

Department of Energy Yucca Mountain Site Characterization Project Office P. O. Box 98608 Las Vegas, NV 89193-8608

WBS 1.2.11

NOV 1 7 1992

Carl P. Gertz, Project Manager, YMP, NV

EVALUATION OF AMENDED RESPONSE TO CORRECTIVE ACTION REQUEST (CAR) YM-92-073 RESULTING FROM YUCCA MOUNTAIN QUALITY ASSURANCE DIVISION (YMQAD) AUDIT YMP-92-22

The YMQAD staff has evaluated the amended response to CAR YM-92-073. The amended response has been determined to be satisfactory. Verification of completion of the corrective action will be performed after the effective date provided. Any extension to this date must be requested in writing, with appropriate justification, prior to the date. Please send a copy of extension requests to Nita J. Brogan, Science Applications International Corporation, Las Vegas, Nevada.

If you have any questions, please contact either Robert B. Constable at 794-7945 or Gerard Heaney at 794-7826.

Richard E. Spence, Director Yucca Mountain Quality Assurance Division

102.71 11 WM-11 NJU2

YMQAD:RBC-1055

Enclosure: CAR YM-92-073

cc w/encl:___

K. R. Hooks, NRC, Washington, DC
S. W. Zimmerman, NWPO, Carson City, NV
S. D. Johnson, PSDO/REECo, Las Vegas, NV
J. W. Estella, SAIC, Las Vegas, NV, 517/T-22
J. H. Rusk, MACTEC, Las Vegas, NV
W. B. Simecka, YMP, NV
A. V. Gil, YMP, NV
B. J. Verna, YMP, NV

cc w/o encl: J. W. Gilray, NRC, Las Vegas, NV N. J. Brogan, SAIC, Las Vegas, NV, 517/T-12 Gerard Heaney, SAIC, Las Vegas, NV, 517/T-33

230048

9211250146 921117 PDR WASTE WM-11 PDR

ADD: Ken Horks LAT. Encl.

YMP-5

	\checkmark	UNIGINAL THIS IS A RED STAMP
RADIOACTIVE U.S. DEPAR	E OF CIVILIAN WASTE MANAGEMENT TMENT OF ENERGY IINGTON, D.C.	B CAR NO.: <u>YM-92-073</u> DATE: <u>09-03-92</u> SHEET: <u>1</u> OF <u>1</u> QA
CORRECTIV	E ACTION REQUEST	· · · · · · · · · · · · · · · · · · ·
1 Controlling Document QARD, Revision 4		ated Report No. it YMP-92-22
3 Responsible Organization	4 Discussed With	
5 Requirement:	A. Simons	
include: "The evaluation of data quality to valid, comparable, complete representative,	precise and accurate."	
6 Adverse Condition: The Reference Information Base (RIB), Versic Thermal/Mechanical Stratigraphy data for Borel 1 "Thermal/Mechanical Stratigraphy for Borel 2, page 2 of 3) does not agree with the "The "Relationship of Stratigraphy, Lithology and 1, section 4, item 4, page 3 of 6) in all call	hole USW G-4" (found in chap ermal/Mechanical Stratigraph d Eydrostatigraphic Zones at	ter 1. section 1. item
adverse to quality exist? Yes No x Yes	stop work condition exist? No <u>x</u> ; if Yes - Attach copy of Si Circle One: A B C D	NO 20 days after issue
¹² Required Actions: I Remediat I Extent of Defi	iciency X Preclude Recurrent	e Root Cause Determination
13 Recommended Actions: Identify the remedial action to correct the Identify the extent of the deficiency and as Identify the planned corrective action to pa	nalyze for any adverse impac	ock 6. ts.
7 Initiator Jerry Eleaney Jerry Heaney 9-3 15 Response Accepted A. A. A. 11-11-92	97 OADD 16 Response Accepted	2/11. Date 7/9/92
- OAR Lever Hegner Date H-H	-97- QADD	Date
17 Amended Response Accepted QAR Jerry Nearly Date //-//	18 Amended Response Ac	
19 Corrective Actions Vertified	20 Closure Approved by:	
QAR Date	QADD	Date

ĩ

-

+

ENCLOSURE REV. 08/91

3

Department of Energy Yucca Mountain Site Characterization Project Office P. O. Box 98608 Las Vegas, NV 89193-8608

WBS 1.2.9 QA:

DARECENED

OCT 0 7 1992

OCT (1992

Richard E. Spence, Director, Yucca Mountain Quality Assurance Division, YMP, NV

RESPONSE TO ISSUANCE OF CORRECTIVE ACTION REQUEST (CAR) YM-092-073 RESULTING FROM YUCCA MOUNTAIN QUALITY ASSURANCE DIVISION AUDIT YMP-92-22 OF SANDIA NATIONAL LABORATORIES

After careful review of CAR YM-092-073 (enclosure 1), I have concluded that this CAR should be withdrawn for the following reasons:

- No Quality Assurance (QA) requirement has been violated. The requirement stated in Block 5 of the CAR is taken out of context. The stated requirement applies to planning measures included or referenced within a scientific investigation planning document. Work performed under Work Breakdown Structure 1.2.1.3.3, for the Reference Information Base (RIB) is not considered a scientific investigation, nor is the RIB a scientific investigation planning document.
- 2. The information items referenced in CAR YM-092-073 have two different purposes. The purpose of Item 1.1.2 (enclosure 2) is to specify a table of the corrected absolute Z-elevations for the thermomechanical units in USW G-4. The intent of Item 1.4.4 (enclosure 3) is to depict graphically the relationship between the conceptual hydrologic zones and the thermomechanical stratigraphy. The purposes of these items are clearly defined and the information sources are referenced.
- 3. It is clearly outside of QA's charter to review analyses, calculations, data, etc., for correctness. QA personnel do not necessarily have the technical expertise to undertake such a responsibility. Rather, QA's charter is to help establish and ensure that the processes and procedures defined for a particular effort are necessary, sufficient, and are adhered to. No violation of process or procedure has been discovered or recorded in the audit or resulting CAR.

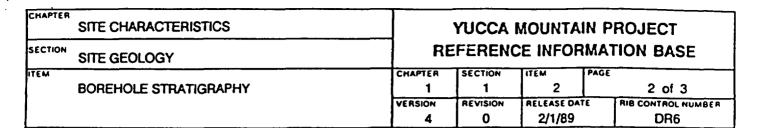
Although no QA requirement has been breached, it is recognized that there is a potential for misuse of information presented in Figure 1 of Item 1.4.4. I appreciate the fact that the audit results pointed this out. Steps will be taken, in accordance with Yucca Mountain Site Characterization Project Administrative Procedure 5.3Q, to rectify the problem.

