ACR Safety Analysis Code Validation

Dave Wren

Manager, ACR Research and Development Presented to US Nuclear Regulatory Commission Washington DC May 15-16, 2003

Outline

- Outline of the ACR Code Validation Requirements
- ACR Code Validation Test Program (for key codes)
 - CATHENA
 - NUCIRC
 - WIMS / RFSP / DRAGON
 - ELESTRES
 - ELOCA
 - TUBRUPT
 - MODTURC_CLAS

Presentation Objectives

- Provide a background of the validation requirements and process for AECL computer codes
- Summarize the areas where incremental validation for codes used in ACR analysis is required
- Provide summary of the validation status for the key ACR safety analysis codes
- Outline specific experimental tests that are needed to expand the validation database for ACR conditions
- Provide a brief summary of the schedule for completion of planned experiments and validation tasks

Code Validation for ACR Application

- The computer codes to be used in the safety analysis of the ACR will be qualified following the requirements AECL's Software Quality Assurance Manual and processes
- ACR will use the validated CANDU Industry Standard Toolset (IST) for safety analyses
 - Most of the computer codes used by the nuclear industry in Canada for reactor safety analyses are shared by the industry partners
- Limited modifications to the IST codes required to address new ACR analysis requirements
 - Assessment of code applicability to ACR-700 application performed systematically and consistently for each code
- In requisite areas the validation base of the codes will be extended to cover a new range of application for the ACR

ACR Code Validation Program

- Overall validation requirements established by Technical Basis Document (TBD)
- Validation Matrices establish for database for key phenomena
- R&D program provides extension to the database, if required, for ACR code application

Key ACR Safety Analysis Codes

- CATHENA transient thermal-hydraulics
- NUCIRC
- WIMS/RFSP/DRAGON
- ELESTRES
- ELOCA
- TUBRUPT
- MODTURC

CATHENA Validation Status - 1

- Validation Requirements Established by Technical Basis Document
- Validation Matrix Documents:
 - Phenomena covered by existing Thermal-Hydraulics and Fuel and Fuel Channel Validation Matrix documents apply to ACR, but range of parameters differ slightly in some cases
 - Data needed to extend the range of applicability to ACR conditions
 - Validation Matrix Documents being updated

CATHENA Validation Status - 2

- All relevant phenomena examined for applicability of existing validation to to ACR
- 15 phenomena require no further validation
- Validation extension identified for remaining 8
 phenomena
- Qualification Plan outlines activities required to address these gaps, including, where necessary, requirements for new experimental data

CATHENA Validation Status – 3

Phenomenon	Validation Extension for ACR
TH1: Break Discharge Characteristics	Extend validation to include higher pressures. Existing Edwards Blowdown tests and RD-14M LOCA tests completed.
TH2: Coolant Voiding	Extend validation to include higher pressures. Existing Edwards Blowdown tests and RD-14M LOCA tests completed.
TH4: Level Swell and Void Holdup	Existing validation includes pressures up to 7.3 MPa. Validation is considered adequate, but could be extended to include higher pressures. Literature search for additional data planned.

CATHENA Validation Status - 4

Phenomenon	Validation Extension for ACR
TH7: Convective Heat Transfer	Validation to extended to include higher
FC13: Cladding-to-Coolant and Coolant-to-Pressure Tube Heat Transfer	pressures. RD-14M tests planned.
TH8: Nucleate Boiling	Validation to be extended to include higher
EC12: Cladding to Coolant and	validation to be extended to include higher
Coolant-to-Pressure	
Tube Heat Transfer	
TH10: Condensation Heat Transfer	Validation to be extended to include higher pressures. RD-14M tests planned.

CATHENA Validation Status - 5

Phenomenon	Validation Extension for ACR
TH11: Radiative Heat Transfer	Validation extended to include radiation
	between fuel pins of different diameters.
FC21: Element-to-Pressure Tube	Numerical test.
Radiative Heat Transfer	
TH18: Fuel Channel Deformation	Existing validation considered adequate until
	data from tests with ACR PT and CT become
FC18: Pressure Tube	available.
Deformation or Failure	
FC19: Calandria Tube	人 いた 御師派 した 御師派 した 福
Deformation or Failure	

RD-14M Test Program

- Break discharge and coolant voiding
- ECC performance validation
 - Scaling analysis and loop reconfiguration for ACR-specific tests in progress
 - Scaling analysis for CANDU 6 application completed
 - LOCA + ECC tests
- Heat transfer at ACR pressures
 - Condensation
 - Nucleate boiling
 - Convection

