CANDU Fuel Behavior in Limited and Severe Core Damage Accidents

Lawrence Dickson, Fuel Modeling Section Leader Fuel and Fuel Channel Safety (F&FCS) Branch Presented to US Nuclear Regulatory Commission Washington DC May 6-7, 2003

Outline

- ACR Fuel Design
- Fuel Behavior in Limited and Severe Core Damage Accidents
- Experimental Database
- Computer Codes

ACR Fuel Design

- UO₂ fuel pellets clad with Zircaloy-4
- Pellet diameters:
 - Center / inner elements: 12.58 mm
 - Intermediate / outer elements: 10.65 mm
- Enrichment:
 - Center element: 0.71 wt% ²³⁵U (Dy-doped)
 - Inner / intermediate / outer element: 2.0 wt% ²³⁵U
- Fuel cladding thickness: ~0.4 mm
- Bundle length: ~0.5 m
- Fuel elements in bundle: 43

CANFLEX Fuel Design

CANFLEX Fuel Design

ACR Fuel Channel Details

Fuel is uranium oxide clad with Zircaloy-4

Moderator is unpressurized and below 100°C

ACR Fuel Channel

ACR Fuel Operating Conditions

- Thin-walled cladding collapsed onto fuel pellets during normal operation
- Fuel element linear power ratings in high power bundle (kW/m)
 - Center: 15, inner: 40, intermediate: 35, outer: 47
- Maximum burnup \leq 30 MWd/kgU
- Power ratings and burnups within current CANDU and LWR operating experience range
- On-power fueling
- 2-Bundle shifts

ACR Outer Element Power and Burnup in 8.0 MW Channel

Outline

- ACR Fuel Design
- Fuel Behavior in Limited and Severe Core Damage Accidents
- Experimental Database
- Computer Codes

Fuel Behavior in Limited and Severe Core Damage Accidents

- Temperature increases due to reduced cooling, stored energy and decay power
- Fuel cladding balloons due to difference between internal gas pressure and coolant pressure
 - Localized due to small free volume
- Fuel cladding failure by various mechanisms
 - Over-strain, oxygen embrittlement, etc.
- Zircaloy fuel cladding oxidized by steam, generating H₂
- Fuel thermal cracking and mechanical relocation
- Fuel oxidized by steam ingress into fuel element
- Zircaloy/UO₂ interaction and dissolution

Fuel Behavior Phenomena (1)

- Fission and Decay Heating
- Diffusion of Heat in Fuel
- Fuel-to-Cladding Heat Transfer
- Fuel-to-End Cap Heat Transfer
- Fission Gas Release to Gap and Internal Pressurization
- Cladding Deformation
- Cladding Failure
- Fuel Deformation

Fuel Behavior Phenomena (2)

- Cladding Oxidation or Hydriding
- Fuel Oxidation or Reduction
- Fuel or Cladding Melting and Relocation
- Bundle Mechanical Deformation
- Cladding-to-Coolant and Coolant-to-Pressure Tube Heat Transfer
- Element-to-Pressure Tube Radiative Heat Transfer

Outline

- ACR Fuel Design
- Fuel Behavior in Limited and Severe Core Damage Accidents
- Experimental Database
- Computer Codes

Experimental Database (1)

- Laboratory separate-effects tests
 - Fuel cladding ballooning tests
 - Cladding oxidation tests
 - UO₂ Zircaloy interaction and dissolution tests
 - Cladding embrittlement tests
- In-reactor tests under normal operating conditions
 - Fuel-centerline temperature measurements
 - Fuel rod internal gas pressure measurements
 - Defected fuel rod behavior tests

Experimental Database (2)

- In-reactor tests under accident conditions
 - Canadian in-reactor blowdown tests (X-2)
 - Canadian severe-fuel-damage tests (BTF)
 - International severe accident tests (PBF SFD, FLHT, Phebus)

UO₂ – Zircaloy Dissolution Tests

- Dissolution of UO₂ in molten Zircaloy measured
 - Temperatures: 2000 to 2500°C
 - Zircaloy and Zircaloy containing 25 at% oxygen

UO₂ – Zircaloy Dissolution Tests

Pg 18

UO₂ – Zircaloy Dissolution Tests

- UO₂ dissolves in molten Zircaloy and oxygenated Zircaloy within a few minutes at temperatures of 2000 to 2500°C
- No subsequent increase in uranium content of the melt
- Higher solubilities are observed at higher temperatures

Cladding Embrittlement Tests

- Tests performed to develop failure criteria for CANDU fuel cladding degraded by oxidation and subjected to thermal-quench loads
- Fuel cladding oxidized in steam at temperatures between 1250 and 1800 K and quenched with water

Cladding Embrittlement Tests

Pg 21

Cladding Embrittlement Tests

- Results support Sawatzky's criterion
 - Cladding may fail if less than half the cladding thickness has an oxygen concentration less than 0.7 wt%

