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Stochastic Failure Model
for the Davis-Besse RPV Head

P. T. Williams and B. R. Bass
Oak Ridge National Laboratory
P. O. Box 2009
Oak Ridge, TN, 37831-8056

Abstract

The development of a set of six stochastic models is described in this report in which the uncertainties
associated with predictions of burst pressure for circular diaphragms using computational or analytical
methods are estimated. It is postulated that the trends seen in predicting the burst pressure with nine
experimental disk-burst tests (using materials, geometries, and pressure loadings relevant to the Davis-
Besse analysis) will be representative of the computational predictions of the burst pressure in the Davis-
Besse wastage-area problem. Given a computational prediction of the pressure at numerical instability,
Py, for a specific configuration of the wastage area, the scaled stochastic models provide estimates of the
failure pressure with a specific associated probability.

The stochastic models were developed from the following technical bases:

(1) experimental data obtained during disk-burst tests with loadings, geometries, and materials
relevant to the Davis-Besse pressure loading, wastage-area footprint, and cladding,

(2) nonlinear, large-deformation, elastic-plastic discrete-element analyses of the disk-burst tests,

(3) nonlinear, finite-strain, elastic-plastic finite-element analyses performed for the current study,
and

(4) a theoretical criterion for plastic instability in a circular diaphragm under pressure loading,
applied to the disk-burst tests.

Among the twenty-six continuous distributions investigated, six passed all of the heuristic and Goodness
of Fit tests applied in the analysis. The six distributions, ranked in relative order, are: (1) Log-Laplace,
(2) Beta, (3) Gamma, (4) Normal, (5) Random Walk, and (6) Inverse Gaussian. Due to the small sample
size (n=26) used in the stochastic model development, no definitive claim can be made that one
distribution is significantly superior to the other five; however, the Log-Laplace is shown to have the
highest ranking given the available data, and it produces the highest failure probabilities when
extrapolating to service pressures well below the range of the data, e.g., to the nominal operating pressure
or safety-valve set-point pressure. It is, therefore, recommended that the Log-Laplace stochastic model be
applied in future studies for the Davis-Besse wastage-area problem.

As an example application, estimates are provided for a bounding calculation of the “as-found” Davis- .
Besse wastage area. The bounding calculation predicted a Py, value of 6.65 ksi. From the Log-Laplace
stochastic model, the corresponding median failure pressure is 7.35 ksi. The Log-Laplace model also
estimates a cumulative probability of failure of 4.14x107 at the operating pressure of 2.165 ksi and
2.15x107 at the safety-valve set-point pressure of 2.5 ksi. Using all six distributions, the average
probability of failure is 6.91x10™ at 2.165 ksi, 3.60x107" at 2.5 ksi, and 0.2155 at 6.65 ksi.



1. Introduction

1.1. Objective

This report presents stochastic models of failure for the stainless steel cladding in the wastage area of the
Davis-Besse Nuclear Power Station reactor pressure vessel (RPV) head. For a given intemnal pressure, the
statistical models provide estimates of the cumulative probability (probability of nonexceedance) that the
exposed cladding will have failed at a lower pressure. The failure mode addressed by this model is
incipient tensile plastic instability (i.e., plastic collapse) of the cladding.

1.2. Background

The following was taken from ref. [1].

On February 16, 2002, the Davis-Besse facility began a refueling outage that included
inspection of the vessel head penetration (VHP) nozzles, which focused on the inspection of
control rod drive mechanism (CRDM) nozzles, in accordance with the licensee’s
commitments to NRC Bulletin 2001-01, “Circumferential Cracking of Reactor Pressure
Vessel Head Penetration Nozzles,” which was issued on August 3, 2001. These inspections
identified axial indications in three CRDM nozzles, which had resulted in pressure boundary
leakage. Specifically, these indications were identified in CRDM nozzles 1, 2, and 3, which
are located near the center of the RPV head. ... Upon completing the boric acid removal on
March 7, 2002, the licensee conducted a visual examination of the area, which identified a
large cavity in the RPV head on the downhill side of CRDM nozzle 3. Followup
characterization by the ultrasonic testing indicated wastage of the low alloy steel RPV head
material adjacent to the nozzle. The wastage area was found to extend approximately 5 inches
downhill on the RPV head from the penetration for CRDM nozzle 3, with a width of
approximately 4 to 5 inches at its widest part.

See Fig. 1. for a photograph of the Davis-Besse RPV, a schematic of a typical nuclear power reactor, and
a sketch and photographs of the wastage area.

1.3. Scope

In support of the investigation by the United States Nuclear Regulatory Commission’s (NRC) Office of
Nuclear Regulatory Research, the Heavy-Section Steel Technology Program at Oak Ridge National
Laboratory has developed statistical models for a specific failure mode for the exposed stainless steel
cladding in the cavity of the Davis-Besse RPV head. Section 2 reviews the technical bases employed in
the development of the models; Section 3 presents the details of the stochastic models; Section 4
demonstrates an application of the proposed candidate Log-Laplace model to the results of a2 bounding
calculation for the “as found” condition of the wastage area; and Section 5 provides a summary and

conclusions.
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Abstract

The development of a set of six stochastic models is described in this report in which the uncertainties
associated with predictions of burst pressure for circular diaphragms using computational or analytical
methods are estimated. It is postulated that the trends seen in predicting the burst pressure with nine
experimental disk-burst tests (using materials, geometries, and pressure loadings relevant to the Davis-
Besse analysis) will be representative of the computational predictions of the burst pressure in the Davis-
Besse wastage-area problem. Given a computational prediction of the pressure at numerical instability,
Py, for a specific configuration of the wastage area, the scaled stochastic models provide estimates of the
failure pressure with a specific associated probability.