Richard E. Spence

2

If you have any questions, please contact either Stephen J. Bodnar at 794-1840 or Ardyth M. Simmons at 794-7998.

-2-


W. A. Kirdley FOR J. Russell Dyer, Director Regulatory & Site Evaluation Division

RSED:AMS-329

Enclosures: 1. CAR YM-92-073 2. RIB Item 1.1.2 3. RIB Item 1.4.4 cc w/encls: N. J. Brogan, SAIC, Las Vegas, NV Gerard Heaney, SAIC, Las Vegas, NV S. J. Bodnar, M&O/TRW, Las Vegas, NV J. D. Verden, M&O/TRW, Las Vegas, NV J. H. Rusk, MACTEC, Las Vegas, NV J. W. Estella, SAIC, Las Vegas, NV A. M. Simmons, YMP, NV B. J. Verna, YMP, NV R. B. Constable, YMP, NV W. B. Simecka, YMP, NV C. M. Newbury, YMP, NV A. V. Gil, YMP, NV

ALE FIGURE REFERENCE INFORMATION BASE TEM BOREHOLE STRATIGRAPHY CHAPTER SECTION TEX Area 1 of 3 TEM BOREHOLE STRATIGRAPHY CHAPTER SECTION TEX Area 1 of 3 TEM DESCRIPTION RELEASE DATE Area 1 of 3 Text Area 1 of 3 TEM DESCRIPTION RELEASE DATE Area 1 of 3 Text 1 of 3 1 o	<u> </u>	SITE CHARACTERISTICS		YUCCA	MOUNTA	IN PF	ROJECT
BOREHOLE STRATIGRAPHY Charter a section If the section Proof BOREHOLE STRATIGRAPHY 1 1 1 2 1 of 3 VERSION REVISION RELEASE DATE 1 of 3 VERSION REVISION REVISION RELEASE DATE DATE VERSION REVISION REVISION RELEASE DATE DATE VERSION REVISION REVISION REVISION DATE VERSION REVISION REVISION REVISION REVISION VERSION VERSION REVISION REVISION REVISION VERSION VERSION REVISION REVISION REVISION	SECT		RI	EFEREN	CE INFOF	RMAT	ION BASE
VERSION RECENSION RECENSE DATE RECENTED FOR 4 0 2/1/83 DR6	EM		1		_	PAGE	1 of 3
Keywords: USW G-4 borehole thermal/mechanical stratigraphy Description and Methodology Borehole stratigraphy and thermal/mechanical unit contact criteria for borehole USW G-4 are shown in Table 1 and are based on information used in the preparation of a three-dimensional model of the repository site (Ortiz et al., 1985). Borehole USW G-4 was drilled in the vicinity of the proposed Exploratory Shaft Facility. The reference information presented here is based primarily on information from Table B-6 of Appendix B of the Ortiz report, which describes the model. Nevada state plane coordinates (x,y) for the base of each thermal/mechanical unit identified have been corrected for the deviation of the borehole from the initial surface location. (The values of the "adjusted locations" tabulated in Table B-6 of the Ortiz report have been corrected for the deviation of the borehole from the initial surface location. The values of the "adjusted locations" tabulated in Table B-6 of the Ortiz report. The elevations were calculated in feel and converted to meters by multiplying by the correction factor 0.3048 and rounding to the nearest whole meter. The corrected depth is the run (i.e., the difference between the ground-level elevation and the unadjusted elevation at the base of a unity minus the verifical deviation correction. The corrected depth represents a verical depth from the starting elevation (i.e., ground level) of the drill rig; it is not a vertical depth from the surface at the map coordinates (x, y) corresponding to that contact/borehole intersection point because topographic changes between the drill sign and this point (x, y) have not been accounted for. Total borehole depth for USW G-4 was taken from Figure 5 of the Ortiz report. Criteria for the selection of contacts between thermal/mechanical units (Ortiz et al., 1985) are listed in the description of the respective stratigraphies. An uncertainty described by a ** symbol indicates that the contact could be at a greater depth, while a **			VERSION		RELEASE DA	TE	RIB CONTROL NUM
Borehole stratigraphy and thermal/mechanical unit contact criteria for borehole USW G-4 are shown in Table 1 and are based on information used in the preparation of a three-dimensional model of the propository Shaft Facility. The reference information presented here is based primarily on information from Table B-6 of Appendix B of the Ortiz report, which describes the model. Nevada state plane coordinates (x,y) for the base of each thermal/mechanical unit identified have been corrected for the deviation of the borehole from the initial surface location. (The values of the "adjusted locations" tabulated in Table B-6 of the Ortiz report have been modified for the three-dimensional model of the corrected elevations were obtained by adding the vertical deviation correction to the unadjusted elevations, both sets of which are provided in Ortiz's report. The elevations were calculated in feet and converted to meters by multiplying by the correction factor 0.3048 and rounding to the nearest whole elevations, both sets of a unit) minus the vertical deviation correction. The corrected depth form the starting elevation (i.e., ground level) of the drill rig: it is not a vertical depth from the starting elevation (i.e., ground level) of the drill rig: it is not a vertical depth from the starting elevation (i.e., ground level) of the drill rig: it is not a vertical depth for USW G-4 was taken from Figure 5 of the Ortiz report. The elevation has been modified by the correction of the respective stratigraphies. An uncertainty described by a ** symbol indicates that the contact could be at a shallower depth. Criteria for the selection of contacts between the mal/mechanical units (Ortiz et al., 1985) are listed in the contact ould be at a shallower depth. Durally Assurance Information Dural Machine a Sectore and the contact ould be at a shallower depth. Dural Machine a Sectore and the requerements of 10CFR60, Subpart G has not been aconstrated. Dural Machine a Sectore and the		Keywords: USW G-4 borehole thermal/mecha	nical stratigraphy	.	1		
 Table 1 and are based on information used in the preparation of a three-dimensional model of the repository site (Ortiz et al., 1985). Borehole USW G-4 was drilled in the vicinity of the proposed Exploratory Shaft Facility. The reference information presented here is based primarily on information from Table B-6 of Appendix B of the Ortiz report, which describes the model. Nevada state plane coordinates (x,y) for the base of each thermal/mechanical unit identified have been corrected for the deviation of the borehole from the initial surface location. (The values of the "adjusted locations" tabulated in Table B-6 of the Ortiz report have been modified for the three-dimensional model of through a "prefaulting" correction. Subtracting the faulting corrections yields the values listed here.) The corrected elevations were obtained by adding the vertical deviation correction to the unadjusted elevations, both sets of which are provided in Ortiz's report. The elevations were calculated in feet and converted to meters by multiplying by the correction factor 0.3048 and rounding to the nearest whole meter. The corrected depth is the run (i.e., the difference between the ground-level elevation and the unadjusted elevation at the base of a unit) minus the vertical deviation correction. The corrected depth from the starting elevation (i.e., ground level) of the drill rig; it is not a vertical depth from the starting elevation (i.e., ground level) of the drill rig; it is not a vertical for the selection of contacts between thermal/mechanical units (Ortiz et al., 1985) are listed in the description of the respective stratigraphies. An uncertainty described by a "*" symbol indicates that the contact could be at a shallower depth. Where mineralogy differs within a unit, the reference stratigraphic notation has been modified by the addition of an identifying symbol; e.g., the viric and zeolitized regions within CHn1 of drillhole USW G-4 was collected, analyzed, and interpreted under proced		Descriptio	n and Methodolog	gy			
