

Department of Energy

Yucca Mountain Site Characterization Project Office P. O. Box 98608 Las Vegas, NV 89193-8608 WBS 1.2.11 QA: N/A

JAN 0 5 1993

Carl P. Gertz, Project Manager, YMP, NV

EVALUATION OF AMENDED RESPONSE AND UNSATISFACTORY VERIFICATION OF CORRECTIVE ACTION REQUEST (CAR) YM-92-073 RESULTING FROM YUCCA MOUNTAIN QUALITY ASSURANCE DIVISION (YMQAD) AUDIT YMP-92-22

The YMQAD staff has evaluated the amended response to CAR YM-92-073 submitted to this office on December 15, 1992. The response has been determined to be satisfactory.

The corrective action due date provided in the amended response was December 15, 1992. The verification of completion of the corrective action was performed and was determined to be unsatisfactory because Reference Information Base Item 1.4.4 has not been removed.

You are requested to submit a response to this office within five working days of the date of this letter indicating when the appropriate corrective action will be completed. Verification of completion of the required corrective action will be performed after the date provided.

If you have any questions, please contact either Robert B. Constable at 794-7945 or Gerard Heaney at 794-7826.

J.C. Jance

Richard E. Spence, Director Yucca Mountain Quality Assurance Division

110028

102.7 1/ WM 1103,

YMQAD:RBC-1747

Enclosure: CAR YM-92-073

cc w/encl:

K. R. Hooks, NRC, Washington, DC S. W. Zimmerman, NWPO, Carson City, NV S. D. Johnson, PSDO/REECo, Las Vegas, NV J. W. Estella, SAIC, Las Vegas, NV Phillip Jones, M&O/TRW, Las Vegas, NV J. H. Rusk, MACTEC, Las Vegas, NV A. V. Gil, YMP, NV B. J. Verna, YMP, NV

cc w/o encl: J. W. Gilray, NRC, Las Vegas, NV N. J. Brogan, SAIC, Las Vegas, NV Gerard Heaney, SAIC, Las Vegas, NV

9301120343	930105
PDR WASTE	PDR

		URIGINAL THIS IS A RED STAMP
OFF RADIOACTIV U.S. DEPA WA	FICE OF CIVILIAN /E WASTE MANAGEMENT ARTMENT OF ENERGY .SHINGTON, D.C.	8 CAR NO.: <u>YM-92-073</u> DATE: <u>09-03-92</u> SHEET: <u>1</u> OF <u>1</u> QA
CORRECT	IVE ACTION REQUEST	<u> </u>
1 Controlling Document QARD, Revision 4	2 Relat Audi	ed Report No. t YMP-92-22
3 Responsible Organization	4 Discussed With	
YMP	A. Simmons	<u></u>
The QARD, Revision 4, Appendix A, Paragr include: "The evaluation of data quality valid, comparable, complete representati	aph 20.1.B.6 states planning mea to assure that generated data i ve, precise and accurate."	sures \$
6 Adverse Condition: The Reference Information Base (RIB), Ve Thermal/Mechanical Stratigraphy data for 1 "Thermal/Mechanical Stratigraphy for B 2, page 2 of 3) does not agree with the "Relationship of Stratigraphy, Lithology 1, section 4, item 4, page 3 of 6) in al	rsion 4, Revision 6, contains di Borehole USW G-4. Stratigraphy orehole USW G-4" (found in chapt "Thermal/Mechanical Stratigraphy and Hydrostatigraphic Zones at 1 cases.	fferent values for depths found in Table er 1, section 1, item " values in Figure 1 G-4" (found in Chapter
9 Does a significant condition 10 Does adverse to quality exist? YesNoxYes YesNoxYes If Yes, Circle One: ABC If Y	es a stop work condition exist? sNo_X_; if Yes - Attach copy of SW es, Circle One: A_B_C_D	11 Response Due Date: 20 days after issue
¹² Required Actions: X Remedial X Extent of	Deficiency X Preclude Recurrence	e D Root Cause Determination
13 Recommended Actions: Identify the remedial action to correct Identify the extent of the deficiency an Identify the planned corrective action t	the deficiency identified in Blo d analyze for any adverse impact o prevent recurrence.	ck 6. 3.
7 Initiator Jerry Beaney Joy Henney 9 15 Response Accepted A Q N 11-11-9	-3-97 QADD 16 Response Accepted	Bace Date 7/9/92
OAR LEWY HEaver, Date // 17 Amended Response Accepted / 12-30-92 OAR LEWY HEaver, Date // 18 Corrective Actions Wartied	-11-92 QADD 18 Amended Response Acc -11-92 QADD 11	Date Date Date Date /////92
QAR Date	QADD	Date

÷

.

-. ÷

ENCLOSURE

Department of Energy

Yucca Mountain Site Characterization Project Office P. O. Box 98608 Las Vegas, NV 89193-8608

WBS 1.2.9 QA:

》為 **8日〇日時**日的

OCT 0 7 1992

OCT (1902

Richard E. Spence, Director, Yucca Mountain Quality Assurance Division, YMP, NV

RESPONSE TO ISSUANCE OF CORRECTIVE ACTION REQUEST (CAR) YM-092-073 RESULTING FROM YUCCA MOUNTAIN QUALITY ASSURANCE DIVISION AUDIT YMP-92-22 OF SANDIA NATIONAL LABORATORIES

After careful review of CAR YM-092-073 (enclosure 1), I have concluded that this CAR should be withdrawn for the following reasons:

