrong, are not time constant filtered							
	٠,						

Q#	Exam	System #	KA#	RO	SRO	LP#	Objective
10	BOTH	214000	K5.01	2.7	2.8	87400	.1.1.13
Rod F	osition In	formation Sy	rstem			Cognitive Level: R	ECALL
Knowledge of the operational implications of the				Reed switches			
following concepts as they apply to ROD							
POSI	TION INF	FORMATION	NSYSTEN				

With a control rod fully withdrawn, how many Position Indicator Probe reed switches should be closed for that rod?

- A. 1
- B. 2
- C. 3
- D. 4

ANS:	Reference Provided:	Reference and Rev:	Question Source:	Ques Rev				
D	None	LP87400 rev 3	NEW	1				
Explanation	on:							
D is corre	D is correct, there are 4 reed switches closed. Two PIP strings each with 2 closed reed							
switches,	switches, one for NOTCH 48 position indication, one for the FULL-OUT light function.							
A is wron	g, 4							
B is wron	g, 4							
C is wron	- a 1							

Q#	Exam	System #	KA#	RO	SRO	LP#	Objective
11	ВОТН	214000	K6.01	2.5	2.6	87401	.1.1.5
Rod P	osition In	formation Sy	stem			Cognitive Level: R	ECALL
Knowledge of the effect that a loss or malfunction of the following will have on the ROD POSITION					A.C. electrical pow	er	
INFO	RMATIO	N SYSTEM:					

The plant is operating at 90% power when a loss of 4160 V Bus 1B1 occurs followed by a scram from MSIV closure.

Following the scram it is noted that the Rod Control and Information System (RC&IS) indication is blinking ON and OFF.

Which of the following actions is appropriate to verify ALL RODS IN using the RC&IS display?

- A. Depress DATA SOURCE pushbutton to select the operable channel.
- B. Depress the RAW DATA and SCRAM VALVES button to determine rod positions.
- C. Depress the DATA MODE and DATA SOURCE pushbuttons to select the operable channel.
- D. Acknowledge the ACCUMULATOR FAULT to allow the rods to settle to the full in position.

ANS:	Reference Provided:	Reference and Rev:	Question Source:	Ques Rev
C	None	LP 87401 rev 2	CPS NRC Exam 1997	0
			Question 16	

Explanation:

C is correct, blinking indicates one channel has data, the other does not. DATA MODE allows selection between dual channel and single channel, DATA SOURCE selects A or B data. A is wrong, still blinking, due to being in dual channel.

B is wrong, SCRAM VALVES will indicate which rods have Scram Valves open. Not rod position.

D is wrong, ACCUMULATOR FAULT will indicate which accumulators have low pressure or high water, not rod position.

Q# 12	Exam	System #	KA#	RO	SRO	LP#	Objective
12	BOTH	215003	K1.07	3.0	3.0	87409	.1.2.4
Intermediate Range Monitor (IRM) System Cognitive Level: RECALL						ECALL	
Knowledge of the physical connections and/or						Reactor vessel	
cause-	effect re	lationships be	etween				
INTERMEDIATE RANGE MONITOR (IRM)							
SYSTEM and the following:							

When FULLY INSERTEI	IRM detectors are	
---------------------	-------------------	--

- A. NOT in direct contact with water AND are 15 inches ABOVE core centerline.
- B. IN direct contact with water AND are 15 inches ABOVE core centerline.
- C. NOT in direct contact with water AND are 15 inches BELOW core centerline.
- D. IN direct contact with water AND are 15 inches BELOW core centerline.

ANS:	Reference Provided:	Reference and Rev:	Question Source:	Ques Rev							
A	None	LP87409 rev 1	NEW	1							
Explanation:											
A is correc	ct, IRMs are NOT in dire	ect contact with water AN	ND 15 inches ABOVE co	ore							
centerline	when fully inserted										
B is wrong	g, IRMs are NOT in direc	et contact with water.									
C is wrong	C is wrong, IRMs are 15 inches ABOVE core centerline.										
D is wrong, IRMs are NOT in direct contact with water AND 15 inches ABOVE core											
centerline	when fully inserted.	centerline when fully inserted.									

Q# 13	Exam BOTH	System # 215003	KA # K3.01	RO 3.9	SRO 4.0	LP # 87409	Objective .1.2.5
						Cognitive Level: H	IGH
Know	ledge of t	he effect that	a loss or 1	nalfunc	tion	RPS	
of the INTERMEDIATE RANGE MONITOR							
(IRM)	SYSTEN	M will have o	n followin				

The Mode Switch is in STARTUP/HOT STANDBY. An IRM A INOP Trip is generated.

Which one of the following describes the RC&IS and RPS response?

Rod Block		RPS Trip Signal - Div 1	Scram
A.	YES	YES	NO
B.	NO	NO	NO
C.	YES	NO	NO
D.	YES	YES	YES

			Labane	
			LaSalle	
A	None	LP 87409 rev 1	Bank INPO 1876	1
ANS:	Reference Provided:	Reference and Rev:	Question Source:	Ques Rev

Explanation:

A is correct, Rod Block and RPS Trip Div 1 are generated with RMS in STARTUP

B is wrong, Rod Block and RPS Trip Div 1 are generated

C is wrong, RPS Trip Div 1 is generated

D is wrong, Rod Block and RPS Trip Div 1 are generated, Scram does not occur, no Division

2, 3, or 4 RPS Trips are given.

Q#	Exam	System #	KA#	RO	SRO	LP#	Objective
14	BOTH	215004	A2.01	2.7	2.9	87215	.1.3.1
Source	e Range N	Monitor (SRM	1) System	Cognitive Level: HIGH			
the SC SYST proced	OURCE REEM; and dures to coquences o	ANGE MON (b) based on torrect, contro f those abnor	NITOR (SE those pred l, or mitig	RM) ictions, ate the	use	Power supply degra	ided

Reactor startup is in progress. The reactor is NOT critical.

SRMs read as follows:

Channel A B C D
Counts Per Second $2x10^3$ $3x10^3$ $2x10^3$ $5x10^3$

PREDICT the effect of a loss of the SRM C High Voltage Power Supply, AND what would be the correct action, if any?

	EFFECT	NECESSARY OPERATOR ACTION
A.	Rod Block	Wait until power is on IRM Range 3.
B.	Rod Block	Bypass the affected channel and continue startup.
C.	Scram occurs	Fully insert all SRMs.
D.	Nothing happens	Startup may be continued.

ANS:	Reference Provided:	Reference and Rev:	Question Source:	Ques Rev						
В	None	LP87215R2	New	1						
Explanation:										
B is corre	ct, loss of power supply	causes SRM INOP Rod I	Block. ITS allows bypass	of SRM.						
A is wron	A is wrong, reactor is not critical, power won't reach IRM Range 3. INOP bypassed Range 8.									
C is wrong, SRMs are not RPS inputs.										
D is wron	g, Rod Block occurs.									

Q#	Exam	System #	KA#	RO	SRO	LP#	Objective
15	BOTH	215004	A4.07	3.4	3.6	87215	.1.7
Source	e Range N	Monitor (SRM	1) System	Cognitive Level: RECALL			
Ability to manually operate and/or monitor in the						Verification of proper functioning/	
, , ,						operability	

While performing a reactor startup, Source/Intermediate Range Monitors, CPS 3306.01, directs to maintain Source Range Monitors between (1) counts per second. During detector motion reactor period indication (2) valid.

(1) (2)
A. $100 \text{ to } 1x10^5$ is
B. $100 \text{ to } 1x10^5$ is not
C. $1000 \text{ to } 1x10^6$ is
D. $1000 \text{ to } 1x10^6$ is not

ANS:	Reference Provided:	Reference and Rev:	Question Source:	Ques Rev
В	None	3306.01 rev 10a	NEW	2
- 1				

Explanation:

B is correct, SRMs are maintained between $1x10^2$ to $1x10^5$ cps, during motion reactor period is not valid.

A is wrong, during motion reactor period is not valid.

C is wrong, IRMs are maintained between 15 to 75 not SRMs, during motion reactor period is INACCURATE.

D is wrong..., IRMs are maintained between 15 to 75 not SRMs

Q#	Exam	System #	KA#	RO	SRO	LP#	Objective
16	BOTH	215005	A1.07	3.0	3.4	87411	.1.1.3
	ge Power or Systen	Range Moni	tor/Local I	Cognitive Level: HIGH			
param	eters asso	ct and/or more ociated with occurred inclusions.	perating th	•		APRM (gain adjust	ment factor)

Plant is running steady state at 94.5% power. The APRM Gain Adjustment Factor (AGAF) for APRM C is 1.04.

The indication from APRM C is (1) because actual thermal power is (2) indicated power.

(1)

A. conservative LESS THAN

B. conservative GREATER THAN

C. NON-conservative GREATER THAN

D. NON-conservative LESS THAN

	ANS:	Reference Provided:	Reference and Rev:	Question Source:	Ques Rev
	C	None	LP87411 rev 2	Clinton 1997 NRC	2
				Exam Question 25	
г					

Explanation:

AGAF = %Rated Core Thermal Power/APRM Reading

C is correct, NON conservative condition, and thermal is greater than indicated power.

A is wrong, NON conservative condition.

B is wrong, NON conservative condition, and thermal is greater than indicated power.

D is wrong, thermal is greater than indicated power.

Q#	Exam	System #	KA#	RO	SRO	LP#	Objective
17	BOTH	216000	K1.17	3.5	3.7	85264	.1.4.1
Nucle	ar Boiler	Instrumentati	on	Cognitive Level: HIGH			
Know	ledge of t	he physical c	onnections	s and/or		Emergency generat	ors
cause- effect relationships between NUCLEAR							
BOILER INSTRUMENTATION and the following:							

A transient occurred, the reactor has scrammed, plant conditions are:

- The Mode Switch is in SHUTDOWN with all control rods fully inserted.
- RPV Pressure is 755 psig.
- Drywell Pressure has risen to 1.2 psig and is stable.
- RPV Water Level is -50 inches rising from a low indicated value of -73 inches.

Which one of the following describes the status of the following Emergency Diesel Generators?

	DG1A	DG1C
A.	Running	Running
B.	Running	Standby
C.	Standby	Running
D.	Standby	Standby

ANS:	Reference Provided:	Reference and Rev:	Question Source:	Ques Rev					
C	None	LP85264 rev 4	Bank, LC116	1					
Explanation	on: Drywell pressure nev	er reached an initiation s	setpoint						
C is correct, Level 2 (-45.5 in)was reached which starts DG1C, Level 1 (-145.5 in) was not									
reached, I	OG1A are in Standby.								
A is wron	A is wrong, DG1A should be in Standby.								
B is wrong, DG1A should be in Standby, DG1C should be Running.									
D is wrong, DG1C should be Running.									

Q#	Exam	System #	KA#	RO	SRO	LP#	Objective
18	BOTH	218000	A4.10	3.8	3.8	LP87218	1.11.1
Automatic Depressurization System						Cognitive Level: RECALL	
	Ability to manually operate and/or monitor in the					Lights and alarms	
contr	ol room:						

Automatic Depressurization System has actuated.

What indication would be shown when the initiating signal is CLEAR and ready to be reset?

- A. ADS INHIBIT white lights ON
- B. HI DRYWELL PRESSURE A SEAL IN RESET red light ON
- C. ADS A&E LOGIC SEAL IN RESET white lights ON
- D. ADS DIV 1 OUT OF SERVICE status light ON

ANS:	Reference Provided:	Reference and Rev:	Question Source:	Ques Rev						
C	None	87218 rev 1	New	0						
Explanation:										
C is correc	C is correct									
A is wron	g, signal may not be clea	r								
B is wrong	B is wrong, and is an initiation logic input									
D is wrong, OOS switch has been turned, does not affect ADS logic.										

Q#	Exam	System #	KA#	RO	SRO	LP#	Objective
19	BOTH	218000	K4.02	3.8	4.0	87218	
Automatic Depressurization System						Cognitive Level: HIGH	
Know	ledge of A	AUTOMATIO	$\overline{\mathcal{C}}$			Allows manual initi	ation of ADS logic
DEPR	DEPRESSURIZATION SYSTEM design feature(s)						_
and/or	interlock	s which prov	ide for the	follow	ing:		

During a LOSS of Division 1 DC Power, the ADS valves can be OPENED by depressing which of the following ADS Logic Initiate pushbuttons?

- A. A AND E
- B. BAND E
- C. A AND F
- D. B AND F

ANS:	Reference Provided:	Reference and Rev:	Question Source:	Ques Rev						
D	None	87218 rev1	NEW	0						
Explanation	Explanation:									
D is corre	D is correct, with a LOSS of Division 1 DC, ONLY the B AND F buttons provide adequate									
logic.										
A is wron	A is wrong, A AND E are BOTH ineffective due to LOSS of Division 1 DC.									
B is wron	B is wrong, E is ineffective due to LOSS of Division 1 DC, actuation requires TWO inputs.									
C is wron	g, A is ineffective due to	LOSS of Division 1 DC	, actuation requires TWC) inputs.						

Q#	Exam	System #	KA#	RO	SRO	LP#	Objective
20	RO	219000	A4.03	2.9	2.9		
RHR/LPCI: Torus/Suppression Pool Cooling Mode						Cognitive Level: H	IGH
	Ability to manually operate and/or monitor in the control room:					Keep fill system	

While securing RHR B from the Suppression Pool Cooling mode, the following occur:

RHR PUMP B DISCHARGE PRESSURE ABNORMAL, 5065-5A, alarms RHR B Heat Exchanger Pressure, E12-R606B reads 40 psig.

This alarm is due to a (1) pressure condition, the REQUIRED operator action is to (2).

A.	(1) LOW	(2) continue to place RHR B in STANDBY
B.	LOW	pull the RHR Pump B breaker control power fuses
C.	HIGH	continue to place RHR B in STANDBY
D.	HIGH	pull the RHR Pump B breaker control power fuses

ANS:	Reference Provided:	Reference and Rev:	Question Source:	Ques Rev					
В	None	5065-5A rev 33	NEW	0					
Explanation:									
B is corre	ct, LOW pressure alarm	setpoint 57.8 psig at RH	IR Pump B Discharge, H	eat					
Exchange	r Pressure tap is physical	ly higher in the system.	. Pulling the control pow	er fuses					
prescribed by the procedure.									
A is wron	A is wrong, Pulling the control power fuses prescribed by the procedure.								

C is wrong, LOW pressure, Pulling the control power fuses prescribed by the procedure.

D is wrong, LOW pressure.

Q#	Exam	System #	KA#	RO	SRO	LP#	Objective	
21	ВОТН	259002	2.4.10	3.0	3.1	87570	.1.8.1	
Reactor Water Level Control System						Cognitive Level:HIGH		
Emerg	gency Pro	cedures and I	Plan			Knowledge of annunciator response		
						procedures.		

- Reactor Power is 90%.
- Both Turbine Driven Reactor Feed Pumps are in Three Element control.
- Feedwater Level Control is selected to Channel A.
- REACTOR WATER LEVEL HIGH LOW, 5002-2Q alarms.
- WATER LEVEL SIGNAL FAILURE, 5002-2P alarms.
- RPV LEVEL CHANNEL ERROR A amber light is LIT.

Narrow Range Level Channels read as follows

1C34-N004A 1C34-N004B 1C34-N004C 30.8 inches 39.0 inches 39.4 inches

If NO ACTION is taken a (1) trip will occur.

To correct this situation, it is necessary to transfer level control to (2).

(1) (2)

A. LEVEL 3 Channel B

B. LEVEL 3 Single Element

C. LEVEL 8 Channel B

D. LEVEL 8 Single Element

ANS:	Reference Provided:	Reference and Rev:	Question Source:	Ques Rev
C	None	5002-2P rev 28a	NEW	

Explanation: Symptoms are given for "selected" Channel A gradually failing low, actual level is gradually rising as verified by the "non selected" Narrow Range Level instruments. C is correct, 2 out of 3 instruments trending high will eventually cause a Level 8 trip, correct action is to select Channel B for control. Single Element does NOT swap level channel selection.

A is wrong, LEVEL 8

B is wrong, LEVEL 8 and Channel B

D is wrong, Channel B

Q#	Exam	System #	KA#	RO	SRO	LP#	Objective
22	BOTH	223001	K4.01	3.7	3.8	85223	.1.1.5
Prima	ry Contai	nment Systen	n and Aux	Cognitive Level: RECALL			
Know	ledge of I	PRIMARY C	ONTAINI	MENT		Allows for absorpti	on of the energy
SYSTEM AND AUXILIARIES design feature(s)					released during a L	OCA	
and/or	r interlock	s which prov	ide for the	ing:			

Which one of the following components promotes steam condensation during a DBA LOCA?

- A. Horizontal Vents
- B. Spargers
- C. Drywell Air Coolers
- D. Drywell Vacuum Breakers

ANS:	Reference Provided:	Reference and Rev:	Question Source:	Ques Rev
A & B	None	LP85223 rev 1	NEW	0

Explanation:

A is correct, Horizontal Vents transfer steam to the suppression pool.

B is also correct, containment spray (RHR) spargers also promote steam condensation during a DBA LOCA.

C is wrong, Drywell Air Cooler chilled water is isolated during a LOCA.

D is wrong, Drywell Vacuum Breakers do NOT condense steam nor transfer it to be condensed.

Q#	Exam	System #	KA#	RO	SRO	LP#	Objective
23	BOTH	223002	K6.06	2.8	2.9	87401	.1.4.1
Primary Containment Isolation System/Nuclear Steam Supply Shut-Off Cog						Cognitive Level: H	IGH
	_	the effect that g will have or		Various process ins	trumentation		

The plant is in Cold Shutdown with RHR A Loop in Shutdown Cooling Mode. RHR Heat Exchanger Room Ambient Temperature Instrument A in the Division 1 Trip System,1E31-N608A, fails HIGH.

Which of the following describes the status of the RHR system TWO MINUTES LATER?

	RHR Pump A IE12-C002A	SDC Outboard Isolation Valve 1E12-F008	SDC Inboard Isolation Valve 1E12-F009
A.	ON	OPEN	SHUT
B.	ON	OPEN	OPEN
C.	OFF	SHUT	SHUT
D.	OFF	SHUT	OPEN

ANS:	Reference Provided:	Reference and Rev:	Question Source:	Ques Rev				
D	None	LP87407 rev 1	NEW	0				
Explanation:								
D is correc	D is correct, Div 1 Trip System isolates SDC Outboard Valve 1E12-F008, RHR A Trips.							
A is wrong	A is wrong, Div 1 Trip System isolates SDC Outboard Valve 1E12-F008, RHR A Trips.							
B is wrong, Div 1 Trip System isolates SDC Outboard Valve 1E12-F008, RHR A Trips.								
C is wrong	C is wrong, Div 1 Trip System does NOT isolate SDC Inboard Valve 1E12-F009.							

Q#	Exam	System #	KA#	RO	SRO	LP#	Objective
24	BOTH	226001	A3.04	3.1	3.1	85205	.1.4.4
RHR/	LPCI: Co	ontainment Sp	oray System	m Mode	2	Cognitive Level: R	ECALL
Abilit	Ability to monitor automatic operations of the					Lights and alarms	
RHR/LPCI: CONTAINMENT SPRAY SYSTEM							
MOD	E includir	ng:					

The following occured simultaneous:

- High Drywell pressure LPCI initiation
- Manual initiation of the CNMT SPRAY logic

As a result the RED light associated with RHR A HX BYPASS VALVE, 1E12-F048A will

- A. be LIT for 10 minutes
- B. be LIT until CNMT SPRAY logic is RESET
- C. cycle LIT / EXTINGUISHED for 10 minutes then EXTINGUISH
- D. be EXTINGUISHED until BOTH signals are reset

ANS:	Reference Provided:	Reference and Rev:	Question Source:	Ques Rev				
C	None	3312.01 rev 35	NEW	1				
Explanation:								
C is corre	ct, 48A cycles for duration	on of LPCI 10 minute tin	mer, then closes for CNM	T Spray.				
A is wron	A is wrong, cycles for 10 minutes.							
B is wrong, cycles for 10 minutes.								
D is wron	D is wrong, cycles for 10 minutes, then closes.							

