www.exeloncorp.com

Exelon Nuclear Limerick Generating Station PO Box 2300 Pottstown, PA 19464 Exelon Nuclear TS 6.9.1.7

April 30, 2003

U. S. Nuclear Regulatory Commission Attn: Document Control Desk Washington, DC 20555

> Limerick Generating Station, Units 1 and 2 Facility Operating License Nos. NPF-39 and NPF-85 NRC Docket Nos. 50-352 and 50-353

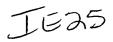
Subject: 2002 Annual Radiological Environmental Operating Report

Dear Sir:

In accordance with the requirements of Section 3.5 of the Limerick Generating Station (LGS), Units 1 and 2 Offsite Dose Calculation Manual (ODCM), this letter submits the 2002 Annual Radiological Environmental Operating Report No. 19. This report provides the 2002 results for the Radiological Environmental Monitoring Program (REMP) as called for in the Offsite Dose Calculation Manual.

In assessing the data collected for the REMP, we have concluded that the operation of LGS, Units 1 and 2 had no adverse impact on the environment. No plant-produced fission or activation products with the exception of Cs-137 and Co-60 were found in any pathway modeled by the REMP. Cesium-137 levels detected in sediment were similar to those found in previous years. Cobalt-60 activity was found in one downstream sediment sample and was the result of routine liquid effluent discharges. The calculated dose to the maximum exposed individual from the sediment pathway was 1.95 E-03 mrem. This dose represented 0.01% of the 10 CFR 20, Appendix I limits.

If you have any questions, please do not hesitate to contact us.


Sincerely,

Vitr.

Robert C. Braun Vice President (acting)

Attachment

cc: H. Miller, Administrator, Region I, USNRC A. Burritt, USNRC Senior Resident Inspector, LGS S. Wall, Senior Project Manager-NRR, USNRC

LIMERICK GENERATING STATION ANNUAL RADIOLOGICAL ENVIRONMENTAL OPERATING REPORT DISTRIBUTION LIST

- R. Braun GML 5-1 (with Attachment)
- B. Hanson GML 5-1 (with Attachment)
- R. Dickinson SSB 2-3 (with Attachment)
- M. Kaminski SSB 2-4 (with Attachment)
- R. Newmaster SSB 2-1 (with Attachment)
- S. Gamble SSB 2-4 (w/o Attachment)
- J. Toro- SMB 1-2 (with Attachment)
- J. Benjamin Cantara (w/o Attachment)
- C. Pardee KSA 3N (w/o Attachment)
- W. Levis KSA 3N (w/o Attachment)
- C. Lewis KSA 3N (w/o Attachment)
- J. Dimmette KSA (w/o Attachment)
- J. Grimes- KSA 3G (w/o Attachment)
- J. Armstrong KSA 3G (w/o Attachment)
- R. A. Kankus KSA 3G (w/o Attachment)
- D. Helker KSA 3G (with Attachment)
- J. Jang USNRC Region 1 (with Attachment)
- R. Janati-Commonwealth of PA (with Attachment)
- D. Dyckman PA DEP BRP Inspector SSB 2-4 (with Attachment)
- S. Focht ANI (with Attachment)
- B. Aptowicz City of Philadelphia Water Department (with Attachment)
- Dr. T. Yohe Phoenixville Water Works (with Attachment)
- A. Wyda Citizens Utility Water Co. (with Attachment)
- R. Jones Pottstown Water Authority (with Attachment)

Docket No 50-352 50-353

LIMERICK GENERATING STATION UNITS 1 and 2

Annual Radiological Environmental Operating Report

Report No.19

1 January Through 31 December 2002

Prepared By

Teledyne Brown Engineering Environmental Services

Nuclear

Limerick Generating Station Sanatoga, PA 19464

April 2003

Table Of Contents

٠

...

I. Summary and Conclusions	1
 Introduction A. Objectives of the REMP B. Implementation of the Objectives 	3
 III. Program Description A. Sample Collection B. Sample Analysis C. Data Interpretation D. Program Exceptions E. Program Changes 	4 6 6 8
 IV. Results and Discussion	9 9 10 11 11 11 12 12 13 13
V. References	15

Appendices

Appendix A	Radiological Environmental Monitoring Report Summary
<u>Tables</u>	·
Table A-1	Radiological Environmental Monitoring Program Annual Summary for the Limerick Generating Station, 2002
Appendix B	Location Designation, Distance & Direction, and Sample Collection & Analytical Methodologies
Tables	
Table B-1:	Location Designation and Identification System for the Limerick Generating Station
Table B-2:	Radiological Environmental Monitoring Program - Sampling Locations, Distance and Direction, Limerick Generating Station, 2002
Table B-3:	Radiological Environmental Monitoring Program - Summary of Sample Collection and Analytical Methods, Limerick Generating Station, 2002
<u>Figures</u>	
Figure B-1:	Environmental Sampling Locations Within One Mile of the Limerick Generating Station, 2002
Figure B-2:	Environmental Sampling Locations Between One and Five Miles from the Limerick Generating Station, 2002
Figure B-3:	Environmental Sampling Locations Greater Than Five Miles from the Limerick Generating Station, 2002
Appendix C	Data Tables and Figures - Primary Laboratory
Tables	
Table C-I.1	Concentrations of Tritium in Surface Water Samples Collected in the Vicinity of Limerick Generating Station, 2002.
Table C-I.2	Concentrations of Gamma Emitters in Surface Water Samples Collected in the Vicinity of Limerick Generating Station, 2002.
Table C-II.1	Concentrations of Gross Beta Insoluble in Drinking Water Samples Collected in the Vicinity of Limerick Generating Station, 2002.

Table C-II.2	Concentrations of Gross Beta Soluble in Drinking Water Samples Collected in the Vicinity of Limerick Generating Station, 2002.
Table C-II.3	Concentrations of Tritium in Drinking Water Samples Collected in the Vicinity of Limerick Generating Station, 2002.
Table C-II.4	Concentrations of Gamma Emitters in Drinking Water Samples, Collected in the Vicinity of Limerick Generating Station, 2002.
Table C-III.1	Concentrations of Gamma Emitters in Predator and Bottom Feeder (Fish) Samples Collected in the Vicinity of Limerick Generating Station, 2002.
Table C-IV.1	Concentrations of Gamma Emitters in Sediment Samples Collected in the Vicinity of Limerick Generating Station, 2002.
Table C-V.1	Concentrations of Gross Beta in Air Particulate Samples Collected in the Vicinity of Limerick Generating Station, 2002.
Table C-V.2	Monthly and Yearly Mean Values of Gross Beta Concentrations (E-3 pCi/cu. meter) in Air Particulate Samples Collected in the Vicinity of Limerick Generating Station, 2002.
Table C-V.3	Concentrations of Gamma Emitters in Air Particulate Samples Collected in the Vicinity of Limerick Generating Station, 2002.
Table C-VI.1	Concentrations of I-131 in Air Iodine Samples Collected in the Vicinity of Limerick Generating Station, 2002.
Table C-VII.1	Concentrations of I-131 in Milk Samples Collected in the Vicinity of Limerick Generating Station, 2002.
Table C-VII.2	Concentrations of Gamma Emitters in Milk Samples Collected in the Vicinity of Limerick Generating Station, 2002.
Table C-VIII.1	Quarterly TLD Results for Limerick Generating Station, 2002. Constant
Table C-VIII.2	Mean Quarterly TLD Results for the Site Boundary, Middle and Control Locations for Limerick Generating Station, 2002.
Table C-VIII.3	Summary of the Ambient Dosimetry Program for Limerick Generating Station, 2002.
	Summary of Collection Dates for Samples Collected in the Vicinity of Limerick Generating Station, 2002.
<u>Figures</u>	a start of
	Mean Monthly Insoluble Gross Beta Concentrations in Drinking Water Samples Collected in the Vicinity of LGS, 1982 - 2002.
A71 -4	Mean Monthly Soluble Gross Beta Concentrations in Drinking Water - Samples Collected in the Vicinity of LGS, 1982 - 2002.
Figure C-3	Mean Annual Cs-137 Concentrations in Fish Samples Collected in the Vicinity of LGS, 1982 - 2002.

* 5

ŧ

Figure C-4	Concentrations of Cs-137 in Sediment Samples Collected in the Vicinity of LGS, 1982 - 2002.
Figure C-5	Mean Monthly Gross Beta Concentrations in Air Particulate Samples Collected in the Vicinity of LGS, 1982 - 2002.
Figure C-6	Mean Weekly Gross Beta Concentrations in Air Particulate Samples Collected in the Vicinity of LGS, 2002.
Figure C-7	Mean Quarterly Ambient Gamma Radiation Levels (TLD) in the Vicinity of LGS, 1985 - 2002.
Appendix D	Data Tables and Figures - QC Laboratory
Tables	
Table D-I.1	Concentrations of Gross Beta Insoluble in Drinking Water Samples Collected in the Vicinity Of Limerick Generating Station, 2002.
Table D-I.2	Concentration of Gross Beta Soluble in Drinking Water Samples Collected in the Vicinity of Limerick Generating Station, 2002.
Table D-I.3	Concentrations of Gamma Emitters in Drinking Water Samples Collected in the Vicinity of Limerick Generating Station, 2002.
Table D-II.1	Concentrations of Gross Beta in Air Particulate Samples Collected in the Vicinity of Limerick Generating Station, 2002.
Table D-II.2	Concentrations of Gamma Emitters in Air Particulate Samples Collected in the Vicinity of Limerick Generating Station, 2002.
Table D-III.1	Concentrations of I-131 by Chemical Separation and Gamma Emitters in Milk Samples Collected in the Vicinity of Limerick Generating Station, 2002.
Table D-IV.1	Summary of Collection Dates for Samples Collected in the Vicinity of Limerick Generating Station, 2002.
Figures	
Figure D-1	Comparison of Monthly Insoluble Gross Beta Concentrations in Drinking Water Samples Split Between ENV and TBE, 2002.
Figure D-2	Comparison of Monthly Soluble Gross Beta Concentrations in Drinking Water Samples Split Between ENV and TBE, 2002.
Figure D-3	Comparison of Weekly Gross Beta Concentrations in Air Particulate Samples Collected from LGS Collocated Locations 11S1 and 11S2, 2002.

	a mer-Laboratory Company		3 - . ?
Tables	7 G. A. H. H.	ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا	
Table E-1	Analytics Environmental		: eck Program
	Teledyne Brown Engine	ering, 2002	, , , , , , , , , , , , , , , , , , ,
Table E-2	DOE EML Environmenta		heck Program
	Teledyne Brown Enginee	ering, 2002	
Table E-3	ERA Environmental Rad		-
	Teledyne Brown Enginee		
Table E-4	· · · · · · · · · · · · · · · · · · ·		ck Program
	Teledyne Brown Enginee ERA Statistical Summary	ering, 2002	*
Table E-5,	•	`	
Table E-6	Environmental, Inc., 2002 DOE's Mixed Analyte Pe		
	Environmental, Inc., 2002		
	ti ti	۰٬ ,	
	• • • •	· ·	•
	- 4 * 21 · · · ·	,	
	Max and a characteristic sector		
	·	- *	
	·	۰ ^۳ ۱	
		•	· · · · · ·
		,	
			*
		, , "	
		, , ,	
		· · · · · · · · · · · · · · · · · · ·	
	с ^{к. к} . , х	• • • •	•
	j .	οQ	0

ţ

1

Appendix E Inter-Laboratory Comparison Program

I. Summary and Conclusions

This report on the Radiological Environmental Monitoring Program conducted for the Limerick Generating Station (LGS) by Exelon covers the period 1 January 2002 through 31 December 2002. During that time period, 1,246 analyses were performed on 960 samples. In assessing all the data gathered for this report and comparing these results with preoperational data, it was concluded that the operation of LGS had no adverse radiological impact on the environment.

Surface and drinking water samples were analyzed for concentrations of tritium and gamma emitting nuclides. Drinking water samples were also analyzed for concentrations of gross beta (soluble and insoluble fractions). No fission or activation products were detected. Gross beta activities detected were consistent with those detected in previous years. Positive tritium activity was detected in 1 of 16 samples. The activity was slightly above the detection level.

Fish (predator and bottom feeder) and sediment samples were analyzed for concentrations of gamma emitting nuclides. No fission or activation products were detected in fish. Sediment samples collected below the discharge had Cesium–137 concentrations consistent with levels observed during the preoperational years. In addition, positive Co–60 activity was found in a sediment sample at a downstream indicator location and was the result of LGS releases. The dose to a teenager's skin through the sediment pathway was calculated as 1.95 E–3 mrem.

Air particulate samples were analyzed for concentrations of gross beta and gamma emitting nuclides. Cosmogenic Be–7 was detected at levels consistent with those detected in previous years. No fission or activation products were detected.

High sensitivity I–131 analyses were performed on weekly air samples. All results were less than the minimum detectable activity.

Cow milk samples were analyzed for concentrations of I–131 and gamma emitting nuclides. All I–131 results were below the minimum detectable activity. Concentrations of naturally occurring K–40 were consistent with those detected in previous years. No fission or activation products were found.

Environmental gamma radiation measurements were performed quarterly using thermoluminescent dosimeters. Levels detected were consistent with those observed in previous years.

Review of the gamma spectroscopy results from the surface water sampler (25S1) located at the Limerick's intake and downstream of the 10CFR20.2002 permitted storage area indicated no offsite radionuclide transport was evident.

۰ ، ۴ ۱ ، ۴ ۱ . ۰ ۱ . ۰ ۱ . ۰

Intentionally left blank

II. Introduction

The Limerick Generating Station (LGS), consisting of two 3458 MWt boiling water reactors owned and operated by Exelon Corporation is located adjacent to the Schuylkill River in Montgomery County, Pennsylvania. Unit No. 1 went critical on 22 December 1984. Unit No. 2 went critical on 11 August 1989. The site is located in Piedmont countryside, transversed by numerous valleys containing small tributaries that feed into the Schuylkill River. On the eastern river bank elevation rises from approximately 110 to 300 feet mean sea level (MSL). On the western river bank elevation rises to approximately 50 feet MSL to the western site boundary.

A Radiological Environmental Monitoring Program (REMP) for LGS was initiated in 1971. Review of the 1971 through 1977 REMP data resulted in the modification of the program to comply with changes in the Environmental Report Operating License Stage (EROL) and the Branch Technical Position Paper (Rev. 1, 1979). The preoperational period for most media covers the periods 1 January 1982 through 21 December 1984 and was summarized in a separate report. This report covers those analyses performed by Teledyne Brown Engineering (TBE), ICN Pharmaceutical, and Environmental Inc. (Midwest Labs) on samples collected during the period 1 January 2002 through 31 December 2002.

On 6 July 1996 a 10CFR20.2002 permit was issued to Limerick for storage of slightly contaminated soils, sediments and sludges obtained from the holding pond, cooling tower and spray pond systems. These materials will decay to background while in storage. Final disposition will be determined at Station decommissioning.

A. Objective of the REMP

The objectives of the REMP are to:

- 1. Provide data on measurable levels of radiation and radioactive materials in the site environs.
- 2. Evaluate the relationship between quantities of radioactive material released from the plant and resultant radiation doses to individuals from principal pathways of exposure.
- B. Implementation of the Objectives

The implementation of the objectives is accomplished by:

1. Identifying significant exposure pathways.

- 2. Establishing baseline radiological data of media within those pathways.
- 3. Continuously monitoring those media before and during Station operation to assess Station radiological effects (if any) on man and the environment.

×

III. Program Description

з.

A. Sample Collection

1. 24 11

. . . .

Samples for the LGS REMP were collected for Exelon Nuclear by Normandeau Associates, RMC Environmental Services Division (RMC). This section describes the general collection methods used by RMC to obtain environmental samples for the LGS REMP in 2002. Sample locations and descriptions can be found in Tables B–1 and B–2, and Figures B–1 through B–3, Appendix B. The collection procedures used by RMC are listed in Table B-3.

Aquatic Environment

The aquatic environment was evaluated by performing radiological analyses on samples of surface water, drinking water, fish, and sediment. Two gallon water samples were collected monthly from continuous samplers located at two surface water locations (13B1 and 24S1) and four drinking water locations (15F4, 15F7, 16C2, and 28F3). One additional surface water location (10F2) was sampled only during the months when water was taken from the Perkiomen Creek for cooling. Control locations were 10F2, 24S1, and 28F3. All samples were collected in new unused plastic bottles, which were rinsed at least twice with source water prior to collection. Fish samples comprising the flesh of two groups,

catfish/bullhead (bottom feeder) and sunfish (predator), were collected semiannually at two locations, 16C5 and 29C1 (control). Sediment samples composed of recently deposited substrate were collected at three locations semiannually, 16B2 and 16C4 and 33A2 (control).

NE DAMARA

Atmospheric Environment

The atmospheric environment was evaluated by performing radiological analyses on samples of air particulate, airborne iodine, and milk. Airborne iodine and particulate samples were collected and analyzed weekly at five locations (10S3, 11S1, 13C1, 14S1, and 22G1). The control location was 22G1. Airborne iodine and particulate samples were obtained at each location, using a vacuum pump with charcoal and glass fiber filters

١

attached. The pumps were run continuously and sampled air at the rate of approximately one cubic foot per minute. The filters were replaced weekly and sent to the laboratory for analysis.

Milk samples were collected biweekly at five locations (9G1, 10F4, 18C1, 19B1, and 21B1) from April through November, and monthly from December through March. Four additional locations (36E1, 22C1, 23F1 and 25C1) were sampled quarterly. Locations 36E1, 9G1 and 23F1 were controls. All samples were collected in new unused two gallon plastic bottles from the bulk tank at each location, preserved with sodium bisulfite, and shipped promptly to the laboratory.

Ambient Gamma Radiation

Direct radiation measurements were made using Panasonic 814 calcium sulfate (CaSO₄) thermoluminescent dosimeters (TLD). The TLD locations were placed on and around the LGS site as follows:

A <u>site boundary ring</u> consisting of 16 locations (36S2, 3S1, 5S1, 7S1, 10S3, 11S1, 13S2, 14S1, 18S2, 21S2, 23S2, 25S2, 26S3, 29S1, 31S1 and 34S2) near and within the site perimeter representing fence post doses (i.e., at locations where the doses will be potentially greater than maximum annual off–site doses) from LGS release.

An <u>intermediate distance ring</u> consisting of 16 locations (36D1, 2E1, 4E1, 7E1, 10E1, 10F3, 13E1, 16F1, 19D1, 20F1, 24D1, 25D1, 28D2, 29E1, 31D2, and 34E1) extending to approximately 5 miles from the site designed to measure possible exposures to close-in population.

The balance of eight locations (5H1, 6C1, 9C1, 13C1, 15D1, 17B1, 20D1 and 31D1) representing control and special interests areas such as population centers, schools, etc.

The specific TLD locations were determined by the following criteria:

- 1. The presence of relatively dense population;
- Site meteorological data taking into account distance and elevation for each of the sixteen-22 1/2 degree sectors around the site, where estimated annual dose from LGS, if any, would be most significant;
- 3. On hills free from local obstructions and within sight of the vents (where practical);

-4. 'a' And near the closest dwelling to the vents in the prevailing

A Construction. 2017 A set of the set of the

Two TLDs –each comprised of three CaSO₄ thermoluminescent phosphors enclosed in plastic– were placed at each location in a PVC conduit located approximately three feet above ground level. The TLDs were exchanged quarterly and sent to ICN for analysis.

10CFR20.2002 Permit Storage Area

- and the second s

1. The results of the surface water sampling program were used to determine if radioactive nuclide transport from the storage area into the Schuylkill River had occurred.

B. Sample Analysis

The WIDD STALL OF CATHON POTER ALTER SHOLD

This section describes the general analytical methodologies used by TBE and Midwest Labs to analyze the environmental samples for radioactivity for the LGS REMP in 2002. The analytical procedures used by the laboratories are listed in Table B-3. Contraction of the LGS and the section of the section of the LGS and the section of the section of the section of the LGS and

. . . .

L 105

1. 10

In order to achieve the stated objectives, the current program includes the following analyses:

1: Concentrations of beta emitters in drinking water, and air

particulates.

to the stand of the state of the state

2. Concentrations of gamma emitters in surface and drinking water, air particulates, milk, fish, and sediment.

(I FI TET) I THIN WAR -

. 3. • Concentrations of tritium in surface and drinking water.

4. Concentrations of I–131 in air and milk.

and all of a series of the series of the

5. Ambient gamma radiation levels at various site environs.

C. Data Interpretation

A SHORE MARTHAN AND AND MARKED AND AND

The radiological and direct radiation data collected prior to LGS becoming operational was used as a baseline with which these operational data were compared. For the purpose of this report, LGS was considered operational at initial criticality. In addition, data were compared to

previous years' operational data for consistency and trending. Several factors were important in the interpretation of the data:

1. Lower Limit of Detection and Minimum Detectable Activity

The lower limit of detection (LLD) was defined as the smallest concentration of radioactive material in a sample that would yield a net count (above background) that would be detected with only a 5% probability of falsely concluding that a blank observation represents a "real" signal. The LLD was intended as a before the fact estimate of a system (including instrumentation, procedure and sample type) and not as an after the fact criteria for the presence of activity. All analyses were designed to achieve the required LGS detection capabilities for environmental sample analysis.

The minimum detectable activity (MDA) is defined above with the exception that the measurement is an after the fact estimate of the presence of activity.

2. Net Activity Calculation and Reporting of Results

Net activity for a sample was calculated by subtracting background activity from the sample activity. Since the REMP measures extremely small changes in radioactivity in the environment, background variations may result in sample activity being lower than the background activity effecting a negative number. An MDA was reported in all cases where positive activity was not detected.

Gamma spectroscopy results for each type of sample were grouped as follows:

For surface and drinking water 11 nuclides, Mn–54, Co–58, Fe– 59, Co–60, Zn–65, Zr–95, Nb–95, Cs–134, Cs–137, Ba–140, and La–140 were reported.

For fish eight nuclides, K-40, Mn–54, Co–58, Fe–59, Co–60, Zn–65, Cs–134, and Cs–137 were reported.

For sediment six nuclides, K-40, Mn–54, Co–58, Co–60, Cs–134, and Cs–137 were reported.

For air particulate six nuclides, Be–7, Mn–54, Co–58, Co–60, Cs– 134, and Cs–137 were reported.

For milk five nuclides, K-40 , Cs–134, Cs–137, Ba–140, and La– 140 were reported.

Means and standard deviations of the results were calculated. The

standard deviations represent the variability of measured results for different samples rather than single analysis uncertainty.

,

- r

D.

الم المحقق المع

Program Exceptions. For 2002 the LGS REMP had a sample recovery rate in excess of 99%. Exceptions are listed below:

1. Surface water composite sampler at location 13B1 (Vincent Dam) was out of service during the following periods:

1 02/18/2002 – 02/25/2002 Freezing a rt. to a 1 04/01/2002 - 04/08/2002 Pump failure

2 05/06/2002 – 05/13/2002 Sample lost due to river flooding 07/08/2002 - 07/15/2002 Low river level

10/11/2002 - 10/14/2002 Sampler pulled due to flooding 12/13/2002 - 12/17/2002 Sampler pulled due to flooding

the second second second second

Grab samples were taken for the composite.

The state of the second second states the states and

Surface water composite sampler at location 10F2 (Perkiomen) 2. * was out of service during the following periods:

101/14/2002 - 01/22/2002 Pump failure the second 04/01/2002 - 04/08/2002 Maintenance power outage 12/02/2002 – 12/30/2002 Pump off until spring

Grab samples were taken for the composite.

Drinking water composite sampler at location 28F3 (Pottstown) was 3. • • • out of service during the following periods:

5 - 05/27/2002 – 06/03/2002 Pump failure :...

09/09/2002 - 09/16/2002 Electrical problem

10/07/2002 - 10/28/2002 Electrical problem

11/25/2002 – 12/02/2002 Clogged intake line

12/02/2002 - 12/16/2002 Electrical problem

Grab samples were taken for the composite

San M St Olar

- The QC Laboratory drinking water sample at location 16C2 was not 4. available for April, 2002, because the commercial carrier lost it during shipping.
- 5. Air particulate and air iodine samples were not available at all stations for the period of 04/15/2002 - 04/22/2002 (week 16), because the commercial carrier lost them during shipping. 1. 1 IT

- Air particulate and air iodine samples were not available for the following periods and locations, due to pump failures: 04/22/2002 – 04/29/2002 (week 17), Location 11S2 11/25/2002 – 12/02/2002 (week 48), Location 14S1.
- 7. Milk sample I-131 results for Location 19B1 collected 11/5/2002 were not reported by the laboratory due to the presence of a nondecaying beta emitter. This laboratory issue was not Limerick specific.

Each program exception was reviewed to understand the causes of the program exception. Sampling and maintenance errors were reviewed with the personnel involved to prevent recurrence. Occasional equipment breakdowns and power outages were unavoidable.

The overall sample recovery rate indicates that the appropriate procedures and equipment are in place to assure reliable program implementation.

E. Program Changes

Beginning the second quarter 2002, Teledyne Brown Engineering Environmental Services became the primary laboratory and Environmental Inc. (Midwest Labs) became the QC laboratory.

Commencing with the second quarter, sodium bisulfite preservative was added to milk samples to prevent protein binding of iodine.

- IV. Results and Discussion
 - A. Aquatic Environment
 - 1. Surface Water

Samples were taken from a continuous sampler at three locations (10F2, 13B1, and 24S1) on a monthly schedule. Of these locations only 13B1 located downstream, could be affected by Limerick's effluent releases. The following analyses were performed.