- 1. No Quality Assurance (QA) requirement has been violated. The requirement stated in Block 5 of the CAR is taken out of context. The stated requirement applies to planning measures included or referenced within a scientific investigation planning document. Work performed under Work Breakdown Structure 1.2.1.3.3, for the Reference Information Base (RIB) is not considered a scientific investigation, nor is the RIB a scientific investigation planning document.
- 2. The information items referenced in CAR YM-092-073 have two different purposes. The purpose of Item 1.1.2 (enclosure 2) is to specify a table of the corrected absolute Z-elevations for the thermomechanical units in USW G-4. The intent of Item 1.4.4 (enclosure 3) is to depict graphically the relationship between the conceptual hydrologic zones and the thermomechanical stratigraphy. The purposes of these items are clearly defined and the information sources are referenced.
- 3. It is clearly outside of QA's charter to review analyses, calculations, data, etc., for correctness. QA personnel do not necessarily have the technical expertise to undertake such a responsibility. Rather, QA's charter is to help establish and ensure that the processes and procedures defined for a particular effort are necessary, sufficient, and are adhered to. No violation of process or procedure has been discovered or recorded in the audit or resulting CAR.

Although no QA requirement has been breached, it is recognized that there is a potential for misuse of information presented in Figure 1 of Item 1.4.4. I appreciate the fact that the audit results pointed this out. Steps will be taken, in accordance with Yucca Mountain Site Characterization Project Administrative Procedure 5.3Q, to rectify the problem.

Richard E. Spence

If you have any questions, please contact either Stephen J. Bodnar at 794-1840 or Ardyth M. Simmons at 794-7998.

-2-

W. A. Lindley OR J. Russell Dyer, Director Regulatory & Site Evaluation Division

RSED:AMS-329

Enclosures: 1. CAR YM-92-073 2. RIB Item 1.1.2 3. RIB Item 1.4.4

cc w/encls: N. J. Brogan, SAIC, Las Vegas, NV Gerard Heaney, SAIC, Las Vegas, NV S. J. Bodnar, M&O/TRW, Las Vegas, NV J. D. Verden, M&O/TRW, Las Vegas, NV J. H. Rusk, MACTEC, Las Vegas, NV J. W. Estella, SAIC, Las Vegas, NV A. M. Simmons, YMP, NV B. J. Verna, YMP, NV R. B. Constable, YMP, NV W. B. Simecka, YMP, NV C. M. Newbury, YMP, NV A. V. Gil, YMP, NV