RD-14M

Full elevation scaled CANDU loop for CATHENA validation

Key ACR Safety Analysis Codes

- CATHENA
- NUCIRC fuel channel thermal-hydraulics
- WIMS/RFSP/DRAGON
- ELESTRES
- ELOCA
- TUBRUPT
- MODTURC

NUCIRC Code Development

- Development and Verification:
 - Enhancements to CHF and fuel channel pressure drop models for ACR conditions (up to 20 MPa)
 - Design Description and Requirements Document
 - Model enhancements installed, verified, and documented
 - Enhancements to Light Water Fluid Properties (up to 20 MPa)
 - installed, verified and documented
 - Enhancements to property tables (sub-cooled properties)

NUCIRC Validation

- Extension to the validation database for thermalhydraulic correlations required to address ACR coolant conditions and ACR-CANFLEX fuel design
 - Critical heat flux (CHF)/dryout power
 - Fuel channel / header-header pressure drop
- ACR-CANFLEX fuel
 - Inlet-skewed axial power profile
 - Flattened radial power profile
 - Higher bearing pads to improve CHF margin

NUCIRC Validation Tests

- Test Program
 - Full-scale water CHF tests
 - Correlation database
 - Full-scale Freon CHF and post-dryout tests
 - Variations in radial and axial heat flux profiles
 - Overpower tests

Stern Laboratory Water CHF Tests

Critical heat flux measurements in water loop (coolant temperature and pressure, full-length fuel string simulator)

Key ACR Code Validation

- CATHENA
- NUCIRC
- WIMS/RFSP/DRAGON reactor physics
- ELESTRES
- ELOCA
- TUBRUPT
- MODTURC

Physics Tools

- WIMS-IST (+ data library with burnable Dy isotopes)
 - Lattice cell calculations
- **DRAGON-IST** Device incremental cross-section calculations
- **RFSP-IST** Core Simulations
- MCNP Benchmark Tool

Physics Code Validation

- Code applicability and qualification requirements have been determined.
- Existing validation base of physics codes adequate to support code application for design
- Validation will be incremental with respect to CANDU 6 (CANDU 6 validation completed as part of the Industry Standard Tool set effort)
 - Validation against existing data sets
 - Validation against experiments in ZED-2
 - Natural uranium fuel in preliminary reference lattices
 - SEU/Dy fuel in preliminary reference lattices
 - ACR fuel in improved reference lattice
 - Inter-code comparisons

ACR Design Factors Affecting Validation

- Light water coolant
- SEU fuel with Dy element
- New lattice geometry
 - Reduced lattice pitch
 - Fuel channel design (CT PT dimensions)
- Modified reactivity control element designs

Physics Code Development

- ACR-specific data library developed
- WIMS model for ACR lattice prepared
- Adequacy of energy-group representation in core simulations assessed
- MCNP vs WIMS/RFSP comparisons with ACR core model
- Preliminary estimate of WIMS/RFSP core void reactivity bias and uncertainty

Physics Toolset Validation

- WIMS/DRAGON validation
 - ZED-2 measurement data
 - Data from other fuel studies
 - Data from other criticality facilities germane to ACR
 - MCNP / WIMS comparisons
- WIMS/RFSP validation
 - MCNP comparisons full or partial core model
 - Modeling of ZED-2 measurements
 - Commissioning physics test data

Validation Test Program

- Preliminary validation tests in ZED-2 using available substitution fuel and reference lattice fuel
 - Measurements with 28-element NU fuel, light water coolant and tight pitches
 - Measurements with 37-element LVRF bundles (SEU + Dy)
- Validation tests in ZED-2 with ACR fuel in ACR fuel channels with and improved reference lattice fuel
 - To reduce the uncertainty in validation a full core of reference fuel for ZED-2 is being manufactured (0.95%U²³⁵)

ZED-2 Critical Lattice Facility

 fuel substitution tests in reference lattices

ZED-2 Measurements Using Natural Uranium Fuel

	Experiment	Purpose	Phenomenon
1	28-element UO ₂ flux maps: H ₂ O Cooled and Voided	Lattice reactivity and void reactivity at reduced lattice spacing (buckling change on voiding) using H ₂ O and air coolant	PH0, PH1
2	37-element UO ₂ substitutions	Base-line data to establish room- temperature buckling for fuel/coolant temperature coefficient measurements for Dy-poisoned SEU fuel and MOX using H ₂ O and air coolant	PH0
3	37-element UO ₂ fuel/coolant temp. Coefficient	Temperature reactivity coefficients (up to 300°C) for Dy-poisoned SEU fuel and MOX in tight H ₂ O cooled and voided (CO ₂ gas-cooled) lattices	PH2, PH7
4	28-element UO ₂ substitutions	Expand the substitution method validation matrix for tight-lattice spacing	Pg 28