Tritium

Monthly samples from all locations were composited quarterly and analyzed for tritium activity (Table C–I.1, Appendix C). No tritium activity was detected. The highest MDA calculated was <191 pCi/l.

Gamma Spectrometry

Samples from all locations were analyzed for gamma emitting nuclides (Table C–I.2, Appendix C). All nuclides were less than the MDA.

ł

1. × 1

1. 11. 1

333.

2. Drinking Water

f A pr

Monthly samples were collected from continuous water samplers at four locations (15F4, 15F7, 16C2, and 28F3). Three locations (15F4, 15F7, and 16C2) could be affected by Limerick's effluent

releases. The following analyses were performed:

<u>Gross Beta</u>

Samples from all locations were analyzed for concentrations of gross beta in the insoluble and soluble fractions (Tables C-II.1 and C-II.2, Appendix C). The values ranged from <0.6 to <2.2 pCi/l for the insoluble fraction and from <1.2 to 9.7 pCi/l for the soluble fraction. Concentrations detected in both fractions were consistent with those detected in previous years (Figures C-1 and C-2, Appendix C).

Tritium

Monthly samples from all locations were composited quarterly and analyzed for tritium activity (Table C–II.3, Appendix C). Positive tritium activity was detected in one sample at downstream Location 15F4 at a concentration of 105 pCi/l. The activity detected was slightly above the detection limit.

Gamma Spectrometry

Samples from all locations were analyzed for gamma emitting nuclides (Table C–II.4, Appendix C). All nuclides were less than the MDA.

3. Fish

Fish samples comprised of catfish/bullhead (bottom feeder) and sunfish (predator) were collected at two locations (16C5 and 29C1) semiannually: Location 16C5 could be affected by Limerick's effluent releases. The following analysis was performed:

Gamma Spectrometry

The edible portion of fish samples from both locations was analyzed for gamma emitting nuclides (Table C–III.1, Appendix C). Naturally occurring K-40 was found at all stations and ranged from 2,940 to 4,080 pCi/kg wet and was consistent with levels detected in previous years. No fission or activation products were found. Historical levels of Cs–137 are shown in Figure C–3, Appendix C.

4. Sediment

Aquatic sediment samples were collected at three locations (16B2, 16C4 and 33A2) semiannually. Of these locations two 16B2 and 16C4 located downstream, could be affected by Limerick's effluent releases. The following analysis was performed:

Gamma Spectrometry

Sediment samples from all three locations were analyzed for gamma emitting nuclides (Table C–IV.1, Appendix C). Nuclides detected were naturally occurring K–40, and the fission product Cs–137.

Potassium–40 was found at all stations and ranged from 9,750 to 21,870 pCi/kg dry. Concentrations of the fission product Cs–137 were found in sediment samples in all samples. Location 16B2 had the highest average concentration of 222 pCi/kg dry. The activity detected was consistent with those detected in the pre–operational years (Figure C–4, Appendix C). Cobalt–60 at a concentration of 116 pCi/kg dry was found at the downstream indicator station 16B2 and was the result of LGS releases. The does to a teenager's skin through the sediment pathway was calculated as 1.95 E–03 mrem. No other Limerick fission or activation products were found.

- B. Atmospheric Environment
 - 1. Airborne

....

a. Air Particulates

Continuous air particulate samples were collected from five locations on a weekly basis. The five locations were separated into three groups: Group I represents locations within the LGS site boundary (10S3, 11S1, and 14S1), Group II represents the location at an intermediate distance from the LGS site (13C1); and Group III represents the control location at a remote distance from LGS (22G1). The following analyses were performed:

A 1 184

<u>- Gross Beta</u>

...

8, 1

(,)

Weekly samples were analyzed for concentrations of beta

emitters (Table C–V.1 and C–V.2, Appendix C).

1.1

Detectable gross beta activity was observed at all locations. Comparison of results among the three groups aid in determining the effects, if any; resulting from the operation of LGS. The results from the On-Site locations (Group I) ranged from 7 to 33 E–3 pCi/m³ with a mean of 18 E–3 pCi/m³. The results from the Intermediate Distance location (Group II) ranged from 8 to 29 E–3 pCi/m³ with a mean of 18 E–3 pCi/m³. The results from the Distant locations (Group III) ranged from <7 to 26 E–3 pCi/m³ with a mean of 16 E–3 pCi/m³. Comparison of the 2002 air particulate data with previous years data indicate no effects from the operation of LGS (Figure C–5, Appendix C). In addition a comparison of the weekly mean values for 2002 indicate no notable differences among the three groups (Figure C–6, Appendix C).

Gamma Spectrometry

۰ ن ۲۰ ن ۲۰ ۰

Weekly samples were composited quarterly and analyzed for gamma emitting nuclides (Table C–V.3, Appendix C). ¹¹Naturally occurring Be–7 due to cosmic ray activity was detected in all samples. These values ranged from 48 to 85 E–3 pCi/m³. All other nuclides were less than the MDA.

b. Airborne lodine

1.

Continuous air samples were collected from five (10S3, 11S1, 14S1, 13C1, and 22G1) locations and analyzed weekly for I–131 (Table C–VI.1, Appendix C). All results were less than the MDA.

- 2. Terrestrial
 - a. Milk
 - Samples were collected from five locations (9G1, 10F4,

18C1, 19B1 and 21B1) biweekly April through November and monthly December through March. Samples from four additional locations (22C1, 23F1, 25C1 and 36E1) were taken quarterly. The following analyses were performed:

<u>lodine-131</u>

Milk samples from all locations were analyzed for concentrations of I–131 (Table C–VII.1, Appendix C). All results were less than the MDA.

Gamma Spectrometry

Each milk sample from locations 18C1, 19B1, 21B1 and 22F1 were analyzed for concentrations of gamma emitting nuclides (Table C–VII.2, Appendix C).

Naturally occurring K–40 activity was found in all samples and ranged from 1,200 to 1,890 pCi/I. All other nuclides were less than the MDA.

C. Ambient Gamma Radiation

Ambient gamma radiation levels were measured utilizing Panasonic 814 (CaSO₄) thermoluminescent dosimeters. Forty TLD locations were established around the site. Results of TLD measurements are listed in Tables C–VIII.1 to C–VIII.3, Appendix C.

Most TLD measurements were below 10 mR/standard month, with a range of 5.1 to 12.4 mR/standard month. A comparison of the Site Boundary and Intermediate Distance data to the Control Location data, indicate that the ambient gamma radiation levels from the Control Location 5H1 were consistently higher. The historical ambient gamma radiation data from Location 5H1 was plotted along with similar data from the Site, Intermediate Distance and Outer Ring Locations (Figure C–7, Appendix C). Location 5H1 has a historical high bias, but tracked with the data from all three groups. This bias is most likely due to radon emanating from the ground.

D. 10 CFR 20.2002 Permit Storage Area

The results of the surface water aquatic monitoring program from Location 25S1 were used to determine if radioactivity from the 2002 permit area has made it to the Schuylkill River. The data obtained from the gamma analysis program did not detect any radioactivity from the 2002 permit

area.

E. Land Use Survey - - 11

> A Land Use Survey conducted during the May to September 2002 growing season around the Limerick Generating Station (LGS) was performed by Normandeau Associates, RMC Environmental Services Division for Exelon Nuclear to comply with Sections 2.15 and 3.4.2 of the Plant's Offsite Dose Calculation Manual. The purpose of the survey was to document the nearest resident, milk producing animal and garden of greater than 500 ft² in each of the sixteen 22 ½ degree sectors around the site. The distance and direction of all locations from the LGS reactor buildings were positioned using Global Positioning System (GPS) technology. There were no changes required to the LGS REMP, as a result of this survey. The results of this survey are summarized below. 1. XI ALTO

151 4.

		•		
	Distan	ce in Feet from	the LGS Reactor B	uildings
Sé	ctor 1	Residence	Garden	Milk Farm
c ++		Miles	Miles	Miles
1	Ν	0.6	1.8	4.7
2	NNE	0.5	0.5	-
3	NE	0.7	1.6	-
	ENE	0.6	0.7	-
	Ε,	0.5 [°]	2.3	-
	ESE	0.7	1:7	-
	SE	1.0	`1.4	-
	SSE	1.0	1.1	-
9	S	0.8	1.2	2.3
10	SSW	1.0	1.0	1.8
	SW	0.6	0.8	2.9
12	ŴŚŴ	0.7	1.4	2.7
13	w rs 1	0.7	2.1	2.8
<u></u> 14	WNW	0.7	0.8	-
15	NW	0.7	1.6	-
' 16	ŃNW	1.0	1.6	-

1 .1 5 -5- Jun

References

- 1. Environmental Report Operating License Stage, Limerick Generating Station, Units 1 and 2, Volumes 1–5 Philadelphia Electric Company.
- 2. Branch Technical Position Paper, Regulatory Guide 4.8, Revision 1, November 1979.
- 3. Pre-operational Radiological Environmental Monitoring Program Report, Limerick Generating Station Units 1 and 2, 1 January 1982 through 21 December 1984, Teledyne Isotopes and Radiation Management Corporation.

APPENDIX A

RADIOLOGICAL ENVIRONMENTAL MONITORING REPORT SUMMARY

Name of Facility: LIMERICK GENERATING STATION Location of Facility: MONTGOMERY COUNTY, PA					DOCKET NUMBER: REPORTING PERIOD: CONTROL LOCATION		50-352 & 50-353 2002 WITH HIGHEST ANNUAL MEAN	1
MEDIUM OR PATIIWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSES PERFORMED	NUMBER OF ANALYSES PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	LOCATIONS MEAN (F) RANGE	LOCATION MEAN (F) RANGE	MEAN (Г) RANGE	STATION # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTINE REPORTED MEASUREMENTS
SURFACE WATER (PCI/LITER	TRITIUM	12	2000	126 (0/4) (<94/<184)	126 (0/8) (<94/<191)	128 (0/4) (<94/<191)	10F2 CONTROL PERKIOMEN PUMPING STATION 7.25 MILES E OF SITE	0
	GAMMA MN-54	35	15	4 (0/12) (<1/<8)	3 (0/23) (<2/<9)	4 (0/12) (<1/<8)	13B1 INDICATOR VINCENT DAM 1.75 MILES SE OF SITE	0
	CO-58		15	8 (0/12) (<1/<7)	3 (0/23) (<1/<9)	4 (0/12) (<1/<7)	13B1 INDICATOR VINCENT DAM 1 75 MILES SE OF SITE	0
	CO-60		15	4 (0/12) (<2/<8)	3 (0/23) (<0 7/<7)	4 (0/12) (<2/<8)	13B1 INDICATOR VINCENT DAM 1 75 MILES SE OF SITE	0
	FE-59		30	8 (0/12) (<4/<15)	7 (0/23) (<2/<16)	8 (0/12) (<4/<15)	13B1 INDICATOR VINCENT DAM 1.75 MILES SE OF SITE	0
	ZN-65		30	7 (0/12) (<2/<17)	6 (0/23) (<2/<15)	7 (0/12) (<2/<17)	13B1 INDICATOR VINCENT DAM 1.75 MILES SE OF SITE	0
	ZR-95		30	6 (0/12) (<3/<10)	6 (0/23) (<3/<13)	6 (0/12) (<3/<10)	13B1 INDICATOR VINCENT DAM 1.75 MILES SE OF SITE	0
	NB-95		15	4 (0/12) (<2/<8)	4 (0/23) (<1/<8)	4 (0/12) (<2/<8)	13B1 INDICATOR VINCENT DAM 1 75 MILES SE OF SITE	0

FRACTION OF DETECTABLE MEASUREMENTS AT SPECIFIED LOCATIONS IS INDICTED IN PARENTHESES (F)

Name of Facility: Location of Facility	LIMERICK GEN : MONTGOMERY	ERATING STA COUNTY, PA	ATION	INDICATOR	DOCKET N REPORTIN CONTROL	G PERIOD: LOCATION	50-352 & 50-353 2002 WITH HIGHEST ANNUAL MEAN	
MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSES PERFORMED	NUMBER OF ANALYSES PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	LOCATIONS MEAN (F) RANGE	LOCATION MEAN (F) RANGE	MEAN (F) RANGE	STATION # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTINE REPORTED MEASUREMENTS
	CS-134		15	4 (0/12) (<2/<8)	3 (0/23) (<1/<8)	4 (0/12) (<2/<8)	13B1 INDICATOR VINCENT DAM 1.75 MILES SE OF SITE	0
	CS-137		18	4 (0/12) (<2/<8)	4 (0/23) (<2/<9)	4 (0/12) (<2/<8)	13B1 INDICATOR VINCENT DAM 1.75 MILES SE OF SITE	0
	BA-140		60	23 (0/12) (<8/<40)	19 (0/23) (<5/<32)	23 (0/12) (<8/<40)	13B1 INDICATOR VINCENT DAM 1.75 MILES SE OF SITE	0
	LA-140		15	7 (0/12) (<2/<13)	6 (0/23) (<2/<12)	7 (0/12) (<2/<13)	13B1 INDICATOR VINCENT DAM 1.75 MILES SE OF SITE	0
DRINKING WATER PCI/LITER) -	GROSS BETA SOLUBLE	48	4	4.8 (33/36) (<1.2/9 7)	4 4 (10/12) (<2.2/8.9)	5 [°] 8 (12/12) (3.7/9.7)	15F4 INDICATOR PHILA. SUB. WATER CO. 8.62 MILES SE OF SITE	0
	GROSS BETA INSOLUBLE	48	4	1.2 (0/36) (<0.6/<2.2)	1.2 (0/12) (<0.6/<2.2)	1.2 (0/12) (<0.6/<2.2)	28F3 CONTROL POTTSTOWN WATER AUTHORITY 5 84 MILES WNW OF SITE	0
n data	TRITIUM	16	2000	127 (1/12) (<94/<176)	122 (0/4) (<94/<173)	129 (1/4) (<94/<176)	15F4 INDICATOR PHILA SUB. WATER CO. 8 62 MILES SE OF SITE	0
	GAMMA MN-54	48 .	· · · 15 · · ·	4	4 -	4	16C2 INDICATOR	0
	x = 1	ર નેવા ટે	a jing si a	(0/36) (<1/<7)		(0/12)	CITIZENS HOME WATER CO. 2.66 MILES SSE OF SITE	v

. . .

x 2.5

t + -

FRACTION OF DETECTABLE MEASUREMENTS AT SPECIFIED LOCATIONS IS INDICTED IN PARENTHESES (F)

A-2

Name of Facility: LIMERICK GENERATING STATION Location of Facility: MONTGOMERY COUNTY, PA					DOCKET NUMBER: REPORTING PERIOD: CONTROL LOCATION		50-352 & 50-353 2002 WITH HIGHEST ANNUAL MEAN	
MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSES PERFORMED	NUMBER OF ANALYSES PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	LOCATIONS MEAN (F) RANGE	LOCATION MEAN (F) RANGE	MEAN (F) RANGE	STATION # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTINE REPORTED MEASUREMENTS
	CO-58		15	4 (0/36) (<0 8/<6)	4 (0/12) (<1/<6)	4 (0/12) (<1/<6)	15F7 INDICATOR PHOENIXVILLE WATER WORKS 6 33 MILES SSE OF SITE	0
	CO-60		15	4 (0/36) (<1/<6)	4 (0/12) (<2/<6)	4 (0/12) (<2/<6)	28F3 CONTROL POTTSTOWN WATER AUTHORITY 5 84 MILES WNW OF SITE	0
>	FE-59		30	8 (0/36) (<2/<14)	7 (0/12) (<28/<12)	8 (0/12) (<2/<12)	15F4 INDICATOR PHILA. SUB. WATER CO. 8 62 MILES SE OF SITE	0
	ZN-65		. 30	7 (0/36) (<2/<14)	7 (0/12) (<4/<14)	8 (0/12) (<2/<14)	15F4 INDICATOR PHILA SUB WATER CO 8 62 MILES SE OF SITE	0
	ZR-95		30	7 (0/36) (<3/<12)	6 (0/12) (<2/<10)	7 (0/12) (<4/<12)	15F7 INDICATOR PHOENIXVILLE WATER WORKS 6 33 MILES SSE OF SITE	0
	NB-95		15	4 (0/36) (<1/<7)	4 (0/12) (<2/<6)	4 (0/12) (<2/<7)	16C2 INDICATOR CITIZENS HOME WATER CO 2 66 MILES SSE OF SITE	0
	CS-134		15	4 (0/36) (<2/<7)	4 (0/12) (<2/<6)	4 (0/12) (<2/<7)	15F7 INDICATOR PHOENIXVILLE WATER WORKS 6 33 MILES SSE OF SITE	0
	CS-137		18	4 (0/36) (<2/<7)	4 (0/12) (<1/<6)	4 (0/12) (<2/<6)	16C2 INDICATOR CITIZENS HOME WATER CO 2 66 MILES SSE OF SITE	0

FRACTION OF DETECTABLE MEASUREMENTS AT SPECIFIED LOCATIONS IS INDICTED IN PARENTHESES (F)

The second second second

A4

Name of Facility: Location of Facil	LIMERICK GEI			INDICATOR	DOCKET N REPORTIN CONTROL	G PERIOD: LOCATION	50-352 & 50-353 2002 WITH HIGHEST ANNUAL MEAN	
MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSES PERFORMED	NUMBER OF ANALYSES PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	LOCATIONS MEAN (F) RANGE	LOCATION MEAN (F) RANGE	MEAN (F) RANGE	STATION # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTINE REPORTED MEASUREMENT:
	BA-140		60	22 (0/36) (<6/<45)	21 (0/12) (< <u>5/</u> <35)	22 (0/12) (6/<45)	15F4 INDICATOR PHILA. SUB. WATER CO. 8.62 MILES SE OF SITE	0
	LA-140		15	7 (0/36) (<0.9/<15)	7 (0/12) (<2/<10)	7 (0/12) (<2/<12)	16C2 INDICATOR CITIZENS HOME WATER CO. 2 66 MILES SSE OF SITE	0
BOTTOM FEEDER (FISH) (PCI/KG WET)	GAMMA K-40	4	N/A	3325 (2/2) (3280/3370)	3316 (2/2) (2940/3692)	3325 (2/2) (3280/3370)	16C5 INDICATOR VINCENT POOL DOWNSTREAM OF DISCHARGE	0
	MN-54		130	17 (0/2) (<9/<25)	15 (0/2) (<11/<19)	17 (0/2) (<9/<25)	16C5 INDICATOR VIŅCENT POOL DOWNSTREAM OF DISCHARGE	0
-	CO-58		130	20 (0/2) (<10/<30)	16 - (0/2) (<13/<19)	20 (0/2) - (<10/<30)	16C5 INDICATOR VINCENT POOL DOWNSTREAM OF DISCHARGE	0
	CO-60		130	17 (0/2) (<8/<25)	16 (0/2) (<12/<19)	17 (0/2) (<8/<25)	16C5 INDICATOR VINCENT POOL DOWNSTREAM OF DISCHARGE	0
	FE-59	ć	260	43 (0/2) (<23/<64)	35 (0/2) (<30/<41)	43 (0/2) (<23/<64)	16C5 INDICATOR VINCENT POOL DOWNSTREAM OF DISCHARGE	0 -
	ZN-65 !'	- 1* ``	, , , , , , , , , , , , , , , , , , ,	36 (0/2) (<18/<53)		£ 36 ♀+\ · (0/2), (<18/<53)	16C5 INDICATOR , VINCENT POOL (, , , , , , , , , , , , , , , , , ,	0

TABLE A-1 RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM ANNUAL SUMMARY FOR THE LIMERICK GENERATING STATION, 2002

.

...

FRACTION OF DETECTABLE MEASUREMENTS AT SPECIFIED LOCATIONS IS INDICTED IN PARENTHESES (F)

Name of Facility: Location of Facili	LIMERICK GE				DOCKET N REPORTIN	G PERIOD:	50-352 & 50-353 2002	
MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSES PERFORMED	NUMBER OF ANALYSES PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	INDICATOR LOCATIONS MEAN (F) RANGE			N WITH HIGHEST ANNUAL MEA STATION # NAME DISTANCE AND DIRECTION	N NUMBER OF NONROUTINE REPORTED MEASUREMENT
	CS-134		130	16 (0/2) (<9/<24)	15 (0/2) (<12/<18)	16 (0/2) (<9/<24)	16C5 INDICATOR VINCENT POOL DOWNSTREAM OF DISCHARGE	0
	CS-137		150	17 (0/2) (<10/<24)	18 (0/2) (<12/<23)	18 (0/2) (<12/<23)	29C1 CONTROL POTTSTOWN VICINITY UPSTREAM OF INTAKE	0
PREDATOR (FISH) (PCI/KG WET)	GAMMA K-40	4	130	3786 (2/2) (3491/4080)	3543 (2/2) (3510/3575)	3786 (2/2) (3491/4080)	16C5 INDICATOR VINCENT POOL DOWNSTREAM OF DISCHARGE	0
	CO-58		130	31 (0/2) (<17/<45)	19 (0/2) (<18/<19)	31 (0/2) (<17/<45)	16C5 INDICATOR VINCENT POOL DOWNSTREAM OF DISCHARGE	0
	CO-60		130	25 (0/2) (<16/<34)	17 (0/2) (<16/<18)	25 (0/2) (<16/<34)	16C5 INDICATOR VINCENT POOL DOWNSTREAM OF DISCHARGE	0
	FE-59		260	67 (0/2) (<39/<95)	39 (0/2) (<39/<40)	67 (0/2) (<39/<95)	16C5 INDICATOR VINCENT POOL DOWNSTREAM OF DISCHARGE	0
	ZN-65		260	60 (0/2) (<33/<87)	39 (0/2) (<36/<43)	60 (0/2) (<33/<87)	16C5 INDICATOR VINCENT POOL DOWNSTREAM OF DISCHARGE	0

.

FRACTION OF DETECTABLE MEASUREMENTS AT SPECIFIED LOCATIONS IS INDICTED IN PARENTHESES (F)

.

Name of Facility: LIMERICK GENERATING STATION Location of Facility: MONTGOMERY COUNTY, PA				INDICATOR LOCATIONS	DOCKET NUMBER: REPORTING PERIOD: CONTROL LOCATION		50-352 & 50-353 2002 WITH HIGHEST ANNUAL MEAN		
MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSES PERFORMED	NUMBER OF ANALYSES PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	MEAN (F) RANGE	LOCATION MEAN (F) RANGE	MEAN (F) RANGE	STATION # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTINE REPORTED MEASUREMENT	
	CS-134		130	25 (0/2) (<14/<37)	16 (0/2) (<15/<17)	25 (0/2) (<14/<37)	16C5 INDICATOR VINCENT POOL DOWNSTREAM OF DISCHARGE	0	
	CS-137		150	26 (0/2) (<16/<35)	17 (0/2) (<16/<17)	26 (0/2) (<16/<35)	16C5 INDICATOR VINCENT POOL DOWNSTREAM OF DISCHARGE	0	
SEDIMENT (PCI/KG DRY)	GAMMA K-40	6	N/A	16895 (4/4) (9750/21870)	14515 (2/2) (11400/17630)	19535 (2/2) (17200/21870)	16B2 INDICATOR LINFIELD BRIDGE 1.35 MILES SSE OF SITE	0	
	MN-54		N/A	46 (0/4) (<17/<60)	35 (0/2) (<27/<42)	58 (0/2) (<57/<60)	16B2 INDICATOR LINFIELD BRIDGE 1.35 MILES SSE OF SITE	0	
	CO-58		N/A	46 (0/4) (<20/<61)	35 (0/2) (<26/<43)	59 (0/2) (<56/<61)	16B2 INDICATOR LINFIELD BRIDGE 1 35 MILES SSE OF SITE	0	
	CO-60		N/A	58 (1/4) (<18/116)	33 (0/2) (<26/<39)	82 (1/2) (<49/116)	16B2 INDICATOR LINFIELD BRIDGE 1.35 MILES SSE OF SITE	0	
' '	CS-134		150	37 (0/4) (<15/<46)	31 (0/2) (<28/<35)	45 (0/2) . (<45/<46)	16B2 INDICATOR LINFIELD BRIDGE 1 35 MILES SSE OF SITE	0	
	CS-137	g- 4 - 4		150 / · · · · · · · · · · · · · · · · · ·	(1/2) (28/208)	222 ¹ (2/2) ¹ (176/268)	16B2 INDICATOR LINFIELD BRIDGE 1.35 MILES SSE OF SITE	0	

. 1.

-

.

