From:	"Paul T. Williams" <williamspt@ornl.gov></williamspt@ornl.gov>
То:	<rlt@nrc.gov></rlt@nrc.gov>
Date:	10/18/02 9:01AM
Subject:	DB Analysis Status report for October 18, 2002

Rob:

3

Attached is a brief status report for the week ending October 18, 2002, on the Task 9.1 stress analysis of the Davis-Besse problem.

I'm still working on Task 9.1D and have completed six of the nine models in the Case matrix. (see Table 1 in the status report) I hope to have all nine models finished by the end of next week.

I've developed these flaw models in such a way that they could also be applied to the Case matrices needed for other subtasks in Task 9.1.

Please let me know if you have any questions regarding this material.

Thanks

Paul

Paul T. Williams, Ph.D., P.E. Computational Sciences and Engineering Div. Oak Ridge National Laboratory P.O. Box 2009,Bldg. 9204-1,MS-8056,Rm.213A Oak Ridge, Tennessee 37831-8056 USA Internet:williamspt@ornl.gov FAX: (865) 574-0651 Phone:(865) 574-0649

CC: mark Kirk <MTK@nrc.gov>, <NCC1@nrc.gov>, <bassbr@ornl.gov>, <williamspt@ornl.gov>

· Jeannette Torres - Fwd: DB Analysis Status report for October 18, 2002

1

From:Robert Tregoning \mathcal{RES} To:Jeannette TorresDate:11/27/02 8:28AMSubject:Fwd: DB Analysis Status report for October 18, 2002

Page	1
i ugu	

From:	"Paul T. Williams" <williamspt@ornl.gov></williamspt@ornl.gov>
To:	<rlt@nrc.gov></rlt@nrc.gov>
Date:	10/18/02 9:01AM
Subject:	DB Analysis Status report for October 18, 2002

Rob:

2

Attached is a brief status report for the week ending October 18, 2002, on the Task 9.1 stress analysis of the Davis-Besse problem.

I'm still working on Task 9.1D and have completed six of the nine models in the Case matrix. (see Table 1 in the status report) I hope to have all nine models finished by the end of next week.

I've developed these flaw models in such a way that they could also be applied to the Case matrices needed for other subtasks in Task 9.1.

Please let me know if you have any questions regarding this material.

Thanks

Paul

Paul T. Williams, Ph.D., P.E. Computational Sciences and Engineering Div. Oak Ridge National Laboratory P.O. Box 2009,Bldg. 9204-1,MS-8056,Rm.213A Oak Ridge, Tennessee 37831-8056 USA Internet:williamspt@ornl.gov FAX: (865) 574-0651 Phone:(865) 574-0649

CC: mark Kirk <MTK@nrc.gov>, <NCC1@nrc.gov>, <bassbr@ornl.gov>, <williamspt@ornl.gov>

5

M_E_M_O

DATE: 18 October 2002

TO: M. T. Kirk and Robert Tregoning

FROM: P. T. Williams and B. R. Bass

SUBJECT: Status Report on Davis-Besse Analyses

The attached Figs. 1-6 provide a summary of the Davis-Besse analyses performed to date under the new Task 9 of JCN Y6533. In Fig. 1, the cladding properties used in the current study are presented: (a) true stress versus true strain and (b) thermal expansion coefficient versus temperature. The remaining figures address a specific sub-task described in the workscope for Task 9.

Sub-task 9.1D requires an estimate for crack driving forces as a function of flaw size and applied membrane stress in cladding. Table 1 shows the Case Matrix developed for this subtask.

Figure 2 depicts the first step carried out in preparation for the *J*-integral analyses, i.e., calculation of an updated estimate of the exposed cladding "footprint" based on the recent "dental mold" cast from the D-B cavity. That footprint area was estimated to be 28.23 in². Comparisons of the latest "footprint" statistics with previous ORNL interpretations are given in the table of Fig. 2(b). The newly calculated "footprint" area was used to define a burst disk having the same cross-sectional area.

Table 2 presents ductile tearing data for three-wire series-arc stainless steel weld overlay cladding published in NUREG/CR-5511 [1]. The ductile-tearing data presented in Table 2 are plotted as a function of temperature in Fig. 3.

Figure 4 presents six finite-element models developed so far for this phase of the analysis. Surface-breaking flaws were centrally located in each burst disk with the three relative flaw depths: a/t = 0.5, 0.25, and 0.05. The models for two flaw lengths of 2.0 inches (50.8 mm) and 1.0 inch (25.4 mm) have been developed to date. The remaining three models in the case matrix of Table 1 will apply a flaw length of 3/8 in. (9.525 mm)

Each models were loaded with an increasing lateral pressure. The resulting J-integral loading paths for these six models are shown in Fig. 5. Figure 5 also presents a value of J_{lc} for a temperature of 318.3 °C (605 °F) estimated by extrapolating from the data in Fig. 3a using a 4th order polynomial curve-fit.