description of the respective stratigraphies. An uncertainty described by a "+" symbol indicates that the contact could be at a greater depth, while a "-" indicates that the contact could be at a shallower depth. Where mineralogy differs within a unit, the reference stratigraphic notation has been modified by the addition of an identifying symbol; e.g., the vitric and zeolitized regions within CHn1 of drillhole USW G-4 are identified as CHn1v and CHn1z, respectively. The notation TZZ refers to the top of prevalent zeolitization. Additional bibliographic references for lithologic logs are included in the Ortiz report. Quality Assurance Information The information presented in Table 1 was collected, analyzed, and interpreted under procedures for which satisfaction of the requirements of 10CFR60, Subpart G has not been demonstrated. Source Ortiz, T. S., R. L. Williams, F. B. Nimick et al., 1985. "A Three-Dimensional Model of Reference Thermal/Mechanical and Hydrological Stratigraphy at Yucca Mountain, Southern Nevada," SAND84-1076,		Table 1 and are based on information used repository site (Ortiz et al., 1985). Borehol Exploratory Shaft Facility. The reference infor from Table B-6 of Appendix B of the Ortiz report Nevada state plane coordinates (x,y) for the bu- corrected for the deviation of the borehole from locations" tabulated in Table B-6 of the Ortiz re- through a "prefaulting" correction. Subtracti The corrected elevations were obtained by a elevations, both sets of which are provided in converted to meters by multiplying by the co- meter. The corrected depth is the run (i.e., the d unadjusted elevation at the base of a unit) min represents a vertical depth from the starting ele depth from the surface at the map coordinates point because topographic changes between t	in the preparatio e USW G-4 was mation presented , which describes ase of each therm n the initial surfac port have been m ng the faulting co dding the vertical Ortiz's report. The rection factor 0.3 ifference betwee us the vertical dev vation (i.e., groun (x, y) correspondi- he drill rig and th	n of a thre drilled in here is b the model nal/mechan e location. nodified for prections y I deviation e elevation 048 and ro en the gro riation cor d level) of t ing to that is point (x,	ee-dimension the vicinity ased priman ical unit ide (The value the three-d rields the value the three-d rields the value the three-d rields the value the three-d rection for the drill rig; contact/bord y) have no	onal m of the rily on entified s of the imens alues I to the culated the ne elevati e correction it is n ehole i	hodel of the e proposed information d have been the "adjusted ional model listed here.) unadjusted in feet and arest whole on and the ected depth iot a vertical intersection
The information presented in Table 1 was collected, analyzed, and interpreted under procedures for which satisfaction of the requirements of 10CFR60, Subpart G has not been demonstrated. Source Ortiz, T. S., R. L. Williams, F. B. Nimick et al., 1985. "A Three-Dimensional Model of Reference Thermal/Mechanical and Hydrological Stratigraphy at Yucca Mountain, Southern Nevada," SAND84-1076,		for. Total borehole depth for USW G-4 was take	n from Figure 5 of		ероп		
which satisfaction of the requirements of 10CFR60, Subpart G has not been demonstrated. Source Ortiz, T. S., R. L. Williams, F. B. Nimick et al., 1985. "A Three-Dimensional Model of Reference Thermal/Mechanical and Hydrological Stratigraphy at Yucca Mountain, Southern Nevada," SAND84-1076,		Criteria for the selection of contacts between the description of the respective stratigraphies. An contact could be at a greater depth, while a "-" Where mineralogy differs within a unit, the re addition of an identifying symbol; e.g., the vitric are identified as CHn1v and CHn1z, respect	ermal/mechanical uncertainty desc indicates that the ference stratigrap and zeolitized re ively. The notati	units (Orti ribed by a e contact c phic notatio gions with ion TZZ re	z et al., 198 "+" symbol ould be at a on has been in CHn1 of o fers to the	indica shallo mod drillhol top o	tes that the ower depth. ified by the le USW G-4 if prevalent
Ortiz, T. S., R. L. Williams, F. B. Nimick et al., 1985. "A Three-Dimensional Model of Reference Thermal/Mechanical and Hydrological Stratigraphy at Yucca Mountain, Southern Nevada," SAND84-1076,		Criteria for the selection of contacts between th description of the respective stratigraphies. Ar contact could be at a greater depth, while a "-" Where mineralogy differs within a unit, the re addition of an identifying symbol; e.g., the vitric are identified as CHn1v and CHn1z, respect zeolitization. Additional bibliographic reference	ermal/mechanical uncertainty desc indicates that the ference stratigran and zeolitized re ively. The notati s for lithologic log:	units (Orti ribed by a contact c ohic notatio gions with ion TZZ re s are includ	z et al., 198 "+" symbol ould be at a on has been in CHn1 of o fers to the	indica shallo mod drillhol top o	tes that the ower depth. ified by the le USW G-4 if prevalent
Thermal/Mechanical and Hydrological Stratigraphy at Yucca Mountain, Southern Nevada, * SAND84-1076,		Criteria for the selection of contacts between th description of the respective stratigraphies. Ar contact could be at a greater depth, while a "-" Where mineralogy differs within a unit, the re addition of an identifying symbol; e.g., the vitric are identified as CHn1v and CHn1z, respect zeolitization. Additional bibliographic reference Quality Ass The information presented in Table 1 was co	ermal/mechanical uncertainty desc indicates that the ference stratigrap and zeolitized re ively. The notati s for lithologic log surance Informatic illected, analyzed	units (Orti ribed by a contact c ohic notatio gions withi ion TZZ re s are includ n	z et al., 198 "+" symbol ould be at a on has been in CHn1 of o fers to the ded in the O	indica shallon mod drillhol top o ortiz rep er proc	tes that the ower depth. ified by the le USW G-4 if prevalent port.
		Criteria for the selection of contacts between th description of the respective stratigraphies. Ar contact could be at a greater depth, while a "-" Where mineralogy differs within a unit, the re addition of an identifying symbol; e.g., the vitric are identified as CHn1v and CHn1z, respect zeolitization. Additional bibliographic reference Quality Ass The information presented in Table 1 was co	ermal/mechanical uncertainty desc indicates that the ference stratigran and zeolitized re ively. The notati s for lithologic log surance Informatic flected, analyzed 60, Subpart G has	units (Orti ribed by a contact c ohic notatio gions withi ion TZZ re s are includ n	z et al., 198 "+" symbol ould be at a on has been in CHn1 of o fers to the ded in the O	indica shallon mod drillhol top o ortiz rep er proc	tes that the ower depth. ified by the le USW G-4 if prevalent port.
		Criteria for the selection of contacts between th description of the respective stratigraphies. Ar contact could be at a greater depth, while a "-" Where mineralogy differs within a unit, the re addition of an identifying symbol; e.g., the vitric are identified as CHn1v and CHn1z, respect zeolitization. Additional bibliographic reference Quality Ass The information presented in Table 1 was co which satisfaction of the requirements of 10CFR Ortiz, T. S., R. L. Williams, F. B. Nimick et Thermal/Mechanical and Hydrological Stratigrap	ermal/mechanical uncertainty desc indicates that the ference stratigran and zeolitized re ively. The notati s for lithologic log: surance Informatic flected, analyzed 60, Subpart G has Source al., 1985. "A The by at Yucca Mour	units (Orti ribed by a contact c ohic notatio gions withit on TZZ re s are includ on , and inter not been of not been of	z et al., 198 "+" symbol ould be at a on has been in CHn1 of o fers to the ded in the O preted undo demonstrate	indica shallo mod drillhol top o rtiz rep er proc ed.	tes that the ower depth. ified by the le USW G-4 if prevalent port. cedures for Reference