Name of Facility: Location of Facili	LIMERICK GEN ty: MONTGOMERY					G PERIOD: LOCATION	50-352 & 50-353 2002 I WITH HIGHEST ANNUAL MEAN	4
MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSES PERFORMED	NUMBER OF ANALYSES PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	LOCATIONS MEAN (F) RANGE	LOCATION MEAN (F) RANGE	MEAN (F) RANGE	STATION # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTINE REPORTED MEASUREMENTS
AIR PARTICULATE (E-3 PCI/CU.METER)	GROSS BETA	254	10	18 (203/203) (7/33)	16 (50/51) (7/26)	18 (51/51) (7/33)	11S1 INDICATOR LGS INFORMATION CENTER 0 38 MILES ESE OF SITE	0
	GAMMA BE-7	20	N/A	66 (16/16) (48/85)	61 (4/4) (49/74)	68 (4/4) (63/74)	13C1 INDICATOR KING ROAD 2 84 MILES SE OF SITE	0
	MN-54		N/A	0.7 (0/16) (<0 4/<2)	0.7 (0/4) (<0 5/<0 9)	0 9 (0/4) (<0 6/<2)	14S1 INDICATOR LONGVIEW ROAD 0 63 MILES SSE OF SITE	0
	CO-58		N/A	0 8 (0/16) (<0 5/<1)	0 9 (0/4) (<0 6/<1)	1 0 (0/4) (<0 8/<1)	14S1 INDICATOR LONGVIEW ROAD 0 63 MILES SSE OF SITE	0
	CO-60		N/A	0 7 (0/16) (<0 4/<1)	0 6 (0/4) (<0 5/<0 7)	0 9 (0/4) (<0 5/<1)	13CI INDICATOR KING ROAD 2 84 MILES SE OF SITE	0
	CS-134		50	0 7 (0/16) (<0 3/<1)	0 7 (0/4) (0 4/<0.9)	0 8 (0/4) (<0 6/<1)	13CI INDICATOR KING ROAD 2 84 MILES SE OF SITE	0
	CS-137		60	0 7 (0/16) (<0 4/<1)	0 7 (0/4) (<0 5/<0 8)	0 7 (0/4) (<0 6/<0 9)	14S1 INDICATOR LONGVIEW ROAD 0 63 MILES SSE OF SITE	0
AIR IODINE (E-3 PCI/CU METER)	I-131	254	70	13 (0/203) (<4/<65)	12 (0/51) (<3/<47)	14 (0/51) (<4/<65)	11S1 INDICATOR LGS INFORMATION CENTER 0 38 MILES ESE OF SITE	0

FRACTION OF DETECTABLE MEASUREMENTS AT SPECIFIED LOCATIONS IS INDICTED IN PARENTHESES (F)

Name of Facility: LIMERICK GENERATING STATION **DOCKET NUMBER:** 50-352 & 50-353 Location of Facility: MONTGOMERY COUNTY, PA **REPORTING PERIOD:** 2002 INDICATOR CONTROL LOCATION WITH HIGHEST ANNUAL MEAN LOCATIONS LOCATION MEDIUM OR TYPES OF NUMBER OF REQUIRED MEAN MEAN MEAN STATION # NUMBER OF PATHWAY SAMPLED ANALYSES ANALYSES LOWER LIMIT (F) (F) (F) NAME NONROUTINE (UNIT OF PERFORMED PERFORMED OF DETECTION RANGE RANGE RANGE DISTANCE AND DIRECTION REPORTED MEASUREMENT) (LLD) MEASUREMENTS MILK I-131 120 1 0.3 03 0.3 19B1 INDICATOR 0 (PCI/LITER) (0/91) (0/20) (0/29) **REGIONAL FARM** (<0.1/<1) (<0.1/<0.5) (<0.1/<0.6) 1.95 MILES SSW OF SITE GAMMA 105 K-40 N/A 1413 1427 1435 18C1 INDICATOR 0 (84/84) (21/21)(21/21)**REGIONAL FARM** (1200/1810)(1210/1890) (1260/1810) 2 26 MILES S OF SITE CS-134 15 4 4 4 19B1 INDICATOR 0 (0/84) (0/21)(0/21) **REGIONAL FARM** (<1/<9) (<2/<7) (<2/<9) 1 95 MILES SSW OF SITE CS-137 18 4 5 4 19B1 INDICATOR 0 (0/84) (0/21)(0/21) **REGIONAL FARM** (<1/<8) (<2/<7) (<2/<8) 1.95 MILES SSW OF SITE 111 BA-140 60 <21 <21 <22 19B1 INDICATOR 0 (0/84)(0/21)(0/21) **REGIONAL FARM** (<8/<43) (<12/<38) (<9/<43) 1.95 MILES SSW OF SITE LA-140 15 6 6 7 19B1 INDICATOR 0 (0/84) (0/21) (0/21) **REGIONAL FARM** (<1/<14) (<2/<10) (<2/<14) 1.95 MILES SSW OF SITE DIRECT RADIATION **TLD-QUARTERLY** 160 N/A 76 11.5 86 13S2 INDICATOR 0 (MILLI-ROENTGEN/STD MO. (156/156) (4/4) (4/4) 500 KV SUBSTATION 2 (5.1/12.4) (8 2/9.0) (10.4/12.4)0 41 MILES SE OF SITE • •

TABLE A-1 RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM ANNUAL SUMMARY FOR THE LIMERICK GENERATING STATION, 2002

. .

1, 1)*

FRACTION OF DETECTABLE MEASUREMENTS AT SPECIFIED LOCATIONS IS INDICTED IN PARENTHESES (F)

.

. :

55

11 11 E

¥,

APPENDIX B

LOCATION DESIGNATION, DISTANCE & DIRECTION, AND SAMPLE COLLECTION & ANALYTICAL METHODS

- TABLE B-1:
 Location Designation and Identification System for the Limerick Generating

 Station
 Station
- XXYZ General code for identification of locations, where:
- Angular Sector of Sampling Location. The compass is divided into 36 sectors of 10 degrees each with center at Limerick's Units 1 and 2 off-gas vents. Sector 36 is centered due North, and others are numbered in a clockwise direction.
- Y Radial Zone of Sampling Location (in this report, the radial distance from the Limerick vent for all regional stations).
 - S : on-site location
- E: 4-5 miles off-site F: 5-10 miles off-site
- A: 0-1 mile off-site
- B : 1-2 miles off-site
- C: 2-3 miles off-site
- D: 3-4 miles off-site
- G: 10-20 miles off-site
- H : 20-100 miles off-site
- Z Station's Numerical Designation within sector and zone, using 1, 2, 3... in each sector and zone.

TABLE	3-2 Radiological Environmental Monitoring Program - Sampli Station, 2002	Radiological Environmental Monitoring Program - Sampling Locations, Distance and Direction, Li Station, 2002					
Location	Location Description	Distance & Direction From Site					
Α	Surface Water						
13B1	Vincent Dam (indicator)	1 75 miles SE					
24S1	Limenck Intake (control) Perkjomen Pumping Station (control)	0 20 miles SW 7 25 miles E					
10F2	Ferkionien Funiping Otation (control)						
B	Drinking (Potable) Water						
15F4	Philadelphia Suburban Water Company (indicator)	8 62 miles SE					
15F7	Phoenixville Water Works (indicator) Citizens Home Water Company (indicator)	6 33 miles SSE 2 66 miles SSE					
16C2 28F3	Pottstown Water Authority (control)	5 84 miles WNW					
<u>C.</u>	Milk - bi-weekly / monthly						
9G1	Control	11 64 miles E					
10F4		6 60 miles ESE					
18C1		2.26 miles S 1 95 miles SSW					
19B1 21B1		1.75 miles SSW					
D	Milk - quarterly						
36E1		4.70 miles N					
		2 92 miles SW					
22C1 23F1	Control	5 02 miles SW					
25C1		2 69 miles WSW					
E	Air Particulates / Air Iodine						
10S3	Keen Road	0 50 miles E					
1151	LGS Information Center	0 38 miles ESE					
11S2 13C1	LGS Information Center King Road	0 38 miles ESE 2 84 miles SE					
1451	Longview Road	0 63 miles SSE					
22G1	Manor Substation (control)	17.73 miles SW					
<u>E.Fish</u>							
16C5	Vincent Pool (indicator)	Downstream of Discharge					
29C1	Pottstown Vicinity (control)	Upstream of Intake					
<u>G</u>	Sediment						
16B2	Linfield Bridge (indicator)	1.35 miles SSE					
16C4	Vincent Dam (indicator)	2 18 miles SSE 0 84 miles NNW					
33A2	Upstream of Intake (control)						
Н	Environmental Dosimetry - TLD						
<u>Site Bou</u>	ndary						
2662	Evergreen & Sanatoga Road	0 60 miles N					
36S2 3S1	Sanatoga Road	0 44 miles NNE					

TABLE B-2 Radiological Environmental Monitoring Program - Sampling Locations, Distance and Direction, Limerick Generating Station, 2002

Location	Location Description	Distance & Direction From Site	
551	Possum Hollow Road	0 45 miles NE	
7S1	LGS Training Center	0 59 miles ENE	
10S3	Keen Road	0 50 miles E	
11S1	LGS Information Center	0 38 miles ESE	
13S2	500 KV Substation	0 41 miles SE	
14S1	Longview Road	0 63 miles SSE	
1852	Rail Line along Longview Road	0 26 miles S	
21S2	Near Intake Building	0 19 miles SSW	
23S2	Transmission Tower	0 53 miles SW	
25S2	Sector Site Boundary	0.46 miles WSW	
26S3	Met. Tower #2	0 40 miles W	
29S1	Sector Site Boundary	0 55 miles WNW	
31S1	Sector Site Boundary	0 26 miles NW	
34S2	Met Tower #1	0 58 miles NNW	
Intermediate [Distance		
36D1	Siren Tower No 147	3.51 miles N	
2E1	Laughing Waters GSC	4 76 miles NNE	
4E1	Neiffer Road	4 78 miles NE	
7E1	Pheasant Road	4 26 miles ENE	
10E1	Royersford Road	3 94 miles E	
10F3	Trappe Substation	5 58 miles ESE	
13E1	Vaughn Substation	4 31 miles SE	
16F1	Pikeland Substation	5 04 miles SSE	
19D1	Snowden Substation	3 49 miles S	
20F1	Sheeder Substation	5 24 miles SSW	
24D1	Porters Mill Substation	3 97 miles SW	
25D1	Hoffecker & Keim Streets	3 99 miles WSW	
28D2 29E1	W. Cedarville Road	3 83 miles W	
29E1 31D2	Prince Street	4.95 miles WNW	
31D2 34E1	Poplar Substation Varnell Road	3 87 miles NW t 4 59 miles NNW	
Control and Sp	ecial Interest		
- •	2		
5H1	Birch Substation (control)	24.76 miles NE	
5C1	Pottstown Landing Field	2.14 miles NE	
PC1	Reed Road -	2.15 miles E	
3C1	King Road	2.84 miles SE	
5D1	Spring City Substation	3 20 miles SE	
7B1	Linfield Substation	1 60 miles S	
20D1	Ellis Woods Road	3 06 miles SSW	
1D1	Lincoln Substation	3 00 miles WNW	

TABLE B-2:	Radiological Environmental Monitoring Program	- Sampling Locations, Distance and Direction, Limerick Generating
	Station, 2002	,

TABLE B-3: Radiological Environmental Monitoring Program – Summary of Sample Collection and Analytical Methods, Limerick Generating Station, 2002

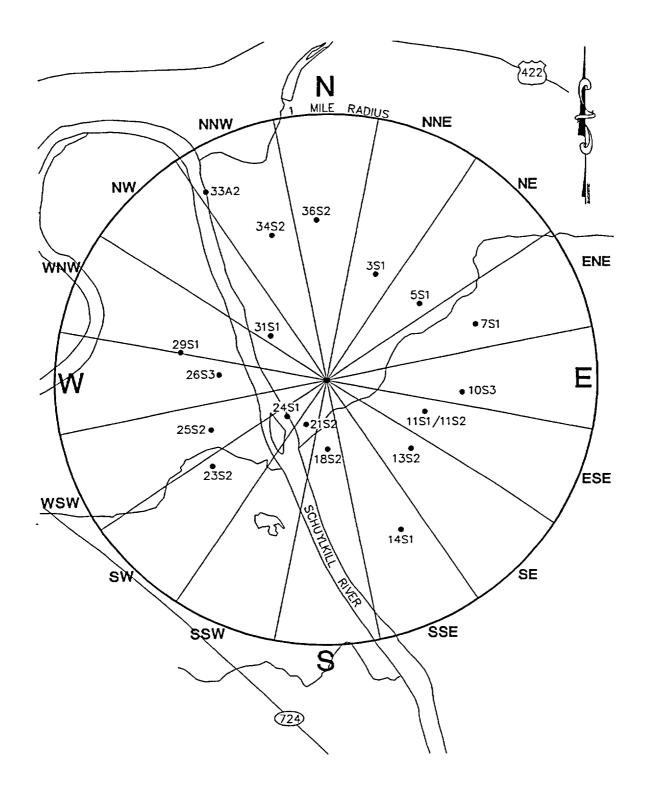
Sample Medium	Analysis	Sampling Method	Collection Procedure Number	Sample Size	Analytical Procedure Number
Surface Water	Gamma Spectroscopy	Monthly composite from a continuous water compositor.	RMC-ER5 Collection of water samples for radiological analysis (Limerick Generating Station)	2 gallon	TBE, PRO-042-5 Determination of gamma emitting radioisotopes Env. Inc , GS-01 Determination of gamma emitters by
					gamma spectroscopy
Surface Water	Tritium	Quarterly composite from a continuous water compositor	RMC-ER5 Collection of water samples for radiological analysis (Limerick Generating Station)	500 ml	TBE, PRO-052-35 Determination of tritium in water by liquid scintillation
					Env. Inc., T-02 Determination of tritium in water (direct method)
Drinking Water	Gross Beta	Monthly composite from a continuous water compositor	RMC-ER5 Collection of water samples for radiological analysis (Limerick Generating Station)	2 gallon	TBE, PRO-032-41 Gross Alpha and/or gross beta activity in water samples (suspended and dissolved fractions)
					Env. Inc , W(DS)-01 Determination of gross alpha and/or gross beta in water (dissolved solids or total residue)
	1				Env. Inc , W(SS)-02 Determination of gross alpha and/or gross beta in water (suspended solids)
Drinking Water	Gamma Spectroscopy	Monthly composite from a continuous water compositor.	RMC-ER5 Collection of water samples for radiological analysis (Limerick Generating Station)	2 gallon	TBE, PRO-042-5 Determination of gamma emitting radiolsotopes
		-			Env Inc , GS-01 Determination of gamma emitters by gamma spectroscopy
Drinking Water	Tritium	Quarterly composite from a continuous water compositor	RMC-ER5 Collection of water samples for radiological analysis (Limerick Generating Station)	500 ml	TBE, PRO-052-35 Determination of tritium in water by liquid scintillation
		Compositor			Env Inc , T-02 Determination of tritium in water (direct method)
Fish	Gamma Spectroscopy	Semi-annual samples collected via electroshocking or other	RMC-ER6 Collection of fish samples for radiological analysis (Limenck Generating Station)	1000 grams (wet)	TBE, PRO-042-5 Determination of gamma emitting radioisotopes
		techniques			Env Inc, GS-01 Determination of gamma emitters by gamma spectroscopy
Sediment	Gamma Spectroscopy	Semi-annual grab samples	RMC-ER7 Collection of sediment samples for radiological analysis (Limenck Generating Station)	500 grams (dry)	TBE, PRO-042-5 Determination of gamma emitting radioisotopes
					Env. Inc., GS-01 Determination of gamma emitters by gamma spectroscopy
Air Particulates	Gross Beta	One-week composite of continuous air sampling through glass fiber filter	RMC-ER8 Collection of air particulate and air Iodine samples for radiological analysis (Limerick Generating Station)	1 filter (approximately 280 cubic meters weekly)	TBE, PRO-032-10 Gross beta and/or alpha activity in air particulate filters (direct count method)
		paper	·,		Env. Inc , AP-02 Determination of gross alpha and/or gross beta in air particulate filters

•

Radiological Environmental Monitoring Program – Summary of Sample Collection and Analytical Methods, Limerick Generating Station, 2002 TABLE B-3:

.

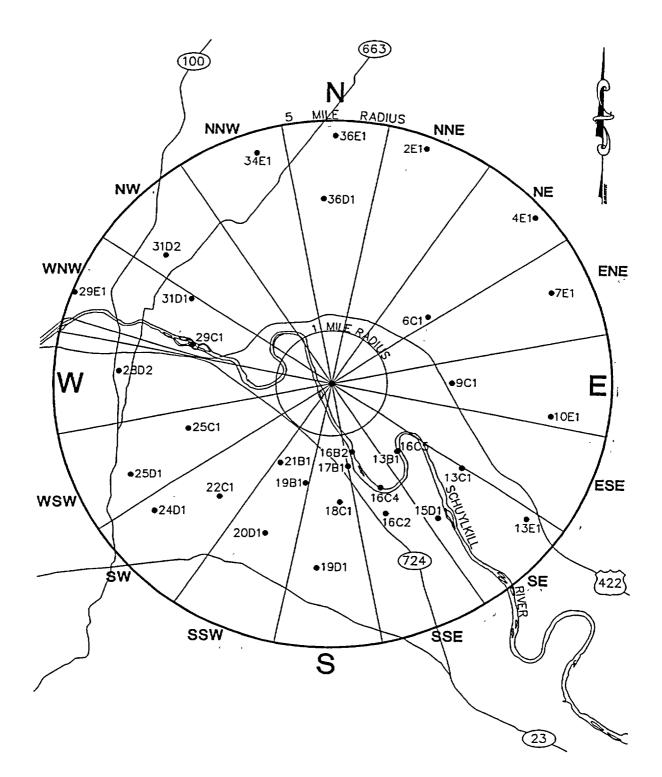
. .


- - - -

,

Sample Medium	Analysis	Sampling Method	Collection Procedure Number	Sample Size	Analytical Procedure Number
Air Particulates	Gamma Spectroscopy	Quarterly composite of each station	Env. Inc., AP-03 Procedure for compositing air particulate filters for gamma spectroscopic analysis	13 filters (approximately 3600 cubic meters)	TBE, PRO-042-5 Determination of gamma emitting radioisotopes
Air Iodine	Gamma Spectroscopy	One-week composite of continuous air sampling through charcoal filter	RMC-ER8 Collection of air particulate and air iodine samples for radiological analysis (Limerick Generating Station)	1 filter (approximately 280 cubic meters weekly)	Env. Inc., GS-01 Determination of gamma emitters by gamma spectroscopy TBE, PRO-042-5 Determination of gamma emitting radioisotopes
Milk	I-131	Bi-weekly grab sample when cows are on pasture. Monthly all other times	RMC-ER10 Collection of milk samples for radiological analysis (Limerick Generating Station)	2 gallon	Env. Inc., I-131-02 Determination of I-131 in charcoal canisters by gamma spectroscopy (batch method) TBE, PRO-032-20 Radiometric determination of I-131 by the beta-gamma coincidence counting technique Env Inc., I-131-01 Determination of I-131 in milk by anion
Milk	Gamma Spectroscopy	Bi-weekly grab sample when cows are on pasture. Monthly all other times	RMC-ER10 Collection of milk samples for radiological analysis (Limerick Generating Station)	2 gallon	exchange TBE, PRO-042-5 Determination of gamma emitting radioisotopes Env. Inc , GS-01 Determination of gamma emitters by
īld	Thermoluminescence Dosimetry	Quarterly TLDs comprised of two Panasonic 814 (containing 3 each CaSO4 elements)	RMC-ER9 Collection of TLD samples for radiological analysis (Limerick Generating Station)	2 dosimeters	gamma spectroscopy ICN Pharmaceutical

۰.,


B - 5

,

Figure B-1 Environmental Sampling Locations Within One Mile of the Limerick Generating Station, 2002

•

.

Figure B-2 Environmental Sampling Locations Between One and Five Miles from the Limerick Generating Station, 2002 B - 7

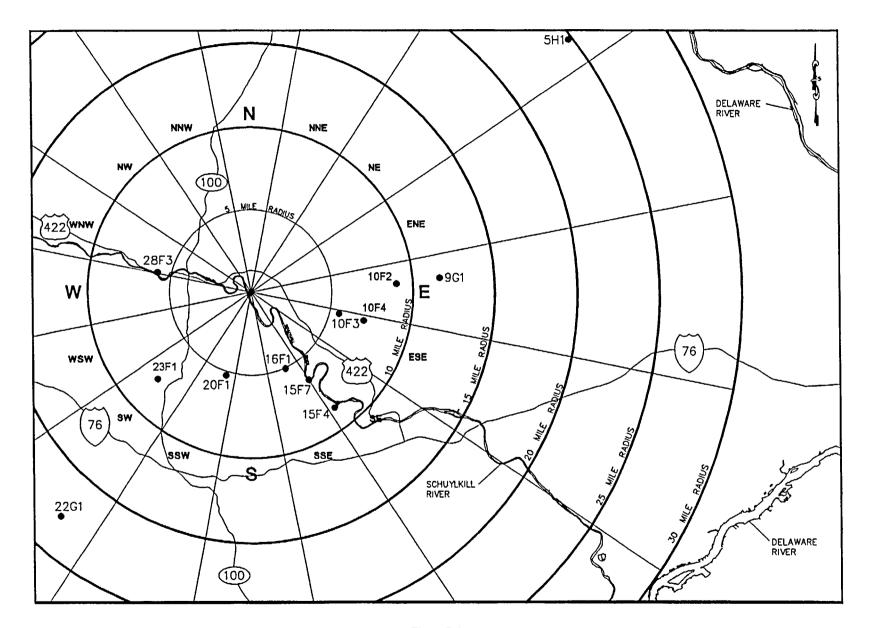


Figure B-3 Environmental Sampling Locations Greater than Five Miles from the Limerick Generating Station, 2002

APPENDIX C

DATA TABLES AND FIGURES PRIMARY LABORATORY

TABLE C-I.1 CONCENTRATIONS OF TRITIUM IN SURFACE WATER SAMPLES COLLECTED IN THE VICINITY OF LIMERICK GENERATING STATION, 2002

COLLECTION PERIOD	10F2	13B1	24S1
JAN-MAR	< 94	< 94	< 94
APR-JUN	< 96	< 94	< 94
JUL-SEP	< 130	< 132	< 130
OCT-DEC	< 191	< 184	< 178
MEAN	128 ± 91	126 ± 85	124 ± 79

RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

TABLE C-I.2 CONCENTRATIONS OF GAMMA EMITTERS IN SURFACE WATER SAMPLES COLLECTED IN THE VICINITY OF LIMERICK GENERATING STATION, 2002

•

STC	COLLECTION PERIOD	Mn-54	Co-58	Fe-59	Co-60	Zn-65	Zr-95	Nb-95	Cs-134	Cs-137	Ba-140	La-140
10F2	JAN	< 2	< 2	< 4	< 2	< 4	< 5	< 2	< 4	< 4	< 9	< 2
	FEB	< 3	< 3	< 4	< 07	< 3	< 3	< 3	< 2	< 3	< 15	< 2
	MAR	< 2	< 2	< 2	< 2	< 3	< 4	< 1	< 2	< 2	< 5	< 2
	APR	< 3	< 3	< 7	< 3	< 7	< 5	< 3	< 3	< 3	< 13	< 4
	MAY	< 4	< 4	< 8	< 4	< 8	< 7	< 5	< 4	< 4	< 18	< 6
	JUN	< 4	< 4	< 8	< 4	< 7	< 6	< 4	< 4	< 4	< 19	< 7
	JUL	< 4	< 4	< 9	< 4	< 8	< 7	< 5	< 4	< 4	< 22	< 7
	AUG	< 2	< 2	< 6	< 2	< 4	< 4	< 3	< 2	< 3	< 21	< 7
	SEP	< 2	< 2	< 5	< 2	< 4	< 4	< 3	< 2	< 2	< 30	< 10
	OCT	< 4	< 4	< 8	< 4	< 8	< 7	< 5	< 4	< 4	< 27	< 10
	NOV	< 3	< 3	< 6	< 3	< 5	< 5	< 3	< 2	< 3	< 23	< 6
	DEC	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)
	MEAN	3 ± 2	3 ± 2	6 ± 4	3 ± 2	6 ± 4	5 ± 3	3 ± 2	3 ± 2	3 ± 2	18 ± 15	6 ± 6
13B1	JAN	< 1	< 2	< 4	< 2	< 2	< 4	< 2	< 3	< 3	< 8	< 2
	FEB	< 3	< 2	< 4	< 3	< 3	< 5	< 3	< 2	< 2	< 13	< 2
	MAR	< 2	< 1	< 4	< 2	< 2	< 3	< 2	< 2	< 2	< 9	< 2
	APR	< 8	< 7	< 15	< 8	< 17	< 12	< 8	< 8	< 8	< 28	< 10
	MAY	< 4	< 4	< 7	< 5	< 7	< 6	< 4	< 4	< 5	< 17	< 6
	JUN	< 6	< 6	< 12	< 5	< 12	< 9	< 6	< 6	< 6	< 30	< 10
	JUL	< 4	< 4	< 9	< 6	< 8	< 7	< 4	< 4	< 6	< 20	< 7
	AUG	< 3	< 4	< 8	< 3	< 6	< 6	< 5	< 3	< 4	< 37	< 13
	SEP	< 2	< 2	< 5	< 3	< 4	< 4	< 3	< 2	< 2	< 29	< 10
	OCT	< 4	< 4	< 9	< 4	< 7	< 8	< 5	< 4	< 4	< 28	< 9
	NOV	< 5	< 5	< 12	< 6	< 12	< 10	< 6	< 5	< 5	< 40	< 13
	DEC	< 2	< 2	< 4	< 3	< 5	< 4	< 2	< 2	< 3	< 11	< 3
	MEAN	4 ± 4	4 ± 4	8 ± 7	4 ± 4	7 ± 9	6 ± 6	4 ± 4	4 ± 4	4 ± 4	23 ± 22	7 ± 8

RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

(1) SEE PROGRAM EXCEPTIONS SECTION FOR EXPLANATION

TABLE C-I.2 CONCENTRATIONS OF GAMMA EMITTERS IN SURFACE WATER SAMPLES COLLECTED IN THE VICINITY OF LIMERICK GENERATING STATION, 2002

• -

STC	COLLECTION PERIOD	Mn-54	Co-58	Fe-59	Co-60	Zn-65	Zr-95	Nb-95	Cs-134	Cs-137	Ba-140	La-140
24S1	JAN	< 2	< 1	< 4	< 3	< 6	< 5	< 3	< 3	< 3	< 13	< 2
	FEB	< 2	< 2	< 4	< 3	< 4	< 5	< 3	< 3	< 3	< 12	< 3
	MAR	< 2	< 1	< 4	< 2	< 2	< 4	< 2	< 2	< 3	< 13	< 2
	APR	< 8	< 9	< 16	< 7	< 15	< 13	< 8	< 8	< 9	< 32	< 12
	MAY	< 5	< 5	< 11	< 5	< 12	< 9	< 5	< 5	< 6	< 25	< 8
	JUŅ	< 4	< 4	< 9	< 3	< 10	< 7	< 5	< 5	< 6	< 22	< 7
	JUL	< 4	< 4	< 9	< 4	< 8	< 7	< 5	< 4	< 4	< 23	< 8
	AUG	< 2	< 2	< 4	< 1	< 3	< 3	< 2	< 1	< 2	< 15	< 5
	SEP	< 2	< 3	< 6	< 2	< 4	< 4	< 3	< 2	< 2	< 32	< 10
	OCT	< 2	< 2	< 5	< 2	< 4	< 4	< 2	< 2	< 2	< 14	< 5
	NOV	< 4	< 4	< 10	< 4	< 9	< 8	< 5	< 4	< 4	< 28	< 9
	DEC	< 3	< 3	< 7	< 3	< 7	< 6	< 3	< 3	< 3	< 16	< 5
	MEAN	3.4 ± 4	3 ± 4	7 ± 8	3 ± 3	7 ± 8	6 ± 5	4 ± 4	3 ± 3	4 ± 4	20 ± 15	6 ± 7

- - -

-

RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

- - 3

- - - -

ن ، د

.