Figure 6 compares the critical pressures (determined from the results shown in Fig. 5) for two potential failure modes of the burst-disk models. The ductile-tearing critical pressure is calculated from the point at which the load path for each flaw crosses the J_{Ic} line in Fig. 5 and represents the pressure at which stable ductile tearing initiates. The plastic-collapse critical pressure was estimated from the load at which each model began to approach a numerical instability in the analysis. From the curves in Fig. 6, the controlling failure mode for the two larger flaws in the current study was ductile tearing. The shallow flaw (a/t = 0.05) was close to the J_{Ic} line when it began to fail by plastic collapse. Decreasing the flaw length produces a slight

increase in the ductile-tearing critical pressure.

Estimates of the applied tearing modulus shown in Fig. 3b were calculated using the data (see Fig. 5) from the three flaws with 2L = 2.0 in. at a pressure of 6.4 MPa (0.928 ksi) and the three flaws with 2L = 1.0 in. at a pressure of 8.2 MPa (1.19 ksi). As indicated by the comparison in Fig. 3b, this estimate of the applied tearing modulus indicates a *stable* ductile tearing for the larger flaws, thus implying *stable* tearing for the smaller flaws as well.

References

•

ī

· · · · · · · · · · · · · · · · · · ·	-
Dogo	
гаче	

Case Number	a (inches)	(inches)	<i>alt</i> (-)	2 <i>L/a</i> (-)
9.1D1	0.1250	2	0.50	16
9.1D2	0.0625	2	0.25	32
9.1D3	0.0125	2	0.05	160
9.1D4	0.1250	1	0.50	8
9.1D5	0 0625	1	0.25	16
9.1D6	0.0125	~ 1	0.05	80
9.1D7	0.1250	0.375	0.50	3
9.1D8	0.0625	0.375	0.25	6
9.1D9	0.0125	0.375	0 05	30

Table 1. Case Matrix for Task 9.1D

 Table 2. Ductile Tearing Data Extracted from Table 13 of NUREG/CR-5511.

	Test		Tearing
Specimen	Temperature		Modulus
Mitta Provident	Unirradiated	Specimens	<u>*** à . * (3 + 8 2 % 2 % 2</u>
A13G	-75	117	64
H2	-75	137	49
A15B ^a	20	165	270
A13D	20	134	209
A10G	20	171	176
A10E	120	128	246
H5	120	119	229
H3	120	120	232
A13F ^a	120	159	359
H6	200	90	240
H4	200	111	231
A15D	288	77	267
A13C	288	66	170
<u> </u>	288	82	192
	Irradiated S	pecimens	
A15F	-75	78	40
A15G	-75	56	36
A13A	30	144	177
A15C	50	124	146
A10F	- 120 ·	94	175
A15A	288	25	191

^a Specimen was not side-grooved, while all other specimens in table were side-grooved 20%.

,

~ ~

• Page

Fig. 1. Cladding properties used in the current study: (a) true stress vs true strain and (b) thermal expansion coefficient.

¥

:

123732277792	38.23 Y. 36	3000		Centroid	Wastage	M	ments of h	ana 🦉	Eigen	aloc Extracts	n for Prinic	ipal Mon	enes and Directions
Description	Scaling Factor	Area	Perimeter	🐟 Area P	outprinel 🕺	2 Ab	out the Cen	aroad 🏅	Pnace	Moments	142	rincipal)	Directions >
	an said	(in ²)	i (in.) 4	· (#.) ·	~ (m.) *	(10)	×.×(1a ⁴) ∕	~≫ (ati ⁴)	(18*)	(ia)	× << n, 1	i,'> *	* <n, n,=""> ** ·</n,>
As Found Footprint	1	35 36	30.36	16.4122	-0 1 194	98.89	9699.33	-117 16	75 26	197 41	<0 9004 -4	0 4351>	≪0 4351, 0 9004>
Adjusted Footprint for Bounding Calculation	0.25 in	40.06	31 78	16 4301	-0 1255	129 02	11031 81	-141 35	99 00	245 71	<0.8943, -	0 4476>	≪0 4476, 0 8943>
As Found Footprint 9/23/2002	1	28.23	24.55	15.332	-0 18	95 56	6708 63	-50.52	54 01	113 07	[0.558 0	0.830]	[-0.830 0.558]
Footprint centroid is in glob	al coordinates	ad work t	he vertical o	enterlyne of	the nessel								

(b) with the x-axis along the line between the centerlines of Nozzles 3 and 11

Fig. 2. Latest footprint estimated from "dental mold".

-

- - -

• ••

.....