SITE GEOLOGY REFERENCE TEM BOREHOLE STRATIGRAPHY 1 1 1 Market 1 1 1 1 VERSION REVISION 1 1 1 1 VERSION REVISION 1 1 1 1 1 VERSION REVISION 1 <td1< th=""><th colspan="6">YUCCA MOUNTAIN PROJECT</th></td1<>	YUCCA MOUNTAIN PROJECT					
BOREHOLE STRATIGRAPHY CHAPTER SECTION 1 1 1 1 VERSION 4 0 Keywords: USW G-4 borehole thermal/mechanical stratigraphy Description and Methodology Borehole stratigraphy and thermal/mechanical unit contact criteria for boreh Table 1 and are based on information used in the preparation of a three repository site (Ortiz et al., 1985). Borehole USW G-4 was drilled in the Exploratory Shaft Facility. The reference information presented here is bas from Table B-6 of Appendix B of the Ortiz report, which describes the model. Nevada state plane coordinates (x,y) for the base of each thermal/mechanic corrected for the deviation of the borehole from the initial surface location. (locations" tabulated in Table B-6 of the Ortiz report have been modified for th through a "prefaulting" correction. Subtracting the faulting corrections, so the elevations were obtained by adding the vertical deviation correcel elevations were obtained by adding the vertical deviation corre represents a vertical depth from the starting elevation (i.e., ground level) of th depth from the satisface at the map coordinates (x, y) corresponding to that co point because topographic changes between the drill rig and this point (x, y for. Total borehole depth for USW G-4 was taken from Figure 5 of the Ortiz report. Total borehole depth for USW G-4 was taken from Figure 5 of the Ortiz report. Total borehole depth for USW G-4 was taken from Figure 5 of the Ortiz report. Total borehole depth for USW G-4 was taken from Figure 5 of the Ortiz report. Total borehole depth for USW G-4 was taken from Figure 5 of the Ortiz report. Total borehole depth for USW G-4 was taken from Figure 5 of the Ortiz report. Total borehole depth for USW G-4 was taken from Figure 5 of the Ortiz report. Total borehole dep	REFERENCE INFORMATION BASE					
BOREHOLE STRATIGRAPHY 1 1 VERSION Revision 4 0 Keywords: USW G-4 borehole thermal/mechanical stratigraphy Description and Methodology Borehole stratigraphy and thermal/mechanical unit contact criteria for borehole table 1 and are based on information used in the preparation of a three repository site (Ortiz et al., 1985). Borehole USW G-4 was drilled in the Exploratory Shaft Facility. The reference information presented here is base from Table B-6 of Appendix B of the Ortiz report, which describes the model. Nevada state plane coordinates (x,y) for the base of each thermal/mechanic corrected for the deviation of the borehole from the initial surface location. (I locations' tabulated in Table B-6 of the Ortiz report have been modified for the through a "prefaulting" correction. Subtracting the faulting corrections yet through a "prefaulting" correction. Subtracting the faulting corrections converted to meters by multiplying by the correction factor 0.3048 and rou meter. The corrected depth is the run (i.e., the difference between the ground level) of the depth from the subrace at the map coordinates (x, y) corresponding to that corpoint because topographic changes between the drill rig and this point (x, y for. Total borehole depth for USW G-4 was taken from Figure 5 of the Ortiz report botation of the respective stratigraphies. An uncertainty described by a "contact could be at greater depth, while a indicates that the contact could be at greater depth, while a indicates the contact could be at greater depth, while a indicates the contact could be at greater depth, while a indicates that the contact could be at a greater depth, while a indicates that the contact could be at a greater depth, while a	ITEM PA	GE				
Keywords: USW G-4 borehole thermal/mechanical stratigraphy Description and Methodology Borehole stratigraphy and thermal/mechanical unit contact criteria for boreh Table 1 and are based on information used in the preparation of a three repository site (Ortiz et al., 1985). Borehole USW G-4 was drilled in the Exploratory Shaft Facility. The reference information presented here is bas from Table B-6 of Appendix B of the Ortiz report, which describes the model. Nevada state plane coordinates (x,y) for the base of each thermal/mechanic corrected for the deviation of the borehole from the initial surface location. (locations' tabulated in Table B-6 of the Ortiz report have been modified for the through a "prefaulting" correction. Subtracting the faulting corrections yie The corrected elevations were obtained by adding the vertical deviation c elevations, both sets of which are provided in Ortiz's report. The elevations converted to meters by multiplying by the correction factor 0.3048 and rou meter. The corrected depth is the run (i.e., the difference between the group unadjusted elevation at the base of a unit) minus the vertical deviation corre represents a vertical depth from the stating elevation figure 5 of the Ortiz report of the depth from the surface at the map coordinates (x, y) corresponding to that co point because topographic changes between the drill rig and this point (x, y for. Total borehole depth for USW G-4 was taken from Figure 5 of the Ortiz report description of the respective stratigraphies. An uncertainty described by a " contact could be at a greater depth, while a "-" indicates that the contact could Where mineralogy differs within a unit, the reference stratigraphic notation addition of an identifying symbol; e.g., the vitric and zeolitized regions within are identified as CHn1v and CHn1z, respectively. The notation TZZ refer zeolitization. Additional bibliographic references for lithologic logs are include <i>Cuality Assurance Information</i>	2	1 of 3				
Keywords: USW G-4 borehole thermal/mechanical stratigraphy Description and Methodology Borehole stratigraphy and thermal/mechanical unit contact criteria for boreh Table 1 and are based on information used in the preparation of a three repository site (Ortiz et al., 1985). Borehole USW G-4 was drilled in th Exploratory Shaft Facility. The reference information presented here is bas from Table B-6 of Appendix B of the Ortiz report, which describes the model. Nevada state plane coordinates (x,y) for the base of each thermal/mechanic corrected for the deviation of the borehole from the initial surface location. (locations" tabulated in Table B-6 of the Ortiz report have been modified for th through a "prefaulting" correction. Subtracting the faulting corrections yite through a "prefaulting" correction factor 0.3048 and rou meter. The corrected depth is the run (i.e., the difference between the group unadjusted elevation at the base of a unit) minus the vertical deviation corre represents a vertical depth from the starting elevation (i.e., ground level) of th depth from the surface at the map coordinates (x, y) corresponding to that co point because topographic changes between thermal/mechanical units (Ortiz description of the respective stratigraphies. An uncertainty described by a " contact could be at a greater depth, while a "-" indicates that the contact coul Where mineralogy differs within a unit, the reference stratigraphic notation addition of an identifying symbol; e.g., the virtic and zeolitized regions within are identified as CHn1v and CHn1z, respectively. The notation TZZ refe zeolitization. Additional bibliographic re	2/1/80	DB6				
Where mineralogy differs within a unit, the reference stratigraphic notation addition of an identifying symbol; e.g., the vitric and zeolitized regions within are identified as CHn1v and CHn1z, respectively. The notation TZZ refe zeolitization. Additional bibliographic references for lithologic logs are include Quality Assurance Information The information presented in Table 1 was collected, analyzed, and interpre which satisfaction of the requirements of 10CFR60, Subpart G has not been de	ole USW G- -dimensiona e vicinity of ed primarily al unit identif The values o be three-dime ids the values one calculat nding to the nd-level elevent ction. The calculation intact/boreho) have not be ort et al., 1985) a " symbol ind id be at a sh	4 are shown in al model of the the proposed on information fied have been of the "adjusted ensional model es listed here.) the unadjusted ted in feet and nearest whole vation and the orrected depth is not a vertical ole intersection een accounted are listed in the ficates that the pallower depth.				
Quality Assurance Information The information presented in Table 1 was collected, analyzed, and interpr which satisfaction of the requirements of 10CFR60, Subpart G has not been de	has been m CHn1 of drill rs to the top d in the Ortiz	nodified by the hole USW G-4 p of prevalent report.				
The information presented in Table 1 was collected, analyzed, and interpa which satisfaction of the requirements of 10CFR60, Subpart G has not been de						
	eted under p monstrated.	procedures for				
Source						
Ortiz, T. S., R. L. Williams, F. B. Nimick et al., 1985. "A Three-Dimens Thermal/Mechanical and Hydrological Stratigraphy at Yucca Mountain, Southe Sandia National Laboratories, Albuquerque, NM.	ional Model m Nevada," (of Reference SAND84-1076,				

ENCLENCLOSURE

-

. .