- .

~

2

TABLE 1. THERMAL/MECHANICAL STRATIGRAPHY FOR BOREHOLE USW G-4+

	da State oordinates (y)	Unit ^b	Corre Eleva (ft)		Run (ft)	Corrected Depth (ft)
E563082	N765807	Ground Level	4,165	1,269	0	0
E563082	N765807	UO	4,135	1,260	30	30
E563082	N765807	TCw	4,047	1,234	118	118
E563081	N765806	PTn	3,922	1,195	243	243
E563076	N765803	TSw1	3,495	1,065	670	670
E563046	N765766	TSw2	2,874	876	1,293	1,291
E563042	N765761	TSw3	2,822	860	1,345	1,343
E563041	N765760	CHn1v	2,805	855	1,363	1,360
E563012	N765736	CHn1z	2,464	751	1,705	1,701
E563007	N765733	CHn2	2,409	734	1,761	1,756
E563004	N765731	CHn3	2,378	725	1,792	1,787
E562988	N765720	PPw	2,211	674	1,960	1,954
E562958	N765702	CFUn	1,915	584	2,258	2,250
E562906	N765682	BFw	1,495	456	2,682	2,670
E562899	N765681	CFMn1	1,445	440	2,733	2,720
E562896	N765680	CFMn2	1,422	433	2,756	2,743
E562886	N765675	CFMn3	1,351	412	2,828	2,814

Unit	Description
UO	No data given.
TCw	Transition from devitrified to vitric tuff in lithologic log.
PTn	Transition from vitric tuff to devitrified tuff in lithologic. log.
TSw1	Contact assigned at the bottom of the lowermost ashflow of the Topopah Spring Member, which contains "common" lithophysae, based on the lithologic log.

• The stratigraphy is <u>only</u> for those thermal/mechanical units identified in this borehole.

• The description corresponds to the base of each unit listed.

....

SITE CHARA	CTERISTICS		YUCCA	MOUNTA	IN PROJECT		
SITE GEOLC	GY	REFERENCE INFORMATION B					
BOREHOLE	STRATIGRAPHY	CHAPTER 1	SECTION	ITEM 2	PAGE 3 of 3		
		VERSION 4	REVISION	RELEASE DAT 2/1/89			
TA	BLE 1. THERMAL/MECHANICAL S (cor	TRATIGRAPH ncluded)	Y FOR BOI	REHOLE US	W G-4		
TSw2	Transition from devitrified	tuff to vitrophy	yre in lithol	ogic log.			
TSw3	Transition from vitrophyre	to vitric ashfic	w in litholo	ogic log.			
CHn1	Transition from ashflow to Hills in lithologic log.	basai-bedde	d unit of t	he Tuffaceo	us Beds of the Calico		
CHn2	Transition from bedded un	nit to ashflow i	n lithologic	: log.			
CHn3	X-ray data indicate a chan assemblage indicative of contact assigned at the mi	devitrificatio	on at dept	hs between	1,788 ft and 1,794 ft		
PPw	X-ray data show a change a mineralogy dominated b assigned at the midpoint o	y zeolites at c	lepths betw	ween 1,952	It and 1,968 ft; contac		
CFUn	X-ray data indicate a ch mineralogy assemblage in 2,263 ft; contact assigned -20 ft.	dicative of de	vitrification	at depths b	etween 2,238 ft and		
BFw	X-ray data indicate a chan to a mineralogy dominate contact assigned at 2,682	ed by zeolite	s at depth	is between	2,681 ft and 2,716 ft		
CFMn1	Transition from ashflow to	bedded tuff in	lithologic	log.			
CFMn2	Transition from bedded tuf	f to ashflow in	lithologic	log.			
CFMn3	X-ray data indicate a chan assemblage indicative of contact assigned at 2,828 f	devitrificatio	n at depti	ns between	2,823 ft and 2,840 ft;		
TZZ	The base of TSw3 is at a d a depth of 1,381 ft. An exa assigned at a depth of 1,36 -19 ft (X-ray data).	mination of th	ne core sug	ggests that t	he contact should be		

. 7 .

