## $M_E_M_O$

DATE: 4 October 2002

TO: M. T. Kirk

FROM: P. T. Williams and B. R. Bass

## SUBJECT: Status Report on Davis-Besse Analyses

The attached Figs. 1-6 provide a summary of the Davis-Besse analyses performed to date under the new Task 9 of JCN Y6533. In Fig. 1, the cladding properties used in the current study are presented: (a) true stress versus true strain and (b) thermal expansion coefficient versus temperature. The remaining figures address a specific sub-task described in the workscope for Task 9.

Sub-task 9.1D requires an estimate for crack driving forces as a function of flaw size and applied membrane stress in cladding.

Figure 2 depicts the first step carried out in preparation for the *J*-integral analyses, i.e., calculation of an updated estimate of the exposed cladding "footprint" based on the recent "dental mold" cast from the D-B cavity. That footprint area was estimated to be 28.23 in<sup>2</sup>. Comparisons of the latest "footprint" statistics with previous ORNL interpretations are given in the table of Fig. 2(b). The newly calculated "footprint" area was used to define a burst disk having the same cross-sectional area.

Table 1 presents ductile tearing data for three-wire series-arc stainless steel weld overlay cladding published in NUREG/CR-5511 [1]. The ductile-tearing data presented in Table 1 are plotted as a function of temperature in Fig. 3.

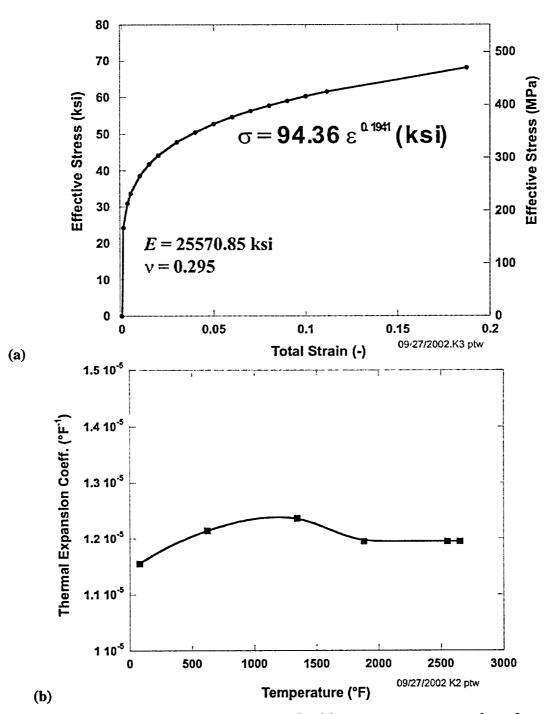
Figure 4 presents the three finite-element models developed for this phase of the analysis. For a constant flaw length, surface breaking flaws were centrally located in each burst disk. The three relative flaw depths investigated were 0.5, 0.25, and 0.05. The constant total flaw length was 2.0 inches (50.8 mm).

Each of the three models were loaded with an increasing lateral pressure until the solution approached a numerical breakdown. The resulting *J*-integral loading paths for the three models are shown in Fig. 5. Figure 5 also presents a value of  $J_{Ic}$  for a temperature of 318.3 °C (605 °F) estimated by extrapolating from the data in Fig. 3a using a 4<sup>th</sup> order polynomial curve-fit.

Figure 6 compares the critical pressures (determined from the results shown in Fig. 5) for two potential failure modes of the burst-disk models. The ductile-tearing critical pressure is calculated from the point at which the load path for each flaw crosses the  $J_{Ic}$  line in Fig. 5. The plastic-collapse critical pressure was estimated from the load at which each model began to approach a numerical instability in the analysis. From the curves in Fig. 6, the controlling failure mode for the two larger flaws in the current study was ductile tearing. The shallow flaw (a/t = 0.05) was close to the  $J_{Ic}$  line when it began to fail by plastic collapse. An estimate of the applied tearing modulus was calculated using the data from the three flaws at a pressure of 6.4 MPa (0.928 ksi). As indicated by the comparison in Fig. 3b, this estimate of the applied tearing modulus indicates a stable ductile tearing for the largest flaw, thus implying stable tearing for the smaller flaws as well.