Q# 25	Exam	System #	KA#	RO	SRO	LP#	Objective
25	BOTH	226001	K1.04	3.1	3.3	85205 rev 6	
RHR/LPCI: Containment Spray System Mode						Cognitive Level: R	ECALL
Know	ledge of t	he physical c	onnections	s and/or	,	A.C. electrical pow	er
		lationships be					
CONTAINMENT SPRAY SYSTEM MODE and							
the fol	llowing:						

During the initiation of RHR A into the Containment Spray Mode, RHR A To Containment Spray A Shutoff Valve, 1E12-F028A RED and GREEN valve position indication lights EXTINGUISH.

This could be caused by a breaker trip at .

- A. UPS 1A
- B. AB MCC 1A4
- C. DC MCC 1E
- D. NSPS Distribution Panel A

ANS:	Reference Provided:	Reference and Rev:	Question Source:	Ques Rev					
В	None	3312.01E001 rev 14	NEW	0					
Explanation:									
B is correct, power supply is AB MCC 1A4									
Distractors do not affect 1E12-F028A.									

Q#	Exam	System #	KA#	RO	SRO	LP#	Objective
26	BOTH	234000	K4.02	3.3	4.1	86614	.1.8.12
Fuel Handling Equipment					Cognitive Level: HIGH		
Knowledge of FUEL HANDLING EQUIPMENT					Prevention of control rod movement		
design feature(s) and/or interlocks which provide for					during core alteration	ons	
the fo	the following:						

The Mode Switch is in REFUEL and all control rods are inserted.

The Refueling Bridge operator grappled a fuel bundle, raised the grapple, and commenced moving the bundle towards the core.

As the Refueling Bridge started moving towards the core, it

- A. stopped before it reached the core AND initiated a control rod block
- B. continued over the core AND caused NO other protective actions
- C. stopped before it reached the core AND caused NO other protective actions
- D. continued over the core AND then initiated a control rod block

ANS:	Reference Provided:	Reference and Rev:	Question Source:	Ques Rev				
D	None	86614	INPO 7928 Hatch	0				
Explanati	Explanation:							
D is corre	ct, loaded grapple over tl	ne core initiates a rod blo	ck.					
A is wron	A is wrong, bridge will not stop							
B is wrong, rod block will be initiated								
C is wron	C is wrong bridge will not stop and a rod block will be initiated							

Q#	Exam	System #	KA#	RO	SRO	LP#	Objective	
27	BOTH	239001	K4.06	3.1	3.2	85431	.1.5.2	
Main	and Rehe	at Steam Syst	em		Cognitive Level: HIGH			
Know	ledge of I	MAIN AND	REHEAT	STEAM	1	Allows for removal or prevents escape		
SYST	SYSTEM design feature(s) and/or interlocks which					of radioactive steam from systems that		
provid	de for the	following:			have leaky MSIV's			

- A LOCA has occurred.
- Standby Gas Treatment Train A is in service.
- Main Steam Line A Inboard MSIV, 1B21-F022A, is OPEN.
- Reactor Pressure is 25 psig.
- Main Steam Line A Pressure is 17 psig.

Which of the following conditions will ALLOW initiation of the Inboard MSIV-LCS System A?

- A. Main Steam Line A Pressure lowers to 15 psig AND MSIV-LCS dilution flow is 105 cfm.
- B. Reactor Pressure lowers to 19 psig AND MSIV-LCS dilution flow is 105 cfm.
- C. Main Steam Line A Pressure lowers to 15 psig AND 1B21-F022A, Main Steam Line A Inboard MSIV is SHUT.
- D. Reactor Pressure lowers to 19 psig AND 1B21-F022A, Main Steam Line A Inboard MSIV is SHUT.

ANS:	Reference Provided:	Reference and Rev:	Question Source:	Ques Rev
D	None	5067.02 (2H) rev 31	Modified ILT Bank	0
		. ,	21377	

Explanation:

D is correct, permissives are Reactor <u>AND</u> Main Steam Line Pressure <20 psig <u>AND</u> Inboard MSIV must be SHUT

A is wrong, Reactor Pressure must be <20 psig <u>AND</u> Inboard MSIV must be SHUT.

B is wrong, Inboard MSIV must be SHUT.

C is wrong, Reactor Pressure must be <20 psig.

Q#	Exam	System #	KA#	RO	SRO	LP#	Objective
28	BOTH	239003	K4.01	3.2	3.5	85431	.1.1.1
MSIV Leakage Control System						Cognitive Level: RECALL	
Know	ledge of N	MSIV LEAK	AGE CON	TROL		Performance of its safety function	
SYSTEM design feature(s) and/or interlocks which					following a loss of offsite power:		
• • • • • • • • • • • • • • • • • • • •					BWR-4, 5, 6(P-Spec)		

What design feature does MSIV-LCS utilize to perform its safety function following a Loss of Offsite Power?

MSIV Leakage Control System components	
--	--

- A. are all powered from Uninterruptible Power Supplies
- B. are all powered from divisional batteries
- C. are all powered from Diesel Generator supplied buses
- D. all fail to their required position on loss of power

ANS:	Reference Provided:	Reference and Rev:	Question Source:	Ques Rev				
C	None	LP85431 rev 2	NEW	0				
Explanation:								
C is correct, MSIV-LCS components are powered from Diesel Generator supplied buses.								
A is wrong, powered from Diesel Generator supplied buses.								
B is wrong, powered from Diesel Generator supplied buses.								
D is wron	D is wrong, powered from Diesel Generator supplied buses.							

Q#	Exam	System #	KA#	RO	SRO	LP#	Objective
29	BOTH	262001	A2.03	3.9	4.3	85571	.1.3.3
A.C. Electrical Distribution					Cognitive Level: H	IGH	
Abilit	y to (a) pr	edict the imp	acts of the	follow	ing on	Loss of off-site power	
the A.	C. ELEC	TRICAL DIS	TRIBUTI	ON; and	d (b)		
based	based on those predictions, use procedures to						
correc	correct, control, or mitigate the consequences of						
those abnormal conditions or operations:							

The reactor was at 90% power.

- 4KV BUS LOW VOLTAGE, 5008-5L alarmed
- 4160V BUS 1A1 VOLTAGE is 4065 VAC
- 4160V BUS 1B1 VOLTAGE is 4065 VAC

At the moment the above conditions first exist, the supply breaker trip to Bus 1A1 and Bus 1B1 is (1).

These conditions will require entry into 4200.01, Loss of AC Power, Section (2).

(1) (2)

A. IMMEDIATE 4.2, Loss of ECCS Busses

B. IMMEDIATE 4.4, Station Blackout (SBO)

C. DELAYED 4.2, Loss of ECCS Busses

D. DELAYED 4.4, Station Blackout (SBO)

ANS:	Reference Provided:	Reference and Rev:	Question Source:	Ques Rev
C	None	4200.01 rev 15	NEW	1

Explanation:

C is correct, Degraded Voltage Relays time out in 15 seconds, will trip RAT and ERAT feeds to 1A1, 1B1, and 1C1. Diesel Generators will Auto Start and reenergize these busses.

Loss of ECCS busses is the correct procedure, section prescribes action upon re-energization.

A is wrong, Delayed LOSS

B is wrong, Delayed LOSS, Station Blackout does NOT exist.

D is wrong, Station Blackout does NOT exist.

Q#	Exam	System #	KA#	RO	SRO	LP#	Objective
30	ВОТН	264000	K3.02	3.9	4.0	85264	.1.4.2
Emergency Generators (Diesel/Jet)					Cognitive Level: HIGH		
Know	ledge of t	he effect that	a loss or r	nalfunc	tion	A.C. electrical distr	ibution
of the EMERGENCY GENERATORS							
(DIESEL/JET) will have on following:							

With the plant in Mode 2, a Loss of Offsite Power has occurred.

The C Area operator dispatched to 1B Emergency Diesel Generator Control Panel, 1PL12JB reports the following:

ENGINE 1 HIGH COOLANT TEMP annunciator 5285-1B is LIT.

Engine 1 Jacket Water Temperature reads 210°F.

Which of the following describes the expected status of Bus 1A1 and Bus 1B1?

4160V Bus 1A1 is <u>(1)</u>, 4160V Bus 1B1 is <u>(2)</u>.

A.	(1) De-energized	(2) Energized
B.	De-energized	De-energized
C.	Energized	Energized
D.	Energized	De-energized

ANS:	Reference Provided:	Reference and Rev:	Question Source:	Ques Rev				
D	None	LP 85264 rev 4	New	0				

Explanation:

D is correct, Jacket Water Temperature reads is ABOVE 205°F, which is an active trip. With a LOOP given, 1B1 is De-energized.

A is wrong, 1A Emergency Diesel Energizes 1A1, 1B Emergency Diesel is tripped,1B1 is Deenergized.

B is wrong, 1A Emergency Diesel Energizes 1A1

C is wrong, 1B Emergency Diesel is tripped, 1B1 is De-energized.

Q#	Exam	System #	KA#	RO	SRO	LP#	Objective
31	BOTH	271000	A1.01	3.3	3.2		
Offga	s System					Cognitive Level:RECALL	
Abilit	y to predi	ct and/or mor	nitor chang	ges in		Condenser vacuum	
parameters associated with operating the OFFGAS							
SYSTEM controls including:							

- Reactor Power is 4 %
- Main Condenser Vacuum Pump A is in service, holding vacuum at 24" Hg
- Steam Jet Air Ejector startup is in progress.
- SJAE Suction Valve, 1CA002A is opened.
- The operator leaves the Main Condenser Vacuum Pump in service AND does NOT SHUT Vacuum Pump Suction Valve, 1CA003.

Condenser vacuum will (1) SLOWLY because (2).

(1) (2)

D is wrong, will IMPROVE slowly because of air in-leakage.

A. IMPROVE SJAE Suction Valve, 1CA002A will SHUT due to an interlock

B. IMPROVE of air in-leakage from the vacuum pump suction relief

C. DEGRADE of air in-leakage from the vacuum pump suction relief

D. DEGRADE SJAE Suction Valve, 1CA002A will SHUT due to an interlock

ANS:	Reference Provided:	Reference and Rev:	Question Source:	Ques Rev				
В	None	3215.01 rev 25e	New	1				
Explanation:								
B is correc	ct, procedure requires 10	CA003 SHUT ASAP afte	er SJAE startup.					
A is wron	A is wrong, will IMPROVE slowly because of air in-leakage.							
C is wrong	C is wrong, will IMPROVE slowly because of air in-leakage.							

Q#	Exam	System #	KA#	RO	SRO	LP#	Objective
32	ВОТН	272000	A2.11	3.4	3.7	85208	.1.2.6
Radiation Monitoring System					Cognitive Level: HIGH		
Abilit	y to (a) pr	edict the imp	acts of the	follow	ing on	Leakage and/or breaks from	
the RA	ADIATIO	N MONITO	RING SYS	STEM; a	and	contaminated system	ns to atmosphere or
(b) bas	(b) based on those predictions, use procedures to				to other process sys	tems	
correct, control, or mitigate the consequences of							
those abnormal conditions or operations:							

- The Reactor is operating at 90% power.
- There is a leaking tube in the RT Non-Regenerative Heat Exchanger.

If NOT corrected, this will result in <u>(1)</u> alarms on the Component Cooling Water Process Radiation Monitor, 1RIX-PR037.

To control the consequences of this failure, enter (2).

(1) (2)

A. HIGH then ALERT Abnormal Release of Radioactive

Liquids, 4979.05

B. ALERT then HIGH Abnormal Release of Radioactive

Liquids, 4979.05

C. HIGH then ALERT Abnormal High Area Radiation

Levels, 4979.02

D. ALERT then HIGH Abnormal High Area Radiation

Levels, 4979.02

ANS:	Reference Provided:	Reference and Rev:	Question Source:	Ques Rev
В	None	5140.49 rev 0	NEW	1
T 1				

Explanation:

B is correct, reactor water leaking from RT NRHX will cause an ALERT then a HIGH alarm, 4979.05 is the appropriate procedure.

A is wrong, will cause an ALERT then an ALARM.

C is wrong, will cause an ALERT then an ALARM, 4979.05 is the appropriate procedure.

D is wrong, 4979.05 is the appropriate procedure.

Q# 33	Exam BOTH	System # 286000	KA # K2.02	RO 2.9	SRO 3.1	LP#	Objective
Fire Protection System						Cognitive Level: RECALL	
Knowledge of electrical power supplies to the following:					Pumps		

Makeup Water Pump House MCC A has lost power.

Which one of the following components is affected?

- A. Plant Service Water Seal Water Pump, 0WS01PA
- B. ERAT Cooling Fans, 0AP164E
- C. Fire Protection Jockey Pump, 0FP04P
- D. Makeup Condensate Pump A, 0MC01PA

ANS:	Reference Provided:	Reference and Rev:	Question Source:	Ques Rev					
C	None	3213.01E002 rev 9a	NEW	0					
Explanation:									
C is correct per reference									
A,B, and D are wrong.									

Q#	Exam	System #	KA#	RO	SRO	LP#	Objective
34	RO	288000	A2.01	3.3	3.4	85455	.1.5.1
Plant Ventilation Systems						Cognitive Level: HIGH	
Abilit	y to (a) pr	edict the imp	acts of the	High drywell pressure: Plant-Specific			
the PLANT VENTILATION SYSTEMS; and (b)							
based on those predictions, use procedures to							
correct, control, or mitigate the consequences of							
those abnormal conditions or operations:							

The reactor was operating at rated conditions. Drywell Pressure increased to 3.0 psig.

(1) What is the expected status of Containment Continuous Purge?

and

(2) What procedure governs temperature control of the area this system normally ventilates?

(1) (2)

A. RUNNING 3408.01, Containment Building/Drywell HVAC

B. RUNNING EOP-6, Primary Containment Control

C. ISOLATED EOP-6, Primary Containment Control

D. ISOLATED 3408.01, Containment Building/Drywell HVAC

ANS:	Reference Provided:	Reference and Rev:	Question Source:	Ques Rev
C	None	4001.02 rev 16	NEW	1

Explanation:

C is correct:

CCP isolates on high drywell pressure of 1.68 psig and is NOT allowed to be bypassed and placed in service with a high DW pressure condition. Containment Temperature is controlled per EOP-6, Primary Containment Control.

A is wrong, CCP isolates on high drywell pressure of 1.68 psig and is NOT allowed to be bypassed and placed in service with a high DW pressure condition. Containment Temperature is controlled per EOP-6, Primary Containment Control.

B is wrong, CCP Isolates on high drywell pressure of 1.68 psig.

D is wrong, , CCP isolates on high drywell pressure of 1.68 psig and is NOT allowed to be bypassed and placed in service with a high DW pressure condition. Containment Temperature is controlled per EOP-6, Primary Containment Control.

Q#	Exam	System #	KA#	RO	SRO	LP#	Objective
35	BOTH	290002	K1.17	3.3	3.4	85423	.1.15.2
Reactor Vessel Internals						Cognitive Level: RECALL	
Knowledge of the physical connections and/or						ADS	
cause- effect relationships between REACTOR							
VESSEL INTERNALS and the following:							

The variable leg tap for the ADS confirmatory level instrumentation is connected to the RPV at which of the following locations?

- A. Above core plate and outside core shroud
- B. Below core plate and outside core shroud
- C. Above core plate and inside core shroud
- D. Below core plate and inside core shroud

ANS:	Reference Provided:	Reference and Rev:	Question Source:	Ques Rev					
Α	None LP85423r3 NEW 1								
Explanation:									
A is correct, Narrow range level instruments provide the confirmatory low level 3 signal for									
the ADS logic. Its variable leg is outside the core shroud in the downcomer region.									
.B, C & D incorrect									

Q#	Exam	System #	KA#	RO	SRO	LP#	Objective
36	ВОТН	GENERIC	2.1.12	2.9	4.0		
						Cognitive Level:HIGH	
Condu	Conduct of Operations					Ability to apply technical specifications	
						for a system.	

The reactor is at 90% power.

A Motor Operated Valve having BOTH a Containment Isolation function AND a system function has a stroke time in excess of the Limiting Value.

Which one of the following is correct?

- A. Containment Isolation AND system function SHALL be declared INOPERABLE.
- B. ONLY the Containment Isolation SHALL be declared INOPERABLE.
- C. ONLY the system function SHALL be declared INOPERABLE.
- D. Valve is considered OPERABLE, but degraded.

ANS:	Reference Provided:	Reference and Rev:	Question Source:	Ques Rev			
A	None	OP-CL-101-302-1001	NEW	0			
		rev 0					
		Limiting Value is the O	PERABILITY requirem	ent, stroke			
time in exc	cess of Acceptance Rang	ge denotes degradation.					
When a Co	ontainment Isolation Val	ve is declared INOPERA	ABLE and IF it impairs a	ny			
OTHER I	TS function, THEN that	function shall also be de	clared INOPERABLE.				
B is wrong	B is wrong, Containment Isolation AND system function SHALL be declared INOPERABLE.						
C is wrong, Containment Isolation AND system function SHALL be declared INOPERABLE.							
D is wrong	g, Containment Isolation	AND system function S	HALL be declared INOF	PERABLE.			

Q# 37	Exam BOTH	System # GENERIC	KA # 2.1.17	RO 3.5	SRO 3.6	LP#	Objective
						Cognitive Level: Rl	ECALL
Conduct of Operations Ability to make according concise verbal repo						*	

When reporting indicator readings, the format should be ______.

- A. VALUE CHANNEL TREND
- B. PARAMETER CHANNEL VALUE
- C. PARAMETER CHANNEL TREND
- D. PARAMETER VALUE TREND

ANS:	Reference Provided:	Reference and Rev:	Question Source:	Ques Rev		
D	None	OP-AA-104-101	NEW	0		
Explanation	on:					
D is corre	ct, reference states verba	tim.				
A is wron	g, PARAMETER not ide	entified.				
B is wrong, TREND not identified.						
C is wrong	g, VALUE not identified					

Q#	Exam	System #	KA#	RO	SRO	LP#	Objective
38	ВОТН	GENERIC	2.1.30	3.9	3.4	85115	.1.4.1
						Cognitive Level: Rl	ECALL
Condu	Conduct of Operations				Ability to locate and components, includ	-	

- A 6.9kV breaker is racked in and control power fuses are installed.
- The breaker has been remotely CLOSED.
- The breaker's LOCAL / REMOTE SWITCH is placed in the LOCAL position.
- The handswitch located on the cubicle door is placed in the OPEN position

The breaker will (1) because (2) is in effect.

(1) (2)

A. remain CLOSED remote control

B. OPEN local control

C. remain CLOSED local control

D. OPEN remote control

ANS:	Reference Provided:	Reference and Rev:	Question Source:	Ques Rev				
A	None	85115 rev 0	NEW	0				
Explanation	on: Breaker racked-in / co	onnected enables REMO	TE, disables LOCAL co	ntrol.				
A is corre	ct, remain CLOSED, rem	note control is in effect.						
B is wron	g, remain CLOSED, rem	ote control is in effect.						
C is wrong	C is wrong, remote control is in effect.							
D is wron	g, remain CLOSED.							