TABLE C-II.1 CONCENTRATIONS OF GROSS BETA INSOLUBLE IN DRINKING WATER SAMPLES COLLECTED IN THE VICINITY OF LIMERICK GENERATING STATION, 2002

RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

COLLECTION PERIOD	15F4	15F7	16C2	28F3
JAN	< 15	< 1.7	< 1.7	< 16
FEB	< 11	< 1 1	< 1.1	< 1.2
MAR	< 15	< 1.6	< 16	< 1.7
APR	< 07	< 0 7	< 0.7	< 0.7
MAY	< 07	< 0 7	< 07	< 0.7
JUN	< 06	< 0 6	< 0 6	< 0.6
JUL	< 0 7	< 0 7	< 07	< 0 7
AUG	< 07	< 0 7	< 0.7	< 0 7
SEP	< 14	< 1.4	< 1.4	< 1.4
OCT	< 15	< 15	< 15	< 1.5
NOV	< 2 2	< 2.2	< 2.2	< 2.2
DEC	< 17	< 17	< 17	< 17
MEAN	12 ± 10	12 ± 1.1	12 ± 1.1	12 ± 1.1

TABLE C-II.2CONCENTRATIONS OF GROSS BETA SOLUBLE IN DRINKING WATER SAMPLES
COLLECTED IN THE VICINITY OF LIMERICK GENERATING STATION, 2002

RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

COLLECTION PERIOD	15F4	15F7	16C2	28F3
JAN	46 ± 10	37 ± 09	39 ± 1.0	33 ± 10
FEB	67 ± 09	45 ± 08	36 ± 0.8	4.2 ± 0.9
MAR	44 ± 10	44 ± 1.1	32 ± 1.0	38 ± 10
APR	61 ± 12	34 ± 10	2.7 ± 0.9	3.2 ± 10
MAY	50 ± 11	29 ± 09	< 1.2	3.5 ± 10
JUN	65 ± 11	57 ± 11	4.3 ± 11	45 ± 11
JUL	63 ± 13	58 ± 13	4.1 ± 11	56 ± 13
AUG	53 ± 11	87 ± 15	6.3 ± 1.3	89 ± 15
SEP	97 ± 20	80 ± 20	7.5 ± 2.0	62 ± 19
OCT	55 ± 17	45 ± 17	36 ± 1.7	38 ± 16
NOV	65 ± 25	< 30	< 32	< 3 1
DEC	37 ± 16	22 ± 15	3.3 ± 1.6	< 2 2
MEAN	58 ± 31	47 ± 40	3.9 ± 33	44 ± 36

TABLE C-II.3CONCENTRATIONS OF TRITIUM IN DRINKING WATER SAMPLES COLLECTED IN
THE VICINITY OF LIMERICK GENERATING STATION, 2002

RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

COLLECTION PERIOD	15F4	15F7	16C2	28F3
JAN-MAR	< 94	< 94	< 94	< 94
APR-JUN	105 ± 61	< 96	< 95	< 94
JUL-SEP	< 141	< 141	< 140	< 126
OCT-DEC	< 176	< 176	< 171	< 173
MEAN	129 ± 74	127 ± 79	125 ± 75	122 ± 75

TABLE C-II.4CONCENTRATIONS OF GAMMA EMITTERS IN DRINKING WATER SAMPLES COLLECTED
IN THE VICINITY OF LIMERICK GENERATING STATION, 2002

,

STC	COLLECTION PERIOD	Mn-54	Co-58	Fe-59	Co-60	Zn-65	Zr-95	Nb-95	Cs-134	Cs-137	Ba-140	La-140
15F4	JAN	< 2	< 1	< 3	< 3	< 5	< 6	< 3	< 2	< 3	< 12	< 0 9
	FEB	< 2	< 3	< 5	< 2	< 4	< 5	< 2	< 3	< 3	< 10	< 2
	MAR	< 1	< 0.8	< 2	< 1	< 2	< 3	< 2	< 2	< 2	< 6	< 2
	APR	< 6	< 6	< 12	< 6	< 14	< 11	< 6	< 7	< 7	< 25	< 8
	MAY	< 4	< 3	< 7	< 3	< 7	< 6	< 4	< 3	< 3	< 16	< 5
	JUN	< 6	< 6	< 12	< 6	< 14	< 10	< 6	< 6	< 6	< 33	< 11
	JUL	< 3	< 3	< 7	< 3	< 6	< 6	< 4	< 3	< 3	< 20	< 6
	AUG	< 4	< 4	< 8	< 3	< 7	< 7	< 4	< 3	< 4	< 38	< 12
	SEP	< 3	< 3	< 8	< 3	< 5	< 6	< 5	< 3	< 3	< 45	< 15
	OCT	< 4	< 4	< 9	< 4	< 8	< 7	< 5	< 4	< 4	< 29	< 9
	NOV	< 2	< 2	< 10	< 3	< 8	< 3	< 2	< 1	< 2	< 13	< 4
	DEC	< 4	< 4	< 8	< 4	< 7	< 7	< 4	< 3	< 4	< 18	< 7
	MEAN	3 ± 3	3 ± 3	8 ± 6	4 ± 3	7 ± 7	6 ± 5	4 ± 3	3 ± 3	4 ± 3	22 ± 24	7 ± 9
5F7	JAN	< 2	< 1	< 3	< 3	< 2	< 6	< 1	< 3	< 3	< 6	< 2
	FEB	< 2	< 3	< 3	< 2	< 2	< 6	< 3	< 3	< 2	< 10	< 2
	MAR	< 2	< 2	< 5	< 2	< 2	< 6	< 2	< 3	< 4	< 14	< 2
	APR	< 6	< 6	< 12	< 6	< 13	< 10	< 6	< 6	< 6	< 25	< 8
	MAY	< 6	< 6	< 11	< 5	< 13	< 10	< 6	< 7	< 6	< 28	< 9
	JUN	< 3	< 4	< 7	< 3	< 7	< 6	< 4	< 3	< 3	< 20	< 6
	JUL	< 4	< 4	< 8	< 4	< 8	< 6	< 4	< 3	< 4	< 20	< 7
	AUG	< 2	< 3	< 6	< 2	< 4	< 5	< 3	< 2	< 2	< 22	< 9
	SEP	< 2	< 2	< 5	< 2	< 4	< 4	< 3	< 2	< 2	< 27	< 9
	OCT	< 6	< 6	< 14	< 6	< 13	< 12	< 7	< 5	< 6	< 40	< 12
	NOV	< 3	< 3	< 7	< 3	< 6	< 6	< 3	< 3	< 3	< 22	< 8
	DEC	< 3	< 3	< 7	< 3	< 7	< 6	< 3	< 3	< 4	< 17	< 5
	MEAN	3 ± 3	4 ± 3	7 ± 7	3 ± 3	7 ± 9	7 ± 5	4 ± 3	4 ± 3	4 ± 3	21 ± 18	7 ± 6

.

.

RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

STC	COLLECTION PERIOD	Mn-54	Co-58	Fe-59	Co-60	Zn-65	Zr-95	Nb-95	Cs-134	Cs-137	Ba-140	La-140
16C2		< 3	< 3	< 3	< 2	< 4	< 5	< 3	< 3	< 0		
	FEB	< 3	< 2	< 4	< 2	< 4	< 3	< 2	< 2	< 2	< 10	< 3
	MAR	< 2	< 2	< 4	< 3	< 4	< 5	< 2	< 3	< 2	< 7	< 4
	APR	< 2	< 2	< 5	< 2	< 5	< 4	< 2	< 3	< 3	< 7	< 2
	MAY	< 4	< 5	< 10	< 4	< 9	< 8	< 5	< 4	< 3	< 9	< 3
	JUN	< 6	< 6	< 12	< 5	< 13	< 10	< 6	-	< 5	< 22	< 7
	JUL	< 5	< 5	< 10	< 5	< 10	< 9	-	< 6	< 6	< 31	< 10
	AUG	< 3	< 4	< 7	< 3	< 6	< 5	< 5	< 4	< 5	< 26	< 9
	SEP	< 2	< 3	< 6	< 2	< 5	< 5	< 4	< 3	< 3	< 31	< 9
	OCT	< 4	< 4	< 8	< 4	< 7		< 4	< 2	< 3	< 35	< 12
	NOV	< 4	< 4	< 9	< 3		< 7	< 4	< 3	< 4	< 26	< 9
	DEC	< 5	< 6	< 12	< 6	< 8	< 7	< 4	< 3	< 4	< 27	< 9
		-	• 0	S 12	× 0	< 11	< 10	< 6	< 5	< 6	< 27	< 8
	MEAN	35 ± 2	4 ± 3	7 ± 6	4 ± 3	7 ± 6	6 ± 5	4 ± 3	3 ± 3	4 ± 3	22 ± 21	7 ± 7
28F3	JAN	< 4	< 1	< 4	< 3	< 5	< 5	< 3	< 3			_
	FEB	< 4	< 3	< 4	< 4	< 5	< 7	< 2	< 4	< 3	< 14	< 2
	MAR	< 2	< 2	< 2	< 2	< 4	< 2	< 2	-	< 4	< 11	< 4
	APR	< 6	< 6	< 11	< 6	< 11	< 10	< 6	< 2	< 1	< 5	< 2
	MAY	< 4	< 4	< 8	< 4	< 8	< 8	-	< 6	< 6	< 24	< 9
	JUN	< 6	< 6	< 12	< 6	< 14	< 10	< 4	< 4	< 4	< 20	< 6
	JUL	< 4	< 5	< 9	< 4	< 9		< 6	< 6	< 6	< 30	< 10
	AUG	< 3	< 4	< 8	< 4	< 6	< 8	< 5	< 4	< 5	< 24	< 8
	SEP	< 2	< 3	< 6	< 2	-	< 6	< 5	< 3	< 3	< 35	< 10
	OCT	< 2	< 2	< 5	< 2	< 4	< 5	< 3	< 2	< 2	< 35	< 10
	NOV	< 3	< 3	< 7		< 4	< 4	< 2	< 2	< 2	< 15	< 4
	DEC	< 4	< 4		< 3	< 7	<u><</u> 6	< 3	< 4	< 3	< 25	< 7
	020	~ 4	~ 4	< 8	< 4	< 7	< 7	< 4	< 3	< 4	< 18	< 7
	MEAN	3.7 ± 3	4 ± 3	7 ± 6	4 ± 3	7 ± 6	6 ± 5	4 ± 3	4 ± 3	4 ± 3	21 ± 19	7 ± 6

The second se

-

- -

TABLE C-II.4CONCENTRATIONS OF GAMMA EMITTERS IN DRINKING WATER SAMPLES COLLECTED
IN THE VICINITY OF LIMERICK GENERATING STATION, 2002

4. ei

RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

C-6

TABLE C-III.1CONCENTRATIONS OF GAMMA EMITTERS IN PREDATOR & BOTTOM FEEDER (FISH)SAMPLES COLLECTED IN THE VICINITY OF LIMERICK GENERATING STATION, 2002

STC	COLLECTION	K-40	Mn-54	Co-58	Fe-59	Co-60	Zn-65	Cs-134	Cs-137
16C5	PREDATOR								
	05/23 - 05/23/02	4080 ± 366	< 37	< 45	< 95	< 34	< 87	< 37	< 35
	10/15 - 10/15/02	3491 ± 277	< 15	< 17	< 39	< 16	< 33	< 14	< 16
	MEAN	3786 ± 833	26 ± 30	31 ± 40	67 ± 80	25 ± 26	60 ± 77	25 ± 33	26 ± 26
	BOTTOM FEEDER								
	05/23 - 05/23/02	3370 ± 385	< 25	< 30	< 64	< 25	< 53	< 24	< 24
	10/15 - 10/15/02	3280 ± 361	< 9	< 10	< 23	< 8	< 18	< 9	< 10
	MEAN	3325 ± 127	17 ± 22	20 ± 28	43 ± 58	17 ± 24	36 ± 49	16 ± 21	17 ± 20
2901	PREDATOR								
	05/08 - 05/08/02	3510 ± 280	< 19	< 19	< 40	< 18	< 43	< 17	< 17
	10/15 - 10/15/02	3575 ± 322	< 16	< 18	< 39	< 16	< 36	< 15	< 16
	MEAN	3543 ± 92	18 ± 4	19 ± 2	39 ± 2	17 ± 2	39 ± 10	16 ± 3	17 ± 1
	BOTTOM FEEDER								
	05/08 - 05/08/02	2940 ± 338	< 19	< 19	< 41	< 19	< 41	< 18	< 23
	10/15 - 10/15/02	3692 ± 431	< 11	< 13	< 30	< 12	< 28	< 12	< 12
	MEAN	3316 ± 1063	15 ± 11	16 ± 9	35 ± 15	16 ± 10	34 ± 18	15 ± 8	18 ± 14

RESULTS IN UNITS OF PCI/KG WET ± 2 SIGMA

TABLE C-IV.1CONCENTRATIONS OF GAMMA EMITTERS IN SEDIMENT SAMPLES COLLECTED
IN THE VICINITY OF LIMERICK GENERATING STATION, 2002

STC	COLLECTION PERIOD	Be-7	K-40	Mn-54	Co-58	Co-60	Cs-134	Cs-137
16B2								
	05/23/02	5880 ± 458	17200 ± 1040	< 57	< 56	< 49	< 45	176 ± 30
	11/15/02	5062 ± 595	21870 ± 1184	< 60	< 61	116 ± 37	< 46	268 ± 59
	MEAN	5471 ± 1157	19535 ± 6604	58 ± 4	59 ± 7	82 ± 95	45 ± 2	222 ± 130
16C4								
	05/23/02	549 ± 195	9750 ± 401	< 17	< 20	< 18	< 15	39 ± 18
	11/15/02	3280 ± 445	18760 ± 957	< 51	< 48	< 50	< 42	116 ± 50
	MEAN	1915 ± 3862	14255 ± 12742	34 ± 47	34 ± 40	34 ± 46	29 ± 37	78 ± 109
33A2								
	05/23/02	< 242	11400 ± 640	< 27	< 26	< 26	< 28	< 28
	11/15/02	3643 ± 505	17630 ± 845	< 42	< 43	< 39	< 35	208 ± 38
	MEAN	1943 ± 4810	14515 ± 8811	35 ± 21	35 ± 24	33 ± 18	31 ± 10	118 ± 255

RESULTS IN UNITS OF PCI/KG DRY ± 2 SIGMA

TABLE C-V.1 CONCENTRATIONS OF GROSS BETA IN AIR PARTICULATE SAMPLES COLLECTED IN THE VICINITY OF LIMERICK GENERATING STATION, 2002

RESULTS IN UNITS OF E-3 PCI/CU METER ± 2 SIGMA

		GROUP I		GROUP II	GROUP III
WEEK	10S3	1151	14S1	13C1	22G1
1	19 ± 3	21 ± 3	24 ± 4	19 ± 3	24 ± 4
2	21 ± 3	21 ± 3	22 ± 3	23 ± 4	24 ± 4
3	25 ± 4	24 ± 4	19 ± 4	17 ± 4	21 ± 4
4	24 ± 4	25 ± 4	23 ± 4	27 ± 4	22 ± 4
5	23 ± 4	22 ± 4	18 ± 4	19 ± 4	23 ± 4
6	24 ± 4	28 ± 4	21 ± 4	29 ± 4	23 ± 4
7	21 ± 3	17 ± 3	18 ± 3	15 ± 3	18 ± 3
8	21 ± 4	18 ± 4	20 ± 4	20 ± 4	17 ± 4
9	19 ± 4	20 ± 4	17 ± 4	21 ± 4	18 ± 4
10	28 ± 4	24 ± 4	26 ± 4	27 ± 4	25 ± 4
11	21 ± 3	18 ± 3	23 ± 3	17 ± 3	23 ± 3
12	20 ± 4	20 ± 4	20 ± 4	17 ± 3	17 ± 4 14 ± 4
13	15 ± 4	12 ± 4	15 ± 4	13 ± 3	14 ± 4 17 ± 3
14	15 ± 3	18 ± 3	16 ± 3	17 ± 3 17 \pm 3	17 ± 3 15 ± 3
15	14 ± 3	15 ± 3	14 ± 3	(1)	(1)
16	(1)	(1)	(1)	13 ± 3	10 ± 3
17	16 ± 3	12 ± 3	13 ± 3 11 ± 3	13 ± 3	10 ± 3 11 ± 3
18	11 ± 3	11 ± 3	11 ± 3 16 ± 3	15 ± 3	18 ± 3
19	13 ± 3	19 ± 3 8 ± 3	10 ± 3	14 ± 3	10 ± 0 14 ± 3
20	13 ± 3	12 ± 3	10 ± 3	11 ± 3	12 ± 3
21	13 ± 3 14 ± 4	12 ± 3 14 ± 4	10 ± 3 17 ± 4	14 ± 4	15 ± 4
22	14 ± 4 10 ± 3	7 ± 3	12 ± 3	9 ± 3	11 ± 3
23 24	10 ± 3 11 ± 3	12 ± 3	13 ± 3	13 ± 3	12 ± 3
24 25	13 ± 3	15 ± 3	16 ± 3	15 ± 3	11 ± 3
26	23 ± 3	26 ± 3	24 ± 3	26 ± 3	20 ± 3
27	21 ± 3	26 ± 4	23 ± 3	25 ± 3	17 ± 3
28	17 ± 3	18 ± 3	17 ± 3	18 ± 3	14 ± 3
29	28 ± 4	22 ± 3	29 ± 4	20 ± 3	15 ± 3
30	19 ± 6	15 ± 3	15 ± 3	16 ± 3	9 ± 3
31	21 ± 3	23 ± 4	22 ± 4	14 ± 3	9 ± 3
32	15 ± 3	12 ± 3	18 ± 3	13 ± 3	11 ± 3
33	25 ± 3	33 ± 4	27 ± 3	29 ± 3	16 ± 3
34	16 ± 3	18 ± 3	19 ± 3	16 ± 3	11 ± 3
35	9 ± 3	11 ± 3	11 ± 3	10 ± 3	8 ± 3
36	16 ± 3	20 ± 3	15 ± 3	17 ± 3	< 7
37	18 ± 3	21 ± 3	20 ± 3	22 ± 3	14 ± 3 15 ± 4
38	21 ± 5	18 ± 5	17 ± 4	22 ± 5 11 ± 4	10 ± 4
39	17 ± 5	15 ± 5	11 ± 4	11 ± 4 23 ± 5	16 ± 4
40	24 ± 5	22 ± 5	25 ± 5 8 ± 4	23 ± 3 8 ± 4	7 ± 4
41	8 ± 4	8 ± 4	8 ± 4 15 ± 4	19 ± 4	15 ± 4
42	14 ± 4	15 ± 4 13 ± 4	15 ± 4	10 ± 4 11 ± 4	13 ± 4
43	15 ± 4	13 ± 4 19 ± 5	13 ± 4 18 ± 4	16 ± 4	18 ± 5
44	16 ± 4 24 ± 5	13 ± 3 23 ± 5	10 ± 4	25 ± 5	26 ± 5
45	24 ± 5 22 ± 5	13 ± 4	16 ± 4	17 ± 4	23 ± 5
46		15 ± 4	15 ± 4	18 ± 4	26 ± 8
47	16 ± 4 18 ± 4	16 ± 4	(1)	20 ± 4	14 ± 3
48	15 ± 4	20 ± 5	20 ± 5	20 ± 5	23 ± 5
49 50	13 ± 4 17 ± 4	20 ± 0 21 ± 4	17 ± 4	18 ± 4	13 ± 4
	16 ± 4	18 ± 4	16 ± 4	14 ± 4	16 ± 4
51 52	10 ± 4 12 ± 4	14 ± 4	10 ± 4	14 ± 4	13 ± 4
JZ		•• •		_	
MEAN	18 ± 10	18 ± 11	17 ± 10	18 ± 10	16 ± 10

GROUP I - ON-SITE LOCATIONS				GROUP II - INTERMEDIATE DISTANCE LOCATIONS			GROUP III - CONTRO	GROUP III - CONTROL LOCATIONS			
	MIN	MAX.	MEAN ± 2 SD	COLLECTION PERIOD	MIN	MAX.	MEAN ± 2 SD	COLLECTION PERIOD	MIN	MAX	MEAN ±
12/31/01 - 01/28/02	19	25	22 ± 4	12/31/01 - 01/28/02	17	27	22 ± 9	12/31/01 - 01/28/02			2 SD
01/28/02 - 02/25/02	17	28	21 ± 6	01/28/02 - 02/25/02	15	29	$\frac{21}{21} \pm 12$		21	24	23 ± 3 .
02/25/02 - 04/01/02	12	28	20 ± 9	02/25/02 - 04/01/02	13	27	19 ± 11	01/28/02 - 02/25/02	17	23 (20 ± 6 🛴 .
04/01/02 - 04/29/02	12	° 18	15 ± 4	04/01/02 - 04/29/02	13	17	•	02/25/02 -, 04/01/02	14	25	19 ± 9
04/29/02 - 06/03/02	8	19	13 ± 6	04/29/02 - 06/03/02	-		16 ± 4	04/01/02 - 04/29/02	- 10	17	14 ± 7
06/03/02 - 07/01/02	7	26	15 ± 12		11	15	13 ± 3	04/29/02 - 06/03/02	11	18 `	14 ± 5
07/01/02 - 07/29/02	, 15	20		06/03/02 - 07/01/02	9	26	16 ± 14	06/03/02 - 07/01/02	11	20	14 ± 9 ·
07/29/02 - 09/02/02			21 ± 10	07/01/02 - 07/29/02	16	25	20 ± 8	07/01/02 - 07/29/02	9	17	14 ± 7 、
	9	33	18 ± 13	07/29/02 - 09/02/02	10	29	17 ± 15	07/29/02 - 09/02/02	8	16	11 ± 6
09/02/02 - 09/30/02	11	21	17 ± 6	09/02/02 - 09/30/02	11	22	18 ± 11	09/02/02 - 09/30/02	<7	15	-
09/30/02 - 10/28/02	8	25	15 ± 12	09/30/02 - 10/28/02	8	23	15 ± 14	09/30/02 - 10/28/02	~/		12 ± 7
10/28/02 - 12/02/02	13	24	18 ± 7	10/28/02 - 12/02/02	16	25	19 ± 7			16	13 ± 8
12/02/02 - 12/30/02	10	21	16 ± 7	12/02/02 - 12/30/02	14	20		10/28/02 - 12/02/02	14	26	22 ± 11
			·· _ ·		14	20	17 ± 6	12/02/02 - 12/30/02	13	23	16 ± 9
12/31/01 - 12/30/02	7	33	18 ± 10	12/31/01 - 12/30/02	8	29	18 ± 10	12/31/01 - 12/30/02	<7	26	16 ± 10

TABLE C-V.2MONTHLY AND YEARLY MEAN VALUES OF GROSS BETA CONCENTRATIONS (E-3 PCI/CU METER) IN AIR
PARTICULATE SAMPLES COLLECTED IN THE VICINITY OF LIMERICK GENERATING STATION, 2002

TABLE C-V.3CONCENTRATION OF GAMMA EMITTERS IN AIR PARTICULATE SAMPLES
COLLECTED IN THE VICINITY OF LIMERICK GENERATING STATION, 2002