· . ·

 \checkmark

CHAPTER SITE CHARACTERISTICS YUCCA MOUNTAIN PROJECT . SECTION **REFERENCE INFORMATION BASE** SITE GEOLOGY PAGE ITEM CHAPTER SECTION ITEM **BOREHOLE STRATIGRAPHY** 2 2 of 3 1 1 RIB CONTROL NUMBER RELEASE DATE VERSION REVISION 2/1/89 DR6 0 4

TABLE 1. THERMAL/MECHANICAL STRATIGRAPHY FOR BOREHOLE USW G-4*

Neva Plane C (x)	da State oordinates (y)	Unit ^e	Corre Eleva (ft)	ected tion-z (m)	Run (ft)	Corrected Depth (ft)
E563082	N765807	Ground Level	4,165	1,269	0	0
E563082	N765807	UO	4,135	1,260	30	30
E563082	N765807	TCw	4,047	1,234	118	118
E563081	N765806	PTn	3,922	1,195	243	243
E563076	N765803	TSw1	3,495	1,065	670	670
E563046	N765766	TSw2	2,874	876	1,293	1,291
E563042	N765761	TSw3	2,822	860	1,345	1,343
E563041	N765760	CHn1v	2,805	855	1,363	1,360
E563012	N765736	CHn1z	2,464	751	1,705	1,701
E563007	N765733	CHn2	2,409	734	1,761	1,756
E563004	N765731	CHn3	2,378	725	1,792	1,787
E562988	N765720	PPw	2,211	674	1,960	1,954
E562958	N765702	CFUn	1,915	584	2,258	2,250
E562906	N765682	BFw	1,495	456	2,682	2,670
E562899	N765681	CFMn1	1,445	440	2,733	2,720
E562896	N765680	CFMn2	1,422	433	2,756	2,743
E562886	N765675	CFMn3	1,351	412	2,828	2,814

Unit

Description^c

UO No data given.

TCw Transition from devitrified to vitric tuff in lithologic log.

PTn Transition from vitric tuff to devitrified tuff in lithologic. log.

TSw1 Contact assigned at the bottom of the lowermost ashflow of the Topopah Spring Member, which contains "common" lithophysae, based on the lithologic log.

Total borehole depth = 3,001 ft.

• The stratigraphy is only for those thermal/mechanical units identified in this borehole.

• The description corresponds to the base of each unit listed.

SITE CHARA	ACTERISTICS		YUCCA	MOUNTAIN	PROJECT
SITE GEOLO	DGY		FERENC	CE INFORM	ATION BAS
BOREHOLE	STRATIGRAPHY	CHAPTER 1	SECTION	ITEM P	3 of :
		VERSION 4	REVISION	RELEASE DATE 2/1/89	RIB CONTROL
T/	ABLE 1. THERMAL/MECHANIC	AL STRATIGRAPHY (concluded)	r for Bof	REHOLE USW	/ G-4
TSw2	Transition from devitr	ified tuff to vitrophy	re in lithole	ogic log.	
TSw3	Transition from vitrop	hyre to vitric ashflo	w in litholo	gic log.	
CHn1	Transition from ashfie Hills in lithologic log.	ow to basal-bedde	d unit of th	ne Tuffaceous	s Beds of the C
CHn2	Transition from bedde	ed unit to ashflow in	n lithologic	log.	
CHn3	X-ray data indicate a assemblage indicati contact assigned at t	change from a mir ve of devitrificatio ne midpoint of the i	ieralogy do n at depth nterval; un	ominated by a ns between 1 certainty: +2	zeolites to a mi ,788 ft and 1,7 ft, -2 ft.
PPw	X-ray data show a ch a mineralogy dominat assigned at the midpo	ange from a minera led by zeolites at d pint of the interval;	al assembl epths betw uncertainty	age indicative veen 1,952 ft : r: +8 ft, -8ft.	e of devitrificati and 1,968 ft; co
CFUn	X-ray data indicate mineralogy assembla 2,263 ft; contact assig -20 ft.	a change from a ge indicative of dev ned at 2,258 ft, bas	mineralo /itrification ied on den	gy dominate at depths bet sity log; unce	ed by zeolites ween 2,238 ft a ertainty: +5 ft,
BFw	X-ray data indicate a to a mineralogy dom contact assigned at 2	change from a min hinated by zeolites 682 ft, based on de	eral assen s at depth ensity log;	nblage indicat s between 2, uncertainty:	tive of devitrific ,681 ft and 2,7 +34 ft, -1 ft.
CFMn1	Transition from ashflo	w to bedded tuff in	lithologic I	og.	
CFMn2	Transition from bedde	ed tuff to ashflow in	lithologic I	og.	
CFMn3	X-ray data indicate a assemblage indication contact assigned at 2,	change from a min ve of devitrification 828 ft, based on de	eralogy do n at depth ensity log; (ominated by z s between 2, uncertainty: 4	zeolites to a min 823 ft and 2,84 +12 ft, -5 ft.
. TZZ	 The base of TSw3 is a	it a depth of 1,345.4	4 ft, and x-	ray data show	v zeolites prese