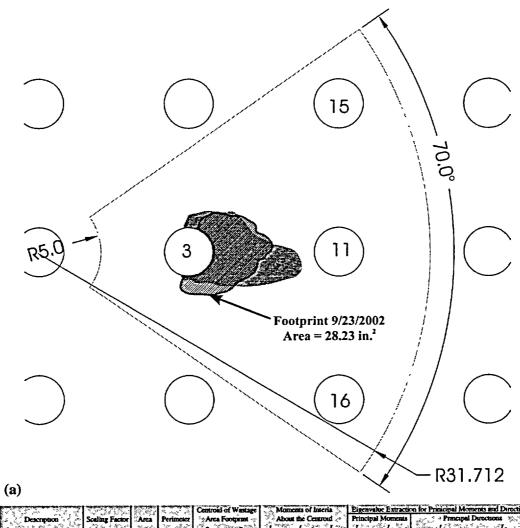
## References

••••


 F. M. Haggag, W. R. Corwin, and R. K. Nanstad, Irradiation Effects on Strength and Toughness of Three-Wire Series-Arc Stainless Steel Weld Overlay Cladding, NUREG/CR-5511 (ORNL/TM-11439), Oak Ridge National Laboratory, February 1990.

|                        | Test         |          | Tearing    |  |  |  |  |  |  |  |
|------------------------|--------------|----------|------------|--|--|--|--|--|--|--|
| Specimen               | Temperature  |          | Modulus 👝  |  |  |  |  |  |  |  |
|                        | (°C) ∑ે (°C) | (kJ/m²)  |            |  |  |  |  |  |  |  |
| Unirradiated Specimens |              |          |            |  |  |  |  |  |  |  |
| A13G                   | -75          | 117      | 64         |  |  |  |  |  |  |  |
| H2                     | -75          | 137      | 49         |  |  |  |  |  |  |  |
| A15B <sup>a</sup>      | 20           | 165      | 270        |  |  |  |  |  |  |  |
| A13D                   | 20           | 134      | 209        |  |  |  |  |  |  |  |
| A10G                   | 20           | 171      | 176        |  |  |  |  |  |  |  |
| A10E                   | 120          | 128      | 246        |  |  |  |  |  |  |  |
| H5                     | 120          | 119      | 229        |  |  |  |  |  |  |  |
| H3                     | 120          | 120      | 232        |  |  |  |  |  |  |  |
| A13F <sup>a</sup>      | 120          | 159      | 359        |  |  |  |  |  |  |  |
| H6                     | 200          | 90       | 240        |  |  |  |  |  |  |  |
| H4                     | 200          | 111      | 231        |  |  |  |  |  |  |  |
| A15D                   | 288          | 77       | 267        |  |  |  |  |  |  |  |
| A13C                   | 288          | 66       | 170        |  |  |  |  |  |  |  |
| H1                     | 288          | 82       | 192        |  |  |  |  |  |  |  |
|                        | Irradiated S | pecimens |            |  |  |  |  |  |  |  |
| A15F                   | -75          | 78       | 40         |  |  |  |  |  |  |  |
| A15G                   | -75          | 56       | 36         |  |  |  |  |  |  |  |
| A13A                   | 30           | 144      | 177        |  |  |  |  |  |  |  |
| A15C                   | 50           | 124      | 146        |  |  |  |  |  |  |  |
| A10F                   | 120          | 94       | 175        |  |  |  |  |  |  |  |
| A15A                   | 288          | 25       | <u>191</u> |  |  |  |  |  |  |  |

## Table 1. Ductile Tearing Data Extracted from Table 13 of NUREG/CR-5511.


:

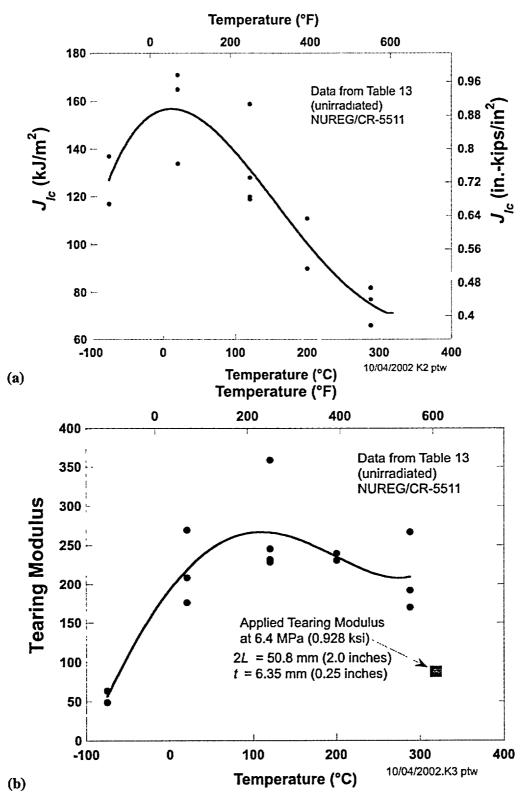
<sup>a</sup>Specimen was not side-grooved, while all other specimens in table were side-grooved 20%.



÷

Fig. 1. Cladding properties used in the current study: (a) true stress vs true strain and (b) thermal expansion coefficient.




|                                                |                | 6. 67  | R 14 8    | Centroid of Wastage Moments of Interia |           |                    |                                 |                       | Eigen             | value Extraction | on for Principal Mon | tents and Directions |
|------------------------------------------------|----------------|--------|-----------|----------------------------------------|-----------|--------------------|---------------------------------|-----------------------|-------------------|------------------|----------------------|----------------------|
| Description                                    | Scaling Factor |        | Perimeter | Area Footprant                         |           | About the Centroid |                                 | Principal Moments     |                   |                  |                      |                      |
|                                                | 38.85          | ' (m²) | ~*(in.)   | <sup>%</sup> (in.) * **                | "î(in.) ' | (ໂລ້) 🗇            | ጎድና <b>(m<sup>4</sup>)</b> ፡- ቀ | -`(m <sup>4</sup> ) ( | (m <sup>4</sup> ) | > × (în⁴) +      | ~~<#,;#,>'**         | <3 < n, a, > ~ ×     |
| As-Found Footprint                             | 1              | 35.36  | 30 36     | 16 4122                                | -0 1194   | <b>98 8</b> 9      | 9699.33                         | -117 16               | 75.26             | 197 41           | <0 9004, -0 4351>    | <0 4351, 0 9004>     |
| Adjusted Footprint<br>for Bounding Calculation | 0.25 in        | 40 06  | 31 78     | 16.4301                                | -0.1255   | 129 02             | 11031.81                        | -141 35               | <b>99 0</b> 0     | 245 71           | <0.8943, -0 4476>    | <0 4476, 0 8943>     |
| As-Found Footprint<br>9/23/2002                | 1              | 28 23  | 24.55     | 15 332                                 | -0 18     | 95.56              | 6708 63                         | -50 52                | 54 01             | 113 07           | [0.558 0.830]        | [-0 830 0 558]       |

.

ĩ

Footpmit centroid is in global coordinates. Global coordinate system has its z-axis aligned with the vertical centerline of the vessel The x-y plane of the global coordinate system is a horizontal plane (b) with the x-axis along the line between the centerlines of Nozzles 3 and 11

Fig. 2. Latest footprint estimated from "dental mold".