Q# 39	Exam BOTH	System # GENERIC	KA#	RO 2.6	SRO	LP # 86610	Objective N.1.8.1
37	ВОТП	GLIVLICE	2.2.20	2.0	3.3	Cognitive Level: Rl	
Equip	ment Con	trol				Knowledge of new movement procedure	-

In accordance with 3703.01, CORE ALTERATIONS, a fuel move is considered complete when the fuel bundle has been placed in the correct location and the _____.

- A. grapple has been RELEASED
- B. hoist loaded light goes OUT
- C. slack cable light is LIT
- D. orientation has been double verified

ANS:	Reference Provided:	Reference and Rev:	Question Source:	Ques Rev			
A	None	3703.01 rev 22b	INPO 19057 Clinton	0			
Explanati	on:						
A is corre	ct, stated in reference						
B is wron	g, when the grapple has l	oeen released.					
C is wron	C is wrong, when the grapple has been released.						
D is wron	g, when the grapple has	been released					

Q#	Exam	System #	KA#	RO	SRO	LP#	Objective
40	ВОТН	GENERIC	2.2.33	2.5	2.9	87401	.1.1.1
						Cognitive Level: RECALL	
Equip	ment Con	trol				Knowledge of contr	rol rod
						programming.	

The Rod Pattern Controller enforces a prescribed rod pattern from <u>(1)</u> rod density to <u>(2)</u> power.

A.	(1) 0%	(2) 16.7%
B.	0%	33.3%
C.	100%	16.7%
D.	100%	33.3%

ANS:	Reference Provided:	Reference and Rev:	Question Source:	Ques Rev
C	None	LP 87401 rev 2	DRESDEN 115	1
		CPS 3304.02r15a		
				•

Explanation: EPU numbers obtained from ITS 3.3.2.1.

Rod Pattern Controller enforces Banking Position Withdrawal Sequence (BPWS) and applies from all rods fully inserted (100% rod density) to 16.7% power

Q#	Exam	System #	KA#	RO	SRO	LP#	Objective
41	BOTH	GENERIC	2.3.2	2.5	2.9		
				•	Cognitive Level: RECALL		
Radio	Radiological Controls					Knowledge of facility ALARA	
				program.			

Which one of the following is the LOWEST level of authority authorized to waive Independent Verification of a valve position due to ALARA concerns?

- A. Radiation Protection Shift Supervisor
- B. Reactor Operator
- C. Shift Manager
- D. Plant Manager

ANS:	Reference Provided:	Reference and Rev:	Question Source:	Ques Rev				
C	None	NEW	0					
Explanation	Explanation:							
C is corre	C is correct, Shift Manager may waive verification due to ALARA concerns.							
A B and D are wrong per reference.								
	_ 1							

Q#	Exam	System #	KA#	RO	SRO	LP#	Objective
42	BOTH	GENERIC	2.3.10	2.9	3.3	85205	.1.13
	l		1	Cognitive Level: RECALL			
Radio	Radiological Controls					Ability to perform p	procedures to reduce
				excessive levels of radiation and guard			
					against personnel ex	xposure.	

Which of the following describes the concern while transferring water to Radwaste from RHR A vice RHR B during Shutdown Cooling operation?

- A. High Conductivity
- B. High Temperature
- C. ALARA
- D. High Flowrate

ANS:	Reference Provided:	Reference and Rev:	Question Source:	Ques Rev				
C	None	3312.03 rev 3d	NEW	1				
Explanation	Explanation:							
C is correc	C is correct, RHR A requires local valve operation which will result in radiation exposure to							
operators,	RHR B uses two MOVs	to control rejection.						
A is wrong	g, conductivity is monito	red in BOTH RHR Loop	OS.					
B is wrong, temperature is controlled in BOTH RHR Loops.								
D is wron	D is wrong, flowrate is controlled in BOTH RHR Loops							

Q# 43	Exam BOTH	System # GENERIC	KA # 2.4.5	RO 2.9	SRO 3.6	LP # 87571 rev 3	Objective
						Cognitive Level: Rl	ECALL
Emerg	gency Pro	cedures and I	Plan			Knowledge of the operating procedure normal, abnormal, a evolutions.	es network for

Procedure hierarchy from HIGHEST to LOWEST for the following procedures is ...

- 1) Emergency Operating Procedures
- 2) Integrated Plant Operating Procedures
- 3) Off-Normal Procedures
- A. 1,2,3
- B. 1,3,2
- C. 2,3,1
- D. 2,1,3

ANS:	Reference Provided:	Reference and Rev:	Question Source:	Ques Rev			
В	None	1005.09 rev	NEW	0			
Explanation:							
B is correc	B is correct, Emergency Operating Procedures, Off Normal Procedures, then Integrated Plant						
Operating	Operating Procedures are in correct order of hierarchy						
Distractors are not in proper order of hierarchy							

Q#	Exam	System #	KA#	RO	SRO	LP#	Objective
44	ВОТН	GENERIC	2.4.20	3.3	4.0	87551	.1.5
					Cognitive Level: RECALL		
Emerg	Emergency Procedures and Plan					Knowledge of opera of EOP warnings, c	*

Emergency Operating Procedures contain CAUTIONS which are used to identify potential hazards to (1) and are placed (2) the step to which they apply.

(1) (2)

A. personnel ONLY before

B. personnel ONLY after

C. equipment OR personnel before

D. equipment OR personnel after

ANS:	Reference Provided:	Reference and Rev:	Question Source:	Ques Rev
C	None	LP 87551 rev 3	NEW	0

Explanation:

C is correct, EOP CAUTIONS are used to identify hazards to equipment or personnel and are placed before the step to which they apply.

A is wrong, equipment or personnel.

B is wrong, equipment or personnel and are placed before the step to which they apply.

D is wrong, are placed before the step to which they apply.

Q# 45	Exam	System #	KA#	RO	SRO	LP#	Objective
45	BOTH	GENERIC	2.4.34	3.8	3.6		
				Cognitive Level: H	IGH		
Emerg	gency Pro	cedures and I	Plan			Knowledge of RO tasks performed	
						outside the main control room during	
						emergency operations including system	
						geography and syst	em implications.

A Reactor Operator following Remote Shutdown, 4003.01, opened breakers CB21 through CB32 at NSPS 120VAC SOL PWR DIST PNLS A and B.

- (1) Where are these panels?
- (2) Predict the plant response when the breakers are opened?

(1) (2)

- A. Control Building 802 Elevation The reactor will be scrammed.
- B. Aux Building 781 Elevation The reactor will be scrammed.
- C. Control Building 802 Elevation SRV operation will be prevented.
- D. Aux Building 781 Elevation SRV operation will be prevented.

ANS:	Reference Provided:	Reference and Rev:	Question Source:	Ques Rev				
A	None	4003.01 rev 13	New	0				
Explanation	Explanation:							
A is correc	ct, NSPS Solenoid Powe	r Distribution Panels A a	nd B are located on the C	Control				
Building 802 Elevation, when opened, the reactor is scrammed.								
B is wrong	g, Control Building 802	Elevation.						

D is wrong, Control Building 802 Elevation, the reactor will be scrammed.

C is wrong, The reactor will be scrammed.

Q#	Exam	System #	KA#	RO	SRO	LP#	Objective
46	ВОТН	295006	AK1.03	3.7	4.0		
SCRAM						Cognitive Level: HIGH	
	_	he operational epts as they a	-		the	Reactivity control	

- The Mode Switch has been placed in SHUTDOWN.
- All rods inserted EXCEPT one rod, which is stuck at notch 48.
- SRMs AND IRMs have been inserted.

Shutdown Criteria is <u>(1)</u>, requiring entry into <u>(2)</u>.

A. met EOP-1A, ATWS RPV CONTROL

B. met 4100.01, REACTOR SCRAM

C. NOT met EOP-1A, ATWS RPV CONTROL

D. NOT met 4100.01, REACTOR SCRAM

ANS:	Reference Provided:	Reference and Rev:	Question Source:	Ques Rev
В	None	4100.01 rev 18	NEW	1

Explanation:

B is correct, one rod out is the demonstration of Shutdown Margin and the reactor has met Shutdown Criteria. The required procedure is 4100.01, REACTOR SCRAM sect. 4.3.1 to direct actions for rod insertion.

A is wrong, 4100.01, REACTOR SCRAM is required.

C is wrong, Shutdown Criteria is met, 4100.01, REACTOR SCRAM is required.

D is wrong, Shutdown Criteria is met.

Q# 47	Exam BOTH	System # 295008	KA # AK2.09	RO 3.1	SRO 3.1	LP#	Objective
High Reactor Water Level						Cognitive Level: HIGH	
	_	he interrelation			Reactor water clean to drain): Plant-Spe	1 0 \	

- The reactor automatically scrammed due to loss of Condenser Vacuum.
- Reactor Pressure is 400 psig and stable.
- Condenser Vacuum is 0 inches Hg vac.
- RPV Water Level is 100 inches AND RISING.
- CRD is injecting at 40 gpm.
- Main Condenser Low Vacuum Bypass Switches are in NORMAL.

Which is the SMALLEST valve that can be used to LOWER RPV Water Level to 30 inches?

- A. Inboard MSIV Before Seat Warmup Drain Valve, 1B21-F016
- B. Main Turbine Bypass Valve # 1
- C. Reactor Water Cleanup Drain Flow Regulator, 1G33-F033
- D. RHR B to Radwaste First Isolation Valve, 1E12-F049

ANS:	Reference Provided:	Reference and Rev:	Question Source:	Ques Rev			
C	None	3303.01 rev 26	NEW	1			
Explanation: Condenser Vacuum at 0 inches Hg vac implies a Group 1 Isolation							
C is correc	C is correct, RWCU can be used to reject to the Condenser.						
A is wrong	A is wrong, Group 1 Isolation prevents using 1B21-F016.						
B is wrong, Group 1 Isolation prevents using Bypass Valves							
D is wron	g, RHR SDC valves are i	nterlocked SHUT due to	Reactor Pressure.				

Q#	Exam	System #	KA#	RO	SRO	LP#	Objective
48	BOTH	295009	AK1.01	2.7	2.9	87570	.1.1.1
Low Reactor Water Level						Cognitive Level: HIGH	
Know	ledge of t	he operationa	ıl implicati	Steam carryunder			
following concepts as they apply to LOW							
REACTOR WATER LEVEL:							

One of the Turbine Driven Reactor Feed Pumps is inadvertently TRIPPED while the plant is at 90% power.

- (1) Which of the following is the concern?
- (2) Predict the effect on the plant from this condition?

(1) (2)

A. CARRYOVER Excess moisture impinging the blades of the

Main Turbine.

- B. CARRYOVER A reduction in the margin to transition boiling.
- C. CARRYUNDER Excess moisture impinging the blades of the

Main Turbine.

D. CARRYUNDER A reduction in the margin to transition boiling.

ANS:	Reference Provided:	Reference and Rev:	Question Source:	Ques Rev
C & D	None	LP87570 rev 1	Modified DAEC 98	0
			AUDIT Q#4	

Explanation:

C is correct, carryunder results from lowering water level results in moisture impingement.

A is wrong, carryunder results.

B is wrong, carryunder results from lowering water level results in moisture impingement D is also correct, carryunder results in steam/water being routed directly to the downcomer region which increases the temperature of surrounding water, reducing subcooling both in the downcomer and inlet plenum, reducing margin to transition boiling in the core region.

Q#	Exam	System #	KA#	RO	SRO	LP#	Objective
49	ВОТН	295010	AA1.07	3.2	3.4	85405	
High Drywell Pressure						Cognitive Level: HIGH	
Ability to operate and/or monitor the following as						Containment (drywell) atmosphere	
they apply to HIGH DRYWELL PRESSURE:						control	

A LOCA has occurred.

The control switches for CGCS Hydrogen Mixing Compressors 1A AND 1B are taken to START.

One minute later the operator observed the following:

- CGCS Hydrogen Mixing Compressor 1A D/P was slightly above 4 psid,
- CGCS Hydrogen Mixing Compressor 1B D/P was offscale high, greater than 6 psid.

This indicates CGCS Hydrogen Mixing Compressor .

- A. 1A failed to start
- B. 1B failed to start
- C. 1A started but the suction valve failed to OPEN
- D. 1B started but the suction valve failed to OPEN

Explanation		1 22 00 .00 10, 2	1 1.2 ,,	1 -
D	None	LP85405 rev 2	NEW	1
ANS:	Reference Provided:	Reference and Rev:	Question Source:	Ques Rev

D is correct, CGCS Hydrogen Mixing Compressor 1B High D/P indicates suction valve did not open.

A is wrong, CGCS Hydrogen Mixing Compressor 1A indicates normal D/P.

B is wrong, CGCS Hydrogen Mixing Compressor 1B High D/P indicates suction valve did not open.

C is wrong. CGCS Hydrogen Mixing Compressor 1A indicates normal D/P.

Q# 50	Exam BOTH	System # 295010	KA # AK2.03	RO 3.0	SRO 3.1	LP # 85405	Objective .1.1.3
High Drywell Pressure						Cognitive Level: HIGH	
Knowledge of the interrelations between HIGH DRYWELL PRESSURE and the following:						Drywell/containment pressure: Mark-III	nt differential

The following conditions exist:

- Drywell Pressure is 2.2 psig
- Containment Pressure is 2.8 psig

The Drywell Vacuum Relief Valves, 1HG10A and 1HG11A are (1).

These valves also provide a flowpath that is required by the CGCS Hydrogen (2).

(1) (2)

A. SHUT Recombiners

B. OPEN Mixing Compressors

C. SHUT Mixing Compressors

D. OPEN Recombiners

ANS:	Reference Provided:	Reference and Rev:	Question Source:	Ques Rev				
B None		85405 rev 2	NEW	0				
	Explanation: Vacuum Reliefs are fully OPEN at -0.5 psid Drywell to Containment D/P.							

B is correct, fully OPEN, also provide a flowpath for Mixing Compressors.

A is wrong, fully OPEN, also provide a flowpath for Mixing Compressors.

C is wrong, fully OPEN.

D is wrong, also provide a flowpath for Mixing Compressors.

Q# 51	Exam BOTH	System # 295012	KA # AK3.01	RO 3.5	SRO 3.6	LP#	Objective
High l	Drywell T	emperature		Cognitive Level: RECALL			
respor		he reasons for ey apply to H RE:				Increased drywell c	ooling

EOP-6, Primary Containment Control requires starting additional Drywell Coolers and Supplemental Coolers to prevent jeopardizing ______integrity.

- A. RPV Level Instrument
- B. Safety Relief Valve
- C. Recirc Pump Seal
- D. Primary Containment

ANS:	Reference Provided:	Reference and Rev:	Question Source:	Ques Rev				
D	None	NEW	0					
Explanati	Explanation:							
D is corre	D is correct, to prevent jeopardizing Primary Containment integrity.							
A is wron	A is wrong, to prevent jeopardizing Primary Containment integrity.							
B is wrong, to prevent jeopardizing Primary Containment integrity.								
C is wron	g, to avoid jeopardizing	Primary Containment int	tegrity.					

Q# 52	Exam RO	System # 295038	KA # EK2.05	RO 3.7	SRO 4.7	LP#	Objective
High Off-Site Release Rate						Cognitive Level: RECALL	
Knowledge of the interrelations between HIGH OFF-SITE RELEASE RATE and the following:						Site Emergency Pla	n

What is the LOWEST level of the Emergency Plan due to an offsite release rate that would require entry into EOP-9, Radioactivity Release Control?

- A. Unusual Event
- B. Alert
- C. Site Area Emergency
- D. General Emergency

ANS:	Reference Provided:	ce Provided: Reference and Rev:		Ques Rev			
В	None	4406.01 rev 26	New	1			
Explanation:							
B is correc	B is correct, Alert is the LOWEST activation level requiring EOP-9 entry.						
A is wrong	A is wrong, no entry required.						
C is wrong, not the LOWEST activation level.							
D is wrong	D is wrong, not the LOWEST activation level.						

Q# 53	Exam BOTH	System # 295013	KA # AK3.01	RO 3.6	SRO 3.8	LP # LP 85205	Objective .1.9.2
High Suppression Pool Temperature						Cognitive Level: RECALL	
respor	nses as the	he reasons for ey apply to H RATURE:			ON	Suppression pool co	poling operation

Testing that heats the suppression pool to 105°F requires operation of Suppression Pool Cooling Mode to preserve______ requirements.

- A. SRV tailpipe loading
- B. SF Filter Demin Resin
- C. DBA LOCA analysis
- D. ECCS suction piping

ANS:	Reference Provided:	Reference and Rev:	Question Source:	Ques Rev						
C	None	LP85205 rev 6	NEW	1						
Explanation:										
C is correc	C is correct, DBA LOCA analysis is dependent on Suppression Pool Temperature at 95°F.									
A is wrong	A is wrong, DBA LOCA analysis.									
B is wrong	B is wrong, DBA LOCA analysis.									
D is wrong	D is wrong, DBA LOCA analysis.									

Q# 54	Exam BOTH	System # 295015	KA # AK2.08	RO 3.6	SRO 3.7	LP # 87512	Objective .1.11
Incom	plete SCI	RAM			Cognitive Level: H	IGH	
	_	he interrelation SCRAM and			Neutron monitoring	system	

During an ATWS, Nuclear Instruments are <u>(1)</u> so that <u>(2)</u> can be determined.

(1) (2)

A. inserted Shutdown Criteria

B. inserted Power Leg actions

C. withdrawn Shutdown Criteria

D. withdrawn Power Leg actions

ANS:	Reference Provided:	Reference and Rev:	Question Source:	Ques Rev					
В	None	4100.01 rev 18	NEW	1					
Explanation: Shutdown criteria is dependent upon Control Rod positions, Reactor Power									
< IRM Ra	< IRM Range 7 and lowering is a Power Leg EXIT criteria.								
B is correc	ct, Nuclear instruments a	re inserted, to determine	power leg actions.						
A is wron	g, Nuclear instruments ar	re inserted, to determine	power leg actions.						
C is wrong	C is wrong, Nuclear instruments are inserted.								
D is wron	D is wrong, inserted to determine power leg actions.								

Q#	Exam	System #	KA#	RO	SRO	LP#	Objective
55	BOTH	295016	AA1.06	4.0	4.1	85433	.1.4.6
Contro	ol Room	Abandonmen	t	Cognitive Level: H	IGH		
Abilit	y to opera	te and/or mo	nitor the fo	llowing	gas	Reactor water level	
they a	pply to C	ONTROL RO	OOM				
ABAN	NDONME	ENT:					

The Control Room abandonment is in progress.

Actual Reactor Water Level is +55 inches.

Reactor Pressure is 1000 psig.

BOTH Reactor Recirc Pumps have been tripped.

NO Transfer Switches have been repositioned on the Remote Shutdown Panel.

Reactor Water Level Meter on the Remote Shutdown Panel will indicate (1) because (2).

A. downscale a Transfer Switch requires repositioning

B. accurately NO Transfer Switch operation is required and Calibration

Conditions are established

C. upscale NO Transfer Switch operation is required and Calibration

Conditions are NOT present

D. upscale a Transfer Switch requires repositioning

ANS:	Reference Provided:	Reference and Rev:	Question Source:	Ques Rev						
В	None	LP 85433 rev 2	NEW	0						
Explanation:										
B is corre	B is correct, indicates accurately, requires NO Transfer Switch, cal conditions are present.									
A is wron	A is wrong, indicates accurately, requires NO Transfer Switch.									
C is wrong, indicates accurately, cal conditions are present.										
D is wron	D is wrong, indicates accurately, requires NO Transfer Switch, cal conditions are present.									

