NRC Assessment of Margin Available at Davis Besse

5/102

<u>Mark Kirk</u>, Wally Norris, Nilesh Chokshi

Paul Williams, Richard Bass

Oak Ridge National Laboratory

RES/DET/MEB

Gery Wilkowski, Dave Rudland

Engineering Mechanics Corporation of Columbus

ACRS Briefing: Materials and Metallurgy & Plant Operations Subcommittees USNRC Headquarters • Rockville, MD • 5th May 2002

Overview of Presentation

1

ŀ

Deterministic assessment of margins

- Scope of investigation
- Analytical tools
- Findings to date

Next steps

- Further deterministic analysis
- Probabilistic analysis

RES Assessment of Davis-Besse "Margins"

Analytical Tools

Most realistic representation of the geometry of both the wastage area and the overall head design

- Wastage modeled as pit at top of head
- More refined cladding model (than possible in 3D)
- Allowed easier investigation of additional wastage area needed to produce failure

Details of Analyses

	3D FE Model (<i>ORNL</i>)	Axi-Symmetric FE Model (<i>EMC</i> ²)
Loading	P = Design (2165 psi) or higher	
	T = Operating (600°F), no gradients	
Material Properties	On next page.	
Geometry	 All penetrations modeled Straight walled 3D cavity Geometry digitized from early photo. 	Axial pit at apex of head
	Failure occurs when the average through-thickness equivalent plastic strain in the cladding exceeds 5.5%	
Failure Criteria	 5.5% corresponds to the strain at the beginning of plastic instability. Derived from 11.15% strain in a uni-axial tension test Assumption that "failure" occurs at same stress level under uni-axial and bi-axial loading. 	

Material Stress-Strain Properties

Summary of Findings → As-Found Condition ←

- At operating pressure (2165 psi) the 3D FE model predicts 2% plastic strain in the cladding
 - No failure predicted relative to assumed failure criteria

Summary of Findings → Margin on Overpressure ←

- Depending upon
 - The particular failure strain (5.5% vs. 11%)
 - The strain value (average, minimum, etc.)
 - Cladding thickness (design, average measured, minimum measured)
 - used in the analysis, different margins on overpressure result:
 - SIA (Industry) 3D Analysis: $P_{fail} / P_{oper} = 2.1 2.6$

Fel -

- ORNL (NRC) 3D Analysis: $P_{fail} / P_{oper} = 1.4 2.0$
- EMC² (NRC) 2D Analysis: $(P_{fail} / P_{oper} = 1.1 1.4)$

Note: Only the most pessimistic overpressure margins do not exceed the SRV set-point of 110% Poner

Summary of Findings → Additional Cavity Growth Needed to Fail ←

- About 1.9-in. more wastage needed (along maximum growth axis) to cause failure at the operating pressure, assuming
 - 5.5% failure strain (average through thickness
 - Average thickness cladding
 - Appropriateness of axi-symmetric model

Next Steps

- Better definition of failure criteria
 - Calibration relative to appropriate data, if data is available
 - Determination of significance of different failure criteria (for probabilistic analysis up to 2500 psi)
- Cavity growth rate
 - Growth rate data
 - Growth models
- Probabilistic analysis

Next Steps (details)

- Re-analyses using ORNL "best-estimate" 3-D FE model of existing cavity up to 2500 psi to quantify failure probabilities
- Further evaluation of clad failure criteria by analyzing measured data obtained from (6-in. dia. x 0.25 in. thick.) SS burst disks
- 3-D FE analyses of cavity growth scenarios to refine estimates of critical wastage area at P_{oper}