$M_E_M_O$

DATE: September 27, 2002

TO: M. T. Kirk

,,,

FROM: P. T. Williams and B. R. Bass

SUBJECT: Status Report on Davis-Besse Analyses

The attached Figs. 1-5 provide a summary of the Davis-Besse analyses performed to date under the new Task 9 of JCN Y6533. In Fig. 1, the cladding properties used in the current study are presented: (a) true stress versus true strain and (b) thermal expansion coefficient versus temperature. The remaining figures address specific sub-task described in the workscope for Task 9.

Sub-task 9.1A calls for estimates of stress/strain induced from a thermal gradient of 600 °F to 250 °F across the cladding thickness. Sub-task 9.1B requires an estimate of cladding residual strains induced from residual stresses assuming a stress free temperature of 1100 °F and an operating temperature of 600 °F. This was done by performing finite element analyses of flat plates.

Figure 2 depicts profiles induced by a temperature gradient through the cladding: (a) thermal stresses and (b) thermal strains induced by a stress-free temperature of 1100 °F and cladding temperature of 605 °F. Figure 3 depicts residual stresses induced by stress-free temperature (= 1100 °F) with a cladding temperature (= 605 °F) compared to thermal stresses.

Sub-task 9.1D requires an estimate for crack driving forces as a function of flaw size and applied membrane stress in cladding.

Figure 4 depicts the first step carried out in preparation for the J-integral analyses, i.e., calculation of an updated estimate of the exposed cladding "footprint" based on the recent "dental mold" cast from the D-B cavity. That footprint area was estimated to be 28.23 in². Comparisons of the latest "footprint" statistics with previous ORNL interpretations are given in the table of Fig. 4(b).

The newly calculated "footprint" area was used to define a burst disk having the same crosssectional area. Figure 5 depicts J-integrals produced by pressure loading of that burst disk containing the largest postulated flaw: (a) burst disk model with flaw located at center (a/t = 0.5, 2LJa = 16) and (b) J-integrals at deepest point of flaw induced by lateral-pressure loading. These results will next be compared with J_R curves for the cladding material.

ĩ,

۰.

Fig. 1. Cladding properties used in the current study: (a) true stress vs true strain and (b) thermal expansion coefficient.

Fig. 2. Profiles induced by temperature gradient through the cladding and (a) thermal stresses and (b) thermal strains induced by a stress-free temperature of 1100 °F and cladding temperature of 605 °F. (Task 9.1A)

ł

Fig. 3. Residual stresses induced by stress-free temperature (= 1100 °F) with a cladding temperature (= 605 °F) compared to thermal stresses. (Task 9.1B)

1.	1. 2. 2. 2. 2.		5-5-5	Centroid o	Wastage	Mo	ments of h	егіа 🧳	Eigenv	abse Extractis	on for Principal Mom	ents and Directions
Description	Scaling Factor	Area	Perimeter	Area Fe		Ab J	out the Cen	trand 🦓	Princip 17, 2	al Moments	Principal J	Directions
N-3-4-8-12.14	MST 3K	×(in²)	(m) *	\$*{in.}*``	' ~ (in.) `•	•(in [*]) :	*(in')	(m ⁴)	(in ⁴)	(in ⁴)~′′	** <1,,1,>*	[≤] →<#∴#,>***
As Found Footprint	1	35 36	30.36	16 4122	-0 1194	98 89	9699 33	-117 16	75.26	197 41	<0 9004, -0 4351>	<0 4351, 0 9004>
Adjusted Footprint for Bounding Calculation	0 25 m.	40 06	31 78	16 4301	-0 1255	129 02	11031.81	-141 35	99 00	245 71	<0 8943, -0 4476>	<0 4476, 0.8943>
As-Found Footprint 9/23/2002	1	28 23	24.55	15 332	-0 18	95.56	6708 63	-50 52	54 01	113 07	[0 558 0 830]	[-0.830 0 558]

۴,

ţ

Footprint centroid is in global coordinates. Global coordinate system has its z-axis aligned with the vertical centerline of the vessel The x-y plane of the global coordinate system is a horizontal plane (b) with the x-axis along the line between the centerlines of Nozzles 3 and 11

,

Fig. 4. Latest footprint estimated from "dental mold".

Fig. 5. J-integrals produced by pressure loading of burst disk: (a) burst disk model with flaw located at center (a/t = 0.5, 2L/a = 16) and (b) J-integrals at deepest point of flaw induced by lateral-pressure loading. (Task 9.1D)