Q#	Exam	System #	KA#	RO	SRO	LP#	Objective
56	BOTH	295016	AA2.04	3.9	4.1	85433	
Contro	ol Room	Abandonmen	t	Cognitive Level: H	IGH		
	_	mine and/or i		Suppression pool te	mperature		
as the	y apply to	CONTROL	ROOM				
ABA	NDONME	ENT:					

On the Remote Shutdown Panel, there are a total of <u>(1)</u> Suppression Pool Temperature indicators.

When an SRV is OPENED from the Remote Shutdown Panel, (2) of the indicators will RISE more than the others.

	(1)	(2)
A.	3	1
B.	3	2
C.	6	1
D.	6	2

ANS:	Reference Provided:	Reference and Rev:	Question Source:	Ques Rev
D	None	LP 85433 rev 2	NEW	0

Explanation: 3 SRVs each have 2 Suppression Pool temperature indicators near their tailpipes for a total of 6. 2 will rise more than the others when an SRV is OPENED.

D is correct, there are 6 indicators of Local Suppression Pool Temperature at SRV Discharges, 2 will rise more than the others when an SRV is OPENED.

A is wrong, there are 6 indicators of Local Suppression Pool Temperature at SRV Discharges, 2 will rise more than the others when an SRV is OPENED.

B is wrong, there are 6 indicators of Local Suppression Pool Temperature at SRV Discharges.

C is wrong, 2 will rise more than the others when an SRV is OPENED.

Q#	Exam	System #	KA#	RO	SRO	LP#	Objective
57	BOTH	295018	AK2.02	3.4	3.6		
Partial or Complete Loss of Component Cooling						Cognitive Level: H	IGH
Water							
Know	ledge of t	he interrelation	ons betwee	TIAL	Plant operations		
OR COMPLETE LOSS OF COMPONENT							
COOI	LING WA	TER and the	following				

The reactor is operating at 90% power.

- RECIRC MOTOR A WINDING COOLING WATER FLOW LOW, 5003-3D alarms.
- RECIRC MOTOR B WINDING COOLING WATER FLOW LOW, 5003-3K alarms.
- The B Reactor Operator reports ALL CCW Pumps have tripped and WILL NOT restart.

A (1) is required.

The Main Steam Isolation Valves WILL (2) during the plant cooldown.

(1) (2)

A. Rapid Plant Shutdown remain OPEN

B. Reactor Scram be SHUT

C. Rapid Plant Shutdown be SHUT

D. Reactor Scram remain OPEN

ANS:	Reference Provided:	Reference and Rev:	Question Source:	Ques Rev				
В	None	3203.01 rev 26	NEW	1				
4004.01 rev 8								
Explanation, With a TOTAL logg of CCW. Desire Dumng must be googled within any minute								

Explanation: With a TOTAL loss of CCW, Recirc Pumps must be secured within one minute, which requires Reactor Scram, the MSIVs will be SHUT due to loss of Service / Instrument Air (SA Compressors will trip on low CCW pressure).

B is correct, Reactor Scram is required, MSIVs will be SHUT.

A is wrong, Reactor Scram is required, MSIVs will be SHUT.

C is wrong, Reactor Scram is required.

D is wrong, MSIVs will be SHUT.

Q# 58	Exam BOTH	System # 295021	KA # AK1.02	RO 3.3	SRO 3.4	LP # 87422	Objective .1.4.6
Loss	of Shutdo	wn Cooling	L	Cognitive Level: H	IGH		
follow	ing conce	he operational epts as they a COOLING:	1			Thermal stratification	on

The Reactor is in MODE 4.

BOTH Reactor Recirculation Pumps are isolated and drained.

BOTH Control Rod Drive Pumps are secured.

Reactor Water Cleanup is NOT in service.

A Group 3 Isolation has occurred on low reactor water level.

Reactor Water Level is now +7 inches Narrow Range.

Which one of the following actions is required?

- A. Maintain reactor water level between +7 and +30 inches on Narrow Range to restart RHR in Shutdown Cooling Mode.
- B. Start Reactor Water Cleanup with suction from the Recirc Loops ONLY to prevent thermal stratification.
- C. Raise reactor water level above 44 inches on Shutdown Range to prevent thermal stratification.
- D. Raise containment pool water level to greater than 22 feet 8 inches to slow RPV heatup.

ANS:	Reference Provided:	Reference and Rev:	Question Source:	Ques Rev
C	None	4006.01 rev 4	INPO 15970 VY	1
			Significantly	
			modified	

Explanation:

C is correct, It is required to raise level to above 44 inches on Shutdown Range to establish Natural Circulation.

A is wrong, 7 inches is below the level low isolation setpoint.

B is wrong, Recirc Loops are isolated so RWCU can not be lined up to the RR loops.

D is wrong, does not control heatup with the RPV head on in Mode 4.

	Q#	Exam	System #	KA#	RO	SRO	LP#	Objective
	59	BOTH	295023	2.4.10	3.0	3.1		
	Refuel	ling Accid	dents		l .	Cognitive Level: RECALL		
Ī	Emergency Procedures and Plan						Knowledge of annunciator response	
							procedures.	

DROPPED FUEL BUNDLE WARNING SYSTEM DW 767 AZ 120 is in HIGH ALARM. The B Reactor Operator has verified that the monitor has NOT spiked.

It is required by CPS No. 5140.17, DROPPED FUEL BUNDLE WARNING SYSTEM - DW 767' AZ 120, to _____.

- A. verify Standby Gas Treatment System is operating
- B. notify RP to perform surveys near the ARM
- C. direct the Refuel SRO to recover the dropped fuel bundle
- D. evacuate the Drywell and Containment

ANS:	Reference Provided:	Reference and Rev:	Question Source:	Ques Rev				
D	None	5140.17 rev 0	NEW	1				
Explanation	on:							
D is correc	ct, 5140.17 requires evac	cuation of the Drywell an	d Containment.					
A is wrong	A is wrong, no initiation signal for VG Auto Start has been provided.							
B is wrong, surveys ONLY required if monitor HAS spiked.								
C is wrong	g, 5140.17 requires evac	cuation of the Drywell an	d Containment.					

Q#	Exam	System #	KA#	RO	SRO	LP#	Objective	
60	ВОТН	295024	EA1.03	4.0	3.9	85209	.1.5.2	
High Drywell Pressure						Cognitive Level: HIGH		
Abilit	y to opera	te and/or mo	nitor the fo	LPCS: Plant-Specific				
they a	pply to H	IGH DRYW	ELL PRES					

- Drywell Pressure is 1.7 psig
- Reactor Pressure is 700 psig
- RPV Water Level is –20" Wide Range

What is the expected status of the Low Pressure Core Spray System?

LPCS Pump	LPCS Injection Valve 1E21-F005			
ON	OPEN			
OFF	SHUT			
ON	SHUT			
OFF	OPEN			
	ON OFF ON			

ANS:	Reference Provided:	Reference and Rev:	Question Source:	Ques Rev					
C	None	LP 85209 rev 3	New	0					
Explanation:									

C is correct, LPCS Pump starts when Drywell Pressure reaches 1.68 psig.1E21-F005 remains SHUT until 472 psig.

A is wrong, 1E21-F005 remains SHUT until 472 psig.

B is wrong, LPCS Pump starts when Drywell Pressure reaches 1.68 psig

D is wrong, LPCS Pump starts when Drywell Pressure reaches 1.68 psig, 1E21-F005 remains

SHUT until 472 psig.

Q#	Exam	System #	KA#	RO	SRO	LP#	Objective
61	BOTH	295024	EK1.02	3.9	4.1		
High l	Drywell P	ressure	<u> </u>	I		Cognitive Level: HIGH	
Know	ledge of t	he operationa	al implicati	ions of	the	Containment building integrity: Mark-	
follow	ing conce	epts as they a	pply to HI	III			
DRYV	WELL PR	ESSURE:					

At 1000, the reactor was operating at 90% power

At 1001, Drywell Pressure is 3 psig.

At 1003, the expected positions of the following valves are:

	Main Steam Line A Inboard MSIV, B21-F022A	Equipment Drain Sump Discharge Containment Outboard Valve, 1RE022
A.	SHUT	SHUT
B.	SHUT	OPEN
C.	OPEN	OPEN
D.	OPEN	SHUT

ANS:	Reference Provided:	Reference and Rev:	Question Source:	Ques Rev				
D	None	4001.02 rev 14	New	0				
Explanation	Explanation:							
D is corre	D is correct, MSIV OPEN, Equipment Drain Valve SHUT.							
A is wron	A is wrong, MSIV OPEN.							
B is wron	B is wrong, MSIV OPEN, Equipment Drain Valve SHUT.							
C is wrong	g, Equipment Drain Valv	e SHUT.						

Q#	Exam	System #	KA#	RO	SRO	LP#	Objective
62	BOTH	295025	EK3.06	4.2	4.4	87212	.1.1.2
High 1	Reactor P	ressure		Cognitive Level: RECALL			
Know	ledge of t	he reasons fo	r the follo	wing		Alternate rod insertion: Plant-Specific	
respon	nses as the	ey apply to H	IGH REA				
PRES	SURE:						

ARI Logic actuates at (1) psig to (2).

	(1)	(2)
A.	1127	provide an alternate means of initiating a scram
B.	1127	prevent exceeding the RPV Design Pressure
C.	1065	provide an alternate means of initiating a scram
D.	1065	prevent exceeding the RPV Design Pressure

ANS:	Reference Provided:	Reference and Rev:	Question Source:	Ques Rev
A	None	87212 rev 1	New	0

Explanation:

A is correct per reference.

B is wrong, ARI is not considered in overpressure protection (not Safety Related).

C is wrong, actuates at 1127.

D is wrong, actuates at 1127, ARI is not considered in overpressure protection (not Safety Related)

Q#	Exam	System #	KA#	RO	SRO	LP#	Objective	
63	BOTH	295026	EK1.01	3.0	3.4	85726	K1.10	
Suppression Pool High Water Temperature						Cognitive Level: HIGH		
Know	ledge of t	he operationa	al implicat	ions of	the	Pump NPSH		
following concepts as they apply to SUPPRESSION								
POOL HIGH WATER TEMPERATURE:								

- The plant tripped on a Group 1 isolation after operating at 94% power for 6 months.
- RPV pressure is controlled with Manual SRV operation 600 to 800 psig.
- RPV level band is controlled between -30 inches and +40 inches.
- RCIC is injecting to the RPV at 600 gpm.
- RCIC Suction is aligned to the Suppression Pool.

For the above conditions, Net Positive Suction Head to the RCIC Pump (1). To reverse the trend in Net Positive Suction Head, (2).

$$(1) (2)$$

A. LOWERS adjust the RCIC Flow Controller to 700 gpm

B. LOWERS transfer suction to the RCIC Storage Tank

C. RISES adjust the RCIC Flow Controller to 700 gpm

D. RISES transfer suction to the RCIC Storage Tank

ANS:	Reference Provided:	Reference and Rev:	Question Source:	Ques Rev
В	None	LP 85726 rev 3	NEW	1
		Clinton EOP		
		Technical Bases Fig		
		12-18: RCIC NPSH		
		Limit		

Explanation: RISING Suppression Pool Temperature LOWERS NPSH to RCIC Pump.

RCIC Storage Tank offers higher elevational head and cooler water than the Suppression Pool which will RAISE NPSH.

B is correct, RISING Suppression Pool Temperature LOWERS NPSH to RCIC Pump.

RCIC Storage Tank will RAISE NPSH.

A is wrong, transferring to the RCIC Storage Tank will RAISE NPSH.

C is wrong, RISING Suppression Pool Temperature LOWERS NPSH to RCIC Pump.

RCIC Storage Tank will RAISE NPSH.

D is wrong, RISING Suppression Pool Temperature, LOWERS NPSH to RCIC Pump.

Q#	Exam	System #	KA#	RO	SRO	LP#	Objective
64	BOTH	295027	EK3.01	3.7	3.8	87558	.1.2.2
_	Containm inment O	ent Temperat nly)	ure (Mark	Cognitive Level: R	ECALL		
respon	nses as the	he reasons fo ey apply to H	IGH CON	Emergency depress	urization: Mark-III		
TEMPERATURE (MARK III CONTAINMENT ONLY):							

Why does EOP-6, PRIMARY CONTAINMENT CONTROL require a BLOWDOWN if Primary Containment Temperature CANNOT be held below 185°F?

- A. To prevent exceeding the Primary Containment Design Temperature.
- B. To ensure stable steam condensation.
- C. To ensure ADS Solenoids will still be functional.
- D. To prevent exceeding the Drywell Design Temperature.

ANS:	Reference Provided:	Reference and Rev:	Question Source:	Ques Rev						
A	None	EOP Bases 8-3 rev 3	NEW	1						
Explanation:										
A is corre	A is correct, BLOWDOWN is required to prevent exceeding Primary Containment Design									
Temperatu	ire.									
B is wrong	g, to prevent exceeding F	rimary Containment Des	sign Temperature.							
C is wrong, to prevent exceeding Primary Containment Design Temperature.										
D is wrong, to prevent exceeding Primary Containment Design Temperature.										

Q# 65	Exam BOTH	System # 295028	KA # EK3.05	RO 3.6	SRO 3.7	LP # 87558	Objective .1. 2.2
High l	Drywell T	emperature		Cognitive Level: R	ECALL		
respor	Knowledge of the reasons for the following responses as they apply to HIGH DRYWELL TEMPERATURE:					Reactor SCRAM	

The reason for scramming the reactor BEFORE Drywell Temperature reaches 330°F is _____.

- A. to reduce RPV Level instrument inaccuracies
- B. to reduce the rate of heat input to the drywell
- C. to allow Reactor Recirculation pumps to be shutdown before seal damage occurs
- D. to allow the MSIVs to be SHUT before exceeding their design temperature

ANS:	Reference Provided:	Reference and Rev:	Question Source:	Ques Rev							
В	None	NEW	1								
Explanation	Explanation:										
B is correc	B is correct, reference states verbatim.										
A is wrong, RPV Level accuracy is unaffected by scram.											

C is wrong, RR Pump trip is not addressed in EOP-6.

D is wrong, MSIVs should be left OPEN so that Anticipation of Emergency Depressurization in EOP-1 can be performed.

Q# 66	Exam BOTH	System # 295029	KA # EK1.01	RO 3.4	SRO 3.7	LP # 87558	Objective .1.2.2
High S	Suppressi	on Pool Wate	r Level			Cognitive Level: R	ECALL
Know	ledge of t	he operationa	ıl implicati	ions of	the	Containment integr	ity
following concepts as they apply to HIGH							
SUPPRESSION POOL WATER LEVEL:							

Opening SRVs while Suppression Pool Water Level is above Figure Q, SRV Tail Pipe Limit may produce a failure that results in_____.

- A. actuation of Suppression Pool Makeup
- B. steam entrainment in pump suctions
- C. direct pressurization of the containment
- D. invalid actuation of ECCS systems

ANS:	Reference Provided:	Reference and Rev:	Question Source:	Ques Rev				
C	EOP-6 Figure Q	EOP Bases 8-18	NEW	1				
Explanation:								
C is corre	ct, operation of SRVs wh	nile above the SRV Tail	Pipe Limit may result in	Tail Pipe				
failure which results in direct pressurization of the containment.								
A is wrong, Suppression Pool Makeup results from Low Suppression Pool Water Level.								

B is wrong, pump suctions are separated from SRV Tailpipes.

D is wrong, pressurization of the Containment / Drywell would result in valid ECCS signal.

Q# 67	Exam BOTH	System # 295031	KA # EA1.08	RO 3.8	SRO 3.9	LP#	Objective
Reacto	or Low W	ater Level			Cognitive Level: Rl	ECALL	
Ability to operate and/or monitor the following as they apply to REACTOR LOW WATER LEVEL:						Alternate injection specific	systems: Plant-

Which one of the following requires LOCAL operation to accomplish injection to the reactor?

- A. LPCS / RHR A Water Leg Pump
- B. Fire Protection
- C. Shutdown Service Water
- D. Standby Liquid Control from the Storage Tank

ANS:	Reference Provided:	Reference and Rev:	Question Source:	Ques Rev					
В	None	4411.03 rev 6	NEW	0					
Explanation	Explanation:								
B is correc	ct, Fire Protection require	es Local operation.							
A is wron	g, can be performed fron	n Main Control Room.							
C is wrong	C is wrong, can be performed from Main Control Room.								
D is wron	D is wrong, can be performed from Main Control Room.								

Q# 68	Exam BOTH	System #	KA # EK2.01	RO 4.4	SRO 4.4	LP # 85423	Objective .1.7.5
08	вотп	293031	EK2.01	4.4	4.4	83423	.1.7.3
Reacte	or Low W	ater Level		Cognitive Level: H	IGH		
Know	ledge of t	he interrelation	ons betwee	Reactor water level	indication		
REACTOR LOW WATER LEVEL and the							
follow	/ing:						

- The reactor is SHUTDOWN.
- Reactor Recirculation Pumps are OFF.
- Reactor Pressure is 1000 psig.
- RPV Level is -170 inches Fuel Zone.

	ICATED RPV Level on Fuel e is (1) than ACTUAL Level.	As the reactor cools down, Fuel Zone becomes (2) accurate.
A.	HIGHER	LESS
B.	HIGHER	MORE
C.	LOWER	LESS
D.	LOWER	MORE

ANS:	Reference Provided:	Reference and Rev:	Question Source:	Ques Rev				
D	None	LP 85423 rev 2	NEW	0				
Explanation:								

Explanation:

D is correct, calibration conditions for Fuel Zone are 212°F, 0 psig. While pressurized, Fuel Zone indicates LOWER than actual level due to LOWER density water in the variable leg. As cooldown progresses, Fuel Zone becomes MORE accurate.

A is wrong, indicates LOWER than actual level, becomes MORE accurate.

B is wrong, indicates LOWER than actual level.

C is wrong, becomes MORE accurate.

Q#	Exam	System #	KA#	RO	SRO	LP#	Objective
69	RO	295033	EA1.03	3.8	3.8	85499	.1.4.2
High Secondary Containment Area Radiation Levels					Cognitive Level: HIGH		
Ability to operate and/or monitor the following as					Secondary containment ventilation		
they apply to HIGH SECONDARY					_		
CONTAINMENT AREA RADIATION LEVELS:							

- At 10:00, Defeating VF Interlocks, 4410.00C011, was completed.
- At 10:15, Fuel Building Ventilation (VF) was RESTARTED.
- At 10:45, 1RIX-PR006A,B,C, AND D FUEL BUILDING EXHAUST Process Radiation Monitors increased to the HIGH ALARM setpoint.

At 11:00, Fuel Building Ventilation is (1) AND Standby Gas Treatment System is (2) ?

(1) (2)

A. RUNNING in STANDBY

B. RUNNING RUNNING

C. TRIPPED RUNNING

D. TRIPPED in STANDBY

ANS:	Reference Provided:	Reference and Rev:	Question Source:	Ques Rev
C	None	4410C011 rev 4\	NEW	1
		LP85499R1		

Explanation:

C is correct. 4410.00C011 defeats RPV Level 2 and High Drywell Pressure Trips ONLY. This defeat does NOT affect High Radiation Trip / Isolation of VF OR High Radiation Auto Start of VG. Fuel Building Exhaust HIGH Radiation will trip VF AND Auto Start VG.

A is wrong, Fuel Building Exhaust HIGH Radiation will trip VF AND Auto Start VG.