Blowdown Test Facility

Research Program Goals

- Provide data from integral in-reactor experiments for use in the validation of computer codes used for safety analyses and licensing of CANDU reactors
- Verify our understanding of CANDU fuel behavior and FP release & transport under high temperature conditions representative of severe-fuel-damage accident scenarios

BTF Test Section

Summary of BTF Test Conditions

Parameter	BTF-107 Test	BTF-104 Test	BTF-105A Test	BTF-105B Test
Fuel elements	1 pre- irradiated, 2 fresh	1 pre-irradiated	1 fresh	1 pre-irradiated
Pre-transient cooling	Pressurized water	Saturated steam	Saturated steam	Saturated steam
Maximum fuel temperature (K)	≥ 2770 (peak)	~ 2100 (volume- average)	~ 2100 (volume- average)	~ 2100 (volume- average)
Transient duration (s)	~ 70	~ 2100	~ 2900	~ 4200
Time at high temperature after fuel failure (s)	~ 20	~ 1500	< 60	~ 2400

BTF-107 Fuel Assembly

BTF-107 Cladding Temperatures

BTF-107 Post-Test ¹⁴⁰La Gamma-Scan

BTF-107 Post-Irradiation Examination (PIE)

BTF-107 PIE

BTF-104 Fuel Assembly

BTF-104 Reactor Power

BTF-104 TRANSIENT: RADIATION NRU NEUTRON LEVEL (RRNL)

BTF-104 Coolant Pressure

BTF-104 TRANSIENT: E-12 LOOP INLET & OUTLET PRESSURES (PIE12, POE12)

BTF-104 Fuel Cladding Temperature

BTF-104 TRANSIENT: FUEL SHEATH TEMPERATURES

BTF-104 PIE, Elevation 252 mm

BTF-104 PIE, Elevation 36 mm

BTF-105A Objectives

- Test instrumentation and procedures planned for use in BTF-105B
- Obtain data on the relationship between fuel-centerline and cladding temperatures under transient conditions with steam cooling

Thermocouples & Flux Detectors

Pg 39

Thermocouple Clamp

10 mm

BTF-105A Fuel Centerline Temperatures

BTF-105A Fuel Cladding Temperatures

BTF-105A PIE, Elevation ~400 mm

10 mm

BTF-105A PIE, Elevation ~250 mm

10 mm

BTF-105B Objective

- Measure fission product release under high temperature conditions
 - fuel-averaged temperature target of 1800-2000°C
 - try to preserve element geometry to measure retained fission products and fuel performance
 - compromise resulted in a target fuel-averaged temperature about 1800°C for 15 minutes

Neutron Flux, Cladding Temperature

¹³¹I, ¹³⁷Cs Along Fuel Element

BTF-105B PIE, Elevation 373 mm

BTF-105B PIE, Elevation 247 mm

BTF-105B PIE, Elevation 105 mm

10 mm

10 mm

BTF-105B PIE, Elevation 69 mm

BTF-105B PIE, Elevation 20 mm

10 mm

BTF Program Conclusions

- Data obtained for validation of CANDU fuel behavior codes under severe-fuel-damage accident conditions
- Post-test simulations performed using CANDU safety analysis computer codes (CATHENA, ELOCA, SOURCE and SOPHAEROS)
- No new phenomena or phenomena interactions identified

Outline

- ACR Fuel Design
- Fuel Behavior in Limited and Severe Core Damage Accidents
- Experimental Database
- Computer Codes

ELOCA-IST 2.1

- ELOCA-IST models the thermo-mechanical behavior of the fuel and fuel cladding under the transient conditions of an accident
- The model was first developed in the mid 1970s and has under gone continuous development since this time
- The model was chosen as part of the Industry Standard Tool Set (IST) in 1998
- The current version, ELOCA-IST 2.1, completed validation in 2001 and was released for use in 2002

Phenomena Modeled

- Expansion, contraction, and melting of the fuel
- Variations in the element internal gas pressure
- Deformation of the cladding
- Changes in the fuel/cladding heat transfer
- Zircaloy/coolant chemical reaction (oxidation)
- Cladding failure by over strain, oxidation, and beryllium-assisted cracking

Key Output Parameters

- ELOCA-IST calculates:
 - Fuel temperature
 - Cladding temperature
 - Internal gas pressure
 - Cladding strain
 - Axial and radial gaps (or contact pressure) between the fuel and the cladding
 - Time of cladding failure (if strain at failure is specified)
 - Oxide layer thickness on the outside of the cladding

Boundary Conditions

- The initial conditions required by ELOCA-IST are supplied by ELESTRES-IST and include:
 - the geometry and physical condition of the fuel and cladding
 - the initial radial profile of the heat generation rate of the fuel
- The time dependent conditions are:
 - the coolant temperature
 - the coolant pressure
 - the cladding-to-coolant heat transfer coefficient
 - the relative power (i.e. expressed as a fraction of the initial power)