STC	COLLECTION PERIOD	Be-7	Mn-54	Co-58	Co-60	Cs-134	Cs-137
10S3	12/31 - 04/01/02	63 ± 18	< 07	< 1	< 08	< 08	< 1
	04/01 - 07/01/02	70 ± 5	< 05	< 06	< 05	< 0.5	< 0 5
	07/01 - 09/30/02	81 ± 13	< 07	< 1	< 05	< 0.6	< 0.8
	09/30 - 12/30/02	48 ± 9	< 0.4	< 0 5	< 0 4	< 0 3	< 0 4
	MEAN	66 ± 28	06±0.3	08±07	06±03	06 ± 04	07±07
11S1	12/31 - 04/01/02	62 ± 16	< 06	< 09	< 07	< 06	< 0.9
	04/01 - 07/01/02	71 ± 5	< 0.6	< 07	< 0 5	< 0.6	< 0 5
	07/01 - 09/30/02	85 ± 13	< 0.7	< 08	< 0 6	< 0 5	< 0 5
	09/30 - 12/30/02	49 ± 8	< 0.6	< 0 7	< 0 8	< 0 6	< 07
	MEAN	67 ± 30	06±01	08±02	06±02	06±005	06±04
13C1	12/31 - 04/01/02	69 ± 20	< 07	< 06	< 1	< 1	< 07
	04/01 - 07/01/02	67 ± 5	< 0.6	< 0.7	< 05	< 0.6	< 0 5
	07/01 - 09/30/02	63 ± 10	< 07	< 0.9	< 08	< 0.6	< 0 7
	09/30 - 12/30/02	74 ± 11	< 0.7	< 0 8	< 0 9	< 0 7	< 0 7
	MEAN	68 ± 9	07±01	08±03	09±06	0.7 ± 05	06±02
14S1	12/31 - 04/01/02	63 ± 16	< 2	< 1	< 08	< 09	< 09
	04/01 - 07/01/02	74 ± 6	< 07	< 0 9	< 07	< 0.8	< 0.6
	07/01 - 09/30/02	66 ± 7	< 0.6	< 08	< 0.8	< 0 5	< 0.6
	09/30 - 12/30/02	59 ± 9	< 07	< 0 9	< 0.8	< 0.8	< 08
	MEAN	65 ± 13	09±08	1±05	08±01	07 ± 04	07±03
22G1	12/31 - 04/01/02	64 ± 21	< 09	< 1	< 07	< 09	< 08
	04/01 - 07/01/02	74 ± 5	< 0 6	< 0.8	< 0.6	< 0 7	< 0.6
	07/01 - 09/30/02	49 ± 7	< 0.9	< 1	< 07	< 07	< 08
	09/30 - 12/30/02	58 ± 8	< 0 5	< 0 6	< 0 5	< 0 4	< 0.5
	MEAN	61 ± 21	07±04	09±06	06±02	0.7 ± 04	0.7 ± 0.3

RESULTS IN UNITS OF E-3 PCI/CU METER ± 2 SIGMA

TABLE C-VI.1 CONCENTRATIONS OF I-131 IN AIR IODINE SAMPLES COLLECTED IN THE VICINITY OF LIMERICK GENERATING STATION, 2002

		GROUP I		GROUP II	GROUP III
WEEK	10S3	11S1	14S1	13C1	22G1
1	< 13	< 14	< 13	< 13	< 14
2	< 7	< 7	< 7	< 7	< 7
3	< 9	< 9	< 9	< 9	< 9
4	< 10	< 10	< 10	< 10	< 10
5	< 12	< 13	< 12	< 12	< 12
6	< 9	< 9	< 9	< 9	< 9
7	< 10	< 11	< 10	< 10	< 11
	< 9	< 9	< 9	< 9	< 9
8	< 11	< 11	< 11	< 11	< 11
9				< 10	< 10
10	< 10	< 10	< 10	< 10	< 15
11	< 15	< 15	< 15		< 9
12	< 9	< 9	< 9	< 9	
13	< 13	< 13	< 13	< 13	< 13
14	< 6	< 9	< 10	< 9	< 4
15	< 13	< 13	< 8	< 13	< 12
16	(1)	(1)	(1)	(1)	(1)
17	< 13	< 14	< 14	< 13	< 13
18	< 7	< 8	< 7	< 7	< 18
19	< 10	< 1 1	< 10	< 10	< 10
20	< 11	(1)	< 11	< 9	< 11
21	< 35	< 37	< 35	< 22	< 35
22	< 19	< 20	< 16	< 19	< 19
23	< 8	< 6	< 8	< 8	< 8
24	< 12	< 12	< 11	< 8	< 12
25	< 7	< 13	< 13	< 13	< 13
26	< 11	< 12	< 12	< 12	< 8
27	< 6	< 8	< 8	< 6	< 9
28	< 10	< 11	< 11	< 11	< 11
29	< 11	< 16	< 17	< 16	< 16
	< 14	< 5	< 6	< 6	< 9
30	< 14	< 20	< 20	< 19	< 20
31		< 21	< 22	< 21	< 14
32	< 20	< 14	< 14	< 14	< 15
33	< 6			< 24	< 24
34	< 23	< 24	< 16	< 18	< 18
35	< 17	< 18	< 14		
36	< 5	< 5	< 5	< 4	< 9
37	< 14	< 14	< 9	< 13	< 14
38	< 13	< 18	< 17	< 18	< 13
39	< 22	< 22	< 22	< 22	< 15
40	< 13	< 13	< 13	< 13	< 9
41	< 12	< 12	< 12	< 12	< 6
42	< 22	< 22	< 21	< 21	< 14
43	< 18	< 18	< 18	< 18	< 10
44	< 65	< 65	< 63	< 64	< 47
45	< 13	< 13	< 13	< 13	< 5
46	< 21	< 21	< 21	< 21	< 11
47	< 13	< 13	< 13	< 13	< 12
48	< 6	< 6	(1)	< 6	< 3
49	< 9	< 9	< 9	< 9	< 9
4 <i>3</i> 50	< 4	< 4	< 4	< 4	< 4
50 51	< 6	< 6	< 5	< 5	< 6
52	< 4	< 4	< 4	< 4	< 4
MEAN	13 ± 19	14 ± 19	13 ± 18	13 ± 18	12 ± 15

RESULTS IN UNITS OF E-3 PCI/CU METER ± 2 SIGMA

(1) SEE PROGRAM EXCEPTIONS SECTION FOR EXPLANATION C-12

TABLE C-VII.1 CONCENTRATIONS OF I-131 IN MILK SAMPLES COLLECTED IN THE VICINITY OF LIMERICK GENERATING STATION, 2002

	CONTROL FARMS				INDICATOR FARMS					
COLLECTION	36E1	9G1	23F1	18C1	19B1	21B1	22C1	25C1	10F4	
PERIOD										
01/08/02	< 0 2	< 0 3	< 0 2	< 0.4	< 0 3	< 0 2	< 0.2	< 0 2	< 0 3	
02/05/02		< 0 3		< 0 2	< 0 2	< 0 2			< 0 2	
03/05/02		< 0 2		< 0 2	< 0 2	< 02			< 03	
04/09/02	< 03	< 0 3	< 0 1	< 0 2	< 0 2	< 0 1	< 0 2	< 0 1	< 0 2	
04/23/02		< 0 1		< 0 1	< 03	< 0 1			< 0 2	
05/07/02		< 0 1		< 0 2	< 0 1	< 0 1			< 0 2	
05/21/02		< 03		< 0 2	< 0 3	< 02			< 0 2	
06/04/02		< 03		< 0 2	< 0.6	< 0 2			< 02	
06/18/02		< 0 3		< 0.4	< 03	< 1			< 0.4	
07/02/02	< 02	< 0 2	< 0 2	< 0 2	< 0 2	< 0 2	< 0 2	< 0 2	< 0 2	
07/15/02		< 0 3		< 0 2	< 0 2	< 0 5			< 02	
07/29/02		< 0 2		< 0 2	< 02	< 0 3			< 0 2	
08/12/02		< 0 4		< 0 2	< 0 2	< 0 2			< 02	
08/26/02		< 0 2		< 0 2	< 0 2	< 0 2			< 03	
09/09/02		< 0 2		< 0 2	< 0 2	< 0 2			< 0 2	
09/23/02		< 0 4		< 0.4	< 03	< 03			< 03	
10/07/02	< 03	< 0.4	< 0.2	< 0 3	< 0.4	< 0 3	< 0 3	< 0 3	< 03	
10/22/02		< 0.4		< 0.4	< 0.4	< 0 5			< 0.4	
11/05/02		< 0.4		< 0 2		(1) < 0.3			< 07	
11/19/02		< 0 5		< 0 3	< 04	< 03			< 04	
12/11/02		< 0.3		< 0 4	< 0.4	< 04			< 0 3	
MEAN	02±01	03 ± 0.2	02 ± 0.1	0.3 ± 02	0.3 ± 02	03±04	02±02	02 ± 02	0.3 ± 03	

RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

TABLE C-VII.2CONCENTRATIONS OF GAMMA EMITTERS IN MILK SAMPLES
COLLECTED IN THE VICINITY OF LIMERICK GENERATING STATION, 2002

STC		K-40	Cs-134	Cs-137	Ba-140	La-140
10F4	01/08/02	1386 ± 106	< 5	< 2	< 17	< 2
101 4	02/05/02	1379 ± 109	< 3	< 2	< 11	< 3
	03/05/02	1531 ± 117	< 4	< 3	< 15	< 2
	04/09/02	1390 ± 87	< 4	< 4	< 20	< 7
	04/23/02	1540 ± 97	< 7	< 7	< 26	< 8
	05/07/02	1390 ± 82	< 5	< 5	< 22	< 7
	05/21/02	1560 ± 66	< 2	< 3	< 10	< 3
	06/04/02	1390 ± 110	< 5	< 7	< 25	< 8
	06/18/02	1400 ± 83	< 7	< 6	< 29	< 9
	07/02/02	1320 ± 89	< 4	< 5	< 23	< 6
	07/16/02	1400 ± 84	< 4	< 4	< 19	< 6
	07/30/02	1490 ± 88	< 4	< 5	< 20	< 6
	08/13/02	1290 ± 86	< 7	< 6	< 32	< 10
	08/27/02	1260 ± 66	< 5	< 5	< 23	< 7
	09/10/02	1320 ± 81	< 4	< 4	< 20	< 7
	09/24/02	1290 ± 109	< 4	< 4	< 33	< 12
	10/08/02	1400 ± 60	< 2	< 3	< 15	< 5
	10/22/02	1480 ± 104	< 4	< 5	< 28	< 10
	11/05/02	1496 ± 48	< 2	< 2	< 13	< 3
	11/19/02	1415 ± 90	< 2	< 2	< 8	< 3
	12/10/02	1315 ± 91	< 3	< 4	< 18	< 5
	MEAN	1402 ± 174	4 ± 3	4 ± 3	20 ± 14	6 ± 6
4004	04/00/00	1997 + 67	< 3	< 3	< 10	< 1
18C1		1387 ± 67 1427 ± 102	< 4	< 3	< 12	< 2
	02/05/02		< 3	< 3	< 14	< 3
	03/05/02	1281 ± 107	< 4	< 4	< 22	< 7
	04/09/02	1430 ± 93	< 6	< 7	< 23	< 8
	04/23/02	1810 ± 94	< 5	< 5	< 27	< 8
	05/07/02	1400 ± 90 1490 ± 73	< 3	< 3	< 15	< 4
	05/21/02	1490 ± 73 1510 ± 87	< 4	< 5	< 19	< 6
	06/04/02	1370 ± 103	< 9	< 8	< 36	< 12
	06/18/02 07/02/02	1440 ± 85	< 4	< 4	< 20	< 6
		1410 ± 79	< 3	< 4	< 17	< 6
	07/16/02 07/30/02	1470 ± 85	< 4	< 5	< 18	< 6
	08/13/02	1260 ± 81	< 7	< 7	< 34	< 10
	08/27/02	1350 ± 79	< 6	< 6	< 31	< 10
	09/10/02	1320 ± 75	< 3	< 4	< 18	< 6
		1470 ± 98	< 4	< 4	< 28	< 9
	09/24/02 10/08/02	1470 ± 58 1440 ± 58	< 2	< 2	< 18	< 5
		1440 ± 30 1570 ± 100	< 3	< 4	< 31	< 9
	10/22/02	1500 ± 150	< 1	< 1	< 8	< 2
	11/05/02	1340 ± 84	< 4	< 4	< 20	< 7
	11/19/02	1340 ± 84 1463 ± 107	< 4	< 5	< 22	< 6
	12/10/02	1400 ± 107	~ 7			_
	MEAN	1435 ± 231	4 ± 4	4 ± 3	21 ± 15	6 ± 5

RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

TABLE C-VII.2 CONCENTRATIONS OF GAMMA EMITTERS IN MILK SAMPLES COLLECTED IN THE VICINITY OF LIMERICK GENERATING STATION, 2002

п

STC	COLLECTION	K-40	Cs-134	Cs-137	Ba-140	La-140
	PERIOD					
19B1		1238 ± 152	< 4	< 5	< 18	< 3
	02/05/02	1512 ± 118	< 3	< 4	< 15	< 2
	03/05/02	1493 ± 118	< 4	< 4	< 11	< 4
	04/09/02	1410 ± 88	< 4	< 5	< 22	< 8
	04/23/02	1540 ± 77	< 3	< 5	< 13	< 4
	05/07/02	1420 ± 100	< 7	< 7	< 30	< 9
	05/21/02	1460 ± 59	< 2	< 2	< 9	< 3
	06/04/02	1510 ± 90	< 4	< 5	< 22	< 6
	06/18/02	1420 ± 79	< 6	< 7	< 27	< 8
	07/02/02	1360 ± 88	< 4	< 5	< 24	< 7
	07/16/02	1200 ± 88	< 4	< 5	< 21	< 7
	07/30/02	1350 ± 83	< 4	< 5	< 22	< 7
	08/13/02	1380 ± 108	< 9	< 8	< 43	< 14
	08/27/02	1400 ± 103	< 8	< 8	< 41	< 13
	09/10/02	1280 ± 85	< 4	< 5	< 24	< 7
	09/24/02	1270 ± 96	< 4	< 4	< 29	< 8
	10/08/02	1420 ± 65	< 2	< 3	< 18	< 6
	10/22/02	1350 ± 96	< 3	< 4	< 30	< 8
	11/05/02	1430 ± 68	< 2	< 3	< 18	< 5
	11/19/02	1220 ± 90	< 4	< 5	< 23	< 7
	12/10/02	1346 ± 94	< 2	< 3	< 11	< 3
			_			• 5
	MEAN	1381 ± 196	4 ± 4	5 ± 3	22 ± 18	7 ± 6
21B1	01/08/02	1440 ± 121	< 4	< 4	< 19	< 3
	02/05/02	1476 ± 112	< 4	< 4	< 13	
	03/05/02	1514 ± 127	< 4	< 4	< 19	< 1
	04/09/02	1350 ± 110	< 5	< 5	< 27	< 2 · < 8
	04/23/02	1570 ± 80	< 5	< 6	< 22	
	05/07/02	1390 ± 89	< 3	< 4	< 22 < 17	< 6
	05/21/02	1500 ± 64	< 2	< 2		< 5
	06/04/02	1440 ± 97	< 5	< 5	< 10	< 3
	06/18/02	1450 ± 89	< 7		< 22	< 7
	07/02/02	1490 ± 100	< 5	< 6	< 30	< 9
	07/16/02	1380 ± 74	< 3	< 5	< 27	< 9
	07/30/02	1390 ± 95	-	< 3	< 16	< 5
	08/13/02	1520 ± 88	< 4 < 7	< 6	< 23	< 6
	08/27/02			< 6	< 32	< 10
		1380 ± 74	< 5	< 5	< 30	< 9
	09/10/02	1380 ± 83	< 4	< 4	< 22	< 7
	09/24/02	1380 ± 86	< 3	< 4	< 30	< 8
	10/08/02	1390 ± 78	< 1	< 2	< 12	< 4
	10/22/02	1480 ± 105	< 4	< 4	< 30	< 10
	11/05/02	1452 ± 47	< 2	< 2	< 12	< 3
	11/19/02	1310 ± 75	< 3	< 4	< 21	< 5
	12/10/02	1382 ± 91	< 2	< 2	< 10	< 3
	MEAN	1432 ± 132	4 ± 3	4 ± 3	21 ± 14	6 ± 5

RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

1

TABLE C-VII.2CONCENTRATIONS OF GAMMA EMITTERS IN MILK SAMPLES
COLLECTED IN THE VICINITY OF LIMERICK GENERATING STATION, 2002

STC	COLLECTION	K-40	Cs-134	Cs-137	Ba-140	La-140
	PERIOD					
9G1	01/08/02	1386 ± 111	< 3	< 3	< 16	< 3
	02/05/02	1218 ± 112	< 4	< 4	< 22	< 2
	03/05/02	1300 ± 115	< 4	< 3	< 17	< 3
	04/09/02	1390 ± 83	< 4	< 4	< 19	< 6
	04/23/02	1890 ± 102	< 7	< 7	< 26	< 9
	05/07/02	1570 ± 88	< 5	< 5	< 22	< 7
	05/21/02	1420 ± 59	< 2	< 2	< 12	< 3
	06/04/02	1460 ± 89	< 4	< 6	< 20	< 7
	06/18/02	1450 ± 79	< 3	< 4	< 18	< 6
	07/02/02	1420 ± 88	< 4	< 5	< 23	< 8
	07/16/02	1280 ± 79	< 3	< 4	< 18	< 6
	07/30/02	1310 ± 84	< 4	< 5	< 20	< 7
	08/13/02	1380 ± 75	< 6	< 4	< 27	< 8
	08/27/02	1270 ± 78	< 4	< 4	< 21	< 7
	09/10/02	1210 ± 74	< 3	< 4	< 19	< 7
	09/24/02	1630 ± 107	< 4	< 4	< 35	< 10
	10/08/02	1350 ± 57	< 2	< 2	< 17	< 6
	10/22/02	1430 ± 95	< 4	< 4	< 30	< 8
	11/05/02	1440 ± 104	< 5	< 5	< 38	< 8
	11/19/02	1761 ± 126	< 3	< 3	< 14	< 3
	12/10/02	1404 ± 85	< 4	< 4	< 16	< 4
	MEAN	1427 ± 337	4 ± 2	4 ± 2	21 ± 13	6 ± 5

RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

TABLE C-VIII.1 QUARTERLY TLD RESULTS FOR LIMERICK GENERATION STATION, 2002

STATION	MEAN	JAN - MAR	APR - JUN	JUL - SEP	OCT - DEC
CODE	± 2 S. D.				
36S2	81±15	85±03	83±06	86±07	70 ± 06
36D1	67±11	6.9 ± 05	67±06	7.3 ± 0.5	60 ± 08
2E1	80±18	8.0 ± 0.6	82±08	89±09	67 ± 08
351	74 ± 15	7.2 ± 06	78±06	82±06	65 ± 12
4E1	61±06	63±04	63±03	63±1.1	57 ± 08
5S1	88±19	84±07	91±09	99 ± 05	77±06
5H1	86±06	82±10	87±06	90±08	87±05
6C1	7.4 ± 09	7.2 ± 08	7.0 ± 0.6	80±09	73±03
7S1	83±12	84±06	84 ± 07	89±05	74 ± 07
7E1	7.9 ± 16	80±03	82 ± 04	87±03	68 ± 05
9C1	72 ± 11	7.0 ± 03	68±07	80±09	72 ± 18
10S3	81±22	81±07	84 ± 08	93±05	66±06
10E1	77±17	7.9±06	78±07	86±06	66 ± 1.1
10F3	7.9 ± 1.2	81±10	83±06	82±09	70±05
1151	92 ± 16	91±04	98±07	98±18	81±02
1352	11.5 ± 18	112±06	120 ± 18	124 ± 1.2	104 ± 1.3
13C1	55±10	52 ± 04	51 ± 03	63 ± 0.5	55 ± 05
13E1	7.8 ± 13	7.9 ± 04	83±09	80±0.4	68±08
14S1	6.9 ± 12	69±0.3	7.2 ± 07	74 ± 0.7	6.1 ± 08
15D1	7.5 ± 10	73±06	7.5 ± 13	82 ± 0.8	7.1 ± 06
16F1	80±1.1	81±00	83±06	83±08	7.2 ± 09
17B1	7.2 ± 14	69 ± 0.5	8.0 ± 06	7.6 ± 04	6.4 ± 0.6
18S2	82±13	79±0.4	9.0 ± 12	85±10	7.4 ± 0.9
19D1	7.4 ± 10	77±0.5	7.6 ± 06	7.7 ± 07	66±08
20D1	68±12	64 ± 0.4	7.5 ± 04	7.1 ± 06	62±04
20F1	7.6 ± 11	7.9 ± 0.4	7.7 ± 06	81±08	68±1.2
21S2	69±09	66±06	7.5 ± 1.1	7.0 ± 11	65 ± 04
23S2	7.2 ± 1 1	76±04	76±0.6	74 ± 11	64 ± 03
24D1	67±08	7.1 ± 06	70±0.9	67±05	62 ± 04
25S2	69±10	69±03	74±09	70±06	62 ± 07
25D1	64 ± 1.0	65 ± 06	66±06	67 ± 0.5	56 ± 06
26S3	68 ± 12	69±05	70±07	7.4 ± 0.7	60 ± 10
28D2	73±10	75 ± 10	74 ± 04	78±0.7	66 ± 06
29S1	69±11	70±03	72±08	7.3 ± 0.7	61 ± 04
29E1	72±09	7.2 ± 06	76±04	74±09	66±06
31S1	78±13	8.1 ± 06	84 ± 07	7.9 ± 0.9	68 ± 04
31D1	90 ± 17	8.3 ± 06	100 ± 06	94 ± 05	8.2 ± 05
31D2	74±09	7.0 ± 0.6	77±13	7.9 ± 10	7.1 ± 0.6
34S2	82 ± 14	86±08	86±08	8.3 ± 10	7.1 ± 07
34E1	72 ± 11	7.0 ± 07	68 ± 06	80±06	68±06

RESULTS IN UNITS OF MILLI-ROENTGEN/STD. MONTH ± 2 STANDARD DEVIATIONS

TABLE C-VIII.2 C MEAN QUARTERLY TLD RESULTS FOR THE SITE BOUNDARY, MIDDLE AND CONTROL LOCATIONS FOR LIMERICK GENERATING STATION, 2002

RESULTS IN UNITS OF MILLI-ROENTGEN PER STD. MONTH ±2 STANDARD DEVIATIONS OF THE STATION DATA

ĵ.

STATION CODE	SITE BOUNDARY	MIDDLE	CONTROL
JAN-MAR	8.0 ± 2.3	7.3 ± 1.5	8.2 ± 1.0
APR-JUN	8.4 ± 2.5	7.5 ± 1.9	8.7 ± 0.6
JUL-SEP	8.5 ± 2.8	7.8 ± 1.6	9.0 ± 0.8
OCT-DEC	7.0 ± 2.2	6.7 ± 1.2	8.7 ± 0.5

TABLE C-VIII.3SUMMARY OF THE AMBIENT DOSIMETRY PROGRAM FOR LIMERICK
GENERATING STATION, 2002

RESULTS IN UNITS OF MILLI-ROENTGEN/STD. MONTH

LOCATION	SAMPLES ANALYZED		RIOD PERIOD MEAN	PRE-OP MEAN ± 2 S. D.
SITE BOUNDARY	64	6.0	12.4 7.9 ± 2.7	7.6 ± 2.4
MIDDLE DISTANCE	92	5.1	10.0 7.3 [*] ± 1.7	7.8 ± 2.2
CONTROL	4	8.2	9.0 8.6 ± 0.6	7.8 ± 3.0

THE PRE-OPERATIONAL MEAN WAS CALCULATED FROM MONTHLY TLD READINGS 01/15/52 TO 12/02/94.

SITE BOUNDARY STATIONS - 36S2, 3S1, 5S1, 7S1, 10S3, 11S1, 13S2, 14S1, 18S2, 21S2, 23S2, 25S2, 26S3, 29S1, 31S1, 34S2

MIDDLE DISTANCE STATIONS - 36D1, 2E1, 4E1, 6C1, 7E1, 9C1, 10E1, 10F3, 13C1, 13E1, 15D1, 16F1, 17B1, 19D1, 20D1, 20F1, 24D1, 25D1, 28D2, 29E1, 31D1, 31D2, 34E1

CONTROL STATIONS - 5H1

TABLE C-IX.1SUMMARY OF COLLECTION DATES FOR SAMPLES COLLECTED IN
THE VICINITY OF LIMERICK GENERATING STATION, 2002

SURFACE WATER (TRITIUM LIQUID SCINTILLATION)

COLLECTION	10F2	13B1	24S1	
JAN-MAR	12/31/02 - 04/01/02	12/31/02 - 04/01/02	12/31/02 - 04/01/02	
APR-JUN	04/01/02 - 07/01/02	04/01/02 - 07/01/02	04/01/02 - 07/01/02	
JUL-SEP	07/01/02 - 09/30/02	07/01/02 - 09/30/02	07/01/02 - 09/30/02	
OCT-DEC	09/30/02 - 12/30/02	09/30/02 - 12/30/02	09/30/02 - 12/30/02	

SURFACE WATER (GAMMA SPECTROSCOPY)

.