B is wrong, Fuel Building Exhaust HIGH Radiation will trip VF.

D is wrong, Fuel Building Exhaust HIGH Radiation will trip VF AND Auto Start VG.

Q#	Exam	System #	KA#	RO	SRO	LP#	Objective
70	ВОТН	295034	EA1.05	3.8	3.8		
Secon	dary Con	tainment Ven	tilation Hi	Cognitive Level: HIGH			
Abilit	Ability to operate and/or monitor the following as Fuel building ventilation: Plant-						
they apply to SECONDARY CONTAINMENT					Specific		
VENT	VENTILATION HIGH RADIATION:						

Containment Continuous Purge Exhaust Radiation reads 120 mR/hr.

What is the expected status of the following?

(1) Fuel Building Exhaust Isolation Damper 1VF09Y.		(2)Standby GasTreatment System Accident Range Monitor (AXM), 0RIX-PR008.		
	(1)	(2)		
A.	SHUT	RUNNING		
B.	SHUT	IN STANDBY		
C.	OPEN	RUNNING		
D.	OPEN	IN STANDBY		

ANS:	Reference Provided:	Reference and Rev:	Question Source:	Ques Rev					
A	None	3319.01 rev14	NEW	0					
Explanati	Explanation:								
A is correct, 1VF09Y shuts as Fuel Building Vents ISOLATE, the AXM 0RIX-PR008 is									
RUNNING.									
B is wrong, AXM 0RIX-PR008 is RUNNING.									
C is wrong, 1VF09Y shuts.									
D is wrong, 1VF09Y shuts, AXM 0RIX-PR008 is RUNNING									

Q#	Exam	System #	KA#	RO	SRO	LP#	Objective
71	BOTH	295035	EK2.01	3.6	3.6	85449	.1.3.3
Secon	dary Con	tainment Hig	h Differen	Cognitive Level: HIGH			
Know	ledge of t	he interrelation	ons betwee	Secondary contains	nent ventilation		
SECC	NDARY	CONTAINM	IENT HIG				
DIFFI	DIFFERENTIAL PRESSURE and the following:						

Secondary Containment Differential Pressure is NORMALLY maintained by the <u>(1)</u> Ventilation System, if Differential Pressure is +0.5 inches of water, it is required to <u>(2)</u>.

(1) (2)

A. Auxillary Building enter EOP-8, Secondary Containment Control

B. Auxillary Building start additional exhaust fans

C. Fuel Building enter EOP-8, Secondary Containment Control

D. Fuel Building start additional exhaust fans

ANS:	Reference Provided:	Reference and Rev:	Question Source:	Ques Rev					
C	None	85449	NEW	0					
Explanation	Explanation:								
C is correct, Fuel Building Ventilation maintains D/P, it is required to enter EOP-8.									
A is wrong, Fuel Building Ventilation maintains D/P.									
B is wrong, Fuel Building Ventilation maintains D/P, it is required to enter EOP-8									
D is wrong	D is wrong, it is required to enter EOP-8.								

Q# 72	Exam BOTH	System # 295036	KA # EA1.03	RO 2.8	SRO 3.0	LP # 85304	Objective
Secon Level	dary Con	tainment Hig	h Sump/A	rea Wat	er	Cognitive Level: H	IIGH
they a	Ability to operate and/or monitor the following as they apply to SECONDARY CONTAINMENT HIGH SUMP/AREA WATER LEVEL:						

Reactor power is 90%.

Suppression Pool Level is 20 feet.

The HPCS Pump Discharge Pressure Instrument sensing line is leaking.

This water is coming from the <u>(1)</u> and will accumulate in a sump and then will be pumped to the (2) Floor Drain Tank.

(1) (2)

A. RCIC Storage Tank Fuel Building

B. RCIC Storage Tank Aux Building

C. Suppression Pool Fuel Building

D. Suppression Pool Aux Building

ANS:	Reference Provided:	Reference and Rev:	Question Source:	Ques Rev
D	None	LP85304 rev 1	NEW	0
		LP85380 rev 2		

Explanation:

D is correct HPCS suction has swapped to the Suppression Pool, pumped to the Aux Building Floor Drain Tank. the HPCS Sump pumps to the Aux Building Floor Drain Tank.

A is wrong, pumped to the Aux Building Floor Drain Tank.

B is wrong, Suppression Pool.

C is wrong, Suppression Pool, pumped to the Aux Building Floor Drain Tank.

	Exam	System #	KA#	RO	SRO	LP#	Objective
Q#	BOTH	295038	EA1.01	3.9	4.2		
73							
High (Off-Site R	Release Rate			Cognitive Level: HIGH		
Ability to operate and/or monitor the following as						Stack-gas monitoring system: Plant-	
they apply to HIGH OFF-SITE RELEASE RATE:						Specific	

On the AR/PR Display, the Common Station HVAC Exhaust Stack Monitor, 0RIX-PR001 indicating tile is RED.

The Accident Range HVAC Monitor, 0RIX-PR012 should be in (1).

If it is verified that this indication is NOT due to a spike, it is immediately required to enter (2).

(1) (2)

A. standby EOP-9, Radioactivity Release Control

B. standby Abnormal Release of Airborne Radioactivity, 4979.01

C. operation EOP-9, Radioactivity Release Control

D. operation Abnormal Release of Airborne Radioactivity, 4979.01

ANS:	Reference Provided:	Reference and Rev:	Question Source:	Ques Rev			
D	None	LP 85273 rev 2	NEW	0			
Explanation: RED Tile implies HIGH Alarm. 0RIX-PR001in High Alarm starts 0RIX-PR012.							
D is corre	ct, 0RIX-PR012 is in ope	eration, enter Abnormal I	Release of Airborne Radi	oactivity.			
A is wron	g, 0RIX-PR012 is in ope	ration, enter Abnormal R	Release of Airborne Radio	oactivity.			
B is wrong, 0RIX-PR012 is in operation.							
C is wrong, enter Abnormal Release of Airborne Radioactivity.							

Q#	Exam	System #	KA#	RO	SRO	LP#	Objective	
74	BOTH	400000	A3.01	3.0	3.0	85208	.1.4.1	
Component Cooling Water System (CCWS)						Cognitive Level: RECALL		
Abilit	y to moni	tor automatic	operation	s of the		Setpoints on instrument signal levels		
CCWS including:					for normal operations, warnings, and			
						trips that are applicable to the CCWS		

As Component Cooling Water (CC) System Expansion Tank Level LOWERS through ____ inches, ALL running Component Cooling Water (CC) Pumps will TRIP.

- A. 12
- B. 18
- C. 24
- D. 30

ANS:	Reference Provided:	Reference and Rev:	Question Source:	Ques Rev			
C	C None LP 85208 rev 4 NEW 0						
Explanation:							
C is correc	ct, CC Pumps trip at 24 i	nches in the CC Expansi	ion Tank.				

Q#	Exam	System #	KA#	RO	SRO	LP#	Objective
75	BOTH	500000	EK1.01	3.3	3.9		
High Containment Hydrogen Concentration						Cognitive Level: RECALL	
Know	ledge of t	he operationa	al implicat	ions of	the	Containment integ	grity
follov	following concepts as they apply to HIGH						
CONTAINMENT HYDROGEN							
CONCENTRATIONS:							

When the containment	Deflagration Limit	t is exceeded	l, starting the	Hydrogen l	Recombiners
is	·		_		

- A. NOT permitted, because hydrogen ignition sources must be eliminated
- B. NOT permitted, because inadequate hydrogen exists to support recombination
- C. REQUIRED, because it will reduce hydrogen concentration
- D. REQUIRED, because it will prevent a detonable hydrogen mixture

ANS:	Reference Provided:	Reference and Rev:	Question Source:	Ques Rev				
A	None	EOP Bases 9-13	NEW	0				
Explanation:								
A is correct, Starting Recombiners is NOT permitted, ignition sources are required to be								
eliminated	l, resultant pressures cou	ld exceed structural capa	bility of the containment	-				
B is wrong	g, hydrogen concentratio	n is in EXCESS of vende	or specified maximum fo	r				
Recombin	Recombiner operation, equipment damage could result.							
C is wrong, NOT permitted, because hydrogen ignition sources must be eliminated.								
D is wrong, NOT permitted, because hydrogen ignition sources must be eliminated.								

Q#	Exam	System #	KA#	RO	SRO	LP#	Objective
76	BOTH	500000	EK3.02	2.8	3.0		
High Containment Hydrogen Concentration						Cognitive Level: RECALL	
	_	the reasons for		_		Operation of drywell recirculating fans	
respon	nses as the	ey apply to H	IGH PRIM	IARY			
CONTAINMENT HYDROGEN							
CONCENTRATIONS:							

EOP-7, Hydrogen Contro	ol, requires	operation	of mixers	when	hydrogen	is detected	l in the
drywell because they							

- A. catalytically recombine hydrogen and oxygen, reducing the concentration of hydrogen in the drywell
- B. are an ignition source, and are used in the event that hydrogen igniters have failed to ignite hydrogen
- C. lower drywell pressure prior to the ignition expected when hydrogen igniters are energized
- D. redistribute hydrogen throughout the containment and drywell, reducing localized concentration

	ANS:	Reference Provided:	Reference and Rev:	Question Source:	Ques Rev			
	D	None	EOP Bases 9-9 rev 3	NEW	1			
Explanation:								

D is correct, redistribute hydrogen throughout the containment and drywell, reducing localized concentration.

A is wrong, but describes operation of hydrogen recombiners.

B is wrong, but describes why hydrogen must be below Deflagration Limit prior to starting mixers.

C is wrong, but mixers do lower drywell pressure during operation.

Q# 77	Exam BOTH	System # 600000	KA# AK1.02	RO 2.9	SRO 3.1	LP # 85286 rev 3	Objective .1.2.3
Plant Fire On Site						Cognitive Level: RECALL	
	Knowledge of the operation applications of the following concepts as they apply to Plant Fire On					Fire Fighting	

To establish fire fighting water pressure in the Containment, it is required to <u>(1)</u> breakers for 1FP051, 1FP054, 1FP078, and 1FP079, so that these valves may be <u>(2)</u>.

(1) (2)

A. OPEN OPENED

B. OPEN SHUT

C. CLOSE OPENED

D. CLOSE SHUT

ANS:	Reference Provided:	Reference and Rev:	Question Source:	Ques Rev
C	None	1893.04 rev 9d	NEW	0

Explanation:

C is correct, MOVs 1FP051, 1FP054, 1FP078, and 1 FP079 breakers are normally OFF, require their power breakers turned ON and are required to be OPEN to provide water to hose stations.

A is wrong, breakers turned ON.

B is wrong, breakers turned ON and OPEN.

D is wrong, OPEN.

Q# 78	Exam BOTH	System # 600000	KA # AK3.04		SRO 3.4	LP # 85567	Objective .1.7
Plant	Fire On S	ite			Cognitive Level: RECALL		
Know	ledge of t	he reasons fo	r the follo		Actions contained in the abnormal		
responses as they apply to PLANT FIRE ON SITE:					procedure for plant fire on site		

When the Diesel Generator Fire Protection System Alarm sounds, it is required for personnel to EXIT the Diesel Generator Room because ______.

- A. Water may cause electrical shorts
- B. Dry Chemical extinguishing agent is an irritant
- C. Halon is a carcinogen
- D. Carbon Dioxide will cause suffocation

ANS:	Reference Provided:	Reference and Rev:	Question Source:	Ques Rev						
D	None	LP 85567 rev 2	NEW	0						
Explanation:										
D is correc	D is correct, Carbon Dioxide will cause suffocation.									
A is wrong	A is wrong, Carbon Dioxide is the installed fire suppression agent.									
B is wrong, Carbon Dioxide is the installed fire suppression agent.										
C is wrong, Carbon Dioxide is the installed fire suppression agent.										

Q#	Exam	System #	KA#	RO	SRO	LP#	Objective
79	RO	201001	A3.07	3.3	3.3		
Contr	ol Rod Dr	ive Hydrauli	System	Cognitive Level: RECALL			
Abilit	y to moni	tor automatic	operation	HCU accumulator p	oressure/level		
CON	CONTROL ROD DRIVE HYDRAULIC SYSTEM						
includ	ling:						

Control Rod 28-29 Hydraulic Control Unit Nitrogen Pressure is 1500 psig, this will result in a(n) ______Alarm.

- A. Low CRD Charging Water Header Pressure
- B. Accumulator Trouble
- C. Rod Control and Information System Inop
- D. High CRD Drive Water Filter D/P

ANS:	Reference Provided:	Reference and Rev:	Question Source:	Ques Rev					
В	None	5006-1H rev 32	NEW	0					
Explanation:									
B is correc	ct, Low HCU Nitrogen P	ressure is one input to th	e Accumulator Trouble a	ılarm.					
A is wrong, but sustained Low Charging Pressure CAN cause HCU pressure to drop.									
C is wrong	C is wrong, but loss of RC&IS power CAN cause Accumulator Trouble alarm.								
D is wrong	D is wrong but high Drive Water Filter D/P can result in lower Charging Pressure								

Q# 80	Exam RO	System # 201003	KA # K5.07	RO 3.3	SRO 3.6	LP # 85756	Objective
Control Rod and Drive Mechanism						Cognitive Level: H	IGH
Know	ledge of t	he operationa	ıl implicati	ions of	the	How control rod mo	ovements affect
following concepts as they apply to CONTROL					core reactivity		
ROD AND DRIVE MECHANISM:							

Reactor power is $1x10^4$ Counts Per Second with a 90 second period indicated on SRMs. The Reactor Operator moves a control rod from notch 08 to notch 04.

Re	actor period will	
A.	get longer	
В.	get shorter	
C.	remain the same	

D. cause an alarm

ANS:	Reference Provided:	Reference and Rev:	Question Source:	Ques Rev					
A	None	85756	NEW	0					
Explanation:									
A is corre	ect, rod insertion will slov	w down the rate of powe	r rise, or lengthen reactor	period.					
B is wron	ng, lengthen								
C is wrong, lengthen									
D is wrong, lengthen									

Q# 81	Exam RO	System # 202001	KA # K2.01	RO 3.2	SRO 3.2	LP # 85202	Objective
Recirc	culation S	ystem		Cognitive Level: RECALL			
	Knowledge of electrical power supplies to the following:					Recirculation pump	s: Plant-Specific

Reactor Recirculation Pump A is powered from <u>(1)</u> when in FAST speed, and <u>(2)</u> when in SLOW speed.

A.	(1) 6.9 KV Bus 1A	(2) 4.16 KV Bus 1A
B.	4.16 KV Bus 1A	4.16 KV Bus 1A1
C.	6.9 KV Bus 1A	4.16 KV Bus 1A1
D.	4.16 KV Bus 1A	6.9 KV Bus 1A

ANS:	Reference Provided:	Reference and Rev:	Question Source:	Ques Rev						
A	None	NEW	0							
Explanation:										
A is correct, reference states verbatim, FAST 6.9KV Bus 1A, SLOW 4.16KV Bus 1A										

Q#	Exam	System #	KA#	RO	SRO	LP#	Objective
82	RO	202002	A2.02	2.9	3.0		
Recirculation Flow Control System						Cognitive Level: HIGH	
the RI SYST proced	ECIRCUIEM; and dures to coquences o	redict the imp LATION FLC (b) based on to orrect, controut those abnor	OW CONT those pred l, or mitig	ROL ictions, ate the	use	Loss of A.C.	

Reactor is at 90% power.

Both Recirc Flow Control Valves are at 75%.

If AC Power to BOTH subloops for FCV B were lost, what would be the expected valve response AND what action would be taken to mitigate the consequences of this event?

\ /	Valve motion wou Action to mitigate	ald be inhibited but could drift this event is
	(1)	(2)
A.	SHUT	control reactor power by adjusting the operable Flow Control Valve
В.	SHUT	scram before exceeding Technical Specification Limit for Jet Pump Flow mismatch
C.	OPEN	control reactor power by adjusting the operable Flow Control Valve
D.	OPEN	scram before exceeding Technical Specification Limit for Jet Pump Flow mismatch

ANS:	Reference Provided:	Reference and Rev:	Question Source:	Ques Rev				
C	None	5003.04 rev 30	NEW	0				
Explanati	Explanation: 90% power implies RR in Fast Speed.							
C is corre	ect, with no hydraulic pov	ver and RR in Fast, RR F	CV may drift open, corre	ect action				
is to conti	rol power with the operat	ole FCV per 5003.04.						
A is wrong, OPEN.								
B is wrong, OPEN, control reactor power by adjusting the operable Flow Control Valve.								
D is wron	ig, control reactor power	by adjusting the operable	Flow Control Valve.					

Q#	Exam	System #	KA#	RO	SRO	LP#	Objective
83	RO	203000	K6.02	2.8	3.0	85205	.1.7.2
RHR/LPCI: Injection Mode (Plant Specific)					Cognitive Level: HIGH		
Know	ledge of t	he effect that	a loss or r	nalfunc	tion	D.C. electrical pow	er
of the following will have on the RHR/LPCI:							
INJEC	INJECTION MODE:						

At 1000, the reactor is in MODE 3 with the following conditions:

- Reactor Pressure is 60 psig.
- BOTH Reactor Recirc Pumps are operating in slow speed.
- RHR B is operating in the Shutdown Cooling Mode.
- HPCS and RHR C are unavailable due to maintenance.
- RPV Inlet Valves, 1B21-F065A and B are SHUT.

At 1005 Division 1 DC power is lost.

At 1010 Recirc Loop A suction pipe ruptured.

Assuming NO operator action, what is the expected final status of:

(1) RHR Pump A 1E12-C002A

DIID A Duman

(2) LPCI from RHR A Shutoff Valve, 1E12-F042A?

	1E12-C002A (1)	Valve,1E12-F042A (2)
A.	NOT RUNNING	OPEN
B.	RUNNING	SHUT
C.	NOT RUNNING	SHUT
D.	RUNNING	OPEN

ANS:	Reference Provided:	Reference and Rev:	Question Source:	Ques Rev				
A	None	LP 85201 rev 6	NEW	0				
Explanation: with HPCS out of service, LPCI setpoint will be reached.								
A is correc	A is correct, Division 1 DC loss prevents RHR A pump start, initiation logic remains operable							
from Div	1 NSPS on alternate pow	er, 1E12-F042A will OP	EN.					
B is wrong	B is wrong, RHR A pump NOT RUNNING, 1E12-F042A will OPEN.							
C is wrong	C is wrong, 1E12-F042A will OPEN							
D is wrong	g, RHR A pump NOT R	UNNING.						

I DCI from DIID A Chutoff

Q#	Exam	System #	KA#	RO	SRO	LP#	Objective
84	RO	204000	K3.04	2.6	2.6		
Reactor Water Cleanup System					Cognitive Level: HIGH		
Knowledge of the effect that a loss or malfunction					Reactor water temp	erature	
of the REACTOR WATER CLEANUP SYSTEM							
will h	ave on fol	lowing:					

- The reactor operated 6 months at 90% power.
- One SRV stuck OPEN resulted in a reactor scram.
- The reactor has been shutdown for 24 hours.
- RPV Water Level is 60 inches on Shutdown Range.
- The condenser is NOT available.
- Shutdown Cooling Mode of RHR is NOT available.
- Alternate Decay Heat Removal is in service with RT Pumps A and B.
- Reactor Temperature is 180°F. Cooldown Rate is 15°F /hour

If the Reactor Water Cleanup System is isolated, Reactor Coolant Temperature will .