1

Fig. 3. Ductile tearing data for three-wire series stainless steel weld overlay cladding from Table 13 of NUREG/CR-5511: (a) J<sub>Ic</sub> data from unirradiated specimens and (b) tearing modulus data from unirradiated specimens

Fixed-Grip Boundary on Outer Edge

•

7

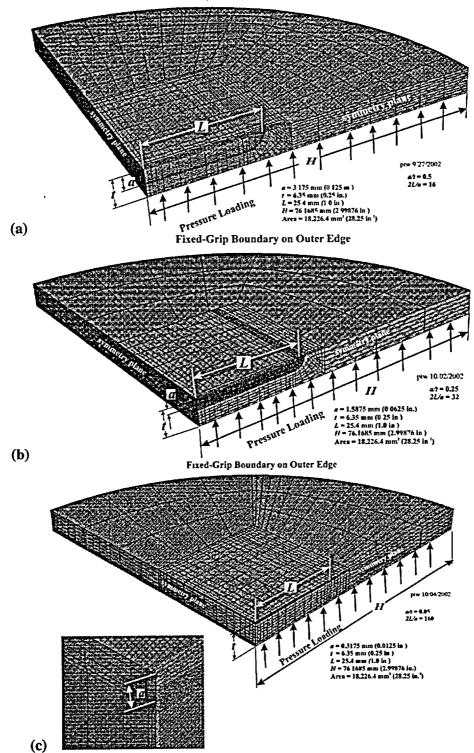
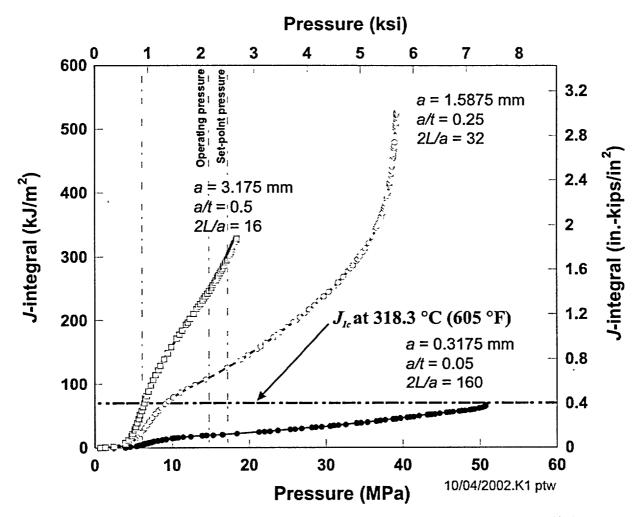




Fig. 4. Finite-element models used in calculating applied J-integrals produced by pressure loading of burst disk: (a) Model 1 (a/t = 0.5, 2L/a = 16) (b) Model 2 (a/t = 0.25, 2L/a = 32), and (c) Model 3 (a/t = 0.05, 2L/a = 160) (Task 9.1D)



s

;

Fig. 5. J-integral driving forces from three finite-element models as a function of applied pressure.

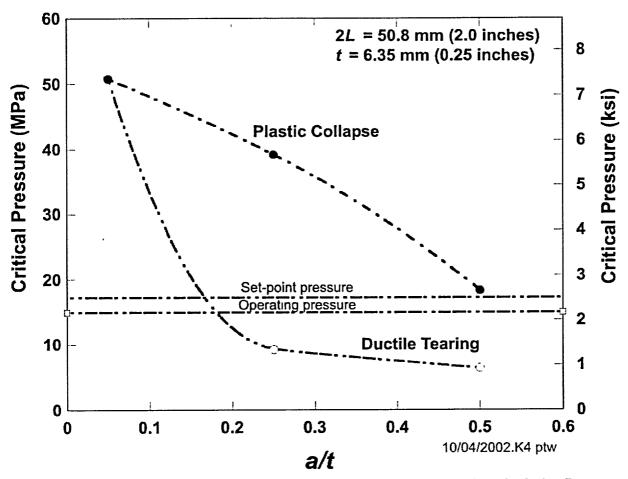



Fig. 6. Comparison of critical pressures for two failure modes as a function of relative flaw depth. The same flaw length (50.8 mm) is used for all current analyses.