COLLECTION PERIOD	10F2	13B1	24S1	
JAN	12/31/02 - 01/28/02	12/31/02 - 01/28/02	12/31/02 - 01/28/02	
FEB	01/28/02 - 02/25/02	01/28/02 - 02/25/02	01/28/02 - 02/25/02	
MAR	02/25/02 - 04/01/02	02/25/02 - 04/01/02	02/25/02 - 04/01/02	
APR	04/01/02 - 04/29/02	04/01/02 - 04/29/02	04/01/02 - 04/29/02	
MAY	04/29/02 - 05/28/02	04/29/02 - 05/28/02	04/29/02 - 05/28/02	
JUN	05/28/02 - 07/01/02	05/28/02 - 07/01/02	05/28/02 - 07/01/02	
JUL	07/01/02 - 07/29/02	07/01/02 - 07/29/02	07/01/02 - 07/29/02	
AUG	07/29/02 - 09/03/02	07/29/02 - 09/03/02	07/29/02 - 09/03/02	
SEP	09/03/02 - 09/30/02	09/03/02 - 09/30/02	09/03/02 - 09/30/02	
OCT	09/30/02 - 10/28/02	09/30/02 - 10/28/02	09/30/02 - 10/28/02	
NOV	10/28/02 - 12/02/02	10/28/02 - 12/02/02	10/28/02 - 12/02/02	
DEC	12/02/02 - 12/30/02	12/02/02 - 12/30/02	12/02/02 - 12/30/02	

DRINKING WATER (TRITIUM)

.

COLLECTION PERIOD	15F4	15F7	16C2	28F3
JAN-MAR	12/31/02 - 04/01/02 04/01/02 - 07/01/02			
APR-JUN JUL-SEP	07/01/02 - 09/30/02	07/01/02 - 09/30/02	07/01/02 - 09/30/02	07/01/02 - 09/30/02
OCT-DEC	09/30/02 - 12/30/02	09/30/02 - 12/30/02	09/30/02 - 12/30/02	09/30/02 - 12/30/02

DRINKING WATER (GROSS BETA & GAMMA SPECTROSCOPY)

	15F4	15F7	16C2	28F3
JAN	12/31/01 - 01/28/02	12/31/01 - 01/28/02	12/31/01 - 01/28/02	12/31/01 - 01/28/02
FEB	01/28/02 - 02/25/02	01/28/02 - 02/25/02	01/28/02 - 02/25/02	01/28/02 - 02/25/02
MAR	02/25/02 - 04/01/02	02/25/02 - 04/01/02	02/25/02 - 04/01/02	02/25/02 - 04/01/02
APR	04/01/02 - 04/29/02	04/01/02 - 04/29/02	04/01/02 - 04/29/02	04/01/02 - 04/29/02
MAY	04/29/02 - 05/28/02	04/29/02 - 05/28/02	04/29/02 - 05/28/02	04/29/02 - 05/28/02
JUN	05/28/02 - 07/01/02	05/28/02 - 07/01/02	05/28/02 - 07/01/02	05/28/02 - 07/01/02
JUL	07/01/02 - 07/29/02	07/01/02 - 07/29/02	07/01/02 - 07/29/02	07/01/02 - 07/29/02
AUG	07/29/02 - 09/03/02	07/29/02 - 09/03/02	07/29/02 - 09/03/02	07/29/02 - 09/03/02
SEP	09/03/02 - 09/30/02	09/03/02 - 10/28/02	09/03/02 - 10/28/02	09/03/02 - 10/28/02
OCT	09/30/02 - 10/28/02	09/30/02 - 10/28/02	09/30/02 - 10/28/02	09/30/02 - 10/28/02
NOV	10/02/02 - 12/02/02	10/02/02 - 12/02/02	10/02/02 - 12/02/02	10/02/02 - 12/02/02
DEC	12/02/02 - 12/30/02	12/02/02 - 12/30/02	12/02/02 - 12/30/02	12/02/02 - 12/30/02

TABLE C-IX.1 SUMMARY OF COLLECTION DATES FOR SAMPLES COLLECTED IN THE VICINITY OF LIMERICK GENERATING STATION, 2002

AIR PARTICULATE (GAMMA SPECTROSCOPY)

í

÷

ı

COLLECTION PERIOD	10S3	1151	14S1	13CS,	22G1
JAN-MAR	12/31/02 - 04/01/02	12/31/02 - 04/01/02	12/31/02 - 04/01/02	12/31/02 - 04/01/02 (*	12/31/02 - 04/01/02
APR-JUN	04/01/02 - 07/01/02	04/01/02 - 07/01/02	04/01/02 - 07/01/02	04/01/02 - 07/01/02	04/01/02 - 07/01/02
JUL-SEP	07/01/02 - 09/30/02	07/01/02 - 09/30/02	07/01/02 - 09/30/02	07/01/02 - 09/30/02	07/01/02 - 09/30/02
OCT-DEC	09/30/02 - 12/30/02	09/30/02 - 12/30/02	09/30/02 - 12/30/02	09/30/02 - 12/30/02	09/30/02 - 12/30/02

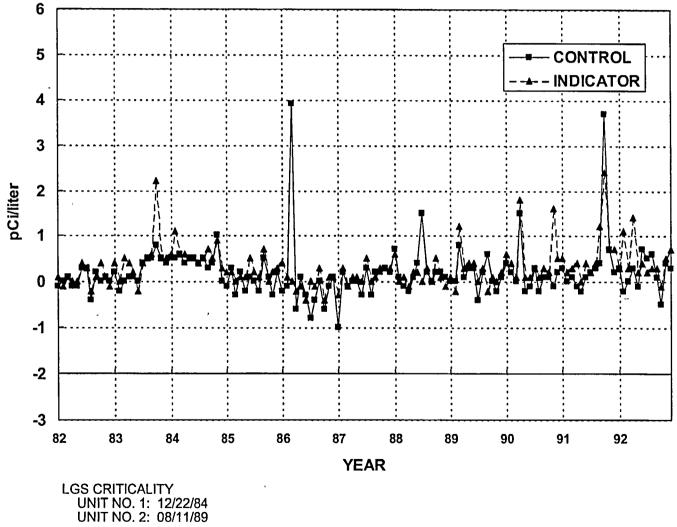
,

AIR PARTICULATE (GROSS BETA & I-131)

COLLECTION PERIOD	1053	11S1	14S1 -	⁷ ¹ 13CS	22G1
1	12/31/01 - 01/07/02		12/31/01 - 01/07/02	12/31/01 - 01/07/02	12/31/01 - 01/07/02
2		- 01/07/02 - 01/14/02		01/07/02 - 01/14/02	01/07/02 - 01/14/02
3	01/14/02 - 01/21/02	01/14/02 - 01/21/02	01/14/02 - 01/21/02	01/14/02 - 01/21/02	01/14/02 - 01/21/02
4	01/21/02 - 01/28/02		01/21/02 - 01/28/02	01/21/02 - 01/28/02	01/21/02 - 01/28/02
5	01/28/02 - 02/04/02	, 01/28/02 - 02/04/02	01/28/02 - 02/04/02	01/28/02 - 02/04/02	01/28/02 - 02/04/02
6	02/04/02 - 02/11/02	02/04/02 - 02/11/02	02/04/02 - 02/11/02	02/04/02 - 02/11/02	02/04/02 - 02/11/02
7	02/11/02 - 02/18/02	02/11/02 - 02/18/02	02/11/02 -, 02/18/02	02/11/02 - 02/18/02	02/11/02 - 02/18/02
8	02/18/02 - 02/25/02	,02/18/02 - 02/25/02	02/18/02 - 02/25/02	02/18/02 - 02/25/02	02/18/02 - 02/25/02
9	02/25/02 - 03/04/02	02/25/02 - 03/04/02	02/25/02 - 03/04/02	02/25/02 - 03/04/02	02/25/02 - 03/04/02
10	03/04/02 - 03/11/02	03/04/02 - 03/11/02	03/04/02 - 03/11/02	03/04/02 - 03/11/02	03/04/02 - 03/11/02
11 12	03/11/02 - 03/18/02	03/11/02 - 03/18/02	03/11/02 - 03/18/02	03/11/02 - 03/18/02	03/11/02 - 03/18/02
13	03/18/02 - 03/25/02	03/18/02 - 03/25/02	03/18/02 - 03/25/02	03/18/02 - 03/25/02	03/18/02 - 03/25/02
14	03/25/02 - 04/01/02 04/01/02 - 04/08/02	03/25/02 - 04/01/02	03/25/02 - 04/01/02	03/25/02 - 04/01/02	03/25/02 - 04/01/02
15	04/08/02 - 04/15/02	04/01/02 - 04/08/02	04/01/02 - 04/08/02	04/01/02 - 04/08/02	04/01/02 - 04/08/02
15	04/15/02 - 04/22/02	04/08/02 - 04/15/02 04/15/02 - 04/22/02	04/08/02 - 04/15/02	04/08/02 - 04/15/02	04/08/02 - 04/15/02
17	04/22/02 - 04/29/02	04/22/02 - 04/29/02	04/15/02 - 04/22/02	04/15/02 - 04/22/02	04/15/02 - 04/22/02
18	04/29/02 - 05/06/02	04/29/02 - 05/06/02	04/22/02 - 04/29/02	04/22/02 - 04/29/02	04/22/02 - 04/29/02
19	05/06/02 - 05/13/02	05/06/02 - 05/13/02	04/29/02 - 05/06/02 05/06/02 - 05/13/02	04/29/02 - 05/06/02	04/29/02 - 05/06/02
20	05/13/02 - 05/20/02	05/13/02 - 05/20/02	05/13/02 - 05/20/02	05/06/02 - 05/13/02 05/13/02 - 05/20/02	~ 05/06/02 - 05/13/02
21	05/20/02 - 05/27/02	05/20/02 - 05/27/02	05/20/02 - 05/27/02	05/20/02 - 05/27/02	05/13/02 - 05/20/02
22	05/27/02 - 06/03/02	- 05/27/02 - 06/03/02	05/27/02 - 06/03/02		05/20/02 - 05/27/02 05/27/02 - 06/03/02
23	06/03/02 - 06/10/02	06/03/02 - 06/10/02	06/03/02 - 06/10/02		
24	06/10/02 - 06/17/02	06/10/02 - 06/17/02	06/10/02 - 06/17/02	06/10/02 - 06/17/02	06/03/02 - 06/10/02 06/10/02 - 06/17/02
25	06/17/02 - 06/24/02	- 06/17/02 - 06/24/02	06/17/02 - 06/24/02	06/17/02 - 06/24/02	06/17/02 - 06/24/02
26	06/24/02 - 07/01/02	+ 06/24/02 - 07/01/02		06/24/02 - 07/01/02	06/24/02 - 07/01/02
27	07/01/02 - 07/08/02	07/01/02 - 07/08/02	07/01/02 - 07/08/02	07/01/02 - 07/08/02	07/01/02 - 07/08/02
28	07/08/02 - 07/15/02	07/08/02 - 07/15/02	07/08/02 - 07/15/02	07/08/02 - 07/15/02	07/08/02 - 07/15/02
29	07/15/02 - 07/22/02	07/15/02 - 07/22/02	07/15/02 - 07/22/02	07/15/02 - 07/22/02	07/15/02 - 07/22/02
30	07/22/02 - 07/29/02	07/22/02 - 07/29/02	07/22/02 - 07/29/02	07/22/02 - 07/29/02	07/22/02 - 07/29/02
31	07/29/02 - 08/05/02	07/29/02 - 08/05/02	07/29/02 - 08/05/02	07/29/02 - 08/05/02	07/29/02 - 08/05/02
32	08/05/02 - 08/12/02	08/05/02 - 08/12/02	08/05/02 - 08/12/02	08/05/02 - 08/12/02	08/05/02 - 08/12/02
33	08/12/02 - 08/19/02	08/12/02 - 08/19/02	08/12/02 - 08/19/02	08/12/02 - 08/19/02	08/12/02 - 08/19/02
, 34	08/19/02 - 08/26/02	08/19/02 - 08/26/02	08/19/02 - 08/26/02	, 08/19/02 - 08/26/02	.08/19/02 - 08/26/02
35	08/26/02 - 09/02/02	08/26/02 - 09/02/02	08/26/02 - 09/02/02	08/26/02 - 09/02/02	08/26/02 - 09/02/02
36 37	09/02/02 - 09/09/02	09/02/02 - 09/09/02	09/02/02 - 09/09/02	09/02/02 - 09/09/02	09/02/02 - 09/09/02
38	09/09/02 - 09/16/02	09/09/02 - 09/16/02	09/09/02 - 09/16/02	09/09/02 - 09/16/02	09/09/02 - 09/16/02
39	09/16/02 - 09/23/02 09/23/02 - 09/30/02	09/16/02 - 09/23/02	09/16/02 - 09/23/02	09/16/02 - 09/23/02	09/16/02 - 09/23/02
40	09/30/02 - 10/07/02	09/23/02 - 09/30/02	09/23/02 - 09/30/02	09/23/02 - 09/30/02	09/23/02 - 09/30/02
41	10/07/02 - 10/14/02	09/30/02 - 10/07/02 10/07/02 - 10/14/02	09/30/02 - 10/07/02	09/30/02 - 10/07/02	09/30/02 - 10/07/02
42	10/14/02 - 10/21/02	10/14/02 - 10/21/02	10/07/02 - 10/14/02 10/14/02 - 10/21/02	10/07/02 - 10/14/02	10/07/02 - 10/14/02
43	10/21/02 - 10/28/02	10/21/02 - 10/28/02	10/21/02 - 10/28/02	10/14/02 - 10/21/02	10/14/02 - 10/21/02
44	10/28/02 - 11/04/02	10/28/02 - 11/04/02	10/28/02 - 11/04/02	10/21/02 - 10/28/02	10/21/02 - 10/28/02
45	11/04/02 - 11/11/02	11/04/02 - 11/11/02	11/04/02 - 11/11/02	10/28/02 - 11/04/02	10/28/02 - 11/04/02
46	11/11/02 - 11/18/02	11/11/02 - 11/18/02	11/11/02 - 11/18/02	11/04/02 - 11/11/02 11/11/02 - 11/18/02	11/04/02 - 11/11/02
47	11/18/02 - 11/25/02	11/18/02 - 11/25/02	11/18/02 - 11/25/02	11/18/02 - 11/25/02	11/11/02 - 11/18/02 11/18/02 - 11/25/02
48	11/25/02 - 12/02/02	11/25/02 - 12/02/02	11/25/02 - 12/02/02	11/25/02 - 12/02/02	11/25/02 - 12/02/02
49	12/02/02 - 12/09/02	12/02/02 - 12/09/02	12/02/02 - 12/09/02	12/02/02 - 12/09/02	12/02/02 - 12/02/02
50	12/09/02 - 12/16/02	12/09/02 - 12/16/02	12/09/02 - 12/16/02	12/09/02 - 12/16/02	12/09/02 - 12/16/02
51	12/16/02 - 12/23/02	12/16/02 - 12/23/02	12/16/02 - 12/23/02	12/16/02 - 12/23/02	12/16/02 - 12/23/02
52	12/23/02 - 12/30/02	12/23/02 - 12/30/02	12/23/02 - 12/30/02	12/23/02 - 12/30/02	12/23/02 - 12/30/02

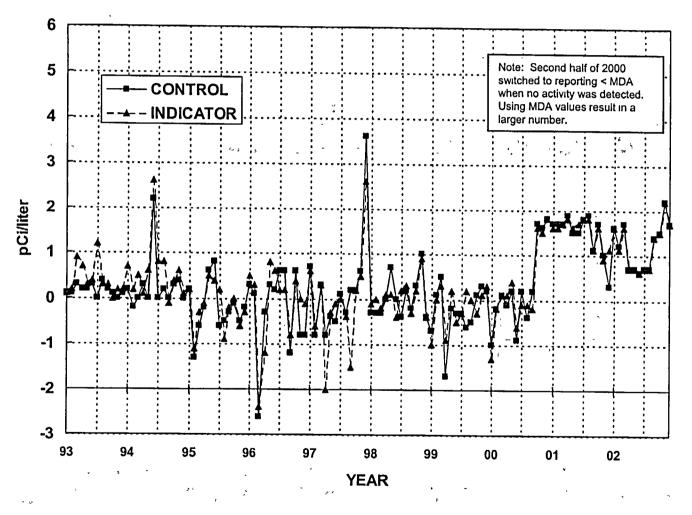
TABLE C-IX.1SUMMARY OF COLLECTION DATES FOR SAMPLES COLLECTED IN
THE VICINITY OF LIMERICK GENERATING STATION, 2002

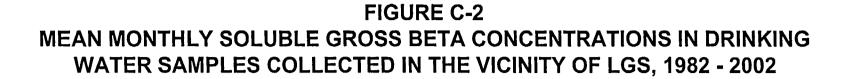
TLD

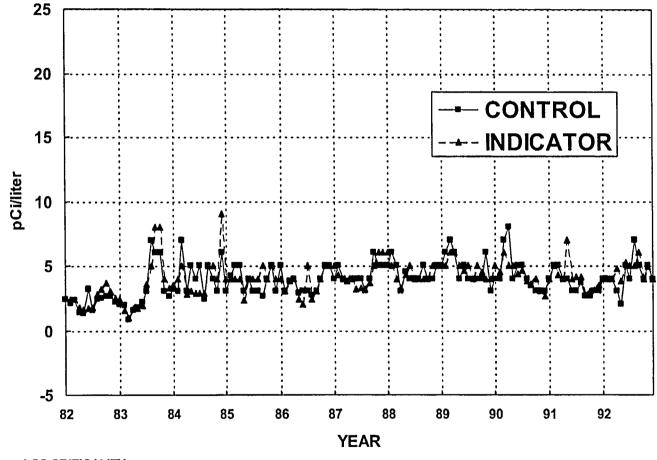

L

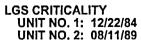
STATION	JAN - MAR	APR - JUN	JUL - SEP	OCT - DEC
CODE				
36S2	01/02/02 - 04/02/02	04/02/02 - 07/02/02	07/02/02 - 10/02/02	10/02/02 - 01/07/03
36D1	01/02/02 - 04/02/02	04/02/02 - 07/02/02	07/02/02 - 10/02/02	10/02/02 - 01/07/03
2E1	01/02/02 - 04/02/02	04/02/02 - 07/02/02	07/02/02 - 10/02/02	10/02/02 - 01/07/03
351	01/02/02 - 04/02/02	04/02/02 - 07/02/02	07/02/02 - 10/02/02	10/02/02 - 01/07/03
4E1	01/02/02 - 04/02/02	04/02/02 - 07/02/02	07/02/02 - 10/02/02	10/02/02 - 01/07/03
5S1	01/02/02 - 04/02/02	04/02/02 - 07/02/02	07/02/02 - 10/02/02	10/02/02 - 01/07/03
5H1	01/02/02 - 04/02/02	04/02/02 - 07/02/02	07/02/02 - 10/02/02	10/02/02 - 01/07/03
6C1	01/02/02 - 04/02/02	04/02/02 - 07/02/02	07/02/02 - 10/02/02	10/02/02 - 01/07/03
7S1	01/02/02 - 04/02/02	04/02/02 - 07/02/02	07/02/02 - 10/02/02	10/02/02 - 01/07/03
7E1	01/02/02 - 04/02/02	04/02/02 - 07/02/02	07/02/02 - 10/02/02	10/02/02 - 01/07/03
9C1	01/02/02 - 04/02/02	04/02/02 - 07/02/02	07/02/02 - 10/02/02	10/02/02 - 01/07/03
10S3	01/02/02 - 04/02/02	04/02/02 - 07/02/02	07/02/02 - 10/02/02	10/02/02 - 01/07/03
10E1	01/02/02 - 04/02/02	04/02/02 - 07/02/02	07/02/02 - 10/02/02	10/02/02 - 01/07/03
10F3	01/02/02 - 04/02/02	04/02/02 - 07/02/02	07/02/02 - 10/02/02	10/02/02 - 01/07/03
11S1	01/02/02 - 04/02/02	04/02/02 - 07/02/02	07/02/02 - 10/02/02	10/02/02 - 01/07/03
13S2	01/02/02 - 04/02/02	04/02/02 - 07/02/02	07/02/02 - 10/02/02	10/02/02 - 01/07/03
13C1	01/02/02 - 04/02/02	04/02/02 - 07/02/02	07/02/02 - 10/02/02	10/02/02 - 01/07/03
13E1	01/02/02 - 04/02/02	04/02/02 - 07/02/02	07/02/02 - 10/02/02	10/02/02 - 01/07/03
14S1	01/02/02 - 04/02/02	04/02/02 - 07/02/02	07/02/02 - 10/02/02	10/02/02 - 01/07/03
15D1	01/02/02 - 04/02/02	04/02/02 - 07/02/02	07/02/02 - 10/02/02	10/02/02 - 01/07/03
16F1	01/02/02 - 04/02/02	04/02/02 - 07/02/02	07/02/02 - 10/02/02	10/02/02 - 01/07/03
17B1	01/02/02 - 04/02/02	04/02/02 - 07/02/02	07/02/02 - 10/02/02	10/02/02 - 01/07/03
18S2	01/02/02 - 04/02/02	04/02/02 - 07/02/02	07/02/02 - 10/02/02	10/02/02 - 01/07/03
19D1	01/02/02 - 04/02/02	04/02/02 - 07/02/02	07/02/02 - 10/02/02	10/02/02 - 01/07/03
20D1	01/02/02 - 04/02/02	04/02/02 - 07/02/02	07/02/02 - 10/02/02	10/02/02 - 01/07/03
20F1	01/02/02 - 04/02/02	04/02/02 - 07/02/02	07/02/02 - 10/02/02	10/02/02 - 01/07/03
21S2	01/02/02 - 04/02/02	04/02/02 - 07/02/02	07/02/02 - 10/02/02	10/02/02 - 01/07/03 10/02/02 - 01/07/03
23S2	01/02/02 - 04/02/02	04/02/02 - 07/02/02	07/02/02 - 10/02/02 07/02/02 - 10/02/02	10/02/02 - 01/07/03
24D1	01/02/02 - 04/02/02	04/02/02 - 07/02/02	07/02/02 - 10/02/02	10/02/02 - 01/07/03
25S2	01/02/02 - 04/02/02	04/02/02 - 07/02/02 04/02/02 - 07/02/02	07/02/02 - 10/02/02	10/02/02 - 01/07/03
25D1	01/02/02 - 04/02/02	04/02/02 - 07/02/02	07/02/02 - 10/02/02	10/02/02 - 01/07/03
26S3	01/02/02 - 04/02/02	04/02/02 - 07/02/02	07/02/02 - 10/02/02	10/02/02 - 01/07/03
28D2	01/02/02 - 04/02/02	04/02/02 - 07/02/02	07/02/02 - 10/02/02	10/02/02 - 01/07/03
29S1	01/02/02 - 04/02/02 01/02/02 - 04/02/02	04/02/02 - 07/02/02	07/02/02 - 10/02/02	10/02/02 - 01/07/03
29E1		04/02/02 - 07/02/02	07/02/02 - 10/02/02	10/02/02 - 01/07/03
3151	01/02/02 - 04/02/02	04/02/02 - 07/02/02	07/02/02 - 10/02/02	10/02/02 - 01/07/03
31D1	01/02/02 - 04/02/02 01/02/02 - 04/02/02	04/02/02 - 07/02/02	07/02/02 - 10/02/02	10/02/02 - 01/07/03
31D2	01/02/02 - 04/02/02	04/02/02 - 07/02/02	07/02/02 - 10/02/02	10/02/02 - 01/07/03
3452	01/02/02 - 04/02/02	04/02/02 - 07/02/02	07/02/02 - 10/02/02	10/02/02 - 01/07/03
34E1	01102/02 - 04/02/02	0-102/02 - 01102/02	01102102 - 10/02102	10.02.02 01.01100