- A. lower
- B. stabilize at 180°F
- C. rise to 212°F and stabilize
- D. rise to 540°F and stabilize

ANS:	Reference Provided:	Reference and Rev: 4006.01 rev 4	Question Source:	Ques Rev
C	None	4000.01 167 4	INE W	U

Explanation:

C is correct, when RT is lost, Decay Heat Removal is lost, One SRV stuck OPEN, Coolant Temperature will rise to 212°F and stabilize.

A is wrong, Decay Heat Removal is lost, One SRV stuck OPEN, Coolant Temperature will rise to 212°F and stabilize.

B is wrong, Decay Heat Removal is lost, One SRV stuck OPEN, Coolant Temperature will rise to 212°F and stabilize.

D is wrong, Decay Heat Removal is lost, One SRV stuck OPEN, Coolant Temperature will rise to 212°F and stabilize.

Q# 85	Exam	System #	KA#	RO	SRO	LP#	Objective
85	RO	209002	A2.10	2.7	3.0	85380	.1.4.1
High Pressure Core Spray System (HPCS)					Cognitive Level: HIGH		
Ability to (a) predict the impacts of the following on the					Valve openings: BWR-5, 6		
HIGH	PRESSUE	RE CORE SPR	AY SYST	EM (HP	CS);		
and (b) based on those predictions, use procedures to							
correct, control, or mitigate the consequences of those							
abnorr	nal conditi	ons or operation	ons:				

Plant is at full power. HPCS valve testing is being performed.

The following actions has been performed in the listed order:

- (i) HPCS Pump, 1E22-C001 Trip and Close fuses removed
- (ii) 1E22-F001, HPCS Storage Tank Suction Valve is shut
- (iii) 1E22-F023, HPCS Test Valve To Suppr Pool is opened then shut for valve stroke time testing.
- (iv) 1E22-F001, HPCS Storage Tank Suction Valve is opened
- (1) What is the impact on the HPCS system when actions (ii) and (iii) are performed?
- (2) What is required to be performed before restoring HPCS fuses?

(1) (2)

- A. The 1E22-F015, HPCS Supp Pool verify suction pressure is returned to suction valve opens
- B. HPCS system drains fill and vent HPCS system
- C. The 1E22-F015, HPCS Supp Pool fill and vent HPCS system suction valve opens
- D. HPCS system drains verify suction pressure is returned to normal

ANS:	Reference Provided:	Reference and Rev:	Question Source:	Ques Rev
В	None	LP85380 rev 2	NEW	1
		CPS 3309.01R13A		

Explanation:

Correct- B is, CPS 3309.01, step 4.4 on pulling fuses with loss of fill and vent/.

Wrong

A HPCS Supp pool valve only auto opens on High supp pool or low RCIC ST levels, not a recovery requirement

C HPCS Supp pool valve only auto opens on High supp pool or low RCIC ST levels

D. fill and vent is required

Q#	Exam	System #	KA#	RO	SRO	LP#	Objective
86	RO	215005	A4.06	3.6	3.8	87411	.1.1.2, & .1.2.2
Average Power Range Monitor/Local Power Range Monitor System					Cognitive Level: HIGH		
	Ability to manually operate and/or monitor in the control room:					Verification of propoperability	per functioning/

APRM Channel A has FOUR (4) associated LPRMs bypassed.

With the Function Selector Switch in the COUNT position, APRM channel A meter will indicate <u>(1)</u>, and the APRM <u>(2)</u> be automatically tripped due to LPRM count.

(1) (2) will

B. 29 will not

C. 33 will

D. 33 will not

ANS:	Reference Provided:	Reference and Rev:	Question Source:	Ques Rev
В	None	87411	ILT BANK 06106	1

Explanation:

A.

B is correct, the APRM trips when the count is less then 16, and there are 33 assigned LPRMs. COUNT indicates 1 unit per UNBYPASSED LPRM. There are 29 unbypassed LPRMs,

COUNT will display 29

A is wrong, not tripped

C is wrong, not tripped and will indicate 29

D is wrong, will indicate 29

Q#	Exam	System #	KA#	RO	SRO	LP#	Objective
87	RO	216000	2.1.27	2.8	2.9	87218	.1.12.2
Nucle	ar Boiler	Instrumentati	on			Cognitive Level: HIGH	
Condu	Conduct of Operations					Knowledge of system purpose and/or	
					function.		

Due to a sensing line failure, the Differential Pressure across Wide Range Reactor Water Level Instrument, B21-N073C has INCREASED.

The level signal input to the associated Analog Trip Module will be (1) than ACTUAL level.

This instrument failure (2) PREVENT the HPCS to Containment Outboard Isolation Valve, 1E22-F004 from automatically repositioning when ACTUAL level reaches Level 8.

 $(1) \qquad \qquad (2)$

A. HIGHER WILL

B. HIGHER WILL NOT

C. LOWER WILL

D. LOWER WILL NOT

ANS:	Reference Provided:	Reference and Rev:	Question Source:	Ques Rev
C	None	87218 rev 1	NEW	0

Explanation:

Operator must know D/P – Level relationship AND Level 8 logic for 1B21-F004. BOTH N073C AND N073D are required for Level 8 response.

C is correct, High D/P corresponds to a LOWER level input to the ATM. This failureWILL prevent 1E22-F004 from automatically repositioning (SHUT) at Level 8.

A is wrong, LOWER level input to the ATM.

B is wrong, LOWER level input to the ATM. This failure WILL prevent repositioning.

D is wrong, This failure WILL prevent 1E22-F004 from automatically repositioning.

Q#	Exam	System #	KA#	RO	SRO	LP#	Objective
88	RO	217000	2.1.12	2.9	4.0		
React	Reactor Core Isolation Cooling System (RCIC)					Cognitive Level: HIGH	
Condi	Conduct of Operations				Ability to apply technical specifications		
	-				for a system.		

Plant startup and heatup is in progress, pressure is stable at 140 psig.

While testing the RCIC turbine:

RCIC DIV 1 TURB EXH DIAPH PRESSURE HIGH, 5063-3B alarms. RCIC DIV 2 TURB EXH DIAPH PRESSURE HIGH, 5063-4B alarms.

This will result in a RCIC Trip (1).

The RCIC System (2) required operable.

(1) (2)

A. AND Isolation IS NOT

B. AND Isolation IS

C. ONLY IS NOT

D. ONLY IS

ANS:	Reference Provided:	Reference and Rev:	Question Source:	Ques Rev
A	None	ITS 3.5.3 amend 95	NEW	0

Explanation: Startup implies Mode 2, RCIC required operable Mode 2 > 150 psig.

A is correct, Group 5 and Group 6 Isolations, RCIC Trips and Isolates, RCIC is not required OPERABLE.

B is wrong, RCIC is not required OPERABLE..

C is wrong, RCIC Trip and Isolation.

D is wrong, RCIC Trip and Isolation, RCIC is not required OPERABLE..

Q#	Exam	System #	KA#	RO	SRO	LP#	Objective
89	RO	217000	K5.03	2.6	2.6	85217	.1.5.7
React	or Core Is	solation Cooli	ng System	(RCIC)	Cognitive Level: HIGH	
Know	ledge of t	he operationa	al implicat	ions of	the	Differential pressure indication	
following concepts as they apply to REACTOR							
CORI	CORE ISOLATION COOLING SYSTEM (RCIC):						

- RCIC is running, injecting 600 gpm to the reactor.
- RCIC suction is aligned to the Suppression Pool.
- RCIC DIV 1 STEAM LINE DIFFERENTIAL PRESSURE HIGH, 5063-3A alarms.
- RCIC DIV 2 STEAM LINE DIFFERENTIAL PRESSURE HIGH, 5063-4A alarms.

What is the status of (1) RCIC Suppression Pool Suction Valve, 1E51-F031 AND (2) RCIC Pump Discharge to the Reactor Outboard Isolation Valve, 1E51-F013 FIVE MINUTES LATER?

	(1) RCIC Suppression Pool Suction Valve, 1E51-F031	(2) RCIC Pump Discharge to the Reactor Outboard Isolation Valve, 1E51-F013
A.	SHUT	SHUT
B.	SHUT	OPEN
C.	OPEN	SHUT
D.	OPEN	OPEN

ANS:	Reference Provided:	Reference and Rev:	Question Source:	Ques Rev
A	None	5063.03 rev33	NEW	0

Explanation:

A is correct High Steam Line D/P is a GROUP 5 AND 6 RCIC ISOLATION signal, which SHUTS 1E51-F031. ALL ISOLATION SIGNALS are RCIC Turbine Trip Signals. RCIC Trip SHUTS 1E51-F013

B is wrong, RCIC Trip Signal SHUTS 1E51-F013.

C is wrong, High Steam Line D/P is a GROUP 5 AND 6 RCIC ISOLATION signal, which SHUTS 1E51-F031

D is wrong, High Steam Line D/P is a GROUP 5 AND 6 RCIC ISOLATION signal, which SHUTS 1E51-F031. ALL ISOLATION SIGNALS are RCIC Turbine Trip Signals. RCIC Trip SHUTS 1E51-F013

Q# 90	Exam RO	System # 223002	KA # 2.4.31	RO 3.3	SRO 3.4	LP#	Objective
Primary Containment Isolation System/Nuclear Steam Supply Shut-Off					Cognitive Level: H	IGH	
Emerg	Emergency Procedures and Plan					Knowledge of annu indications, and use instructions.	nciators alarms and of the response

With the reactor at 90% power, the following annunciators alarm:

- AUX BLDG MAIN STEAM TUNNEL HIGH TEMP, 5066-1D
- AUX BLDG MAIN STEAM TUNNEL HIGH TEMP, 5067-1D
- RCIC STEAM TUNNEL TIMER BYPASS, 5063-5A

Assuming NO operator actions, PREDICT the status of

- (1) Main Steam Line A Outboard MSIV, 1B21-F028A AND
- (2) RHR and RCIC Steam Supply Inboard Isolation Valve, 1E51-F063

after FIVE MINUTES?

	(1) Main Steam Line A Outboard MSIV, 1B21-F028A	(2) RHR and RCIC Steam Supply Inboard Isolation Valve, 1E51-F063
A.	SHUT	OPEN
B.	SHUT	SHUT
C.	OPEN	SHUT
D.	OPEN	OPEN

ANS:	Reference Provided:	Reference and Rev:	Question Source:	Ques Rev
Α	None	CPS 5067-1D	NEW	1
		CPS 5063-5A		

Explanation:

A is correct, MS Tunnel High Temp causes Group 1 Isolation and Initiation of a 25 minute delay timer for RCIC Isolation.

B is wrong, RCIC Isolation delayed for 25 minutes.

C is wrong, MSIVs are shut, RCIC Isolation delayed for 25 minutes.

D is wrong, MSIVs are shut.

Q#	Exam	System #	KA#	RO	SRO	LP#	Objective
91	RO	245000	K3.02	3.9	4.0	87498	.1.10
Main	Main Turbine Generator and Auxiliary Systems					Cognitive Level: HIGH	
Know	ledge of t	he effect that	a loss or r	nalfunc	tion	Reactor pressure	
of the	of the MAIN TURBINE GENERATOR AND						
AUXI	AUXILIARY SYSTEMS will have on following:						

- The reactor was at 90% power for six months.
- The Turbine Generator tripped due to a fault in Main Power Transformer A.

Assuming ALL systems operate as expected, PREDICT HOW MANY of the following valves OPEN as an INITIAL response to control Reactor pressure?

	MAIN TURBINE BYPASS VALVES	SAFETY RELIEF VALVES
A.	ONLY 3	NONE
B.	ONLY 3	ONLY 3
C.	ALL 6	ONLY 6
D.	ALL 6	ALL 16

ANS:	Reference Provided:	Reference and Rev:	Question Source:	Ques Rev						
D	None	LP 87498 rev 3	NEW	0						
Explanation	Explanation:									
D is corre	D is correct, Transient Analysis shows ALL 6 BPVs AND ALL 16 SRVs OPEN initially.									
A is wron	A is wrong, 6 BPVs AND all 16 SRVs OPEN initially.									
B is wron	B is wrong, 6 BPVs AND all 16 SRVs OPEN initially.									
C is wrong	g, 16 SRVs OPEN initial	lly.								

Q# 92	Exam RO	System # 256000	KA # K4.04	RO 2.7	SRO 2.7	LP # 85302	Objective .1.1.2
Reactor Condensate System						Cognitive Level: RECALL	
SYST	EM desig	REACTOR C in feature(s) a following:		Maintenance of war	er quality		

The Condensate Polishing System	
---------------------------------	--

- A. filters and purifies water to maintain Reactor feedwater quality
- B. polishes and deionizes high quality water rejected to Radwaste
- C. filters and purifies water to maintain quality in the Auxiliary Boilers
- D. polishes and deionizes high quality water rejected to the Ultrasonic Resin Cleaner

ANS:	Reference Provided:	Reference and Rev:	Question Source:	Ques Rev						
A None 85302 rev 2 ILT Bank 10439 0										
Explanation	Explanation:									
A is correct, The Condensate Polishing System, filters and purifies water to maintain Reactor										
feedwater	quality.		-							

Q# 93	Exam RO	System # GENERIC	KA # 2.2.13	RO 3.6	SRO 3.8	LP#	Objective
					Cognitive Level:RF	ECALL	
Equip	1 1					Knowledge of tagging procedures.	ng and clearance

While verifying control switch tags in the Main Control Room, the 2nd Verifier discovered that a tag has been placed on the wrong valve control switch.

Which one of the following actions is required FIRST?

- A. Stop and notify the Tagging Authority.
- B. Move the tag to the correct component.
- C. Evaluate the impact on the affected system.
- D. Generate a Condition Report.

ANS:	Reference Provided:	Reference and Rev:	Question Source:	Ques Rev					
A	None	1014.01 rev 29b	NEW	1					
Explanation: step 8.5.1.2 distinguishes 1 st and 2nd Verifier									
A is correc	A is correct, Stop and notify the Tagging Authority steps 8.5.3.4.								
Distractors are also performed, but are not FIRST.									
	1								

Q#	Exam	System #	KA#	RO	SRO	LP#	Objective
94	RO	GENERIC	2.2.30	3.5	3.3		
					Cognitive Level: R	ECALL	
Equip	ment Con	itrol				Knowledge of RO	duties in the control
				room during fuel ha	andling such as		
					alarms from fuel ha	ndling area /	
						communication wit	h fuel storage
						facility / systems or	perated from the
					control room in sup	port of fueling	
						operations / and sur	porting
						instrumentation.	

Which one of the following is a responsibility of the Reactor Operator during core alterations?

- A. Maintain the official copy of the Special Nuclear Material Move Sheets.
- B. Observe Source Range Monitors for rising counts.
- C. Perform verification of in-core coordinates.
- D. Observe and directly supervise Core Alterations.

ANS:	Reference Provided:	Reference and Rev:	Question Source:	Ques Rev					
В	None	3703.01 rev 23	Bank INPO 19164	2					
			Braidwood						
Explanati	Explanation:								
B is corre	ect, stated in reference								
A is wron	ng, SNM Custodian / Nu	clear Engineer							
C is wron	C is wrong, Bridge Operator, Spotter, Refuel SRO								
D is wron	ng, Refuel SRO								

Q#	Exam	System #	KA#	RO	SRO		Objective
95	RO	GENERIC	2.3.9	2.5	3.4	85455	.1.8.4
				Cognitive Level: RECALL			
Radio	Radiological Controls					Knowledge of the process for	
						performing a contai	nment purge.

For plant outages with potential airborne activity, Containment Purge Mode of Containment Building Ventilation (VR) is aligned to supply (1) air to the Containment, AND (2) exhaust air is discharged to the environment.

(1) (2)

A. charcoal filtered charcoal filtered

B. charcoal filtered unfiltered

C. fresh unfiltered

D. fresh charcoal filtered

ANS:	Reference Provided:	Reference and Rev:	Question Source:	Ques Rev					
D	None	85455 rev 2	NEW	1					
Explanati	Explanation:								
D is corre	D is correct, fresh air is supplied, charcoal filtered exhaust is discharged.								
A is wron	g, fresh air is supplied.								
B is wron	B is wrong, fresh air is supplied, charcoal filtered exhaust is discharged.								
C is wron	C is wrong, charcoal filtered exhaust is discharged.								

Q#	Exam	System #	KA#	RO	SRO	LP#	Objective
96	RO	295002	AA2.04	2.8	2.9	85271	.1.5.1
Loss of Main Condenser Vacuum						Cognitive Level: HIGH	
	2	mine and/or i LOSS OF M		Offgas system flow			
	JUM:						

The Reactor is at 90% power.

Off-Gas Post Treatment PRMs 1RIX-PR035 AND 1RIX-PR041 are in HIGH ALARM.

Main Condenser Vacuum is expected to (1) due to (2).

(1) (2)

A. IMPROVE a reduction in Off Gas System flow

B. IMPROVE air leaking into the Main Condenser

C. DEGRADE a reduction in Off Gas System flow

D. DEGRADE air leaking into the Main Condenser

ANS:	Reference Provided:	Reference and Rev:	Question Source:	Ques Rev
C	None	85271 rev 4	NEW	0

Explanation: Reactor at 90% power implies SJAEs and Off Gas are in service, HIGH ALARM on either PRM listed will SHUT 1N66-F060, which isolates Off Gas Flow to the Stack AND is expected to DEGRADE Main Condenser Vacuum.

A is wrong, Main Condenser Vacuum is expected to DEGRADE.

B is wrong, Main Condenser Vacuum is expected to DEGRADE, due to a reduction in Off Gas Flow.

D is wrong, due to a reduction in Off Gas Flow.

Q#	Exam	System #	KA#	RO	SRO	LP#	Objective
97	RO	295003	AA2.02	4.2	4.3		
Partial or Complete Loss of A.C. Power						Cognitive Level: HIGH	
Ability to determine and/or interpret the following as they apply to PARTIAL OR COMPLETE LOSS					Reactor power, pres	ssure, and level	
OF A.C. POWER:							

Following a reactor scram from 90% power due to a Station Blackout, Source Range Monitors will indicate accurate (1), AND their detector drive power is (2).

(1) (2)

A. Level AND Period maintained by an inverter

B. Level AND Period lost

C. Period ONLY maintained by an inverter

D. Period ONLY lost

ANS:	Reference Provided:	Reference and Rev:	Question Source:	Ques Rev
D	None	4200.01 rev 15	NEW	0

Explanation: SRMs are normally retracted at power. SRM Drive Power is from CB MCC 1C and AB MCC 1F, BOTH are lost during a SBO. SRM Detectors are retracted and cannot be inserted during the SBO.

D is correct, SRMs will indicate accurate Period ONLY, their drives are retracted and are lost during a SBO.

A is wrong, Period ONLY, their drives are retracted and are lost during a SBO.

B is wrong, Period ONLY.

C is wrong, drives are retracted and are lost during an SBO.

Q#	Exam	System #	KA#	RO	SRO	LP#	Objective
98	RO	295014	AA2.01	4.1	4.2		
Inadvertent Reactivity Addition					Cognitive Level: H	IGH	
Ability to determine and/or interpret the following					Reactor power		
as they apply to INADVERTENT REACTIVITY					_		
ADDITION:							

Reactor is at 90 % power.

Due to a failure, High Pressure Heater 6A and 6B Bypass Valve, 1FW014 is stroking OPEN.

INITIALLY, Reactor Power indication on APRMs will (1), due to increasing Core (2).

(1) (2)

A. RISE Inlet Subcooling

B. RISE Flow

C. LOWER Inlet Subcooling

D. LOWER Flow

ANS:	Reference Provided:	Reference and Rev:	Question Source:	Ques Rev				
A	None 4005.01 rev 16 NEW		NEW					
Explanation:								
A is corre	A is correct, APRMs will RISE due to increasing Core Inlet Subcooling.							
B is wron	B is wrong, due to increasing Core Inlet Subcooling.							
C is wrong, APRMs will RISE.								
D is wron	D is wrong, APRMs will RISE due to increasing Core Inlet Subcooling.							

