TABLE 2.2-1 (Continued) REACTOR PROTECTIVE INSTRUMENTATION TRIP SETPOINT LIMITS

FUNCTIONAL UNIT

TRIP SETPOINT Trip setpoint adjusted to

not exceed the limit lines

≥ 636 gpm**

Not Applicable

Not Applicable

pumps operating*

≥ 800 psig

of Figures 2 2-1 and 2.2-2

< 2.49 decades per minute

 \geq 95 4% of design Reactor Coolant flow with four

ALLOWABLE VALUES

Trip setpoint adjusted to not exceed the limit lines of Figures 2.2-1 and 2 2-2.

10 Loss of Component Cooling Water to Reactor Coolant Pumps – Low

9. Local Power Density - High⁽⁵⁾

11. Reactor Protection System Logic

12. Reactor Trip Breakers

Operating

٦

<u>ب</u>

13 Rate of Change of Power - High⁽⁴⁾

14. Reactor Coolant Flow - Low⁽¹⁾

15 Loss of Load (Turbine) Hydraulic Fluid Pressure – Low⁽⁵⁾ <u>></u> 636 gpm

Not Applicable

Not Applicable

< 2.49 decades per minute

> 94.9% of design Reactor Coolant flow with four pumps operating*

<u>></u> 800 psig

* Design reactor coolant flow with four pumps operating is 355,000 gpm

** 10-minute time delay after relay actuation.

ST LUCIE - UNIT 2

2-5

Amendment No 8, 60, 131

TABLE 3.2-2

DNB MARGIN

LIMITS

PARAMETER

•

** ***

÷

Cold Leg Temperature (Narrow Range)

Pressurizer Pressure

Reactor Coolant Flow Rate

AXIAL SHAPE INDEX

FOUR REACTOR COOLANT PUMPS OPERATING

 $535^{\circ}F^* \le T \le 549^{\circ}F$

2225 psia^{**} \leq P_{PZR} \leq 2350 psia^{*}

≥ 355,000 gpm

COLR Figure 3.2-4

^{*} Applicable only if power level \geq 70% RATED THERMAL POWER.

^{**} Limit not applicable during either a THERMAL POWER ramp increase in excess of 5% of RATED THERMAL POWER or a THERMAL POWER step increase of greater than 10% of RATED THERMAL POWER.