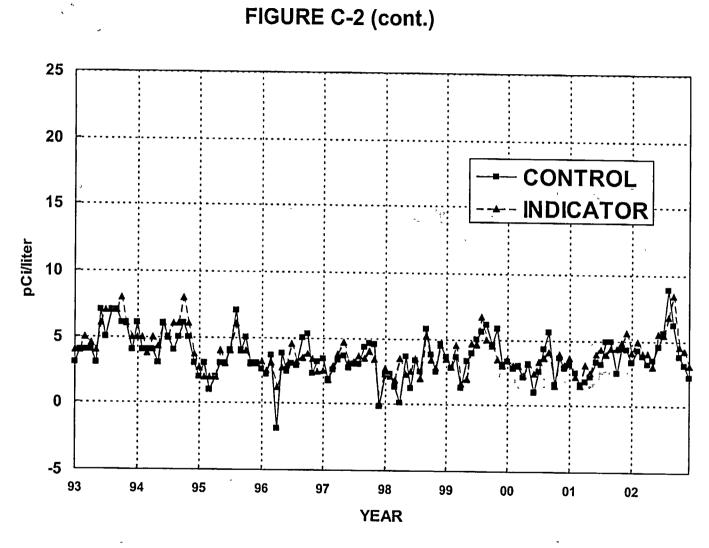
C-22


^ <u>#</u>

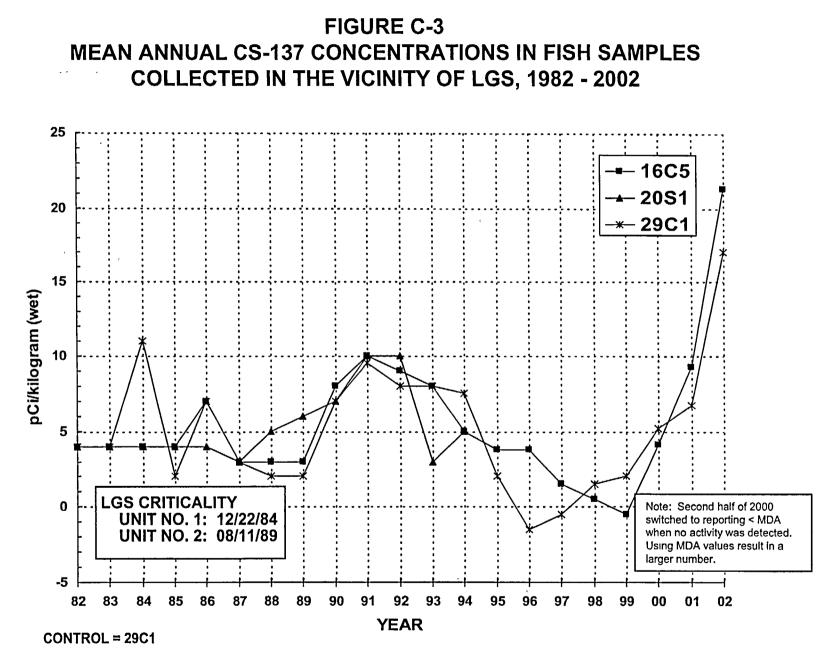



- -

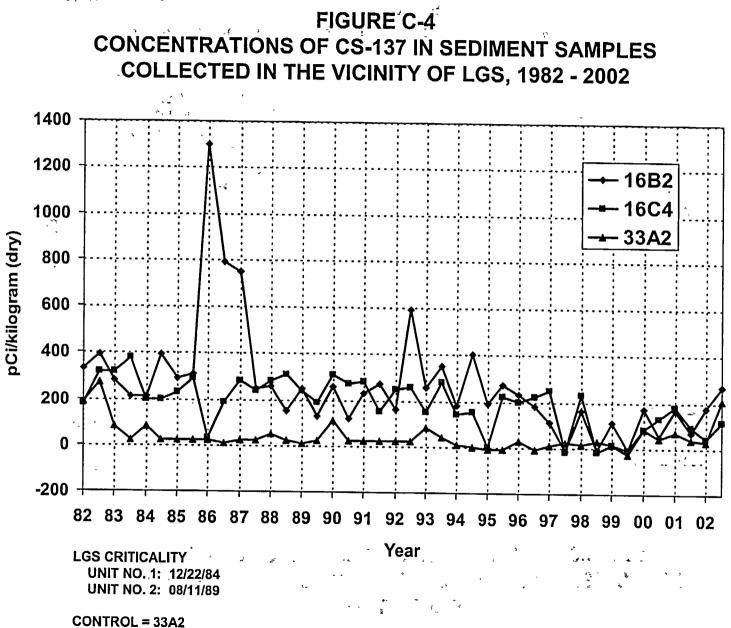



1 ³⁶ 5

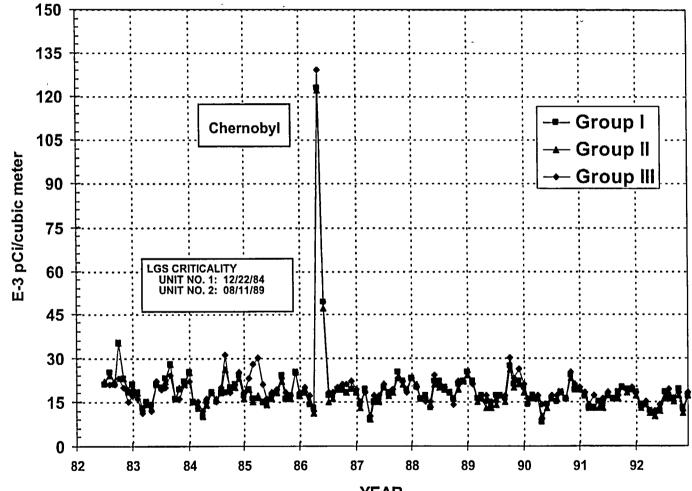
· · ·

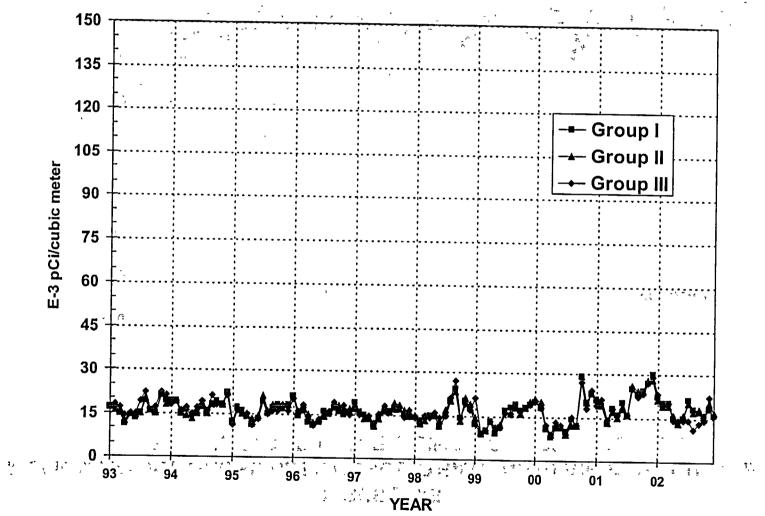



~ **

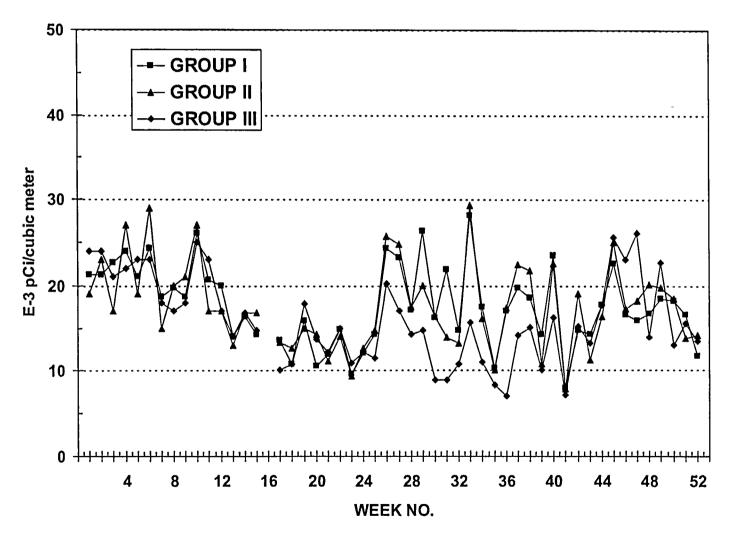


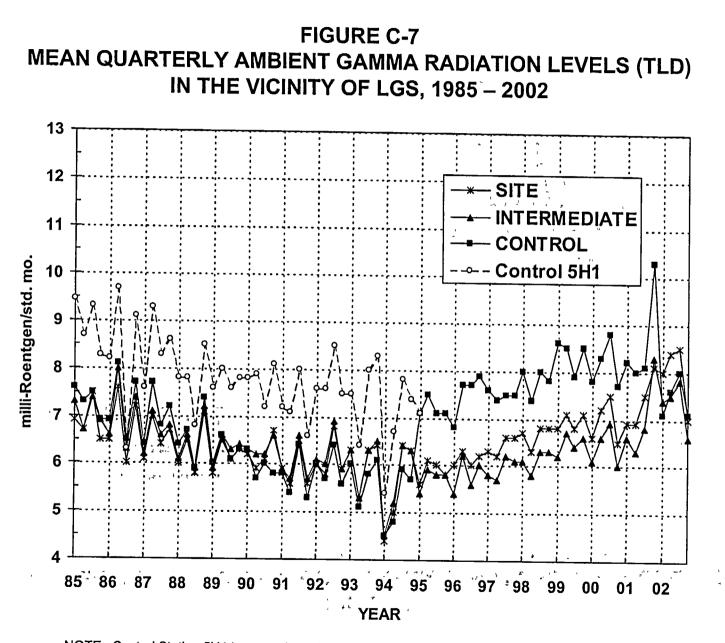
.


Station 20S1 discontinued in 1995



and a second second





YEAR

NOTE: Control Station 5H1 became the only distant location beginning in 1995

APPENDIX D

DATA TABLES AND FIGURES COMPARISON LABORATORY

The following section contains data and figures illustrating the analyses performed by the quality control laboratory. The first quarter of 2002, TBE was the QC laboratory. Quarters 2-4 Environmental Inc (ENV) was the QC laboratory. Duplicate samples were obtained from several locations and media and split between the primary and QC laboratories. Comparison of the results for most media were within expected ranges.

First Quarter TBE was the QC laboratory. Second Quarter

Intentionally left blank

į

TABLE D-I.1CONCENTRATIONS OF GROSS BETA INSOLUBLE IN DRINKING WATER SAMPLES
COLLECTED IN THE VICINITY OF LIMERICK GENERATING STATION, 2002

RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

COLLECTION PERIOD	16C2	
JAN	-01 ± 05	
FEB	04 ± 05	
MAR	-0.04 ± 0.4	
APR	(1)	
MAY	< 1.9	
JUN	< 1.8	
JUL	< 1.5	
AUG	< 1.5	
SEP	< 1.8	
OCT	< 1.9	
NOV	< 1.5	
DEC	< 1.6	
MEAN	12 ± 1.5	

TABLE D-I.2CONCENTRATIONS OF GROSS BETA SOLUBLE IN DRINKING WATER SAMPLES
COLLECTED IN THE VICINITY OF LIMERICK GENERATING STATION, 2002

RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

COLLECTION PERIOD	16C2	
JAN	40 ± 10	
FEB	50 ± 10	
MAR	40 ± 10	
APR	(1)	
MAY	32 ± 1.0	
JUN	29 ± 1.2	
JUL	32 ± 10	
AUG	43 ± 1.0	
SEP	23 ± 1.1	
OCT	< 1.8	
NOV	32 ±09	
DEC	1.7 ± 0.9	
MEAN	32 ± 2.1	

CONCENTRATIONS OF GAMMA EMITTERS IN DRINKING WATER SAMPLES COLLECTED IN THE VICINITY OF LIMERICK GENERATING STATION, 2002 TABLE D-1.3

.

I

1

ł

•

RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

La-140		с У	< >	J	ი v	£	< <	o V		8 V	4	< 4	• •	2 2	< 2 < 2	4 4	•	3.9 ± 4 9
Ba-140		× 10	8 8		80 V	E	< 10 4	< 35	2	00 ×	< 17	< 14	4	<u>0</u> /	4 4	< 17		18 ± 26
Cs-137		ი v	< 2) ()	~ ~ ~	E	< 2	< 2	۲ ۱	N /	د ۲	< 5 <	< >	J (v. v	A 4		29 ± 24
Cs-134		יי א	< 2 <	د ۱	v : V	Ē	۳ ۷	4	< 2 2		A	9 V	č, v) (s v	۸ 4		3.3 ± 2.4
Nb-95	4	2 2	224	< >	, ,	Ξŗ	2	< 7	y Y		A 4	~ ~	4	· c \	7	ი v		3.3 ± 36
Zr-95		t /	ب ۲	, v	, i	Ξļ	C I	9 V	< 4	۰ o ۱	0 I /	/ >	< 7		2	ი ა		5.1±36
Zn-65	3 1	· ·	< 4	4 4	Ē	Ê,	V (8	۸ 4	11		o v	9 v	۲ ۲)	< 7		56±47
Co-60	د ۲ ۲		2.2	< < 2	(1)	i c	, ,	v v	A 4	e. V	, ,	o /	ς γ	< 3 3) L	0 v		30 ± 1.8
Fe-59	4 5 A	•	1	A 4	0	4.4	r 0	0	₽ v	۸ 8	1		° v	× 8		0 V		64 ± 4.2
Co-58	< 2 <	۲ ۱	7	~ ~	(1)	~~~~		t (/ '	א א	۸ 4	V	,	2	< 2 <	۰ ۲	,		25±1.9
Mn-54	۲ ۲	~ ~	J (7	27 V	Ξ		4 4	r c	r v	4	4 2		2 2	< 2 <	~ ~	4		26±1.8
STC COLLECTION PERIOD	JAN	FER		MAK	APR	MAY	NUL		201	AUG	SEP	LUC LUC	3	NOV	DFC			MEAN
STC	16C2																	

.

CONCENTRATIONS OF GROSS BETA IN AIR PARTICULATE SAMPLES COLLECTED IN THE VICINITY OF LIMERICK GENERATING STATION, 2002

RESULTS IN UNITS OF E-3 PCI/CU METER ± 2 SIGMA

COLLECTION PERIOD	1152
1	21 ± 3
2	17 ± 3
3	20 ± 3
	15 ± 3
4	
5	
6	21 ± 3
7	16 ± 3
8	15 ± 3
9	17 ± 3
10	23 ± 4
11	17 ± 3
12	13 ± 3
13	11 ± 3
14	17 ± 3
15	19 ± 4
	25 ± 3
16	(1)
17	
18	
19	19 ± 3
20	18 ± 4
21	13 ± 3
22	19 ± 4
23	16 ± 4
24	13 ± 3
25	22 ± 3
26	25 ± 4
27	29 ± 4
28	21 ± 3
29	31 ± 4
	22 ± 3
30	28 ± 4
31	20 ± 4 19 ± 3
32	
33	31 ± 4
34	17 ± 3
35	11 ± 3
36	15 ± 3
37	22 ± 3
38	15 ± 3
39	20 ± 3
40	24 ± 4
41	11 ± 3
42	17 ± 3
42	17 ± 4
	24 ± 3
44	23 ± 3
45	
46	18 ± 3
47	25 ± 4
48	12 ± 3
49	31 ± 4
50	20 ± 4
51	23 ± 3
52	23 ± 4
MEAN	20 ± 10

TABLE D-II.2 CONCENTRATIONS OF GÅMMA EMITTERS IN AIR PARTICULATE SAMPLES COLLECTED IN THE VICINITY OF LIMERICK GENERATING STATION, 2002

STC	COLLECTION PERIOD	Be-7	Mn-54	Co-58	Co-60	Cs-134	Cs-137	,
1152	12/31 - 04/01/02 04/01 - 07/01/02 07/01 - 09/30/02 09/30 - 12/30/02	47 ± 5 93 ± 24 78 ± 19 39 ± 8	< 06 < 13 < 05 < 0.9	< 06 < 13 < 07 < 07	< 0 5 < 1 5 < 0 9 < 0.5	< 05 < 08 < 06 < 08	< 0.5 < 0 6 < 1 2 < 0 6	-
	MEAN	64 ± 51	08 ± 0.7	08±06	09±09	07±03	07±06	

RESULTS IN UNITS OF E-3 PCI/CU METER ± 2 SIGMA

D-6

TABLE D-III.1 CONCENTRATIONS OF I-131 BY CHEMICAL SEPARATION AND GAMMA EMITTERS IN MILK SAMPLES COLLECTED IN THE VICINITY OF LIMERICK GENERATING STATION, 2002

STC (COLLECTION PERIOD	I-131	K-40	Cs-134	Cs-137	Ba-140	La-140
19B1	01/08/02	0.08 ± 0.08	1160 ± 65	< 2	< 2	< 7	< 2
	04/08/02	< 0 2	1277 ± 117	< 3	< 2	< 15	< 3
	07/08/02	< 0.4	1365 ± 114	< 5	< 2	< 51	< 7
	10/08/02	< 0 3	1281 ± 125	< 3	< 3	< 13	< 2
	MEAN	025 ± 027	1271 ± 168	3 ± 3	2 ± 1	22 ± 40	4 ± 5
21B1	01/08/02	002 ± 006	1570 ± 103	< 6	< 5	< 20	< 6
ZIDI	01/08/02	< 0.2	1484 ± 117	< 3	< 3	< 16	< 2
	07/08/02	< 02	1454 ± 93	< 3	< 3	< 48	< 9
	10/08/02	< 0 3	1428 ± 133	< 5	< 2	< 9	< 2
	MEAN	0.18 ± 0 23	1484 ± 123	4 ± 3	3 ± 3	23 ± 34	5 ± 7
9G1	01/08/02	0.03 ± 0.06	1380 ± 96	< 6	< 6	< 23	< 6
901	04/08/02	< 0.3	1296 ± 109	< 4	< 2	< 12	< 3
	07/08/02	< 0.4	1342 ± 100	< 2	< 3	< 57	< 7
	10/08/02	< 0 3	1267 ± 118	< 3	< 5	< 9	< 2
	MEAN	026 ± 032	1321 ± 100	4 ± 3	4 ± 4	25 ± 44	5 ± 5

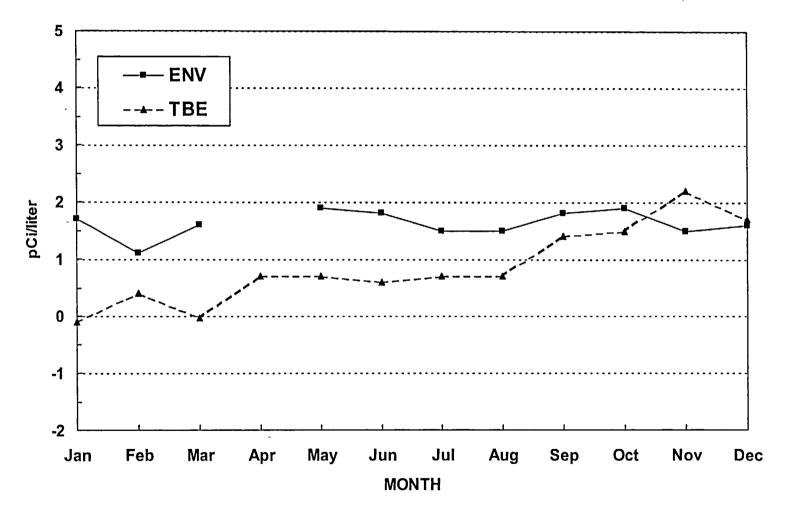
RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

TABLE D-IV.1SUMMARY OF COLLECTION DATES FOR SAMPLES COLLECTED IN
THE VICINITY OF LIMERICK GENERATING STATION, 2002

DRINKING WATER (GROSS BETA & GAMMA SPECTROSCOPY)

COLLECTION

PERIOD	16C2								
JAN	12/31/01 - 02/04/02								
FEB	02/04/02 - 03/04/02								
MAR	03/04/02 - 04/01/02								
APR	04/01/02 - 04/29/02								
MAY	04/29/02 - 05/28/02								
JUN	05/28/02 - 07/01/02								
JUL	07/01/02 - 07/29/02								
AUG	07/29/02 - 09/03/02								
SEP	09/03/02 - 09/30/02								
OCT	09/30/02 - 10/28/02								
NOV	10/28/02 - 12/02/02								
DEC	12/02/02 - 12/30/02								


AIR PARTICULATE (GAMMA SPECTROSCOPY)

COLLECTION PERIOD	11S2
JAN-MAR	12/31/01 - 04/01/02
APR-JUN	04/01/02 - 07/01/02
JUL-SEP	07/01/02 - 09/30/02
OCT-DEC	09/30/02 - 12/30/02

AIR PARTICULATE (GROSS BETA)

COLLECTION		COLLECTION	
PERIOD	11S2	PERIOD	11S2
	12/31/01 - 01/07/02	27	07/01/02 - 07/08/02
:	2 01/07/02 - 01/14/02	28	07/08/02 - 07/15/02
:	3 01/14/02 - 01/21/02	29	07/15/02 - 07/22/02
4	01/21/02 - 01/28/02	30	07/22/02 - 07/29/02
:	5 01/28/02 - 02/04/02	31	07/29/02 - 08/05/02
(6 02/04/02 - 02/11/02	32	08/05/02 - 08/12/02
-	7 02/11/02 - 02/18/02	33	08/12/02 - 08/19/02
ł	3 02/18/02 - 02/25/02	34	08/19/02 - 08/26/02
(9 02/25/02 - 03/04/02	35	08/26/02 - 09/02/02
1(0 03/04/02 - 03/11/02	36	09/02/02 - 09/09/02
1	03/11/02 - 03/18/02	37	09/09/02 - 09/16/02
1:	2 03/18/02 - 03/25/02	38	09/16/02 - 09/23/02
1:	3 03/25/02 - 04/01/02	39	09/23/02 - 09/30/02
14	4 04/01/02 - 04/08/02	40	09/30/02 - 10/07/02
1!	5 04/08/02 - 04/15/02	41	10/07/02 - 10/14/02
16	6 04/15/02 - 04/22/02	42	10/14/02 - 10/21/02
17	7 04/22/02 - 04/29/02	43	10/21/02 - 10/28/02
18	3 04/29/02 - 05/06/02	44	10/28/02 - 11/04/02
19	9 05/06/02 - 05/13/02	45	11/04/02 - 11/11/02
20	0 05/13/02 - 05/20/02	46	11/11/02 - 11/18/02
2	05/20/02 - 05/28/02	47	11/18/02 - 11/25/02
2:	2 05/28/02 - 06/03/02	48	11/25/02 - 12/02/02
23	3 06/03/02 - 06/10/02	49	12/02/02 - 12/09/02
24	06/10/02 - 06/17/02	50	12/09/02 - 12/16/02
- 2!	5 06/17/02 - 06/24/02	51	12/16/02 - 12/23/02
26		52	12/23/02 - 12/30/02
20	00/24/02 - 01/01/02	52	

FIGURE D-1 COMPARISON OF MONTHLY INSOLUBLE GROSS BETA CONCENTRATIONS IN DRINKING WATER SAMPLES SPLIT BETWEEN ENV AND TBE, 2002

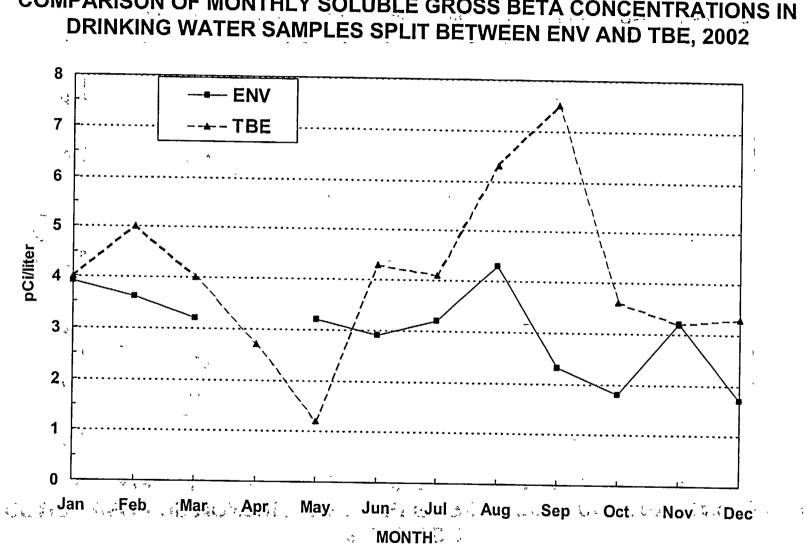



FIGURE D-2 COMPARISON OF MONTHLY SOLUBLE GROSS BETA CONCENTRATIONS IN

FIGURE D-3 COMPARISON OF WEEKLY GROSS BETA CONCENTRATIONS IN AIR PARTICULATE SAMPLES COLLECTED FROM LGS COLLOCATED LOCATIONS 11S1 AND 11S2, 2002

APPENDIX E

INTER-LABORATORY COMPARISON PROGRAM

Month/Year	Identification	n Matrix	Nuclide (1)	Units	Reported Value (a)	Known Value (b)	Ratio (c) TBE/Analytics	Evaluation (d)
February, 2002	A15211-55	Liquid	Sr-89 Sr-90	uCi/mL	1.60E-03 2.90E-04	2.03E-03 3.64E-04	0.79 0 80	W A
	A15213-55	Liquid	Н-3	uCı/mL	1.08E-03	1. 1 9E-03	0.90	А
March, 2002	E3064-396	Milk	Sr-89 Sr-90	pCi/L	80 28	83 27	0 96 1.04	A A
	* E3065-396	Milk	I-131 Ce-141 Cr-51 Cs-134 Cs-137 Mn-54 Fe-59 Zn-65 Co-60	pCi/L	86 300 256 94 252 217 108 218 147	92 326 267 122 266 224 116 221 158	0 93 0.92 0 96 0.77 0 95 0.97 0.93 0.99 0.93	A A W A A A A
	E3067-396	AP	I-131 Cr-51 Cs-134 Cs-137 Mn-54 Fe-59 Zn-65 Co-60	рСі	202 166 77 162 135 70 128 95	199 163 74 162 136 70 134 96	1.02 1.02 1.04 1.00 0.99 1.00 0.96 0.99	A A A A A A A
	E3066-396	Charcoal	1-131	рСі	66	77	0.86	A
May, 2002	A15521-55	Liquid	Gr-Alpha	uCı/mL	8 48E-04	7.15E-04	1.19	А
	A15520-55	Liquid	Sr-89 Sr-90	uCi/mL		3 25E-03 2.70E-04	0.81 0.93	A A
	A15522-55	Liquid	Tritium	uCi/mL	1.35E-03	1.46E-03	0.92	А

TABLE E-1 ANALYTICS ENVIRONMENTAL RADIOACTIVITY CROSS CHECK PROGRAM TELEDYNE BROWN ENGINEERING ENVIRONMENTAL SERVICES (PAGE 1 OF 3)

