Annual Assessment Meeting

Reactor Oversight Program Calendar Year 2002

Nuclear Regulatory Commission - Region I King of Prussia, PA

Agenda

- Introduction
- Review of Reactor Oversight Process
- National Summary of Plant Performance
- Discussion of Plant Performance Results
- General Topics: Security Update and Self-Improvement Efforts
- Licensee Response and Remarks
- NRC Closing Remarks
- Break
- NRC available to address questions from the public

Region I Organization

Reactor Oversight Process

Examples of Baseline Inspections

- Equipment Alignment
- Triennial Fire Protection
- Operator Response
- Emergency Preparedness
- Rad Release Controls

- ~92 hrs/yr
- ~200 hrs every 3 yrs
- $\sim 125 \text{ hrs/yr}$
- ~ 80 hrs/yr
- ~ 100 hrs every 2 yrs
- Worker Radiation Protection ~100 hrs/yr
- Corrective Action Program ~200 hrs every 2 yrs
- Corrective Action Case Reviews ~30 hrs/yr

Significance Threshold

Performance Indicators

- **Green**: Only Baseline Inspection
- White: May increase NRC oversight
- Yellow: Requires more NRC oversight
- **Red**: Requires more NRC oversight

Inspection Findings

Green:Very Low safety issueWhite:Low to moderate safety issueYellow:Substantial safety issueRed:High safety issue

Action Matrix Concept

Licensee Response Regulator Response	Degraded Cornerstone	Multiple/Rep. Degraded Cornerstone	Unacceptable Performance
--	-------------------------	--	-----------------------------

Increasing Safety Significance

Increasing NRC Inspection Efforts

Increasing NRC/Licensee Management Involvement

Increasing Regulatory Actions

National Summary of Plant Performance

Status at End of Calendar Year 2002

Licensee Response	
Regulatory Response	
Degraded Cornerstone	
Multiple/Repetitive Degraded Cornerstone	
Unacceptable	
Total Plants	102
*Davis-Besse is in IMC 0350 process	

National Summary

- Performance Indicator Results (end of calendar year 2002)
 - ► **Green** 1835
 - ► **White** 5
 - ► **Yellow** 0
 - ► **Red** 0
- Total Inspection Findings (calendar year 2002)
 - ► **Green** 783
 - ► **White** 30
 - ▶ **Yellow** 1
 - ► **Red** 2

Oyster Creek Assessment Results

(Jan 1 - Dec 31, 2002)

- Operated safely
- Regulatory Response column of the Action Matrix for the first and second quarters of 2002 (cornerstone objectives fully met)
- Licensee Response column of the Action Matrix for the third and fourth quarters of 2002 (cornerstone objectives fully met)
- NRC will conduct baseline inspections during the next cycle

Oyster Creek -Performance Indicators

Performance Indicator (Example)

Thresholds: White > 2.5% Yellow > 5.0% Red > 10.0%

Oyster Creek Inspection Activities

(Jan 1 - Dec 31, 2002)

- Approximately 5280 hours of inspection related activities
- 2 resident inspectors assigned to the site
- 15 regional inspector visits
 - Included 3 team inspections
- Inspection Findings
 - ► 12 findings of very low safety significance (GREEN)

Oyster Creek - Inspection Results

Oyster Creek Annual Assessment

Substantive Cross Cutting Issue Human Performance

Common Theme Procedure Adherence Inadequacies

Cornerstones Affected Initiating Events, Mitigating Systems, Barrier Integrity, and Occupational Radiation Safety

Several Green Findings

- Procedures controlling test activities
- Procedures controlling modification activities
- Alignment of plant components
- Equipment performance monitoring
- Repeat errors involving personnel not responding to alarming electronic dosimetry while working in high radiation areas

This substantive cross cutting issue will be inspected through the baseline inspection program.

NRC Security Program Update

- NRC has issued Orders which:
 - Increased Patrols
 - Augmented Security Capabilities
 - Added Barriers and Posts
 - Enhanced Personnel Screening for Access
 - Enhanced Security Awareness
- Office of Nuclear Security and Incident Response Formed (April 2002)
- Threat Advisory and Protective Measure System (August 2002):
 - NRC established five level threat advisory and protective measure system based on Homeland Security Advisory System

NRC Security Program Update (continued)

- Access Authorization Order (January 7, 2003)
- Force-on-Force Exercises (February 2003)
- Training Order (TBD)
- Fatigue Order (TBD)
- Design Basis Threat (TBD)

Emergency Response

 Office of Nuclear Security and Incident Response has primary responsibility

Typical other federal agencies involved:

- Federal Emergency Management Agency
- Department of Energy
- Environmental Protection Agency
- Federal Bureau of Investigation

NRC Self-Improvement Efforts

Security Enhancements

Significance Determination Process Task Group

Performance Indicator Program

Davis-Besse Lessons Learned Task Force

NRC Representatives

- A. Randolph Blough, Director, Division Reactor Projects - (610) 337-5230
- Robert Summers, Branch Chief – (610) 337-5227
- Peter Tam, Project Manager, NRR - (301) 415-3016
- Steven Dennis, Senior Resident Inspector - (609) 693-0702
- Steven Shaffer, Resident Inspector - (609) 693-0702
- Richard Barkley, Senior Project Engineer - (610) 337-5065

Reference Sources

- Reactor Oversight Process
 - http://www.nrc.gov/NRR/OVERSIGHT/ASSESS/inde x.html
- Public Electronic Reading Room
 - http://www.nrc.gov/reading-rm.html
- Public Document Room
 - ► 1-800-397-4209 (Toll Free)

Simplified Boiling Water Reactor

Simplified Pressurized Water Reactor