-

		YUCCA	MOUNTA	IN P	ROJECT
	RI	EFERENC	CE INFOF	RMAT	TION BASE
HYDROGEOLOGIC ZONES	CHAPTER 1	SECTION	ITEM 4	PAGE	1 of 6
	VERSION	REVISION	RELEASE DA	TE	RIB CONTROL NUMBE
Keywords: hydrogeologic properties, hydrogeo	logic stratigrap	hy, hydroge	eologic zon	es	
Description	and Methodolog	gy			
 Inese hydrogeologic zones were delineated by 1990 (PACE-90)(SNL, 1991). The modelers be based on the thermal/mechanical stratigraphy hydrologic properties of the rock mass, and groundwater percolation flux on the scale of the data on the geologic and hydrogeologic chara information used to define the PACE stratigraphy density, saturated hydraulic conductivity, fraction obtained from drill holes in the area. As a result, thick section. In developing the hydrogeologic zones, time-stratinto layers having similar geologic characteristic degree of welding, size and amount of pumil phenocrysts, extent of vapor-phase recrystalliz lithophysal content, reworking of fragments, and categorized as bedded tuffs or densely, mode boundaries between adjacent zones were determed varies within each zone by as much as 30 percest greater amount. Characterization of candidate z measured moisture-retention and saturated hy measured moisture-retention data was available, as necessary to account for differences in degree 	the Performance elieved that the was inadequate thus provide site. A more d incteristics of the only included d ure conductivit the PACE stratig tics. Character ice and lithic f ration, presence formation of be rately, or non- ermined by the ent, the mean vi- ones with simili- draulic conduc- data were extra of welding.	e distributio e distributio e distributio the basis letailed stra- letailed stra- letailed stra- letailed stra- letailed stra- letailed stra- graphy delia were define ristics use fragments. e of zeolitic edding. Individed tuffs e changes is alue betwe ar lithologic ctivities (Per- polated fro	ent Calcula on of hydro ent method for a more tigraphy wa hin the mo ology, poro isture-reter neated 19 u ed. The un d to disting , composit zation, exter dividual car s. Finally, fi in porosity, en adjacen c properties eters et al. m similar z	its we inits we its we its we its we its we its he its he	re subdivided agers include reations of the ough porosity es varies by a sprimarily on
The relationship of these second well hadress					4). Where no and modified
geologic and thermal/mechanical stratigraphy is s	ologic zones fo hown in Figure	r the USW 1 (SNL, 199	' G-4 drill 1 91).	noie k	 Where no and modified Decation to the
Table 1 contains a summary of the geologic and (SNL, 1991). The hydrologic characteristics in the only the general nature of each zone. The locatic presented in Tables 2 and 3 (SNL, 1991). The ex- hydrogeologic zones) were selected because thi and UE-25a #1), from which site-specific lithologic	blogic zones fo hown in Figure d hydrologic ch e table are base on of these zone ktent and locatio is region was be c and hydrogeol	r the USW 1 (SNL, 199 haracteristic ed on limite es, and the bon of the m bounded by logic data w	G-4 drill h 31). s of the hy d data, and correspond odeled reg four drill he vere availab	droge droge l, at b ding p ion (a bles (0 sle.	4). Where no and modified bocation to the eologic zones est, represent properties, are and hence the G-1, G-4, H-1,
Table 1 contains a summary of the geologic and (SNL, 1991). The hydrologic characteristics in the only the general nature of each zone. The locatic presented in Tables 2 and 3 (SNL, 1991). The ex- hydrogeologic zones) were selected because thi and UE-25a #1), from which site-specific lithologic An apparently anomalous value of 2.4 x 10 ⁻⁴ m/s the Topopah Spring nonwelded zeolitic zone (Tpt- in the permeability of this layer at various locatic equal to that of the Tpc-BT layer would be used f would be used (SNL, 1991).	blogic zones fo thown in Figure d hydrologic ch e table are base on of these zone dent and locatic is region was be c and hydrogeol is presented in -TNV) in drill ho ons. It was dec for Tpt-TNV; in d	r the USW 1 (SNL, 199 haracteristic ed on limite es, and the on of the m bunded by logic data w 1 Table 2 fo le G-4. The sided that f drill hole G	G-4 drill h G-4 drill h S of the hy d data, and correspond odeled reg four drill hole vere availat r the satura re was con or drill hole -1, a lower	nole k droge l, at b ding p ion (a bles (0 kle. sidera sidera e G-4, value	4). Where no and modified bocation to the eologic zones est, represent properties, are and hence the G-1, G-4, H-1, onductivity of table variability a high value of 3.0 x 10 ⁻¹⁰
Table 1 contains a summary of the geologic and (SNL, 1991). The hydrologic characteristics in the only the general nature of each zone. The locatic presented in Tables 2 and 3 (SNL, 1991). The ex- hydrogeologic zones) were selected because thi and UE-25a #1), from which site-specific lithologic An apparently anomalous value of 2.4 x 10 ⁻⁴ m/s the Topopah Spring nonwelded zeolitic zone (Tpt- in the permeability of this layer at various locatic equal to that of the Tpc-BT layer would be used f would be used (SNL, 1991). Table 4 lists the hydrogeologic properties for fracto	ologic zones fo hown in Figure d hydrologic ch e table are base on of these zone dent and locatic is region was be c and hydrogeol is presented in -TNV) in drill ho ons. It was dec for Tpt-TNV; in o ures (SNL, 1991	r the USW 1 (SNL, 199 haracteristic ed on limite es, and the on of the m bunded by logic data w 1 Table 2 fo le G-4. The cided that f drill hole G	G-4 drill h G-4 drill h S of the hy d data, and correspond odeled reg four drill hower r the satura re was con or drill hole -1, a lower	nole k droge l, at b ding p ion (a bles (0 ke. sidera sidera e G-4, value	4). Where no and modified bocation to the eologic zones est, represent properties, are and hence the G-1, G-4, H-1, onductivity of able variability a high value of $3.0 \ge 10^{-10}$

.

. .

- . •

considered as non-quality affecting. The material presented in these tables and figures was collected, analyzed, and interpreted under procedures for which satisfaction of the requirements of 10CFR60, Subpart G, has not been demonstrated.

CHAPTER	SITE CHARACTERISTICS	YUCCA MOUNTAIN PROJECT						
SECTION	GEOHYDROLOGY	RI	REFERENCE INFORMATION BASE					
ITEM	HYDROGEOLOGIC ZONES	CHAPTER 1	SECTION	ITEM 4	PAGE 2 of 6			
		VERSION 4	REVISION	AELEASE DAT 04/13/92	E RIB CONTROL NUMBER			

Sources

Peters, R.R., E.A. Klavetter, I.J. Hall, S.C. Blair, P.R. Heller, and G.W. Gee, 1984. "Fracture and Matrix Hydrologic Characteristics of Tuffaceous Materials from Yucca Mountain, Nye County, Nevada," SAND84-1471, Sandia National Laboratories, Albuquerque, NM (YMP CRF Accession Number: NNA.870407.0036).