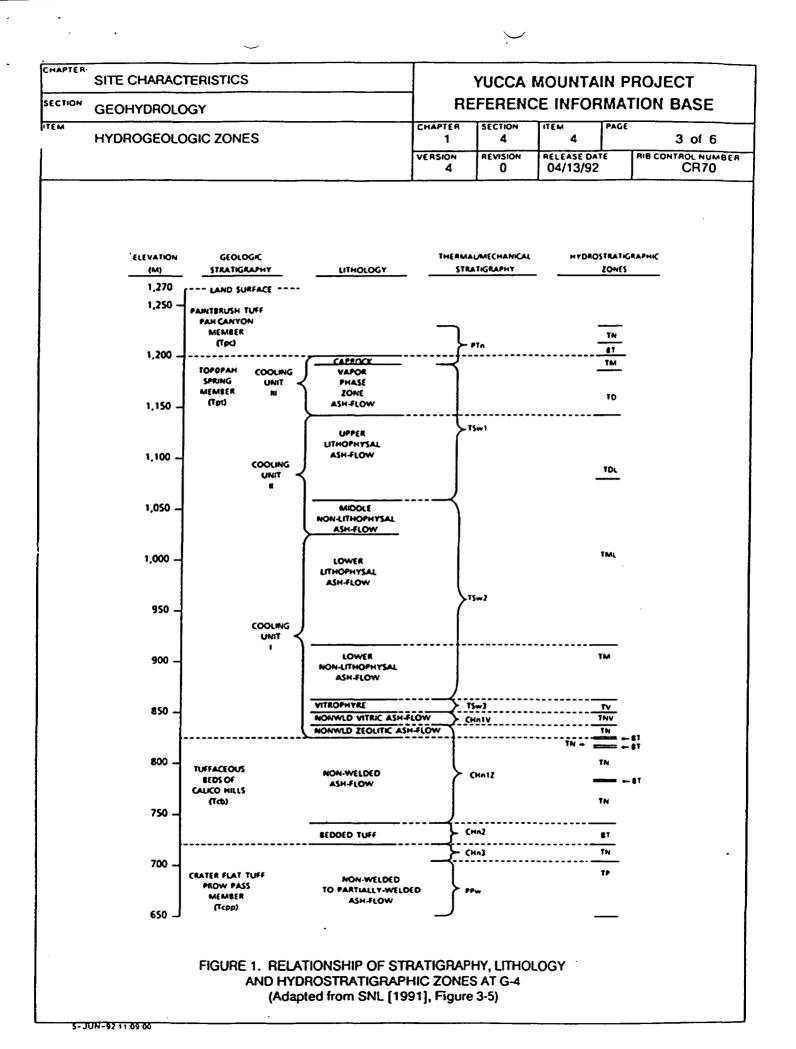
•

• •

CHAPTER	SITE CHARACTERISTICS	} .	YUCCA I	MOUNTA	in p	ROJECT
SECTION	GEOHYDROLOGY	RE	FERENC	E INFOR	MA:	TION BASE
TEM	HYDROGEOLOGIC ZONES	CHAPTER	SECTION	ITEM 4	PAGE	1 of 6
	· · · · · · · · · · · · · · · · · · ·	VERSION 4	REVISION	RELEASE DAT 04/13/92		RIB CONTROL NUMBE
		<u> </u>				
Ke	eywords: hydrogeologic properties, hydrogeologic	stratigraph	y, hydroge	ologic zone	es	
	Description and M	lethodolog	y			
Tr 19 ba hy gr da ini de ot	his Reference Information Base (RIB) Item identifies nese hydrogeologic zones were delineated by the Po 990 (PACE-90)(SNL, 1991). The modelers believe ased on the thermal/mechanical stratigraphy was in ydrologic properties of the rock mass, and thus roundwater percolation flux on the scale of the site. Ita on the geologic and hydrogeologic characterist formation used to define the PACE stratigraphy in ensity, saturated hydraulic conductivity, fracture co stained from drill holes in the area. As a result, the PA ick section.	erformance d that the nadequate. provide the A more de stics of the scluded da onductivity	Assessme distributio A differe he basis (tailed stra tuffs with ta on litho , and moi	ent Calcula n of hydrog nt method ior a more tigraphy wa in the moo logy, poros sture-reten	tional geolo was f reali is dev delec sity, g tion d	I Exercises for gic properties to capture the stic model of veloped using d region. The grain and bulk characteristics
int de ph litt ca bo va gr mo	developing the hydrogeologic zones, time-stratigrap to layers having similar geologic characteristics. egree of welding, size and amount of pumice ar nenocrysts, extent of vapor-phase recrystallization, hophysal content, reworking of fragments, and forma tegorized as bedded tuffs or densely, moderately bundaries between adjacent zones were determine ries within each zone by as much as 30 percent, the eater amount. Characterization of candidate zones to easured moisture retention and saturated hydrauli easured moisture-retention data was available, data w necessary to account for differences in degree of we	Characteri nd lithic fr presence tion of bea , or nonwe ed by the e mean val with similar c conduct vere extrap	stics used agments, of zeolitiz dding. Ind elded tuffs changes in lue betweet lithologic ivities (Pe	I to disting compositi ation, exter lividual can . Finally, ti n porosity. en adjacent properties ters et al.,	uish I on ar nt of didat he loo Altho relie: 1984	ayers include nd amount of devitrification, e zones were cations of the ough porosity es varies by a s primarily on t). Where no
	e relationship of these conceptual hydrogeologic ologic and thermal/mechanical stratigraphy is shown				ole la	ocation to the
(Si on pro hy	ble 1 contains a summary of the geologic and hydr NL, 1991). The hydrologic characteristics in the table ly the general nature of each zone. The location of the esented in Tables 2 and 3 (SNL, 1991). The extent a drogeologic zones) were selected because this regins d UE-25a #1), from which site-specific lithologic and l	e are based hese zones and location on was bou	I on limited s, and the n of the mo unded by f	d data, and, correspond odeled regi lour drill ho	, at be ling p on (a les ((est, represent roperties, are nd hence the
the in eq	apparently anomalous value of 2.4 x 10 ⁻⁴ m/s is pre e Topopah Spring nonwelded zeolitic zone (Tpt-TNV) the permeability of this layer at various locations. It uat to that of the Tpc-BT layer would be used for Tpt build be used (SNL, 1991).	in drill hole t was decid	e G-4. Ther ded that fo	re was cons or drill hole	idera G-4,	ble variability a high value
Ta	ble 4 lists the hydrogeologic properties for fractures (SNL, 1991).				
	Quality Assurance	Information	l			
co: an	bles and figures were prepared as part of the PAC nsidered as non-quality affecting. The material pre- alyzed, and interpreted under procedures for whic bpart G, has not been demonstrated.	sented in t	hese table	es and figu	res w	as collected,

.

.


Bernard 3

CHAPTER	SITE CHARACTERISTICS			YUCCA	MOUNTA	IN P	ROJECT
SECTION	GEOHYDROLOGY		RE	FERENC	E INFOR	MA	TION BASE
ITEM	HYDROGEOLOGIC ZONES	CHAPT	rea 1	SECTION 4	ITEM 4	PAGE	2 of 6
		VERSI	0N 4	REVISION	RELEASE DAT 04/13/92		RIB CONTROL NUMBER

Sources

Peters, R.R., E.A. Klavetter, I.J. Hall, S.C. Blair, P.R. Heller, and G.W. Gee, 1984. "Fracture and Matrix Hydrologic Characteristics of Tuffaceous Materials from Yucca Mountain, Nye County, Nevada," SAND84-1471, Sandia National Laboratories, Albuquerque, NM (YMP CRF Accession Number: NNA.870407.0036).