ZED-2 Measurements with SEU Fuel

1	Experiment	Purpose	Phenomenon
1	Criticality and coolant void reactivity flux maps	Lattice and void reactivity for full cores of SEU fuel in H_2O and air cooled tight lattices	PH0, PH1
2	Criticality and coolant void reactivity substitutions	Lattice and void reactivity for SEU fuel in H ₂ O and air cooled tight lattices with expanded calandria tubes	PH0, PH1
3	Fuel/coolant temperature coefficient	Temperature reactivity coefficients (up to 300°) for both SEU and MOX fuel in H ₂ O and air cooled tight lattices	PH1, PH2 PH7
4	Moderator temperature coefficient by flux map measurements	Moderator temperature coefficient in the range 10° to 40°C for SEU fuel in H ₂ O and air cooled tight lattices	PH1, PH3 PH4
5	Fine structure flux distribution	Flux distribution in a SEU CANFLEX bundle at both room in H_2O and air cooled tight lattices	PH0, PH1 PH2, PH7 PH14
6	Moderator poison experiments	Boron and/or Gd reactivity effect in ACR type lattices using both H ₂ O and air coolant	PH1, PH5
7	Benchmark configuration flux distribution	Spatial flux distribution in a heterogeneous ACR-type lattice of SEU and MOX fuel	PH0, PH8 PH14
8	Control device measurements	Absorber device inserted into square uniform or checkerboard lattice of SEU and MOX fuel	PH11
9	Rod drop experiments	Assessment of the contribution of delayed photo-neutrons to the total delayed neutron fraction	PH12 Pg 29

Key ACR Safety Analysis Codes

- CATHENA
- NUCIRC
- WIMS/RFSP/DRAGON
- ELESTRES fuel fission products during operation
- ELOCA
- TUBRUPT
- MODTURC

ELESTRES

- The applicability of ELESTRES-IST for ACR analysis was assessed and a number of required improvements were identified:
 - Mandated by
 - increased U-235 content
 - increased burnup compared to natural uranium CANDU
 - Dy fuel element
 - Supported by experience from the application of ELESTRES to SEU fuel designs in the mid 1990s

ELESTRES 2.0 – ACR Code Extension

Current interim version

- Flux depression
- Fission gas diffusivity
- Grain boundary bubbles
- Free standing cladding to collapse including degree of circumferential wrap-around
- Variable heat transfer
- Cladding material properties
- Pellet densification
- Cladding plasticity
- Dy properties
- Link to externally made fine-element meshes
- Cladding oxidation

Status Completed Completed Completed Completed Completed Completed **In-progress In-progress**

Planned Planned

Planned

ELESTRES Validation

- Verification of new code version in progress
- Validation will be conducted against existing database
 - Fuel irradiation in NRU routinely use SEU fuel
 - Data available on Dy fuel from development program for low void reactivity fuel

Key ACR Safety Analysis Codes

- CATHENA
- NUCIRC
- WIMS/RFSP/DRAGON
- ELESTRES
- ELOCA fuel fission product release accidents
- TUBRUPT
- MODTURC

ELOCA-IST

- ELOCA models fuel elements under the rapidly changing coolant and power conditions typical of an accident
- ELOCA-IST calculates:
 - Fuel temperatures
 - Cladding temperatures
 - Internal gas pressure
 - Cladding strain,
 - Cladding failure
 - Cladding oxidation

ELOCA Development

- ELOCA-IST 2.1 was assessed for application to ACR and three areas for code extension were identified:
 - Extension of the thermal properties of UO₂ fuel to the ACR fuel burnup
 - Thermal Conductivity
 - Thermal Expansion
 - Specific Heat Capacity
 - Extension of the thermal properties database to include the dysprosium fuel element, and
 - Extension of the database on fuel cladding strain
 - ACR cladding thickness

UO₂ Thermal Properties Models

- The models affected are:
 - Thermal Conductivity
 - Thermal Expansion
 - Specific Heat Capacity
- These models have undergone further assessment and changes have been made to accommodate extended burnup and dysprosium-doped fuel
- Autoclave tests are planned to obtain additional thermal properties data