Sandia National Laboratories (SNL), 1991. "Technical Summary of the Performance Assessment Calculational Exercises for 1990 (PACE-90)" Volume 1, 'Nominal Configuration' Hydrogeologic Parameters and Calculational Results," SAND90-2726, edited by R.W. Barnard and H.A. Dockery, Sandia National Laboratories, Albuquerque, NM (YMP CRF Accession Number: NNA.910523.0001).

	CHARACTERISTICS		{	YUCCA				
GEOH	IYDROLOGY		CHAPTER ISECTION LITEM PAGE					
' HYDR	OGEOLOGIC ZONES		CHAPTER	SECTION	1TEM 4	PAGE 4 of 6	5	
			VERSION	REVISION	RELEASE DA 04/13/92	TE RIB CONTROL NU	MBE)	
	TABLE 1. HYDROGEC	DLOGIC ZONE	S WITHIN	YUCCA MO				
Symbol	Hydrogeologic Zone Description	Sigr C	nificant Ge Characteris	ologic itics	Relatio to Horiz	onship of Vertical ontal Conductivity		
UO	Includes alluvium, and Tiva Canyon and Yucca Mt. Member of Paint- brush Tuff							
Tpc-TN	Ash-flow, non-welded	few fracture pumice cor	es, high htent, zeoli	itic	K°₅ <k<sup>°</k<sup>			
Трс-ВТ	Bedded tuff (reworked ash fall)	few fracture pumice, be sorted sand	few fractures, high pumice, bedded, well- sorted sandstone, zeolitic			K, << K,		
Tpt-TM	Ash-flow, moderately welded, non-lithophysal	highly jointe tured, non-a	highly jointed and frac- tured, non-zeolitic			$K_{v} >> K_{h}$ in fractures $K_{v} = K_{h}$ in matrix		
Tpt-TD	Ash-flow, densely welded, non-lithophysal	moderately brecciated vapor-phase non-zeolitic	moderately jointed, highly brecciated and fractured, vapor-phase mineralization, non-zeolitic			K, >> K,		
Tpt-TDL	Ash-flow, densely welded, lithophysal	limited to ne fracturing, a lithophysae	o jointing d Ibundant , zeolitic	or	K,=K,			
Tpt-TML	Ash-flow, moderately welded, lithophysa!	highly jointe tured, zeolit	ed and frac lic	>	K,>K, K,=K,	in fractures in matrix		
Tpt-TM	Ash-flow, moderately welded, non-lithophysal	jointed and non-zeolitic	fractured,		K, >> K, K, = K,	in fractures in matrix		
Tpt-TV	Ash-flow, densely welded, vitrophyre	non-zeolitic, jointed and	, highly fractured		K,>K,			
Tpt-TNV	Ash-flow, non-welded, vitric	few fracture partially wel zeolitic	s, non- to ded, non-		K _v =K _h			
Tpt-TN	Ash-flow, non-welded	few fracture:	s, zeolitic		$K_v = K_h$			
Tcb-TN	Ash-flow, non-welded	few fracture:	s, zeolitic		K,=K,			
Тсь-вт	Bedded tuff (reworked ash-fall)	few fracture: content, bec sorted sand	s, high pur Ided, well- stone, zeo	mice litic	K, << K,			
Tcpp-TN	Ash-flow, non-welded	few fracture:	s, zeolitic		K,=K,			
Тсрр-ТР	Ash-flow, partially to moderately welded	slightly fract zeolitic	ured, non-		K _v =K _h			

-

. .

· . .

Adapted from SNL (1991), Table 3-1.
 K.: vertical component of hydraulic conductivity.
 K_h: horizontal component of hydraulic conductivity.

1

CHAPTER	SITE CHARACTERISTICS	YUCCA MOUNTAIN PROJECT REFERENCE INFORMATION BASE					
SECTION	GEOHYDROLOGY						
ITEM	HYDROGEOLOGIC ZONES	CHAPTER 1	SECTION 4	ITEM 4	PAGE	5 of 6	
		VERSION	REVISION	AELEASE D	ATE 2	RIB CONTROL NUMBER	

•

.