Sandia National Laboratories (SNL), 1991. "Technical Summary of the Performance Assessment Calculational Exercises for 1990 (PACE-90)" Volume 1, 'Nominal Configuration' Hydrogeologic Parameters and Calculational Results," SAND90-2726, edited by R.W. Barnard and H.A. Dockery, Sandia National Laboratories, Albuquerque, NM (YMP CRF Accession Number: NNA.910523.0001).

SITE C	HARACTERISTICS		YUCCA	MOUNTA	IN PROJECT		
GEOH	YDROLOGY	RI	EFERENC	ICE INFORMATION BASE			
HYDRO	DGEOLOGIC ZONES	CHAPTER 1	SECTION 4	1TEM 4	PAGE 4 of 6		
		VERSION 4	REVISION	RELEASE DA			
Symbol	TABLE 1. HYDROGEC Hydrogeologic Zone Description	DLOGIC ZONES WITHIN Significant Ge Characteris	eologic	Relati	onship of Vertical contal Conductivity		
UO	Includes alluvium, and Tiva Canyon and Yucca Mt. Member of Paint- brush Tufi						
Tpc-TN	Ash-flow, non-welded	few fractures, high pumice content, zeol	itic	K _v ⊳ <k<sub>nc</k<sub>			
Трс-ВТ	Bedded tuff (reworked ash fall)	few fractures, high pumice, bedded, wel sorted sandstone, ze	l- olitic	K, << K,			
Tpt-TM	Ash-flow, moderately welded, non-lithophysal	highly jointed and fra tured, non-zeolitic	c-	K,>>K K,=K,	in fractures in matrix		
Tpt-TD	Ash-flow, densely welded, non-lithophysal	moderately jointed, h brecciated and fractu vapor-phase minerali non-zeolitic	rēd,	K _v ≫K _h			
Tpt-TDL	Ash-flow, densely welded, lithophysal	limited to no jointing fracturing, abundant lithophysae, zeolitic	or	K _v =K _b			
Tpt-TML	Ash-flow, moderately welded, lithophysal	highly jointed and fractured, zeolitic	c-	$K_v > K_h$ in fractures $K_v = K_h$ in matrix			
Tpt-TM	Ash-flow, moderately welded, non-lithophysal	jointed and fractured, non-zeolitic		K, >> K K, = K,	, in fractures in matrix		
Tpt-TV	Ash-flow, densely welded, vitrophyre	non-zeolitic, highly jointed and fractured		K,>K,			
Tpt-TNV	Ash-flow, non-welded, vitric	few fractures, non- to partially welded, non- zeolitic		K _v = K _h			
Tpt-TN	Ash-flow, non-welded	few fractures, zeolitic		K,=K,			
Tcb-TN	Ash-flow, non-welded	few fractures, zeolitic		K,=K,			
Tcb-BT	Bedded tuff (reworked ash-fall)	few fractures, high pu content, bedded, well sorted sandstone, zeo	-	К, << К,			
Tcpp-TN	Ash-flow, non-welded	few fractures, zeolitic		$K_{v} = K_{h}$			
Tcpp-TP	Ash-flow, partially to	slightly fractured, non					

۰ ، ، ،

.

Adapted from SNL (1991), Table 3-1.
 K: vertical component of hydraulic conductivity.
 K_h: horizontal component of hydraulic conductivity.

-

CHAPTER	SITE CHARACTERISTICS	YUCCA MOUNTAIN PROJECT				
SECTION	GEOHYDROLOGY	RI	EFEREN	CE INFO	RMA	TION BASE
ITEM	HYDROGEOLOGIC ZONES	CHAPTER 1	SECTION 4	ITEM 4	PAGE	5 of 6
		VERSION	REVISION	RELEASE DA		RIB CONTROL NUMBER

•

, .

.

TABLE 2. HYDROGEOLOGIC PROPERTIES AT G-4 AND UE-25A #1 *

					nuchten		•		ation at
Unit	Porosity (Tota!)	Bulk Density (g/cm ³)	K _s d (Total) (m/sec)	Coeff alpha (m ⁻¹)	icients beta	S,•	Grain Density (g/cm ³)	G-4 (m)	e of Unit UE-25a #1 (m)
	¢	c	¢	c	C	c	c	1219.2	1137.7
Tpc-TN	0.50	1.14	2.0 x 10 ⁻¹¹	0.004	1.5	0.15	c	1212.2	1127.1
Tpc-BT	0.22	1.95	2.4 x 10 ⁻⁶	0.016	10.0	0.10	2.45	1200.6	1116.4
Tpt-TM	0.10	2.30	2.0 x 10-11	0.005	1.9	0.10	2.57	1183.2	1093.6
Tpt-TD	0.06	2.45	5.0 x 10 ⁻¹²	0.004	2.0	0.15	¢	1148.2	1073.7
Tpt-TDL	0.06	2.40	2.0 x 10-12	0.003	1.8	0.10	¢	1082.9	1006.4
Tpt-TML	0.12	2.25	2.0 x 10-11	0.010	1.7	0.05	2.50	930.2	871.1
Tpt-TM	0.10	2.30	2.0 x 10-11	0.005	1.9	0.10	2.53	868.6	810.7
Tpt-TV	0.04	2.25	3.0 x 10-12	0.002	1.7	0.00	2.38	860.1	797.3
Tpt-TNV	0.20	1.90	2.4 x 10 ⁻⁶	0.030	2.2	0.15	¢	850.9	787.2
Tpt-TN	Q.36	1.54	3.0 x 10 ⁻¹²	0.020	1.2	0.00	2.35	841.2	784.2
Tpt-BT	0.23	1.79	2.0 x 10 ⁻¹¹	0.002	1.6	0.10	2.32	840.6	783.3
Tcb-TN	0.36	1.54	1.0 x 10 ⁻¹¹	0.004	1.5	0.15	2.28	836.0	776.9
Tcb-BT	0.23	1.79	2.0 x 10 ⁻¹¹	0.002	1.6	0.10	2.32	835.4	775.9
Tcb-TN	0.36	1.54	1.0 x 10 ⁻¹¹	0.004	1.5	0.15	2.28	829.0	743.9
Tcb-BT	0.23	1.79	2.0 x 10-11	0.002	1.6	0.10	2.32	826.3	739.1
Tcb-TN	0.36	1.54	1.0 x 10 ⁻¹¹	0.004	1.5	0.15	2.28	794.6	716.5
Tcb-BT	0.23	1.79	2.0 x 10-11	0.002	1.6	0.10	2.32	793.7	715.6
Tcb-TN	0.36	1.54	1.0 x 10 ⁻¹¹	0.004	1.5	0.15	2.28	750.4	653.4
Tcb-BT	0.23	1.79	2.0 x 10-11	0.002	1.6	0.10	2.32	733.3	639.4
Topp-TN	0.28	1.60	5.0 x 10 ⁻¹²	0.001	3.0	0.20	2.33	730.6	630.3
Tcpp-TN	0.28	1.60	1.0 x 10 ⁻¹¹	0.004	1.6	0.15	2.33	721.4	604.4
Tcpp-TP	0.25	1.90	5.0 x 10 ⁻⁸	0.010	2.7	0.05	2.59	660.5	584.9