Q# 99	Exam	System #	KA#		SRO	LP#	Objective
99	RO	295028	2.4.1	4.3	4.6		
High Drywell Temperature					Cognitive Level: RECALL		
Emerg	Emergency Procedures and Plan					Knowledge of EOP entry conditions	
						and immediate action	on steps.

Which one of the following is the LOWEST Drywell Temperature which would require entry into EOP-6, PRIMARY CONTAINMENT CONTROL?

- A. 146°F
- B. 151°F
- C. 156°F
- D. 161°F

ANS:	Reference Provided:	Reference and Rev:	Question Source:	Ques Rev				
В	None	EOP Bases 8-2 rev 3	NEW	1				
Explanation:								
B is corre	B is correct, it is required to enter EOP-6 PRIMARY CONTAINMENT CONTROL above							
150°F.								
A is wron	A is wrong, NOT above150°F							
C is wrong, NOT the lowest.								
D is wron	D is wrong, NOT the lowest.							

Q#	Exam	System #	KA#	RO	SRO	LP#	Objective
100	RO	400000	K1.03	2.7	3.0	85208	.1.2.6
Component Cooling Water System (CCWS)						Cognitive Level: RECALL	
Know	Knowledge of the physical connections and/or					Radiation monitoring	ng systems
cause-effect relationships between CCWS and the							
follow	following:						

The Process Radiation Monitor which samples the Component Cooling Water System is physically connected to the system at the ______.

- A. outlet piping of the CCW Heat Exchangers
- B. discharge piping of the CCW Pumps
- C. return piping to the CCW Pumps
- D. the inlet piping to the CCW Demin

ANS:	Reference Provided:	Reference and Rev:	Question Source:	Ques Rev					
C	None	85208 rev 4	NEW	0					
Explanation:									
C is correct, CCW Return Header PRM, 1RIX-PR037 is physically connected to the system at									
the return	the return piping to the CCW Pumps.								

Q#	Exam	System #	KA#	RO	SRO	LP#	Objective
101	SRO	209001	2.1.33	3.4	4.0	85209	.1.14
Low Pressure Core Spray System						Cognitive Level:HIGH	
Condu	ict of Ope	erations				Ability to recognize system operating parentry-level conditions.	arameters which are

Plant is operating at full power.

1E21-F011, Low Pressure Core Spray Pump Min Flow Recirc Valve failed to stroke OPEN during Low Pressure Core Spray Valve Operability, 9052.02. The motor operator is failed but the valve can be manually positioned.

1E21-F011, Low Pressure Core Spray Pump Min Flow Recirc Valve is required to be __(1) AND

Low Pressure Core Spray is <u>(2)</u>.

(1) (2)

A. OPEN OPERABLE

B. SHUT OPERABLE

C. OPEN INOPERABLE

D. SHUT INOPERABLE

ANS:	Reference Provided:	Reference and Rev:	Question Source:	Ques Rev
D	None	ITS 3.6.1.3, Att 4-3,	NEW	2
		CPS 3313.01, 6.3		

Explanation:

D is correct, LCO 3.6.1.3 A.1 requires PCIV to be declared inoperable, closed and deactivated within 4 hours, CPS 3313.01 requires LPCS to be removed from auto start capability and declared INOPERABLE.

A is wrong, LPCS is INOPERABLE.

B is wrong, LPCS is INOPERABLE.

C is wrong, valve is required to be shut

Q# 102	Exam SRO	System # 223002	KA # 2.1.11	RO 3.0	SRO 3.8	LP#	Objective
	ry Contai Supply S	nment Isolati Shut-Off	on System	/Nuclea	ır	Cognitive Level: H	IGH
Condu	Conduct of Operations					Knowledge of less technical specification statements for systematics.	ion action

The reactor is operating at 90% power.

BOTH Main Steam Drain and MSIV Bypass Inboard Isolation Valve, 1B21-F016 AND Main Steam Drain and MSIV Bypass Outboard Isolation Valve, 1B21-F019 are inoperable due to slow stroke time.

The required action is to isolate the penetration flow path (1).

The basis for this requirement is to limit (2).

(1) (2)

A. within 1 hour fission product release to the environment

B. within 4 hours inventory loss from the reactor

C. within 1 hour inventory loss from the reactor

D. within 4 hours fission product release to the environment

ANS:	Reference Provided:	Reference and Rev:	Question Source:	Ques Rev
Α	None	ITS B3.6.1.3B	NEW	0

Explanation:

A is correct, ITS 3.6.1.3B requires the flowpath isolated within 1 hour, the basis is to limit fission product release to the environment.

B is wrong, requires the flowpath isolated within 1 hour, the basis is to limit fission product release to the environment.

C is wrong, the basis is to limit fission product release to the environment.

D is wrong, requires the flowpath isolated within 1 hour.

Q# 103	Exam SRO	System # 290003	KA # 2.2.22	RO 3.4	SRO 4.1	LP # 87447	Objective .1.6.9
Control HVAC						Cognitive Level: RECALL	
Equip	ment con	trol		Knowledge of limiting conditions for			
					operations and safety limits		

The Control Room HVAC System is required to be Operable for which one of the following sets of Operating Conditions___(1)______, to ensure MCR personnel dose remains below the 10CFR (2) limits during a design bases accident.

Sets of Operating conditions

- 1. Mode 1
- 2. Mode 2
- 3. Mode 3
- 4. Mode 4
- 5. Core Alterations
- 6. Operations with Potential to Draining the vessel
- 7. Movement of Irradiated fuel in the Primary or secondary containment
- (1) A. 1,2,3,4,5&7 20
- B. 1,2,3&6
- C. 1,2,3,4,5&7 50
- D. 1,2,3&6 50

ANS:	Reference Provided:	Reference and Rev:	Question Source:	Ques Rev
D	None	LCO3.7.3 & 3.3.7.1	Bank, 7736	1
		& BASES	,	

Explanation:

D, CORRECT, OC 4, MCR HVAC is not required to be operable, the HVAC system design is for 10CFR50 limits on DBA

A Incorrect, OC 4, MCR HVAC is not required to be operable, 10CFR50 is beyond 10CFR20 dose limits

- B. Incorrect, 10CFR50 is beyond 10CFR20 dose limits
- C, Incorrect, OC 4, MCR HVAC is not required to be operable

Q#	Exam	System #	KA#	RO	SRO	LP#	Objective
104	SRO	264000	2.2.22	3.4	4.1		
Emergency Generators (Diesel/Jet)						Cognitive Level: HIGH	
Equip	ment Con	trol		Knowledge of limiting conditions for			
				operations and safety limits.			

- The plant is at 90% power.
- 1A Diesel Generator is tagged out for turbocharger repair.
- HIGH/LOW TEMPERATURE DIESEL GENERATOR ROOM 1B, 5052-4A alarms.
- Diesel Generator Room 1B Temperature is 48°F and LOWERING.

Determine the proper action AND the basis for the requirement.

The required action is <u>(1)</u> within 2 hours.

The basis for the requirement is to provide adequate power to <u>(2)</u>.

(1) (2)

A. start and load DG 1C ECCS pumps in the event of a LOOP LOCA

B. start and load DG 1C perform a controlled plant shutdown

C. make 1A or 1B DG operable ECCS pumps in the event of a LOOP LOCA

D. make 1A or 1B DG operable perform a controlled plant shutdown

ANS:	Reference Provided:	Reference and Rev:	Question Source:	Ques Rev				
C	ITS 3.8.1	ITS 3.8.1.E	Modified LC060	0				
Explanation:								
C is correct, it is required to make 1A or 1B DG operable to provide power to ECCS pumps.								
A is wrong, it is required to make 1A or 1B DG operable.								
B is wrong, it is required to make 1A or 1B DG operable to provide power to ECCS pumps.								
D is wrong, to provide power to ECCS pumps.								

Q#	Exam	System #	KA#	RO	SRO	LP#	Objective
105	SRO	272000	2.1.33	3.4	4.0		
Radiation Monitoring System						Cognitive Level: HIGH	
Condu	ect of Ope	erations		Ability to recognize indications for			
-						system operating parameters which are	
						entry-level conditions for technical	
						specifications.	

The plant is at 90% power.

RHR A in suppression pool cooling.

Division 1 Shutdown Service Water Effluent Process Radiation Monitor 1RIX-PR038 is in LOW FAIL and never recovers from low fail.

It is required to <u>(1)</u> to prevent an unmonitored radioactive release to the <u>(2)</u>.

(1) (2)

A. secure flow through the Plant Service Water System Ultimate Heat Sink

B. analyze grab samples every 12 hours

Ultimate Heat Sink

C. secure flow through the Plant Service Water System

Discharge Flume

D. analyze grab samples every 12 hours Discharge Flume

ANS:	Reference Provided:	Reference and Rev:	Question Source:	Ques Rev
В	None	ODCM 2.7-1	NEW	1
		CPS 3211.01R21D		
		CPS 5140.50R0		

Explanation:

B is correct, It is required to analyze grab samples every 12 hours to prevent a radioactive release to the Ultimate Heat Sink.

A is wrong, It is required to analyze grab samples every 12 hours.

C is wrong, It is required to analyze grab samples every 12 hours to prevent a radioactive release to the Ultimate Heat Sink.

D is wrong, to prevent a radioactive release to the Ultimate Heat Sink.

Q#	Exam	System #	KA#	RO	SRO	LP#	Objective	
106	SRO	290002	2.2.22	3.4	4.1	87439 rev 2	1.1.3	
Reactor Vessel Internals						Cognitive Level: HIGH		
Equipment Control						Knowledge of limiting conditions for		
						operations and safety limits.		

- The plant is in MODE 2
- Reactor Pressure is 600 psig
- Reactor Power is 28%

It is required to <u>(1)</u> because of <u>(2)</u> concerns.

(1) (2)

A. Be in MODE 3 within 8 hours reactor coolant system

B. Be in MODE 3 within 8 hours fuel cladding

C. Notify the NRC within 1 hour reactor coolant system

D. Notify the NRC within 1 hour fuel cladding

ANS:	Reference Provided:	Reference and Rev:	Question Source:	Ques Rev					
D	None	ITS 2.1.1.1	NEW	0					
Explanation:									
D is corre	D is correct, MCPR safety limit is violated, Notify the NRC, this limit protects the cladding.								
A is wrong, Notify the NRC within 1 hour.									
B is wrong, Notify the NRC within 1 hour, this limit protects the cladding.									
C is wrong, this limit protects the cladding									

Q#	Exam	System #	KA#	RO	SRO	LP#	Objective
107	SRO	GENERIC	2.1.20	4.3	4.2		
						Cognitive Level: RECALL	
Condu	Conduct of Operations					Ability to execute procedure steps.	

Which one of the following is the required action per Core Alterations, 3703.01, when a fuel bundle has been placed in an incorrect core location and released?

- A. Move the bundle from the incorrect location to the correct location
- B. Note the actual location on the SNM move sheet and continue.
- C. Move the bundle from the incorrect location to the original location.
- D. Initiate a Condition Report and contact a Reactor Engineer.

ANS:	Reference Provided:	Reference and Rev:	Question Source:	Ques Rev				
D	None	3703.01 rev 23	NEW	0				
Explanation:								
D is correct, Initiate a Condition Report and contact a Reactor Engineer.								

Q#	Exam	System #	KA#	RO	SRO	LP#	Objective
108	SRO	GENERIC	2.1.33	3.4	4.0		
						Cognitive Level: HIGH	
Condu	act of Ope	erations				Ability to recognize system operating parentry-level conditions.	arameters which are

- Reactor Power is 90%.
- Total Core Flow is 84.5 Mlb/hr.
- Loop A Jet Pump Flow is 39.5 Mlb/hr.
- Loop B Jet Pump Flow is 45.0 Mlb/hr.

This combination (1) Technical Specification LCO requirements.

The basis of the applicable Technical Specification LCO is to ensure that (2) preserved.

(1) (2)

A. MEETS the ability to reflood the core is

B. MEETS loop coastdown characteristics are

C. DOES NOT MEET the ability to reflood the core is

D. DOES NOT MEET loop coastdown characteristics are

ANS:	Reference Provided:	Reference and Rev:	Question Source:	Ques Rev
D	Calculator	ITS 3.4.1.A	NEW	0

Explanation: allowable mismatch \geq 70% core flow is 5% rated core flow(4.225 Mlb/hr).

D is correct, DOES NOT MEET Tech Spec requirements, LCO ensures loop coastdown characteristics are preserved.

A is wrong, DOES NOT MEET Tech Spec requirements, LCO ensures loop coastdown characteristics are preserved.

B is wrong, DOES NOT MEET Tech Spec requirements.

C is wrong, LCO ensures loop coastdown characteristics are preserved.

Q# 109	Exam SRO	System # GENERIC	KA#	RO 2.5	SRO 3.7	LP#	Objective
109	SKO	GENERIC	2.2.23	2.3	3.7		
					Cognitive Level: RECALL		
Equip	ment Con	trol		Knowledge of bases in technical			
				specifications for limiting conditions			
					for operations and s	afety limits.	

The Reactor Coolant System Pressure Safety Limit is <u>(1)</u> psig as measured in the steam dome and is based on <u>(2)</u> of design pressure.

	(1)	(2)
A.	1375	110%
B.	1375	125%
C.	1325	110%
D.	1325	125%

ANS:	Reference Provided:	Reference and Rev:	Question Source:	Ques Rev
C	None	ITS B2.1.2 rev 0	NEW	0
T 1 .:				

Explanation:

C is correct, 1325 psig, as measured in the steam dome corresponds to 1375 psig at the lowest elevation of the RCS, which corresponds to 110 % of design pressure (1250 psig).

Q# 110	Exam SRO	System # GENERIC	KA # 2.2.26	RO 2.5	SRO 3.7	LP#	Objective
					Cognitive Level: HIGH		
Equip	ment Con	trol		Knowledge of refueling administrative			
					requirements.		

Refueling is in progress.

The Refueling Bridge is moving towards the core with a new fuel assembly.

The A Reactor Operator reports that SRMs indicate as follows:

SRM A B $C = 4x10^0$ $6x10^0$ CPS $2x10^0$ $5x10^{0}$

Which of the following is the correct action and why?

- A. Complete the fuel move if ALL OTHER SRMs indicate normally because any TWO SRMs are the minimum required for Core Alterations.
- B. Stop Core Alterations ONLY in the affected quadrant because ONE SRM is required in the quadrant receiving Core Alterations.
- C. Stop ALL Core Alterations because ALL SRMs are required for Core Alterations.
- D. Complete the fuel move irrespective of SRM status, because the fuel must be placed in a safe condition.

ANS:	Reference Provided:	Reference and Rev:	Question Source:	Ques Rev			
В	None	3703.01 rev 22b	New	0			
Explanation	on:						
B is correc	ct. One SRM INOP impl	ies 3 are available. Only	one quadrant cannot rece	eive Core			
Alts. The other three quadrants have an operable SRM plus an adjacent SRM.							
A is wrong	g, completion is not allow	wed if the quadrant has in	noperable SRM.				

C is wrong, not required to stop Core Alts, all SRMs not required. D is wrong, completion is only allowed if SRM operability is met.

Q#	Exam	System #	KA#	RO	SRO	LP#	Objective
111	SRO	GENERIC	2.3.1	2.6	3.0		
					Cognitive Level: HIGH		
Radio	logical Co	ontrols		Knowledge of 10 CFR 20 and related			
				facility radiation co	ntrol requirements.		

During a refueling outage, with LPRM detector replacement in progress; an LPRM detector is discovered in a trash barrel in the Auxiliary Building by a contractor.

RP determined that the contractor received:

- 4 Rem Whole Body
- 16 Rem to the eyes
- 25 Rem shallow dose to his right hand

What is (are) the required notification(s)?

- 1. A report specifying the exposure issued to the contractor.
- 2. Notify the NRC Operations Center via the ENS immediately, but no later than 1 hour.
- 3. Notify the NRC Operations Center within 24 hours.
- 4. Submit a written report to the NRC within 30 days.
- A. 1 ONLY
- B. 1, 2 and 4 ONLY
- C. 1 and 4 ONLY
- D. 1, 3 and 4 ONLY

ANS:	Reference Provided:	Reference and Rev:	Question Source:	Ques Rev				
D	LS-AA-1120 rev 0	LS-AA-1120 rev 0	NEW	1				
	pages 17-21							
Evnlanation	Evaluation:							

Explanation:

D is correct, It is required to Notify the NRC within 24 hours, submit a written report to the contractor and the NRC within 30 days.

Q#	Exam	System #	KA#	RO	SRO	LP#	Objective
112	SRO	GENERIC	2.3.8	2.3	3.2		
	•				Cognitive Level: RECALL		
Radio	logical Co	ontrols		Knowledge of the process for			
				performing a planned gaseous			
					radioactive release.		

Containment Venting is required per EOP-6, Primary Containment Control.

Permission to exceed release rate limits is required from the ______

- A. Control Room Supervisor
- B. Radiation Protection Manager
- C. Emergency Director
- D. Plant Manager

ANS:	Reference Provided:	Reference and Rev:	Question Source:	Ques Rev		
C	Blackout the specific	CPS 4411.06 rev 4	NEW	0		
	statement in EOP-6	CPS 4402.01, EOP-6,				
	"only when	Containment Control				
	authorized by Station	R26				
	Emergency Director"					
Explanation:						
C is correct, the Emergency Director must authorize exceeding release rates in EOP-6.						

Q#	Exam	System #	KA#	RO	SRO	LP#	Objective	
113	SRO	GENERIC	2.4.4	4.0	4.3	87551	.1.7 & .1.4	
						Cognitive Level: HIGH		
Emerg	gency Pro	cedures and I	Plan			Ability to recognize abnormal		
						indications for syste		
					parameters which are entry-level			
						conditions for emergency and abnormal		
	operating procedures.						es.	

A severe transient has occurred from rated plant conditions, they are currently as follows:

- Reactor scrammed with all rods in
- All preferred injection systems have malfunctioned, incapable of RPV injection
- ADS was initiated when RPV level dropped below –160 inches wide range
- RPV pressure is at 55 psig and slowly lowering
- Several alternate injection systems are lined up and injecting
- RPV water level has trended from -200 inches to -269 inches over the last 10 minutes

Which of the following describes the required operator action?

- A. Restore the RFP 1C by defeating the shunt trip and re-energize the Turbine Building MCC 1M
- B. Initiate Primary Containment Flood, leave <u>all</u> EOP flowcharts and enter <u>all</u> SAG flowcharts for action
- C. Initiate RPV Flooding; Enter EOP-2
- D. Initiate Primary Containment Flood, enter <u>all</u> SAG flowcharts for actions in parallel with EOP flowchart actions

ANS:	Reference Provided:	Reference and Rev:	Question Source:	Ques Rev
В	Full set of EOPs with	CPS 4401.01 rev 26	Bank, LC-119	1
	entry conditions for	(EOP-1)		
	the EOP blocked			

Explanation:

B is correct, EOP-1 level section cannot get level above -187 in. and hold it there. All EOPs are required to be exited.

A is wrong, Only allowed in EOP-1A before actuation, never allowed after actuation.

C is wrong, Not required unless RPV water level cannot be determined.

D is wrong, All EOPs are required to be exited.