· . •

TABLE 2. HYDROGEOLOGIC PROPERTIES AT G-4 AND UE-25A #1 *

				Van Ge	nuchten			Elev	ation at
		Butk	K٩	Coef	icients		Grain	Base	e of Unit
Unit	Porosity	Density	(Total)	alpha	beta	S, *	Density	G-⊀	UE-25a ∉1
	(Total)	(g/cm ³)	(m/sec)	(m ⁻¹)		•	(g/cm ³)	(m)	(m)
UO Þ	c	c	C	c	¢	c	c	1219.2	1137.7
Tpc-TN	0.50	1.14	2.0 x 10 ⁻¹¹	0.004	1.5	0.15	c	1212.2	1127.1
Tpc-BT	0.22	1.95	2.4 x 10 ⁻⁶	0.016	10.0	0.10	2.45	1200.6	1116.4
Tpt-TM	0.10	2.30	2.0 x 10 ⁻¹¹	0.005	1.9	0.10	2.57	1183.2	1093.6
Tpt-TD	0.06	2.45	5.0 x 10 ⁻¹²	0.004	2.0	0.15	C	1148.2	1073.7
Tpt-TDL	0.06	2.40	2.0 x 10 ⁻¹²	0.003	1.8	0.10	C	1082.9	1006.4
Tpt-TML	0.12	2.25	2.0 x 10 ⁻¹¹	0.010	1.7	0.05	2.50	930.2	871.1
Tpt-TM	0.10	2.30	2.0 x 10-11	0.005	1.9	0.10	2.53	868.6	810.7
Tpt-TV	0.04	2.25	3.0 x 10 ⁻¹²	0.002	1.7	0.00	2.38	860.1	797.3
Tpt-TNV	0.20	1.90	2.4 x 10 ⁻⁶	0.030	22	0.15	c	850.9	787.2
Tpt-TN	0.36	1.54	3.0 x 10 ⁻¹²	0.020	1.2	0.00	2.35	841.2	784.2
Tpt-BT	0.23	1.79	2.0 x 10 ⁻¹¹	0.002	1.6	0.10	2.32	840.6	783.3
Tcb-TN	0.36	1.54	1.0 x 10 ⁻¹¹	0.004	1.5	0.15	2.28	836.0	776.9
Tcb-BT	0.23	1.79	2.0 x 10-11	0.002	1.6	0.10	2.32	835.4	775.9
Tcb-TN	0.36	1.54	1.0 x 10 ⁻¹¹	0.004	1.5	0.15	2.28	829.0	743.9
Tcb-BT	0.23	1.79	2.0 x 10 ⁻¹¹	0.002	1.6	0.10	2.32	826.3	739.1
Tcb-TN	0.36	1.54	1.0 x 10 ⁻¹¹	0.004	1.5	0.15	2.28	794.6	716.5
Tcb-BT	0.23	1.79	2.0 x 10 ⁻¹¹	0.002	1.6	0.10	2.32	793.7	715.6
Tcb-TN	0.36	1.54	1.0 x 10 ⁻¹¹	0.004	1.5	0.15	2.28	750.4	653.4
Tcb-BT	0.23	1.79	2.0 x 10 ⁻¹¹	0.002	1.6	0.10	2.32	733.3	639.4
Topp-TN	0.28	1.60	5.0 x 10 ⁻¹²	0.001	3.0	0.20	2.33	730.6	630.3
Tcpp-TN	0.28	1.60	1.0 x 10 ⁻¹¹	0.004	1.6	0.15	2.33	721.4	604.4
Tcpp-TP	0.25	1.90	5.0 x 10 ⁻⁸	0.010	2.7	0.05	2.59	660.5	584.9

TABLE 3. HYDROGEOLOGIC PROPERTIES AT G-1 AND H-1 •

								G-1	H-1
UO Þ	c	¢	c	E	c	c	C	1280.2	1241.8
Tpc-TN	0.50	1.14	2.0 x 10 ⁻¹¹	0.004	1.50	0.15	c	1264.5	1225.1
Tpc-BT	0.22	1.95	2.4 x 10 ⁻⁶	0.016	10.00	0.10	2.45	1253.8	1217.8
Tpt-TM	0.10	2.30	2.0 x 10-11	0.005	1.90	0.10	2.57	1243.2	1207.1
Tpt-TD	0.06	2.45	5.0 x 10 ⁻¹²	0.004	2.00	0.15	c	1191.9	1167.2
Tpt-TDL	0.18	2.06	2.0 x 10 ⁻¹²	0.005	1.52	0.00	c	1084.7	1048.6
Tpt-TML	0.12	2.23	2.0 x 10 ⁻¹¹	0.005	1.52	0.00	2.50	95 9.7	923.7
Tpt-TM	0.06	2.30	2.0 x 10-11	0.005	1.49	0.00	2.53	\$33.2	895.9
Tpt-TV	0.04	2.32	4.0 x 10 ⁻¹¹	0.005	1.46	0.00	2.38	916.4	8 83. 7
Tpt-TNV	0.33	1.59	3.0 x 10 ⁻¹⁰	0.020	4.00	0.20	c	900.6	852.6
Tpt-TN	0.36	1.57	3.0 x 10 ⁻¹²	0.020	1.20	0.00	2.35	897.8	850.5
Tpt-BT	0.24	2.00	7.0 x 10 ⁻¹²	0.003	1.65	0.06	¢	8 91.1	843.8
Tcb-TN	0.36	1.57	2.0 x 10 ⁻¹¹	0.005	1.37	0.00	2.28	856.4	809.1
Tcb-BT	0.24	2.00	7.0 x 10 ⁻¹²	0.003	1.65	0.06	2.32	855.8	806.5
Tcb-TN	0.36	1.57	2.0 x 10 ⁻¹¹	0.005	1.37	0.00	2.28	850.9	803.6
Tcb-BT	0.24	2.00	7.0 x 10 ⁻¹²	0.003	1.65	0.06	2.32	850.2	802.9
Tcb-TN	0.36	1.57	2.0 x 10 ⁻¹¹	0.005	1.37	0.00	2.28	846.9	799.6
Tcb-BT	0.24	2.00	7.0 x 10 ⁻¹²	0.003	1.65	0.06	2.32	846.6	799.3
Tcb-TN	0.36	1.57	2.0 x 10 ⁻¹¹	0.005	1.37	0.00	2.28	796.3	749.0
Tcb-BT	0.24	2.00	7.0 x 10 ⁻¹²	0.003	1.65	0.06	2.32	776.2	736.8
Tcpp-TN	0.28	1.60	4.0 x 10 ⁻¹¹	0.006	1.48	0.00	2.33	767.7	729.8
Tcpp-TN	0.28	1.60	2.0 x 10 ⁻¹¹	0.020	1.40	0.00	2.33	746.3	693.2
Tcpp-TP	0.25	1.90	2.0 x 10 ⁻⁹	0.010	2.70	0.05	2.59	715.9	601.2

^a Adapted from SNL (1991), Tables 3-3 and 3-2. ^b Data for this interval are generally sparse and are not tabulated. ^c No data available. ^d K₃: saturated hydraulic conductivity. ^e S₇: residual saturation.