1	Identificatio				Reported	Known	Ratio (c)	
Month/Year	Number 😳	⊖ Matrix	Nuclide (1)	Units	Value (a)	,* Value (ь)	TBE/Analytics	Evaluation (d)
June, 2002	E3220-396	Milk	I-131	pCi/L	86 ·	87	0.99	
•		, <u></u> ,	Ce-141	P014	84	90	0.93	A
			Cr-51		197	235	0.84	A
r			Cs-134		110	120	0.92	A
			Cs-137		96	91	1.05	A
		رډ	Co-58		· 95	100		A
			Mn-54		106	95	0.95	A
			Fe-59		95	81	1.12	A
		-	Zn-65		186	180	1.17	A
\$	-		Co-60		132		1.03	A
	2		00-00		152	125	1.06	A
June, 2002	E3222-396	AP ·	Ce-141	pCi	85	75	1.13	А
		1	Cr-51		199	196	1.02	A
		. +	Cs-134		96	100	0 96	A
			Cs-137		92	76	1.21	Ŵ
		ч,	Co-58		98	83	1.18	A
	,		Mn-54		87	79	1.10	A
			Fe-59		85	67	1 27	Ŵ
	-		Zn-65		182	150 ·	1.21	ŵ
			Co-60		121	104	1.16	Ä
	,							
August, 2002	A16018-55	Liquid	Sr-89	uCi/mL	4 125-03	4.99E-03	0.92	
J,			Sr-90	uomi		4.99E-03 2.64E-04	0.83	A
i.		•	0.00		2.402-04	2.046-04	0.92	Α
	A16020-55	Liquid	Tritium	uCi/mL	1.93E-03	2.00E-03	0.97	А
September, 2002	A15989-148	Liauid	Sr-89	uCi/mL	4.02E-03	4 005-03	0 81	•
•		. 1	Sr-90		2.49E-04	2 64F-04	0 94	A
					2.102 01	2.046-04	0 54	A
	E3324-396-2	Milk · '	Sr-89	pCi/L	106	92	1.15	А
			Sr-90	•	39	39	1.00	A
	-	2			1		1.00	~
September, 2002	E3325-396	Milk 1	I-131	pCi/L	84	80	1.05	А
			Ce-141	•	168	160	1.05	A
		* 1 L	Cr-51		210.5	227	0.93	A
			Cs-134		127	132	0.96	Â
			Cs-137		136	127	1.07	A
			Co-58		93	97	0.96	A
			Mn-54		165	152	1 09	
			Fe-59		90	89	1.01	A
			Zn-65		196	187	1 05	A
			ZII-03					A

ł

TABLE E-1 ANALYTICS ENVIRONMENTAL RADIOACTIVITY CROSS CHECK PROGRAM H

1

Month/Year	Identification Number	Matrix	Nuclide (1)	Units	Reported Value (a)	Known Value (b)	Ratio (c) TBE/Analytics	Evaluation (d)
Cartamber 2002	E 2227-206	Filter	Ce-141	pCi	115	110	1.05	A
September, 2002	E-3327-390	Filler	Cr-51	por	163 6	156	1.05	A
			Cs-134		79	90	0 88	A
			Cs-137		95	87	1.09	А
			Co-58		71	67	1.06	А
			Mn-54		118	104	1.13	A
			Fe-59		76	61	1.25	А
			Zn-65		155	130	1.19	А
			Co-60		108	102	1.06	А
	E3326-396	Charcoal	I-131	pCi	73	85	0.86	А
		N 8111.	0- 90		88	68	1.29	w
December, 2002	E3520-396	Milk	Sr-89 Sr-90	pCi/L	40	38	1.05	A
			21-90		40	50	1.00	
	E3521-396	Milk	I-131	pCı/L	97	86	1. 1 3	А
	E3021-390	WIIK	Ce-141	powr	136	111	1.23	Ŵ
			Cr-51		347	346	1.00	A
			Cs-134		97	99	0 98	Α
			Cs-137		229	220	1.04	Α
			Co-58		143	139	1.03	Α
			Mn-54		162	142	1.14	Α
			Fe-59		80	72	1.11	Α
			Zn-65		217	178	1.22	W
			Co-60		172	164	1.05	Α
December, 2002	E3523-396	Filter	Ce-141	pCi	108	128	0.84	А
Desember, 2002			Cr-51	•	370	398	0.93	Α
			Cs-134		79	114	0.69	N (2)
			Cs-137		226	253	0.89	Α
			Co-58		141	160	0 88	A
			Mn-54		152	163	0.93	А
			Fe-59		89	83	1.07	A
			Zn-65		196	206	0.95	Α
			Co-60		170	189	0 90	A
	E3522-396	Charcoal	I-131	рСі	84	96	0 88	А

TABLE E-1 ANALYTICS ENVIRONMENTAL RADIOACTIVITY CROSS CHECK PROGRAM TELEDYNE BROWN ENGINEERING ENVIRONMENTAL SERVICES (PAGE 3 OF 3)

(1) Only analyses performed routinely for the REMP are included on this table.

(2) Coincidental summing resulted in low Cesium-134 activity Elimination of the coincidental summing resulted in an activity of 110 pCi No further action required

* Analytics known values were incorrectly calculated Revised (as shown) evaluation was acceptable

- (a) Teledyne Brown Engineering reported result
- (b) The Analytics known value is equal to 100% of the parameter present in the standard as determined by gravimetric and/or volumetric measurements made during standard preparation
- (c) Ratio of Teledyne Brown Engineering to Analytics results
- (d) Analytics evaluation A= Acceptable Reported result falls within ratio limits of 0.80-1.20 W=Acceptable with warning Reported result falls within ratio limits of 0 70-0 79 and 1 21-1 30

Month/Year	Identification Number	Media	Nuclide (1)	Units	Reported Value (a)	Known Value (b)	Ratio (c) TBE/EML	Evaluation (d)
June, 2002	QAP 56	AP	Co-60	Bq/filter	31.7	30 52	1.04	А
June, 2002			Cs-137		30 4	28.23	1.08	А
			Gr-Beta		1.21	1.30	0 93	А
			Mn-54		38 3	38 53	0.99	А
			Sr-90		4.68	4.832	0.97	А
		Soil	Ac-228	Bq/kg	50	51 167	0.98	А
			Bi-212		35.9	53.43	0.67	Α
			Bi-214		46.3	53.933	0.86	W
			Cs-137		1300	1326.67	0.98	А
			K-40		608	621.67	0.98	Α
			Pb-212		49.4	51.1	0.97	A A
			Pb-214		49.1	54.367	0.90	А
			Sr-90		46.6	53.756	0.87	А
		Vegetation	Co-60	Bq/kg	11.7	11.23	1.04	А
			Cs-137		346	313 667	1.10	А
			K-40		952	864.33	1.10	Α
			Sr-90		477	586.28	0 81	А
June, 2002	QAP 56	Water	Co-60	Bq/L	367	347.33	1.06	А
June, 2002			Cs-134	•	2.93	3.357	0.87	w
			Cs-137		59 6	56.067	1.06	А
			Gr-Beta		895	1030	0.87	А
			H-3		285	283.7	1.00	А
			Sr-90		5.78	7.579	0.76	W

TABLE E-2 DOE/EML ENVIRONMENTAL RADIOACTIVITY CROSS CHECK PROGRAM TELEDYNE BROWN ENGINEERING ENVIRONMENTAL SERVICES (PAGE 1 OF 2)

Identific Month/Year 😗 Num	cation: Media	Nuclide (1)	Units	Reported	Клоwn 🤌 Value (ь)	Ratio (c) TBE/EML	Evaluation (d)
December, 2002 QAP 5	7 AP 💀	Co-60	Bq/filter	24.1	: 23.0	1.05	A
ı	+	Cs-137	•	36.1	32 5	1.11	Â
		Gr-Beta		0.813	0 871	0.93	Â
		Mn-54		58.3	52.2	1.12	Â
		Sr-90		5.86	5 561	1.05	Â
	Soil	Bi-212	Bq/kg	23.2	45.93	0.51	w
		Bi-214		32.4	33.63	0.96	A
4 2		Cs-137		835	829.33	1 01	Â
	+	K-40		671	637.67	1.05	Â
	r	Pb-212		42.00	43.43	0.97	A
		Pb-214		44.46	35.2	1 26	A
	• •	Sr-90	,	41.00	41.16	1.00	Â
December, 2002 QAP 57	Vegetation	Co-60	Bq/kg	11.5	9.66	1.19	А
L	. +	Cs-137		345'-	300.67	1.15	Â
		K-40	¢	1690	1480	1.14	A
		Sr-90		457	476 26	0.96	A
	Water	Am-241	Bq/L	2.89	3 043	0.95	A
		Co-60		303 🕂	268.67	1.13	W
	•	Cs-134		59	60.2	0.98	A
	,	Cs-137		85 8	81.43	1.05	A
		Gr-Beta		817	900	0.91	A
,		H-3		353	227.3	1.55	Ŵ
-		Sr-90		8.58	8.69	0 99	Α

(1) Only analyses performed routinely for the REMP are included on this table.

(a) Teledyne Brown Engineerin reported result.

...

(b) The DOE/EML known value is equal to 100% of the parameter present in the standard as determined by gravimetric and/or volumetric measurements made during standard preparation.

(c) Ratio of Teledyne Brown Engineering to DOE/EML results.

(d) DOE/EML evaluation: A=acceptable, W=acceptable with warning, N=not acceptable

14_ #1C

Month/Year	Identification Number	Media	Nuclide (1)	Units	Reported Value (a)	Known Value (b)	Ratio (c) TBE/ERA	Evaluation (d)
	Rad 49	Water	Gr-Beta	pCi/L	162	189	0 86	А
May, 2002	Rau 49	Water	Co-60	p0., L	39.3	39.1	1.01	A
			Cs-134		15 5	17.1	0 91	A
			Cs-137		52.2	52.1	1.00	А
			Sr-89		27.2	31.7	0.86	Α
			Sr-90		25.1	28.3	0.89	А
			I-131		13 35	14.7	0.91	А
			H-3		14600	17400	0.84	А
November, 2002	Rad 51	Water	Н-3	pCi/L	10100	10200	0 99	А
November, 2002	110001	Trato.	I-131	P	7.94	676	1.17	А
			Gr-Beta		280	330	0.85	А
			Sr-89		41.7	47.6	0 88	А
			Sr-90		6.75	7.56	0.89	А
			Co-60		122	104	1.17	А
			Cs-134		60.0	55.5	1.08	А
			Cs-137		140	117	1.20	А

TABLE E-3 ERA ENVIRONMENTAL RADIOACTIVITY CROSS CHECK PROGRAM TELEDYNE BROWN ENGINEERING ENVIRONMENTAL SERVICES (PAGE 1 OF 1)

(1) Only analyses performed routinely for the REMP are included on this table

(a) Teledyne Brown Engineering reported result

(c) Ratio of Teledyne Brown Engineering to ERA results

(d) ERA evaluation A=acceptable Reported result falls within the Warning Limits NA=not acceptable Reported result falls outside of the Control Limits. CE=check for Error Reported result falls within the Control Limits and outside of the Warning Limit

⁽b) The ERA known value is equal to 100% of the parameter present in the standard as determined by gravimetric and/or volumetric measurements made during standard preparation

Month/Year	Identification Number	n Media	Nuclide (1)	Units	Reported Value (a)	Known Value (b)	Ratio (c) TBE/MAPEP	Evaluation (d)
March, 2002	01-W9	Water	Mn-54	Bq/L	253	246	172.20 - 319 80	А
March, 2002	0	Hato	Co-57	04/2	141	143	100.10-185 90	A
			Co-60		143	141	98.70 - 183.30	A
			Cs-134		26 0	28.5	19.95 - 37.05	A
			Cs-137		270	286	200 20 - 371.80	
			Sr-90		4.71	48	3 39 - 6.24	А
August, 2002	02-S9	Soil	Mn-54	Bq/kg	679	546	382.2 - 709.8	w
			Co-57		289	246	172.2 - 319.8	Α
			Co-60		109	87.5	61.25 - 113.75	W
			Cs-134		948	862	603.4 - 1120.6	А
			Cs-137		131	111	77.7 - 144.3	А
			Zn-65		1020	809	556.3 - 1051.7	W
			K-40		722	652	456.4 - 847.6	А

TABLE E-4 MAPEP ENVIRONMENTAL RADIOACTIVITY CROSS CHECK PROGRAM TELEDYNE BROWN ENGINEERING ENVIRONMENTAL SERVICES (PAGE 1 OF 1)

(1) Only analyses performed routinely for the REMP are included on this table

- (a) Teledyne Brown Engineerin reported result
- (b) The MAPEP known value is equal to 100% of the parameter present in the standard as determined by gravimetric and/or volumetric measurements made during standard preparation
- (c) Ratio of Teledyne Brown Engineering to DOE/MAPEP results
- (d) DOE/MAPEP evaluation A=acceptable, W=acceptable with warning, N=not acceptable

Table E-5

•

ERA^a Statistical Summary Proficiency Testing Program Environmental, Inc., 2002 (PAGE 1 OF 2)

			`	Concentration (pCi/L)	
Lab Code	Date	Analysis	Laboratory	ERA	Control
			Result ^b	Result ^c	Limits
STW-940	02/20/02	Sr-89	53.0 ± 2.5	55.3 ± 5.0	46.6 - 64.0
STW-940	02/20/02	Sr-90	16.6 ± 0.5	15.9 ± 5.0	7.2 - 24.6
STW-942		Gr. Alpha	6.5 ± 0.6	80±5.0	0.0 - 16.7
STW-942		Gr. Beta	45.7 ± 3.1	48.3 ± 5.0	39.6 - 57.0
STW-944		Ba-133	25.8 ± 1.5	· 28.9 ± 5.0	² 20.2 - 37.6
STW-944		Co- 60	76.9 ± 2.7	[∼] • 73 4 ± 5.0	64.7 - 82.1
STW-944		Cs-134	38.7 ± 1.6	[~] 42.1 ± 5 0	33.4 - 50.8
STW-944	02/20/02	Cs-137	92.9 ± 2.7	88 8 ± 5.0	80.1 - 97.5
STW-944	02/20/02	Ra-226	15.3 ± 0.7	14.3 ± 2.2	10.6 - 18.0
STW-944	02/20/02	Ra-228	17.5 ± 0.4	16.9 ± 4.2	9.6 - 24.2
STW-944	02/20/02	Uranium	23.8 ± 1.1	28.3 ± 3.0	23.1 - 33.5
STW-944	02/20/02	Zn-65	361.0 ± 9.2	359.0 ± 35.9	298.0 - 420.0
STW-951	05/22/02	Gr. Alpha	23.9 ± 2.5	22.8 ± 5.7	13.0 - 32.6
STW-951	05/22/02	Ra-226	5.9 ± 0.5	6.1 ± 0.9	4.5 - 7.7
STW-951	05/22/02	Ra-228	5.6 ± 0 9	4.5 ± 1.1	2.6 - 6.5
STW-951	05/22/02	Uranium	7.6 ± 0.2	9.3 ± 3.0	4.1 - 14.5
STW-952	05/22/02	Co-60	37.9 ± 0.7	39.1 ± 5.0	30.4 - 47.8
STW-952	05/22/02	Cs-134	14.5 ± 0.8	17.1 ± 5.0	8.4 - 25.8
STW-952	05/22/02	Cs-137	50.0 ± 2.0	52.1 ± 5.0	43.4 - 60.8
STW-952	05/22/02	Gr. Beta	171.0 ± 2.5	189 0 ± 28.4	140.0 - 238.0
STW-952	05/22/02	Sr-89	28.4 ± 4 8	31.7 ± 5.0	23.0 - 40.4
STW-952	05/22/02	Sr-90	32.4 ± 3 1	28.3 ± 5.0	19.6 - 37.0
STW-953 °	05/22/02	H-3	13900.0 ± 100.0	17400.0 ± 1740.0	14400.0 - 20400.0
STW-954	05/22/02	I-131	14 6 ± 0.3	14.7 ± 2.0	11.2 - 18.2
STW-965	08/21/02	Ba-133	71.9 ± 2.1	80.0 ± 8.0	66.4 - 93.6
STW-965	08/21/02	Co-60	23.8 ± 1.0	23.3 ± 5.0	14.6 - 32.0
STW-965	08/21/02	Cs-134 ^e	62.9 ± 1.2	71.7 ± 5.0	63.0 - 80.4
STW-965	08/21/02	Cs-137	219.3 ± 10.7	214.0 ± 10.7	195.0 - 233.0
STW-965	08/21/02	Gr. Alpha	74.4 ± 0.6	58.8 ± 14.7	33.5 - 84.1
STW-965	08/21/02	Gr. Beta	26.7 ± 0.4	21.9 ± 2.2	13.2 - 30.6
STW-965	08/21/02	Ra-226	5.0 ± 0.5	5.0 ± 0.8	3.7 - 6.3
STW-965	08/21/02	Ra-228	6.0 ± 0.7	4.7 ± 1.2	2.7 - 6.7
STW-965	08/21/02	Sr-89	28.4 ± 1.5 🧹	29.0 ± 5.0	20.3 - 37.7
STW-965	08/21/02	Sr-90	36.5 ± 1.1	36.4 ± 5.0	27.7 - 45.1
STW-965	08/21/02	Uranium	4.1 ± 0.1	5.0 ± 3.0	0.0 - 10.2
	08/21/02	Zn-65	92.4 ± 2.2	95.7 ± 9.6	79 4 - 112.0
	11/20/02	Gr. Alpha	9.3 ± 0.4	12.2 ± 5.0	3.5 - 20.9
	11/20/02	Gr. Beta	44.7 ± 1.0	47.0 ± 5.0	38.3 - 55.7
	11/20/02	H-3	10100.0 ± 38.7	10200.0 ± 1020.0	8440.0 - 12000.0
	11/20/02	Ra-226	11.6 ± 0.1	12.1 ± 1.8	9.0 - 15.2
	11/20/02	Ra-228	16.0 ± 1.4	15.1 ± 3.8	8.6 - 21.6

Table E-5

ERA^a Statistical Summary Proficiency Testing Program Environmental; Inc., 2002 (PAGE 2 OF 2)

۰. ۲

		L.Desathard	Concentration (pCi/L)	
ab Code	Date	Analysis Laboratory	Gersen ERA	Control
	• j	Result ^b	Result ^c	Limits
TW-968	11/20/02	Uranium (+ : 15.5 ± 0.5	19.2 ± 3.0	14.0 - 24.4
TW-969	11/20/02	i-131 6.0 ± 0.4	6.8 ± 2.0	3.3 - 10.2
TW-970	11/20/02	Co-60 0 ⇒ 104.0 ± 7.1	104.0 ± 5.2 "	95.0 - 113.0 -
TW-970	11/20/02:	Cs-134 0 ₫ ₹48.2 ± 2.3	55.5 ± 5.0	46.8 - 64.2
TW-970	11/20/02	Cs-137 0 🖓 🗄 109.0 ± 12.6	117.0 ± 5.9	107.0 - 127.0
TW-970	11/20/02	Gr. Beta 0 2 2 252.0 ± 26.8	[*] 288.0 ± 49.5	· · · · 244.0 - 416.0 🧳 🗎
TW-970	1.1/20/02	Sr-89 0 * '43.2 ± 0.7	47.6 ± 5.0	38.9 - 56.3
TW-970	11/20/02	Sr-90	7.6 ± 5.0	0.0 - 16.2
TW-971	11/20/02	Gr. Alpha S 74.9 ± 1.5	103.0 ± 25.8	[™] 58.4 - 148.0 → [™]
TW-971	11/20/02	Ra-226 * * * * 8.9 ± 0.0	9.1 ± 1.4	6.7 - 11.5
TW-971	11/20/02	Ra-228 2 15.3 ± 0.1	17.8 ± 4.5	10.1 - 25.5
TW-971	11/20/02	Uranium 8 51.7 ± 1.6	61.7 ± 6.2	51.0 - 72.4
	i i	- · ·		1
				÷ ,
				· .
	P +	بر ۵۰		•
	• .		ł	
	1	и ^х	. «	•
	15.0	ta j	-	- · · · · ·
	-	~ f	1	•
	15	-		- I
	· 41			
	•	٠		
	1 1 0 i	1 3-4		
	۰. -			
	-	· · ·		5 F
		, ,		
	, <u> </u>	· · · · · · · · · · · · · · · · · · ·		· - 4
	- , 's	- 3 K. (<u>ل</u> (ا	
	. 1.5	2.1.2.1.+		~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

^a Results obtained by: Environmental, Inc., Midwest Laboratory as a participant in the environmental samples crosscheck program operated by. Environmental Resources Associates (ERA).

^b Unless otherwise indicated, the laboratory result is given as the mean ± standard deviation for three determinations. SPS

^c Results are presented as the known values, expected laboratory precision (1 sigma, 1 determination) and the control limits as provided by ERA.

^d Analysis was repeated; result of reanalysis: 16114±487 pCi/L.

^e ERA acknowledged an unacceptably high percentage of failure for Cs-134 and questioned its own control limits. No problems were identified in the analysis.

(PAGE 1 OF 1)								
Concentration ^b								
			<u> </u>		Known	Control		
Lab Code	Туре	Date	Analysis	Laboratory result	Activity	Limits ^c		
	1900		7 (10) 900					
STW-939	water	12/01/01	Am-241	1.25 ± 0.0	1.19 ± 0 0	0.83 - 1.6		
STW-939	water	12/01/01	Co-57	138 9 ± 0.5	143 ± 14.3	100.1 - 185.9		
STW-939	water	12/01/01	Co-60	139 1 ± 0.5	141 ± 14.1	98.7 - 183.3		
STW-939	water	12/01/01	Cs-134	25.16 ± 0.2	28.5 ± 0.3	19.95 - 37.1		
STW-939	water	12/01/01	Cs-137	279.96 ± 0.9	286 ± 28.6	200.2 - 371.8		
STW-939 ^d	water	12/01/01	Fe-55	19.68 ± 23.2	9.2 ± 0.9	6.44 - 12.0		
STW-939	water	12/01/01	Mn-54	253.64 ± 0.9	246 ± 0 2	172.2 - 319.8		
STW-939	water	12/01/01	Ni-63	65.88 ± 1.9	88.3 ± 8.8	61.81 - 114.8		
STW-939°	water	12/01/01	Pu-238	0.060 ± 0.01	0.0 ± 0.0	-		
STW-939	water	12/01/01	Pu-239/40	2.79 ± 0.0	2.99 ± 0.3	2.09 - 3.9		
STW-939	water	12/01/01	Sr-90	4.88 ± 0.3	4.8 ± 0.5	3.36 - 6.2		
STW-939	water	12/01/01	U-233/4	0.89 ± 0.0	0.98 ± 0.1	0.69 - 1.3		
STW-939	water	12/01/01	U-238	6.75 ± 0.0	7.8 ± 0.8	5.46 - 10.1		
STW-939	water	12/01/01	Zn-65	70.6 ± 1.1	67.3 ± 6.7	47.11 - 87.5		
STSO-955	soil	10/16/02	Am-241	40.54 ± 2.7	43.5 ± 4.4	30.45 - 56.6		
STSO-955	soil	10/16/02	Co-57	210.58 ± 2.0	246 ± 24.6	172.2 - 319.8		
STSO-955	soil	10/16/02	Co-60	84.38 ± 0.9	87.5 ± 8 8	61.25 - 113.8		
STSO-955	soil	10/16/02	Cs-134	692 6 ± 2.1	862 ± 86.0	603.4 - 1120.6		
STSO-955	soil	10/16/02	Cs-137	96.98 ± 1.7	111 ± 11.1	77.7 - 144.3		
STSO-955	soil	10/16/02	Fe-55	1714.6 ± 299.6	1870 ± 187.0	1309 - 2431.0		
STSO-955	soil	10/16/02	Mn-54	509.74 ± 3.4	546 ± 54.6	382.2 - 709.8		
STSO-955	soil	10/16/02	Ni-63	890.6 ± 22 4	1180 ± 118.0	826 - 1534.0		
STSO-955	soil	10/16/02	Pu-238	34.04 ± 6.0	33.3 ± 3.3	23.31 - 43.3		
STSO-955	soil	10/16/02	Pu-239/40	68.7 ± 3.7	72.9 ± 7.3	51.03 - 94.8		
STSO-955		10/16/02	Sr-90	1.5 ± 3.0	0.0 ± 0.0	-		
STSO-955	soil	10/16/02	U-233/4	166.33 ± 3.8	229 ± 22.9	160.3 - 297.7		
STSO-955	soil	10/16/02	U-238	169.76 ± 3.8	220 ± 22.0	154 - 286.0		
STSO-955	soil	10/16/02	Zn-65	783.59 ± 6.4	809 ± 80.9	566.3 - 1051.7		

DOE's Mixed Analyte Performance Evaluation Program (MAPEP)^a Environmental, Inc., 2002

TABLE E-6

^a Results obtained by Environmental, Inc. ,Midwest Laboratory as a participant in the Department of Energy's Mixed Analyte Performance Evaluation Program, Idaho Operations office, Idaho Falls, Idaho

^b All results are in Bq/kg or Bq/L as requested by the Department of Energy.

^c MAPEP results are presented as the known values and expected laboratory precision (1 sigma, 1 determination) and control limits as defined by the MAPEP.

^d Known activity below the laboratory LLD. The sample was recounted for 2000 minutes; result : 11.52 ± 5.55 Bq /L.

^e Included in the testing series as a "false positive". No activity expected.