TABLE 3. HYDROGEOLOGIC PROPERTIES AT G-1 AND H-1 •

	TABLE	3. HTDRUGE		roren	ILS AT G		G-1	H-1
c	¢	с	¢	c	c	¢	1280.2	1241.8
0.50	1.14	2.0 x 10 ⁻¹¹	0.004	1.50	0.15	c	1264.5	1225.1
				10.00	0.10	2.45	1253.8	1217.8
		2.0 x 10 ⁻¹¹		1.90	0.10	2.57	1243.2	1207.1
		5.0 x 10 ⁻¹²			0.15	c	1191.9	1167.2
		20 x 10 ⁻¹²			0.00	c	1084.7	1048.6
		2.0 x 10-11			0.00	2.50	95 9.7	923.7
		2.0 x 10 ⁻¹¹			0.00	2.53	\$33.2	895.9
		40x 10-11			0.00	2.38	916.4	8 83.7
		3.0 x 10 ⁻¹⁰			0.20	c	900.6	852.6
		3 0 x 10-12			0.00	2.35	897.8	850.5
		7.0 x 10 ⁻¹²			0.06	c	891.1	843.8
		2 0 x 10 ⁻¹¹				2.28	856.4	809.1
							855.8	808.5
		2 0 x 10 ⁻¹¹					850.9	803.6
		7 0 x 10 ⁻¹²				2.32	850.2	802.9
		2 0 x 10 ⁻¹¹				2.28	846.9	799.6
		7.0 x 10 ⁻¹²					846.6	799.3
		2 0 x 10 ⁻¹¹					796.3	749.0
		7.0 x 10 ⁻¹²					776.2	736.8
		4.0 x 10 ⁻¹¹					767.7	729.8
		2 0 x 10 ⁻¹¹					746.3	693.2
					0.05	2.59	715.9	601.2
	c 0.50 0.22 0.10 0.06 0.18 0.12 0.06 0.14 0.33 0.36 0.24 0.36 0.24 0.36 0.24 0.36 0.24 0.36 0.24 0.36 0.24 0.36 0.24 0.36 0.24 0.36 0.22	c c 0.50 1.14 0.22 1.95 0.10 2.30 0.06 2.45 0.18 2.06 0.12 2.23 0.06 2.30 0.04 2.32 0.33 1.59 0.36 1.57 0.24 2.00 0.36 1.57 0.24 2.00 0.36 1.57 0.24 2.00 0.36 1.57 0.24 2.00 0.36 1.57 0.24 2.00 0.36 1.57 0.24 2.00 0.36 1.57 0.24 2.00 0.36 1.57 0.24 2.00 0.36 1.57 0.24 2.00 0.36 1.57 0.24 2.00 0.28 1.60	c c c c 0.50 1.14 2.0×10^{-11} 0.22 1.95 2.4×10^{-6} 0.10 2.30 2.0×10^{-11} 0.06 2.45 5.0×10^{-12} 0.18 2.06×10^{-11} 0.16 0.12 2.23 2.0×10^{-11} 0.06 $2.30 \times 2.0 \times 10^{-11}$ $0.06 \times 2.30 \times 10^{-11}$ 0.06 $2.30 \times 2.0 \times 10^{-11}$ 0.06×10^{-11} 0.33 1.59 3.0×10^{-10} 0.36 1.57 3.0×10^{-12} 0.36 1.57 2.0×10^{-11} 0.36 1.57	c c c c c c 0.50 1.14 2.0×10^{-11} 0.004 0.004 0.22 1.95 2.4×10^{-6} 0.016 0.10 2.30 2.0×10^{-11} 0.005 0.06 2.45 5.0×10^{-12} 0.004 0.18 2.06 2.0×10^{-11} 0.005 0.12 2.23 2.0×10^{-11} 0.005 0.06 2.30 2.0×10^{-11} 0.005 0.06 2.30 2.0×10^{-11} 0.005 0.04 2.32 4.0×10^{-11} 0.005 0.33 1.59 3.0×10^{-11} 0.005 0.36 1.57 3.0×10^{-12} 0.003 0.36 1.57 2.0×10^{-11} 0.005 0.24 2.00 7.0×10^{-12} 0.003 0.36 1.57 2.0×10^{-11} 0.005 0.24 2.00 7.0×10^{-12} 0.003	c c <thc< th=""> c c c</thc<>	cccccccc 0.50 1.14 2.0×10^{-11} 0.004 1.50 0.15 0.22 1.95 2.4×10^{-6} 0.016 10.00 0.10 0.10 2.30 2.0×10^{-11} 0.005 1.90 0.10 0.06 2.45 5.0×10^{-12} 0.004 2.00 0.15 0.18 2.06 2.0×10^{-12} 0.005 1.52 0.00 0.12 2.23 2.0×10^{-11} 0.005 1.52 0.00 0.06 2.30 2.0×10^{-11} 0.005 1.48 0.00 0.06 2.30 2.0×10^{-11} 0.005 1.48 0.00 0.06 2.30 2.0×10^{-11} 0.005 1.48 0.00 0.04 2.32 4.0×10^{-11} 0.005 1.48 0.00 0.33 1.59 3.0×10^{-12} 0.020 4.00 0.20 0.36 1.57 3.0×10^{-12} 0.003 1.65 0.06 0.36 1.57 2.0×10^{-11} 0.005 1.37 0.00 0.24 2.00 7.0×10^{-12} 0.003 1.65 0.06 0.36 1.57 2.0×10^{-11} 0.005 1.37 0.00 0.24 2.00 7.0×10^{-12} 0.003 1.65 0.06 0.36 1.57 2.0×10^{-11} 0.005 1.37 0.00 0.24 2.00 7.0×10^{-12} 0.003 <td< td=""><td>c c</td><td>cccccccccccc1280.20.501.142.0 x 10⁻¹¹0.0041.500.15c1264.50.221.952.4 x 10⁻⁶0.01610.000.102.451253.80.102.302.0 x 10⁻¹¹0.0051.900.102.571243.20.062.455.0 x 10⁻¹²0.0042.000.15c1191.90.182.062.0 x 10⁻¹¹0.0051.520.00c1084.70.122.232.0 x 10⁻¹¹0.0051.490.002.53933.20.042.324.0 x 10⁻¹¹0.0051.460.002.38916.40.331.593.0 x 10⁻¹²0.0204.000.20c900.60.361.573.0 x 10⁻¹²0.0031.650.06c891.10.361.572.0 x 10⁻¹¹0.0051.370.002.28856.40.242.007.0 x 10⁻¹²0.0031.650.062.32855.80.361.572.0 x 10⁻¹¹0.0051.370.002.28850.90.242.007.0 x 10⁻¹²0.0031.650.062.32850.20.361.572.0 x 10⁻¹¹0.0051.370.002.28850.90.242.007.0 x 10⁻¹²0.0031.650.062.32856.40.361.572.0 x 10</td></td<>	c c	cccccccccccc1280.20.501.142.0 x 10 ⁻¹¹ 0.0041.500.15c1264.50.221.952.4 x 10 ⁻⁶ 0.01610.000.102.451253.80.102.302.0 x 10 ⁻¹¹ 0.0051.900.102.571243.20.062.455.0 x 10 ⁻¹² 0.0042.000.15c1191.90.182.062.0 x 10 ⁻¹¹ 0.0051.520.00c1084.70.122.232.0 x 10 ⁻¹¹ 0.0051.490.002.53933.20.042.324.0 x 10 ⁻¹¹ 0.0051.460.002.38916.40.331.593.0 x 10 ⁻¹² 0.0204.000.20c900.60.361.573.0 x 10 ⁻¹² 0.0031.650.06c891.10.361.572.0 x 10 ⁻¹¹ 0.0051.370.002.28856.40.242.007.0 x 10 ⁻¹² 0.0031.650.062.32855.80.361.572.0 x 10 ⁻¹¹ 0.0051.370.002.28850.90.242.007.0 x 10 ⁻¹² 0.0031.650.062.32850.20.361.572.0 x 10 ⁻¹¹ 0.0051.370.002.28850.90.242.007.0 x 10 ⁻¹² 0.0031.650.062.32856.40.361.572.0 x 10