Q#	Exam	System #	KA#	RO	SRO	LP#	Objective
114	SRO	295004	2.4.11	3.4	3.6		
Partial or Complete Loss of D.C. Power						Cognitive Level: HIGH	
Emergency Procedures and Plan						Knowledge of abnormal condition	
						procedures.	

Cold shutdown at the end of a refueling outage.

CW pumps A and B are running

4160 1B1 and DC MCC 1B are de-energized for an outage

Following occurs:

- Annunciator TRIP 125V DC MCC 1A BREAKER, 5060-1E activates
- Annunciator UNDERVOLTAGE 125V DC MCC 1A, 5060-2E activates
- DC MCC 1A voltage is 0 VDC

It is required to enter Loss of DC Power, 4201.01 and (1).

These conditions will require declaring an (2) if NOT corrected within 15 minutes.

(1) (2)

A. Immediately open the RAT Circuit Switcher, 4538 Unusual Event

B. Perform Subsequent Actions only

Alert

C. Perform Subsequent Actions only

Unusual Event

D. Immediately open the RAT Circuit Switcher, 4538 Alert

ANS:	Reference Provided:	Reference and Rev:	Question Source:	Ques Rev
C	Radiological	4201.01 rev 4a	NEW	1
	Emergency Plan	Radiological		
	Annex for CPS CL3-	Emergency Plan		
	5, 3-42,3-43, 3-49, 3-	Annex for CPS, MU4		
	55 3-57, & 3-58			
	·			

Explanation:

C is correct, Loss of DC power, 4201.01, does require entry for subsequent actions, Unusual Event, MU4.

A is wrong, CW motor excitation is power from DC MCC 1E/1F

B is wrong, No ALERT Condition exist UE.

D is wrong, CW motor excitation is power from DC MCC 1E/1F, UE, no Alert conditions exist

Q#	Exam	System #	KA#	RO	SRO	LP#	Objective
115	SRO	295004	AA2.02	3.5	3.9		
Partia	Partial or Complete Loss of D.C. Power					Cognitive Level: H	IGH
Abilit	y to deter	mine and/or i	nterpret th	e follov	ving	Extent of partial or	complete loss of
as they apply to PARTIAL OR COMPLETE LOSS				D.C. power			
OF D.C. POWER:							

The reactor is at 90% power.

TRIP 125V DC MCC 1A BREAKER, 5060-1E alarms.

Diesel Generator 1A Output Breaker GREEN light is LIT.

C Area Operator reports 125V DC MCC 1A Battery Feed Breaker is TRIPPED and will not reset.

It is required to (1).

If a Loss of Offsite Power occurs while in this condition, Diesel Generator 1A (2) start.

(1) (2)

A. restore the battery to operable within 2 hours WILL NOT

B. restore the battery to operable within 2 hours WILL

C. verify the charger is operable within 4 hours WILL NOT

D. verify the charger is operable within 4 hours WILL

ANS:	Reference Provided:	Reference and Rev:	Question Source:	Ques Rev					
A	ITS 3.8.4 no bases	ITS B.3.8.4 rev 6-5	NEW	0					
Explanation: The impact on the Emergency Diesel Generator is listed in Bases of 3.8.4.									
A is correct, restore the battery within 2 hours, EDG WILL NOT start.									
R is wrong EDG WILL NOT start									

C is wrong, restore the battery within 2 hours...

D is wrong, restore the battery within 2 hours, EDG WILL NOT start.

Q#	Exam	System #	KA#	RO	SRO	LP#	Objective
116	SRO	295012	AA2.01	3.8	3.9		
High Drywell Temperature						Cognitive Level: H	IGH
Abilit	y to deter	mine and/or i	nterpret th	e follov	ving	Drywell temperatur	re
as they apply to HIGH DRYWELL							
TEMI	PERATU	RE:					

You are the CRS.

The B Reactor Operator informs you that Drywell Average Air Temperature is 150°F.

This <u>(1)</u> exceed the Technical Specification Limit , which is based on NOT exceeding <u>(2)</u> during a DBA LOCA.

(1) (2)

A. DOES NOT 330°F in the drywell

B. DOES 185°F in the containment

C. DOES NOT 185°F in the containment

D. DOES 330°F in the drywell

ANS:	Reference Provided:	Reference and Rev:	Question Source:	Ques Rev
D	None	ITS B3.6.5.5	NEW	0

Explanation:

D is correct, Drywell Average Air Temperature at 150°F exceeds the LCO value of 146.53°F and is based on not exceeding 330°F during a DBA LOCA.

A is wrong, exceeds the LCO value.

B is wrong, based on not exceeding 330°F during a DBA LOCA.

C is wrong, exceeds the LCO value based on not exceeding 330°F during a DBA LOCA.

Q#	Exam	System #	KA#	RO	SRO	LP#	Objective
117	SRO	295015	AA2.01	4.1	4.3		
Incor	Incomplete SCRAM					Cognitive Level: H	IGH
	Ability to determine and/or interpret the following as they apply to INCOMPLETE SCRAM:					Reactor power	

- EOP 1A ATWS RPV Control has been entered.
- The plant is at 35% power with five Safety Relief Valves OPEN.
- Reactor Water Level is +30 inches.
- Suppression Pool Temperature is 111°F.
- Drywell Pressure is 1.9 psig.

It is required to Terminate and Prevent Injection and lower level until which one of the following conditions is met?

- A. ONLY one Safety Relief Valve is OPEN.
- B. RPV Level drops to -60 inches.
- C. Drywell Pressure stays below 1.68 psig.
- D. Reactor Power lowers to 4%.

ANS: D	Reference Provided: Full set of EOPs with entry conditions for the EOP blocked	Reference and Rev: 4404.01 rev 26 Level leg	Question Source: NEW	Ques Rev 2
Explanation				

D is correct, It is required to lower level until power is below 5%.

A is wrong, All SRVs CLOSED AND Drywell Pressure is < 1.68 psig.

B is wrong, -140 inches

C is wrong, All SRVs CLOSED AND Drywell Pressure is < 1.68 psig.

Q# 118	Exam SRO	System # 295017	KA # 2.4.10	RO 3.0	SRO 3.1	LP#	Objective
High Off-Site Release Rate						Cognitive Level: HIGH	
Emerg						Knowledge of annu procedures.	nciator response

The plant is in Hot Shutdown with RHR Loop 'B' being placed into shutdown cooling.

SX Service Water Effluent B - 1RIX-PR039, CPS 5140.51 has gone into Alert. A check of the monitor reading shows it is spiking.								
With the 1RIX-PR039 spiking it is required to(1)								
An investigation reveals a release w limits.	as in progress for 25 minutes at 12 X ODCM release rate							
Subsequent actions are governed by	?							
(1)	(2)							
A. Sample for a release	Abnormal Release of Radioactive Liquids, 4979.05							
B. Isolate RHR B	Abnormal Release of Radioactive Liquids, 4979.05							
C. Sample for a release	EOP-9, Radioactivity Release Control							
D. Isolate RHR B	EOP-9, Radioactivity Release Control							

ANS:	Reference Provided:	Reference and Rev:	Question Source:	Ques Rev
C	Radiological	5140.51 rev 0	NEW	2
	Emergency Plan	CPS 4979.05		
	Annex for CPS CL3-	Radiological		
	3 and 3-10	Emergency Plan		
	Full set of EOPs with	Annex for CPS		
	entry conditions			
	blanked			

Explanation:

C is correct, spike only requires a confirming sample, the value is in excess of Alert value per RA2, this is an EOP-9 entry condition.

A is wrong, EOP-9 entry.

B is wrong, spike only requires a confirming sample, the value is in excess of Alert value per RA2, this is an EOP-9 entry condition.

D is wrong, spike only requires a confirming sample.

Q#	Exam	System #	KA#	RO	SRO	LP#	Objective
119	SRO	295017	AA2.01	2.9	4.2		
High Off-Site Release Rate						Cognitive Level: HIGH	
Ability to determine and/or interpret the following as they apply to HIGH OFF-SITE RELEASE						Off-site release rate	: Plant-Specific
RATE	E:						

A Radwaste vendor truck leaving Clinton Station wrecked on the site access road at the Highway 54 intersection.

The liner has failed resulting in leakage.

The Radiation Protection Technician dispatched to the area reports that dose rate at the site boundary has been 15 mr/hr for the last 30 minutes.

It is required to declare an (1) due to an (2).

(1) (2)

A. UNUSUAL EVENT offsite release

B. UNUSUAL EVENT unplanned increase in radiation levels

C. ALERT offsite release

D. ALERT unplanned increase in radiation levels

ANS:	Reference Provided:	Reference and Rev:	Question Source:	Ques Rev
C	Radiological	RA-2	NEW	1
	Emergency Plan			
	Annex for CPS CL3-			
	3 through 16			
	ODCM fig 2.1-1			

Explanation: 10 CFR 55.43(b)4 Radiation Hazards during abnormal situations.

C is correct, an ALERT is declared due to an offsite release for RA-2 EAL threshold value 1.

A is wrong, an ALERT is declared.

B is wrong, an ALERT is declared.

D is wrong, due to an offsite release.

Q#	Exam	System #	KA#	RO	SRO	LP#	Objective
120	SRO	295019	AA2.01	3.5	3.6		
Partial or Complete Loss of Instrument Air						Cognitive Level: H	IGH
Abilit	y to deter	mine and/or i	nterpret th	Instrument air syste	m pressure		
as they apply to PARTIAL OR COMPLETE LOSS							_
OF INSTRUMENT AIR:							

A loss of Service Air/Instrument(SA/IA) Pressure with the reactor at 90% resulted in the following conditions:

- Reactor scrammed, All rods in
- RPV pressure is manually controlled 800 to 1050 psig with RCIC and SRVs
- Equalizing header pressure is 0 psig

SA/IA pressure is now recovering and rising from a low of 40 psig.

Which of the following actions should ROs be directed to perform next per CPS 4004.01, Instrument Air Loss?

- A. Open IA ring header to the Control Building
- B. Place MSIVs control switches to OFF
- C. Open IA ring header to the Radwaste Building
- D. Place the Non-ADS control switches to OFF

ANS: B	Reference Provided: none	Reference and Rev: 4004.01 rev 8	Question Source: NEW	Ques Rev 1
Explana B is corr	 tion: rect, C/S for MSIV are requir	ed to be placed in OFF to p	prevent an inadvertent reop	ening when

air pressure is restored A, C not addressed in this procedure, but in the normal recovery procedure

D wrong, no such guidance

Q# 121	Exam SRO	System # 295022	KA # 2.4.10	RO 3.0	SRO 3.1	LP#	Objective
Loss c	of CRD P	umps		l.	Cognitive Level: HIGH		
Emerg	gency Pro	cedures and I	Plan	Knowledge of annunciator response			
				procedures.			

- A reactor startup is in progress.
- Reactor pressure is 0 psig.
- CRD DRIVE WATER PUMP AUTO TRIP, 5068.03 alarms.
- Accumulator Fault annunciator is received for CRD 32-21.
- C Area Operator reports Accumulator 32-21 is 1500 psig and slowly dropping.
- CRD 32-21 is at notch position 48.

The action required to IMMEDIATELY _____(1) is based upon inadequate pressure available to ensure rod 32-21's __(2) capability.

(1) (2)
A. Declare control rod drive 32-21 inoperable

B. Declare control rod scram 32-21 inoperable

C. Place the reactor mode switch in the shutdown position

D. Place the reactor mode switch scram

Ī	ANS:	Reference Provided:	Reference and Rev:	Question Source:	Ques Rev
	D	None	CPS 5068.03 and	Modified LC432	1
			CPS 5006.01H		
			ITS 3.1.5D.1		

Explanation:

D is correct, CPS 5006.01H identifies the low pressure condition for declaring the rod's accumulator inoperable resulting in action from ITS 3.1.5.C.1 requires immediate verification that all rods associated with inoperable accumulators are inserted. Since rod 32-21 is at notch 48 this time cannot be met.

3.1.5.D.1 requires the reactor mode switch placed in shutdown immediately.

A is wrong, required to place the mode switch in shutdown, to ensure scram function.

B is wrong, required to place the mode switch in shutdown., Declaring rod 32-21 is a 1 hour action – not IMMEDIATE.

C is wrong, to ensure scram function.

in the shutdown position

Q# 122	Exam SRO	System # 295027	KA # 2.4.11	RO 3.4	SRO 3.6	LP#	Objective
	Containm inment O	ent Temperar nly)	ture (Mark	•	Cognitive Level: HIGH		
Emerg	gency Pro	cedures and	Plan	Knowledge of abnormal procedures.	ormal condition		

Plant is operating at rated conditions

- RWCU HX ROOM WEST TEMPERATURE HIGH, 5000-5A alarms
- RWCU HX Room temperature is 192°F and rising
- Containment temperature trends up from 75°F to 115°F and continues to rise
- Containment pressure is 0.1 psig
- RWCU system is operating

RWCU system is required to be	(1)
With Containment pressure unchang the initiation of(2)	ed, Containment temperature rises to 189°F, this requires
(1) A. Isolated	(2) containment sprays
B. Shutdown	containment sprays
C. Shutdown	blowdown
D. Isolated	blowdown

ANS:	Reference Provided:	Reference and Rev:	Question Source:	Ques Rev
D	Full set of EOPs	5000.05A rev 27	NEW	1
		4001.02r16		
		EOP-6		

Explanation: RT isolation has failed but didn't isolate (CPS 5000.05A), setpoint is 190°F D is correct Group 4 automatic isolation fails it is required to be performed, and containment pressure is below Figuire O limit for containment sprays

A is wrong, Automatic Isolation failed and is required to be performed, not shutdown.

B is wrong, containment pressure is below Figuire O limit for containment sprays

C is wrong, Group 4 automatic isolation fails it is required to be performed

Q#	Exam	System #	KA#	RO	SRO	LP#	Objective
123	SRO	295030	2.4.1	4.3	4.6		
Low S	Suppression	on Pool Wate	r Level	Cognitive Level: HIGH			
Emerg	gency Pro	cedures and I	Plan	Knowledge of EOP entry conditions			
					and immediate action	on steps.	

Following a reactor scram from 90% power, conditions are as follows.

- Five rods are at notch 48.
- Suppression Pool Level is 18 feet.
- Suppression Pool Temperature is 140°F.
- Reactor Pressure is 1000 psig controlled with Bypass Valves.
- Reactor Water Level is +30 inches.
- Reactor Power is < 1 %
- Standby Liquid Control Pump A is injecting.
- Standby Liquid Control Pump B is tripped.

What action should operators be directed to perform?

- A. Reduce Reactor Water Level to at least -60 inches.
- B. Initiate Alternate Boron Injection.
- C. Reduce Reactor Pressure to less than 950 psig.
- D. Initiate Automatic Depressurization System.

ANS:	Reference Provided:	Reference and Rev:	Question Source:	Ques Rev			
C	Full set of EOPs with	EOP-6	NEW	1			
	entry conditions						
	blanked						
Explanation	on: Suppression Pool Lev	el at 18 feet requires EC	P-6 entry.				
C is corre	C is correct, Heat Capacity Limit requires lowering Reactor Pressure below 960 psig.						
A is wrong, not required to lower level because power is <5%.							
B is wron	g Boron Injection Tempo	erature Limit is exceeded	but SBLC is injecting				

D is wrong, is not required because reactor pressure has not been lowered yet.

Q#	Exam	System #	KA#	RO	SRO	LP#	Objective
124	SRO	295033	2.4.10	3.0	3.1		
High	Secondary	y Containmer	t Area Ra	diation	Levels	Cognitive Level: HIGH	
Emergency Procedures and Plan						Knowledge of annunciator response	
					procedures.		

- New Fuel inspection is in progress in the Fuel Building.
- Spent Fuel Storage Area Radiation Monitor, 1RIX-AR016 is in HIGH ALARM.
- Data review of 1RIX-AR016 indicates 3 mr/hr, RISING slowly.

It is required to enter Abnormal High Area Radiation, 4979.02 (1), and (2).

(1) (2)

A. ONLY verify VG auto starts

B. ONLY evacuate the area

C. AND EOP-8, Secondary Containment Control verify VG auto starts

D. AND EOP-8, Secondary Containment Control evacuate the area

AN	S :	Reference Provided:	Reference and Rev:	Question Source:	Ques Rev
D		None	5140.08 R0	NEW	1
			4979.02 R7		

Explanation:

D is correct, it is required to enter BOTH 4979.02 AND EOP-8, it is required to evacuate the area.

A is wrong, enter BOTH 4979.02 AND EOP-8, it is required to evacuate the area.

B is wrong, enter BOTH 4979.02 AND EOP-8.

C is wrong, it is required to evacuate the area.

Q#	Exam	System #	KA#	RO	SRO	LP#	Objective
125	SRO	295038	EA2.01	3.3	4.3		
High (Off-Site R	Release Rate		Cognitive Level: HIGH			
Ability to determine and/or interpret the following						Off-site	
as they apply to HIGH OFF-SITE RELEASE							
RATE	E:						

Field teams have been dispatched due to a Radioactivity Release.

The field teams are located as follows:

Field Team 1 is at the Screenhouse.

Field Team 2 is 15 feet NORTH of the Highway 54 and Site Access Road intersection.

Field Team 3 is at the Meteorological Tower.

Field Team 4 is at the Shell Oil Pumping Station.

Which of the following describes which Field Team(s) is (are) OFF-SITE for the purposes of Emergency Classification?

- A. All Field Teams
- B. 2 and 3 ONLY
- C. 2 and 4 ONLY
- D. 3 and 4 ONLY

ANS:	Reference Provided:	Reference and Rev:	Question Source:	Ques Rev
C	ODCM fig 2.1-1	EP-MW-110-200 rev	NEW	1
		0		
		ODCM rev 19		
	•	•	•	

Explanation:

C is correct, 15 feet North of Highway 54 and Access Road and Shell Oil Pumping Station are OFF-SITE because it is neither owned, leased, nor otherwise controlled by AmerGen.

A is wrong, Field Team 1 and 3 are on site.

B is wrong, Field Team 3 is on site.

D is wrong, Field Team 3 is on site.

Q#	Exam	System #	KA#	RO	SRO	LP#	Objective
126	SRO	295014	AA2.05	4.2	4.6	87439 rev 2	1.1.3
Inadvertent Reactivity Addition						Cognitive Level: HIGH	
Ability to determine and/or interpret the following						Violation of safety limits	
as they apply to INADVERTENT REACTIVITY						-	
ADDI	TION:						

- Reactor Power was 90%
- Turbine Bypass Valves opened due to an EHC Pressure Regulator malfunction.
- Loss of Feedwater Heating, CPS 4005.01 is entered
- The A Reactor Operator adjusted RR Flow Control Valves to maintain Reactor power at 90%.
- Feedwater Temperature has dropped 105°F.
- 3D Monicore Official Case indicates that MCPR is 1.08
- (1) What action should the Reactor Operator be directed to perform?
- (2) What is the HIGHEST level of authority required in order to return to rated power?

(1) (2)

A. Scram the reactor Plant Manager

B. Scram the reactor Nuclear Regulatory Commission

C. Insert the CRAM rods Shift Manager

D. Insert the CRAM rods Reactor Engineer

ANS:	Reference Provided:	Reference and Rev:	Question Source:	Ques Rev
В	None	ITS 2.1.1.2 & 2.2.5	NEW	1
		CPS 4005.01r16 step		
		4.1.1		

Explanation:

B is correct, Scram when >100°F FW temp drop, MCPR safety limit is violated requiring NRC authorizing to resume operation

A is wrong, NRC authorizing operation

C is wrong, Scram the reactor, NRC authorizing operation.

D is wrong, Scram the reactor, NRC authorizing operation.