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ACR Fuel Design

e UO, fuel pellets clad with Zircaloy-4

e Pellet diameters:
— Center / inner elements: 12.58 mm
— Intermediate / outer elements: 10.65 mm

e Enrichment:
— Center element: 0.71 wt% 25U (Dy-doped)
— Inner | intermediate / outer element: 2.0 wt% 233U

e Fuel cladding thickness: ~0.4 mm
e Bundle length: ~0.5m
e Fuel elements in bundle: 43
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CANFLEX Fuel Design
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ACR Fuel Channel Details

Heavy Water Moderator

/Calandria Tube I Pressure Tube

\ Annulus Gas Fuel Light Water Coolant \ Annulus Spacer

Fuel is uranium oxide clad with Zircaloy-4

Moderator is unpressurized and below 100°C
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ACR Fuel Channel
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ACR Fuel Operating Conditions

e Thin-walled cladding collapsed onto fuel pellets during
normal operation

o Fuel element linear power ratings in high power bundle
(kW/m)

— Center: 15, inner: 40, intermediate: 35, outer: 47
e Maximum burnup < 30 MWd/kgU

e Power ratings and burnups within current CANDU and
LWR operating experience range

e On-power fueling
e 2-Bundle shifts
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ACR Outer Element Power and Burnup in 8.0 MW Channel
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&% Fuel Behavior in Limited and Severe
Core Damage Accidents

e Temperature increases due to reduced cooling, stored
energy and decay power

e Fuel cladding balloons due to difference between
internal gas pressure and coolant pressure
— Localized due to small free volume

o Fuel cladding failure by various mechanisms
— Over-strain, oxygen embrittlement, etc.

e Zircaloy fuel cladding oxidized by steam, generating H,
e Fuel thermal cracking and mechanical relocation

e Fuel oxidized by steam ingress into fuel element

e Zircaloy/UQ, interaction and dissolution
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Fuel Behavior Phenomena (1)

e Fission and Decay Heating

e Diffusion of Heat in Fuel

e Fuel-to-Cladding Heat Transfer

e Fuel-to-End Cap Heat Transfer

o Fission Gas Release to Gap and Internal Pressurization
e Cladding Deformation

o Cladding Failure

e Fuel Deformation
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Fuel Behavior Phenomena (2)

Cladding Oxidation or Hydriding

Fuel Oxidation or Reduction

Fuel or Cladding Melting and Relocation
Bundle Mechanical Deformation

Cladding-to-Coolant and Coolant-to-Pressure Tube
Heat Transfer

Element-to-Pressure Tube Radiative Heat Transfer
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Experimental Database (1)

e Laboratory separate-effects tests
— Fuel cladding ballooning tests
— Cladding oxidation tests
— UO, - Zircaloy interaction and dissolution tests
— Cladding embrittlement tests

¢ In-reactor tests under normal operating conditions
— Fuel-centerline temperature measurements
— Fuel rod internal gas pressure measurements
— Defected fuel rod behavior tests
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Experimental Database (2)

e |n-reactor tests under accident conditions
— Canadian in-reactor blowdown tests (X-2)

— Canadian severe-fuel-damage tests (BTF)
— International severe accident tests (PBF SFD, FLHT, Phebus)
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UO, — Zircaloy Dissolution Tests

e Dissolution of UO, in molten Zircaloy measured
— Temperatures: 2000 to 2500°C
— Zircaloy and Zircaloy containing 25 at% oxygen

Pg17



UO, — Zircaloy Dissolution Tests
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UO, — Zircaloy Dissolution Tests

e UO, dissolves in molten Zircaloy and oxygenated
Zircaloy within a few minutes at temperatures of 2000
to 2500°C

e No subsequent increase in uranium content of the melt
e Higher solubilities are observed at higher temperatures
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Cladding Embrittlement Tests

o Tests performed to develop failure criteria for CANDU
fuel cladding degraded by oxidation and subjected to
thermal-quench loads

e Fuel cladding oxidized in steam at temperatures
between 1250 and 1800 K and quenched with water
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Cladding Embrittlement Tests
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Cladding Embrittlement Tests

e Results support Sawatzky’s criterion

— Cladding may fail if less than half the cladding thickness has
an oxygen concentration less than 0.7 wt%
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Blowdown Test Facility