ECTION GEOHYDROLOGY				YUCCA MOUNTAIN PROJECT REFERENCE INFORMATION BASE					
									M
HYDRO	1	4	4		6 of 6				
				VERSION	REVISION	RELEASE DA 04/13/92	TE	RIB CONTROL NUMB	
	TARI	F 4 HYDROGE		TIBE CH					
Lloit	K e	Aporturo	Frequence		Berei	61100		K A	
Unit	N ta	Aberture	Frequency	(volume fraction)		ly	к _{г.ь} " (m/s)		
·	(m/s)	(µm)	(# /m ³)			iction)			
Tpt-TM	4 x 10 ^{-s}	6	5		3.0 x 1	0-s	1.2	2 x 10-•	
Tpt-TD	4 x 10 ^{-s}	6	5		3.0 x 10-1		1.2 x 10-		
Tpt-TDL	4 x 10-s	6	3		1.8 x 10-5		7.2 x 10-10		
Tpt-TML	4 x 10-s	6	5		3.0 x 10-\$		1.2 x 10-*		
Tpt-TM	4 x 10-s	6	5		3.0 x 10-s		1.2 x 10-		
Tpt-TV	4 x 10-4	20	10		3.0 x 10-5		8.0 x 10-		
Tpt-TNV	4 x 10-4	22	3		6.6 x 10	D-s	2.6	x 10-4	
Tpt-TN	8 x 10-4	30	3		9.0 x 10)-s	7.2	x 10-4	
Tpt-BT	3 x 10-5	6	3		1.8 x 10-s		5.4 x 10-10		
Tcb-TD	3 x 10-1	6	3		1.8 x 1()-\$	5.4	x 10-10	
Tcb-BT	3 x 10-*	6	3	•	1.8 x 10 ^{-s}		5.4 x 10-10		
Tcb-TN	3 x 10-s	6	3		1.8 x 10 ^{-s}		5.4 x 10-10		
Tcb-BT	3 x 10-s	6	3		1.8 x 10-5		5.4 x 10-10		
Tcb-TN	3 x 10-\$	6	3		1.8 x 10-*		5.4 x 10-10		
Tcb-BT	3 x 10-5	6	3		1.8 x 10-\$		5.4 x 10-10		
Tcb-TN	3 x 10-s	6	3		1.8 x 10)-\$	5.4	x 10 ⁻¹⁰	
Tcb-BT	3 x 10-s	6	3		1.8 x 10	} ⊢ \$	5.4	x 10 ⁻¹⁰	
Tcpp-TN	3 x 10-5	6	3		1.8 x 10	- 5	5.4	x 10-10	
Tcpp-TN	3 x 10-s	6	3		1.8 x 10 ^{-s} 5.4 x 10 ^{-s}		x 10 ⁻¹⁰		
Тсрр-ТР	4 x 10-4	20	3		6.0 x 10	- 5	2.4	x 10-*	

٠.

Adapted from SNL (1991), Table 3-7.
Van Genuchten coefficients (all fractures): alpha = 1.28 m⁻¹; beta = 4.23; S_r = 0.04.
K_{r,s}: intrinsic fracture hydraulic conductivity.
K_{r,b}: bulk fracture hydraulic conductivity.

	OFFICE OF CIVILIAN RADIOACTIVE WASTE MANAGEMENT U.S. DEPARTMENT OF ENERGY WASHINGTON, D.C.	CAR NO. YM-92-07 DATE: 10-29-92 PAGE: 1 OF QA				
	CORRECTIVE ACTION REQUEST (Continuation F	Page)				
1)	Corrective Action Amended Response for CAR # YM-92-073					
	A. <u>Remedial Action</u> - Make corrections to data if necessary					
	B. <u>Investigative Action</u> - Perform technical review of a 1.1.4 of RIB document	data items 1.1.2				
	C. <u>Root Cause Determination</u> - N/A					
	D. <u>Corrective Action to Preclude Recurrence</u> - Investige procedure	ate AP 5.3Q for al clarity				
2)	Completion Date - December 15, 1992					
3)	Responsible Manager - Chulia M. Neubury	Date <u>30 CCT </u>				

.

• •

• [*] . • %		\smile	
	OFFICE RADIOACTIVE W U.S. DEPART WASHI	OF CIVILIAN VASTE MANAGEMENT MENT OF ENERGY NGTON, D.C.	CAR NO. YM-92-073 DATE: 12/15/92 PAGE: OF QA
	CORRECTIVE ACTION F	REQUEST (Continuation	i Page)
1) Corre	ective Action Response for C	CAR # YM-92-073	
A. <u>R</u> e	emedial Action - Delete RIB action remo in the CAR.	Item 1.4.4 Hydrogeol wes the apparent inc	ogic Zones. This consistency described
B. <u>I</u>	<u>ivestigative Action</u> - Princi inform the RI a more to rec RIB co point availa Item 1 than R appare remove the cu	pal Investigators at ation contained in I B. The conclusion of detailed technical ommend changing eith ntains the best avai in time, it was dete ble Stratigraphic Da .1.2 which has more IB Item 1.4.4. Ther nt inconsistency, RI d. 2. Updated hydrogeo rrent information as	SNL reviewed the tems 1.1.2 and 1.4.4 of the review was that assessment was necessary er Item. Because the lable data at a given rmined that the best ta is contained in RIB utility at this time efore, to eliminate an B Item 1.4.4 will be logic data will replace it becomes available.
C. N	I/A		
p. <u>c</u>	Corrective Action to Preclude be appointed check a ication interin provide	e Recurrence - An RI ointed within the ne against submitted da n of AP-5.3Q when ne m, the M&O's Technic e this check and bal	B administrator will xt month to provide a ta and provide clarif- cessary. In the al Data Manager will ance service.
2) Compl	etion Date - December 15, 19	992	,
3) Respo	msible Manager -	- De	Date 12/15/52
Lts dt	L 12/15/92 - RSED A	MS-1518	

•

- -•