^a Adapted from SNL (1991), Tables 3-3 and 3-2. ^b Data for this interval are generally sparse and are not tabulated. ^c No data available. ^d K_s: saturated hydraulic conductivity. ^e S_r: residual saturation.

SITE CI	HARACTERIST	TICS			YUCCA	MOUNTAI	N PROJEC	T
GEOHY	DROLOGY			RE	EFERENC	E INFOR	MATION B.	ASE
		ONES		CHAPTER	SECTION		PAGE	
HTDRU	IGEOLOGIC Z	UNES		1 VERSION 4	4 REVISION 0	4 RELEASE DATE 04/13/92		of 6 IOL NUME CR70
	TARI	E 4. HYDROGE(J		l	
Unit	K _{1.s} c		Frequency		Porosit		K _{t.b} ¢	
	(m/s)	(μm)	(#/m ³)		(volume fra	•	(m/s)	
	440-4		* 		0.0	<u></u>	10, 10-1	
Tpt-TM	4 x 10 ⁻⁵	6	5		3.0 x 10		1.2 x 10-	
Tpt-TD	4 x 10 ⁻⁵	6	5 3		3.0 x 10		1.2 x 10 ⁻ ● 7.2 x 10 ⁻¹⁰	
Tpt-TDL	4 x 10 ⁻⁵	6			1.8 x 10			
Tot-TML	4 x 10 ⁻⁵	6	5		3.0 x 10		1.2 x 10-	
Tpt-TM	4 x 10 ⁻⁵	6	5		3.0 x 10		1.2 x 10-*	
Tpt-TV	4 x 10-4	20	10 3		3.0 x 10		8.0 x 10-•	
Tpt-TNV	4 x 10 ⁻⁴	22			6.6 x 10		2.6 x 10-4	
Tpt-TN	8 x 10-4	30	3 3		9.0 x 10 1.8 x 10		7.2 x 10 ⁻ ⁴ 5.4 x 10 ⁻¹⁰	
Tpt-BT	3 x 10-5	6	3		1.8 X IU	F•	5.4 X 10-10	
Tcb-TD	3 x 10-5	6	3		1.8 x 10	- s	5.4 x 10 ⁻¹⁰	
Tcb-BT	3 x 10-5	6	3		1.8 x 10	⊢ \$	5.4 x 10 ⁻¹⁰	
Tcb-TN	3 x 10-s	6	3		1.8 x 10	⊢s	5.4 x 10 ⁻¹⁰	
Tcb-BT	3 x 10-5	6	3		1.8 x 10	⊢s	5.4 x 10 ⁻¹⁰	
Tcb-TN	3 x 10-5	6	3		1.8 x 10	-s	5.4 x 10 ⁻¹⁰	
Tcb-BT	3 x 10-5	6	3		1.8 x 10	rs.	5.4 x 10 ⁻¹⁰	
Tcb-TN	3 x 10-5	6	3		1.8 x 10	-5	5.4 x 10 ⁻¹⁰	
Tcb-BT	3 x 10-5	6	3		1.8 x 10	-5	5.4 x 10 ⁻¹⁰	
Tcpp-TN	3 x 10-5	6	3		1.8 x 10	-5	5.4 x 10 ⁻¹⁰	
Tcpp-TN	3 x 10-5	6	3		1.8 x 10	-5	5.4 x 10 ⁻¹⁰	
Тсрр-ТР	4 x 10-4	20	3		6.0 x 10	-5	2.4 x 10⁻•	

.

•

. ٠

-.

.

Adapted from SNL (1991), Table 3-7.
Van Genuchten coefficients (all fractures): alpha = 1.28 m⁻¹; beta = 4.23; S_c = 0.04.
K_{r,s}: intrinsic fracture hydraulic conductivity.
K_{r,b}: bulk fracture hydraulic conductivity.

	\smile
OFFICE OF CIVILIAN RADIOACTIVE WASTE MANAGEM U.S. DEPARTMENT OF ENERGY WASHINGTON, D.C.	
CORRECTIVE ACTION REQUEST (Continuation Page)	
 Corrective Action Amended Response for CAR # YM-9 	2-073
A. <u>Remedial Action</u> - Make corrections to data if necessary	
B. <u>Investigative Action</u> - Perform technical review of data items 1.1.2 and 1.1.4 of RIB document	
C. <u>Root Cause Determination</u> - N/A	
D. <u>Corrective Action to Preclude Recurrence</u> - Investigate AP 5.3Q for procedural clarity	
2) <u>Completion Date</u> - December 15, 1992 3) <u>Responsible Manager</u> - <u>Chulla Mithubury</u> Date <u>30 ccr 9</u> 2 Att att a car / 22 - RSF D: AMS-754	
Sta dtd 10/30/92 - RSED: AMS- 754	

•

.

.

.