Research Program Goals

— Provide data from integral in-reactor experiments for use in the
validation of computer codes used for safety analyses and
licensing of CANDU reactors

— Verify our understanding of CANDU fuel behavior and FP release
& transport under high temperature conditions representative of
severe-fuel-damage accident scenarios
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BTF Test Section
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Summary of BTF Test Conditions

Parameter BTF-107 Test | BTF-104 Test BTF-105A Test | BTF-105B Test
Fuel elements 1 pre- 1 pre-irradiated | 1 fresh 1 pre-irradiated
irradiated,
2 fresh
Pre-transient Pressurized Saturated steam | Saturated steam | Saturated steam
cooling water
Maximum fuel > 2770 (peak) | ~2100 (volume- |~ 2100 (volume- | ~2100 (volume-
temperature (K) average) average) average)
Transient ~70 ~ 2100 ~ 2900 ~ 4200
duration (s)
Time at high ~ 20 ~ 1500 <60 ~ 2400

temperature after
fuel failure (s)
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BTF-107 Fuel Assembly

Instrument cables
ZrO2 insulation

(21% T.D.) Fuel centerline T/C
Nilcra (ZrO2) inner Non-fuelled Zircaloy
liner (100% T.D.) sheath segment (Ribs)

Rib wall temperature T/C

Sub channel
coolant T/C

Molten metal
penetration detector

0O.D. sheath T/C

I.D. sheath T/C

Pre-irradiated
fuel element

Zircaloy shells

: Zircaloy
/ re-entry tube
/—j—' Stainless steel
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F-107 Post-Irradiation Examination
(PIE)
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BTF-104 Fuel Assembly
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- BTF-104 Fuel Cladding Temperature

BTF-104 TRANSIENT: FUEL SHEATH TEMPERATURES
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BTF-105A Objectives

e Test instrumentation and procedures planned for use
in BTF-105B

o Obtain data on the relationship between fuel-centerline
and cladding temperatures under transient conditions
with steam cooling
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BTF-105B Objective

o Measure fission product release under high
temperature conditions
— fuel-averaged temperature target of 1800-2000°C

— try to preserve element geometry to measure retained fission
products and fuel performance

— compromise resulted in a target fuel-averaged temperature
about 1800°C for 15 minutes
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BTF-105B PIE, Elevation 373 mm

10 mm

Pg 48



Pg 49



ion 105 mm

10 mm

Pg 50



7&:}

Pg 51




Sy

Pg 52



Téf'

BTF Program Conclusions

o Data obtained for validation of CANDU fuel behavior
codes under severe-fuel-damage accident conditions

o Post-test simulations performed using CANDU safety
analysis computer codes (CATHENA, ELOCA, SOURCE
and SOPHAEROS)

e No new phenomena or phenomena interactions
identified
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ELOCA-IST 2.1

ELOCA-IST models the thermo-mechanical behavior of
the fuel and fuel cladding under the transient
conditions of an accident

The model was first developed in the mid 1970s and
has under gone continuous development since this
time

The model was chosen as part of the Industry Standard
Tool Set (IST) in 1998

The current version, ELOCA-IST 2.1, completed
validation in 2001 and was released for use in 2002
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Phenomena Modeled

Expansion, contraction, and melting of the fuel
Variations in the element internal gas pressure
Deformation of the cladding

Changes in the fuel/cladding heat transfer
Zircaloy/coolant chemical reaction (oxidation)

Cladding failure by over strain, oxidation, and
beryllium-assisted cracking
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Key Output Parameters

e ELOCA-IST calculates:

— Fuel temperature

— Cladding temperature
— Internal gas pressure
— Cladding strain

— Axial and radial gaps (or contact pressure) between the fuel
and the cladding

— Time of cladding failure (if strain at failure is specified)
— Oxide layer thickness on the outside of the cladding
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Boundary Conditions

e The initial conditions required by ELOCA-IST are
supplied by ELESTRES-IST and include:
— the geometry and physical condition of the fuel and cladding
— the initial radial profile of the heat generation rate of the fuel

e The time dependent conditions are:
— the coolant temperature
— the coolant pressure
— the cladding-to-coolant heat transfer coefficient

— the relative power (i.e. expressed as a fraction of the initial
power)
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Solution Method