- Page (

Fig. 3. Ductile tearing data for three-wire series stainless steel weld overlay cladding from Table 13 of NUREG/CR-5511: (a) J_{le} data from unirradiated specimens and (b) tearing modulus data from unirradiated specimens

. .

Fig. 6. Comparison of critical pressures for two failure modes as a function of relative flaw depth. Two flaw lengths (2 in. (50.8 mm) and 1 in. (25.4 mm)) were used in the current analysis.

Page 1

...

F. M. Haggag, W. R. Corwin, and R. K. Nanstad, Irradiation Effects on Strength and Toughness of Three-Wire Series-Arc Stainless Steel Weld Overlay Cladding, NUREG/CR-5511 (ORNL/TM-11439), Oak Ridge National Laboratory, February 1990.

Form NIS-2

,

۰ ۲

:

2001 SECTION XI, DIVISION 1

~

. Owner	(1)			Date	(2)		
	Name			(3)		•	
<u> </u>	Address (A)	<u> </u>		Sheet	_ of	······	
Plant	(+) Name			Unit (5)			<u></u> .
		- <u></u>		(6)			
Work Performed b	(7)			Repair/Replacer	ot Stamo	tion P.O. No., Job 8)	No, etc
	, <u> </u>	Name		Authorization No)	(9)	
<u> </u>	Address			Expiration Date_		(10)	
Identification of Sy	ystem(11)						
(a) Applicable Cor	struction Code(12)	Edition,		Addenda,		_Code Ca
(b) Applicable Edm (c) Applicable Sem	tion of Section XI Us	ed for Repair/Re	eplacement Activi	ty 19			
Identification of Co	omponents	.,			F		
	1					1	Υ <u></u>
							ASME Code
Name of	Name of	Manufacturar	Numanal 2	Other	No.	Corrected, Removed or	Stamped
Component	Manufacturer	Serial No	Alo.	Identification	Built	Installed	or No)
(13)	(14)	(15)	(16)	(17)	(18)	(19)	(20)
		Aler-					
							ļ
	(21)						
Description of Work			<u> </u>				
Tests Conducted	Hydrostatic Pn	eumatic 🚺 N	ominal Operating	Pressure 🔲 Exer	mpt 🔲		
(22)	other [] Pressure_	ps	iest iemp	*F			
NOTE Supplement	tal sheets in form of	lists, sketches, i	or drawings may b	e used, provided (1	I) size is 8½	in. x 11 in., (2) i	nforma-
recorded at the top	of this form		eech sheet, and t	5) COCH SHEEL IS HU	inibered and	the number of a	meets is
	This Form (FOO030) m	av he obtained fo					
		ny se ootained h	om the ASME Ura	r Dept, 22 Law Driv	ve, Box 2300	. Fairfield, NJ 070	07-2300

APPENDIX II — MANDATORY

•

-

.

F

:

			F	ORM NIS-2 (Bad	:k)		
4	9. Remarks	(23)	Applicable	Manufacturer's Da	ita Reports to b	e attached	
	<u></u> .	•					
			CERTIFI	CATE OF COM	PLIANCE		
	I certify that th Code, Section XI.	e statements made	in the report	are correct and	that this con	forms to the req	uirements of the ASM
	Type Code Symbol S	tamp (2	25)				
			261	_		\frown	
	Certificate of Author	ization No.	207	E	xpiration 🔎		
	Signed		27)		Dute		, 19
	Owner	or Owner's Designee,	Title			<u>)</u> /	
r					<u> </u>	<u> </u>	
		C	ERTIFICATE	OF INSERVICE	E INSPECTIO	DN	
	I, the undersign	ed, holding a valid	commission I	ssued by e Nat	Board	of Boiler and Pr	essure Vessel Inspecto
	and the State or Pro	vince of(3	30)	_ and en ploted I	by	(27)	
	in this Owner's Repo	rt during the perio	d		to	(32)	
	to the best of my kn	owledge and belief	, the Owner ha	as performed exa	minations an	d taken correctiv	e measures described
	this Owner's Report By signing this	in accordance with certificate neither t	the require the Inspector r	ents of the ASME	E Code, Section makes any wa	on XI. Arranty, expresse	d or implied, concerni
	the examinations and	corrective measure	c described in	this Owner's Repo	ort. Furtherm	ore, neither the Ir	spector nor his employ
	shall be liable in any this inspection.	manner for thy pe	rsonal inj ro c	or property dama	ge or a loss of	f any kind arising	from or connected wi
	uns inspection.		$\mathbf{\mathcal{I}}$				
		(33)		. Commissions	National D	(34)	and Endowements
	Inspe	ictor's aignature			National BO	au, state, Province	, and Endorsements
	(2	5) 19					
	Date (S						