Solution Method

- The ELOCA-IST thermal calculation allows for up to 100 radial annuli within the fuel pin and 20 axial segments
- The transient temperature distribution is calculated by an implicit finite-difference scheme
- The stress within the cladding is calculated from the strains imposed by the fuel in both the radial and axial directions
- The cladding stress model allows for anisotropic material properties, Zircaloy phase changes, and relaxation due to creep
- Cladding oxidation is calculated using the mechanistic finite element model FROM_SFD

Intended Uses of ELOCA-IST 2.1

- Large Break Loss of Coolant Accident
- Small Break Loss of Coolant Accident
- Secondary coolant failures
- Fuel handling accidents
- Loss of regulation accidents
- Auxiliary system failures
- Loss of Flow Accidents
- LOCA combined with failure of Emergency Core
 Coolant

Validation of ELOCA-IST

- The following 10 phenomena from the Fuel and Fuel Channel Validation Matrix have been identified as relevant to ELOCA-IST
 - Fission and Decay Heating
 - Heat Diffusivity in Fuel
 - Fuel-to- Cladding Heat Transfer
 - Fuel-to-End Cap Heat Transfer
 - Fission Gas Release to Gap and Internal Pressurization
 - Cladding Deformation
 - Cladding Failure
 - Fuel Cladding Deformation
 - Cladding Oxidation
 - Fuel and Cladding Melting

Validation Exercises

Validation exercises have been conducted against:

- Cladding Oxidation Experiments
- Cladding Ballooning Experiments
- In-reactor Experiments on Fuel with CANDU type
 Geometry
- In-reactor Experiments on Fuel with Non-CANDU type
 Geometry
- Semi-Analytical Solution to the Radial Heat Distribution in the Fuel

Cladding Oxidation Experiments

Validation of the FROM_SFD mechanistic oxidation model

- Validation against ~500 individual tests
- In general the code performed well
 - Exhibited a positive bias of < 10% when calculating oxide layer thickness
 - Exhibited a positive bias of < 24% when calculating the thickness of the oxygen-stabilized alpha layer

Cladding Ballooning Experiments

- Validation conducted against ~ 190 cladding ballooning tests
- Comparisons were made against predictions of failure temperature
- For non-oxidizing conditions: calculated failure temperature exhibited a bias of –21 K with an uncertainty of ±30 K
- For oxidizing conditions (steam): the predicted failure temperatures were up to 130 K lower than measured (at 1500 K)
- Use of the oxide strengthening model apparently improved the agreement for oxidizing conditions

Difference Between ELOCA Calculated and Observed Failure Temperatures for All Samples of As-Received Sheath Material in Steam as a Function of Observed Failure Temperature.

In-Reactor Experiments

Validation against integrated in-reactor experiments included:

- Eight Experiments for CANDU-type fuel:
 - FIO-138: High-temperature transient in NRX
 - BTF-107 Loss of coolant test from full reactor power
 - BTF-104 Blowdown of Zircaloy-clad fuel in steam
 - FIO-142 BTF-105 Normal Operating Conditions Pre-Test
 - FIO-131 LOCA transient fresh Zircaloy-clad fuel
 - FIO-130 LOCA transient irradiated Zircaloy-clad fuel
 - CANDU-PBF test at the Power Burst Facility (PBF), Idaho National Engineering Labs (INEL)
 - BTF-105A Blowdown test on Zircaloy-clad fresh fuel

In-reactor Experiments (cont.)

- Five experiments on non-CANDU type fuel:
 - SFD test 1-1, conducted at PBF, INEL
 - SFD test 1-4, conducted at PBF, INEL
 - SFD-ST Severe fuel damage scoping test conducted at PBF, INEL, and
 - PHEBUS FP FPT0 and FPT1 Tests at IPSN, France
 - Russian IGR fuel power-pulse tests

BTF-105A Fuel Centerline Temperature

ELOCA Validation – Russian IGR Test H16T Fuel Centerline Temperature

In-reactor Tests Conclusions

- Comparison against fuel temperatures
 - The ELOCA code performed within the estimated uncertainty of the experiments
- Comparison against internal gas pressure
 - Within experimental uncertainty, only a small number of measurements
- Comparison against cladding strain
 - Within experimental uncertainty, only one in-reactor experiment

Analytical Solution

- ELOCA-IST 2.1 was compared against an analytical solution for the transient radial heat distribution in a composite cylinder (i.e., fuel and cladding)
- There was a close match (<0.5 K fuel centerline temperature difference) between the ELOCA-IST calculation and the analytical solution

Summary

- Good technology base for understanding of CANDU fuel behavior in accidents
 - Phenomena
 - Experimental database
 - Computer codes
- Extension to ACR is straightforward