The ELOCA-IST thermal calculation allows for up to 100
radial annuli within the fuel pin and 20 axial segments

The transient temperature distribution is calculated by
an implicit finite-difference scheme

The stress within the cladding is calculated from the
strains imposed by the fuel in both the radial and axial
directions

The cladding stress model allows for anisotropic
material properties, Zircaloy phase changes, and
relaxation due to creep

Cladding oxidation is calculated using the mechanistic
finite element model FROM_SFD
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Intended Uses of ELOCA-IST 2.1

Large Break Loss of Coolant Accident
Small Break Loss of Coolant Accident
Secondary coolant failures

Fuel handling accidents

Loss of regulation accidents
Auxiliary system failures

Loss of Flow Accidents

LOCA combined with failure of Emergency Core
Coolant
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Validation of ELOCA-IST

o The following 10 phenomena from the Fuel and Fuel Channel
Validation Matrix have been identified as relevant to ELOCA-IST

Fission and Decay Heating

Heat Diffusivity in Fuel

Fuel-to- Cladding Heat Transfer

Fuel-to-End Cap Heat Transfer

Fission Gas Release to Gap and Internal Pressurization
Cladding Deformation

Cladding Failure

Fuel Cladding Deformation

Cladding Oxidation

Fuel and Cladding Melting
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Validation Exercises

Validation exercises have been conducted against:

Cladding Oxidation Experiments
Cladding Ballooning Experiments

In-reactor Experiments on Fuel with CANDU type
Geometry

In-reactor Experiments on Fuel with Non-CANDU type
Geometry

Semi-Analytical Solution to the Radial Heat Distribution
in the Fuel
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Cladding Oxidation Experiments

Validation of the FROM_SFD mechanistic oxidation model
e Validation against ~500 individual tests

o |n general the code performed well

— Exhibited a positive bias of < 10% when calculating oxide
layer thickness

— Exhibited a positive bias of < 24% when calculating the
thickness of the oxygen-stabilized alpha layer
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Cladding Ballooning Experiments

Validation conducted against ~ 190 cladding ballooning
tests

Comparisons were made against predictions of failure
temperature

For non-oxidizing conditions: calculated failure
temperature exhibited a bias of —21 K with an
uncertainty of +30 K

For oxidizing conditions (steam): the predicted failure

temperatures were up to 130 K lower than measured (at
1500 K)

Use of the oxide strengthening model apparently
improved the agreement for oxidizing conditions
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In-Reactor Experiments

Validation against integrated in-reactor experiments
included:

o Eight Experiments for CANDU-type fuel:
— FIO-138: High-temperature transient in NRX
— BTF-107 Loss of coolant test from full reactor power
— BTF-104 Blowdown of Zircaloy-clad fuel in steam
— FIO-142 BTF-105 Normal Operating Conditions Pre-Test
— FIO-131 LOCA transient fresh Zircaloy-clad fuel
— FIO-130 LOCA transient irradiated Zircaloy-clad fuel

— CANDU-PBF test at the Power Burst Facility (PBF), Idaho
National Engineering Labs (INEL)

— BTF-105A Blowdown test on Zircaloy-clad fresh fuel
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In-reactor Experiments (cont.)

o Five experiments on non-CANDU type fuel:
— SFD test 1-1, conducted at PBF, INEL
— SFD test 1-4, conducted at PBF, INEL

— SFD-ST Severe fuel damage scoping test conducted at PBF,
INEL, and

— PHEBUS FP FPTO and FPT1 Tests at IPSN, France
— Russian IGR fuel power-pulse tests
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o* In-reactor Tests Conclusions

o Comparison against fuel temperatures

— The ELOCA code performed within the estimated uncertainty
of the experiments

o Comparison against internal gas pressure

— Within experimental uncertainty, only a small number of
measurements

o Comparison against cladding strain

— Within experimental uncertainty, only one in-reactor
experiment
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Analytical Solution

e ELOCA-IST 2.1 was compared against an analytical
solution for the transient radial heat distribution in a

composite cylinder (i.e., fuel and cladding)

e There was a close match (<0.5 K fuel centerline
temperature difference) between the ELOCA-IST
calculation and the analytical solution
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Summary

e Good technology base for understanding of CANDU
fuel behavior in accidents
— Phenomena
— Experimental database
— Computer codes

o Extension to ACR is straightforward
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