ELOCA Validation Test Program

- Laboratory test program to reduce uncertainties in extrapolation of fuel thermal properties in progress
 - Thermal Conductivity
 - Thermal Expansion
 - Specific Heat Capacity
- Test program to extend the database on cladding strain to include the ACR cladding design (diameter and thickness)

Key ACR Safety Analysis Codes

- CATHENA
- NUCIRC
- WIMS/RFSP/DRAGON
- ELESTRES
- ELOCA
- TUBRUPT in-core damage
- MODTURC

TUBRUPT

A

- Used to determine the pressure transients within the calandria vessel/shield tank assembly:
 - Spontaneous pressure-tube/calandria-tube rupture
 - Severe flow blockage
 - Feeder stagnation break
- Modeled phenomena include:
 - Flashing coolant hydrodynamic transient in moderator
 - High temperature channel debris interaction with water
 - Ruptured channel projectile formation and impact on the calandria vessel, shutoff rod guide tubes, and on other fuel channels

TUBRUPT Validation

- Assessment of TUBRUPT incremental validation requirements in progress
 - Review of database to pertinent to the geometry and operating conditions of ACR
- Extension of calandria tube rupture database to ACR coolant conditions planned
- Extension to ongoing tests on molten-fuel-moderator interaction planned

Key ACR Safety Analysis Codes

- CATHENA
- NUCIRC
- WIMS/RFSP/DRAGON
- ELESTRES
- ELOCA
- TUBRUPT
- MODTURC moderator thermal-hydraulics

MODTURC_CLAS

- A 3-D single phase computational fluid dynamics computer code (MODTURC_CLAS) is used to predict moderator flow and temperature distribution within the calandria vessel
- Validated for CANDU application using data from integral-effects tests in the Moderator Test Facility at CRL (tests at ¼ scale)
 - three-dimensional velocity and temperature measurements

MODTURC_CLAS Validation for ACR

- Validation will be extended to the ACR
 - Moderator Test Facility will be 1/3 of the linear scale of the ACR
 - Larger scale possible because of smaller ACR calandria
- Validation data will be obtained from steady-state tests
 - isothermal, normal operation with two outlet-to-inlet temperature differences and same Archimedes number
 - inlet flow asymmetries at full and ~50% power
 - two stylized transients (large LOCA/LOECC, large LOCA/lossof-class IV)

Moderator Test Facility

Validation Test Program Schedule

- Tests to obtain the data required to support extension to the validation of key ACR safety analysis codes planned and in progress
- Validation is incremental to reduce uncertainties in code applications

Key ACR Code Validation Test Program - 1

					20	003		200)4		2005				2006							
ID	Task Name	Q4	Q1	Q2 Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1
1	CATHENA Validation																					
2	RD-14M Break Discharge Tests																					
3	RD-14M ECC Performance Tests																					
4	ECC Test Preparation																					
5	ECC Tests																					
6	RD-14M Heat Transfer Tests																					
7	Heat Transfer Test Preparation																					
8	Heat Transfer Tests																					
9																						
10	NUCIRC																					
11	Freon CHF and PDO Test Preparation																					
12	Freon Tests																					
13	Water CHF Test Preparation																					
14	Water CHF Tests																					
15																						
16	WIMS/RFSP																					
17	NU Tests in Preliminary Lattice																					
18	37-Element SEU/Dy Fuel Tests																					
19	SEU Fuel Tests in Preliminary Lattice																					
20	Tests in ACR Reference Lattice																					
21																						

Key ACR Code Validation Test Program - 2

				20	02				2003			20		20	05		2006						
ID	Task Name	Q4	Q1	Q2	Q3	Q4	Q1	Qź	2 Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1
22	ELESTRES																						
23	Validation Exercises										I												
24																							
25	ELOCA																						
26	Fuel Thermal Properties Tests																						
27	Cladding Strain Tests Preparation																						
28	Cladding Strain Tests																						
29																							
30	TUBRUPT																						
31	Burst Test Preparation																						
32	Scaled Calandria Tube Burst Tests																						
33																							
34	MODTURC																						
35	Moderator Test Facility Modification																						
36	Moderator Circulation Tests																						

Summary

- Validation extension requirements for key ACR safety analysis codes have been identified
- Test programs have been established to provide requisite additional validation data
- Incremental validation is in progress