The stochastic models were developed from the following technical bases:

(1) experimental data obtained during disk-burst tests with loadings, geometries, and materials
relevant to the Davis-Besse pressure loading, wastage-area footprint, and cladding,

(2) nonlinear, large-deformation, elastic-plastic discrete-element analyses of the disk-burst tests,

(3) nonlinear, finite-strain, elastic-plastic finite-element analyses performed for the current study,
and

(4) a theoretical criterion for plastic instability in a circular diaphragm under pressure loading,
applied to the disk-burst tests.

Among the twenty-six continuous distributions investigated, six passed all of the heuristic and Goodness
of Fit tests applied in the analysis. The six distributions, ranked in relative order, are: (1) Log-Laplace,
(2) Beta, (3) Gamma, (4) Normal, (5) Random Walk, and (6) Inverse Gaussian. Due to the small sample
size (n=26) used in the stochastic model development, no definitive claim can be made that one
distribution is significantly superior to the other five; however, the Log-Laplace is shown to have the
highest ranking given the available data, and it produces the highest failure probabilities when
extrapolating to service pressures well below the range of the data, e.g., to the nominal operating pressure
or safety-valve set-point pressure. It is, therefore, recommended that the Log-Laplace stochastic model be
applied in future studies for the Davis-Besse wastage-area problem.

As an example application, estimates are provided for 2 bounding calculation of the *“as-found” Davis-
Besse wastage area. The bounding calculation predicted a Py, value of 6.65 ksi. From the Log-Laplace
stochastic model, the corresponding median failure pressure is 7.35 ksi. The Log-Laplace model also
estimates a cumulative probability of failure of 4.14x1077 at the operating pressure of 2.165 ksi and
2.15x10™ at the safety-valve set-point pressure of 2.5 ksi. Using all six distributions, the average
probability of failure is 6.91x10™* at 2.165 ksi, 3.60x10”" at 2.5 ksi, and 0.2155 at 6.65 ksi.



1. Introduction

1.1. Objective

This report presents stochastic models of failure for the stainless steel cladding in the wastage area of the
Davis-Besse Nuclear Power Station reactor pressure vessel (RPV) head. For a given internal pressure, the
statistical models provide estimates of the cumulative probability (probability of nonexceedance) that the
exposed cladding will have failed at a lower pressure. The failure mode addressed by this model is
incipient tensile plastic instability (i.e., plastic collapse) of the cladding.

1.2. Background

The following was taken from ref. [1].

On February 16, 2002, the Davis-Besse facility began a refueling outage that included
inspection of the vessel head penetration (VHP) nozzles, which focused on the inspection of
control rod drive mechanism (CRDM) nozzles, in accordance with the licensee’s
commitments to NRC Bulletin 2001-01, “Circumferential Cracking of Reactor Pressure
Vessel Head Penetration Nozzles,” which was issued on August 3, 2001. These inspections
identified axial indications in three CRDM nozzles, which had resulted in pressure boundary
leakage. Specifically, these indications were jdentified in CRDM nozzles 1, 2, and 3, which
are located near the center of the RPV head. ... Upon completing the boric acid removal on
March 7, 2002, the licensee conducted 2 visual examination of the area, which identified a
large cavity in the RPV head on the downhill side of CRDM nozzle 3. Followup
characterization by the ultrasonic testing indicated wastage of the low alloy steel RPV head
material adjacent to the nozzle. The wastage area was found to extend approximately 5 inches
downhill on the RPV head from the penetration for CRDM nozzle 3, with a width of
approximately 4 to 5 inches at its widest part.

See Fig. 1. for a photograph of the Davis-Besse RPV, a schematic of a typical nuclear power reactor, and
a sketch and photographs of the wastage area.

1.3. Scope

In support of the investigation by the United States Nuclear Regulatory Commission’s (NRC) Office of
Nuclear Regulatory Research, the Heavy-Section Steel Technology Program at Oak Ridge National
Laboratory has developed statistical models for a specific failure mode for the exposed stainless steel .
cladding in the cavity of the Davis-Besse RPV head. Section 2 reviews the technical bases employed in
the development of the models; Section3 presents the details of the stochastic models; Section 4
demonstrates an application of the proposed candidate Log-Laplace model to the results of a bounding
calculation for the “as found” condition of the wastage area; and Section 5 provides a summary and

conclusions.



Exy

The above figure shows the Davis Besse reacior vesse! head degradation betwesn nozzie #3
snd nozzis #11. This sketch was provided to the NRC by the Licensee.

Fig. 1. (a) Davis-Besse Nuclear Power Station RPV and (b) sketch of RPV head degradation.
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Fig. 1 (continued) (c) schematic of a typical nuclear power reactor showing the relationship of the
CRDM nozzles to the RPV head.



Fig. 1. (continued) (d) photographs of the wastage area with Nozzle 3 removed.



2. Technical Bases

The technical bases employed in the construction of the stochastic models are:

(1) experimental data obtained during disk-burst tests reported by Riccardella [2] with loadings,
geometries, and materials relevant to the Davis-Besse pressure loading, wastage-area footprint, and
cladding,

(2) nonlinear, large-deformation, elastic-plastic discrete-element analyses of the disk-burst tests also
reported in [2] (GAPL-3 discrete-element code[3]),

(3) nonlinear, finite-strain, elastic-plastic finite-element analyses performed for the current study
(ABAQUS finite-element code[4]) of the nine disk-burst test specimens reported in [2], and

(4) a theoretical criterion for plastic instability in a circular diaphragm under pressure loading, due to
Hill [5] with extensions by Chakrabarty and Alexander [6] (as cited in [7]), applied to the disk-burst
tests.

2.1. Experimental - Disk-Burst Tests

In the early 1970s, constrained disk-burst tests were carried out under the sponsorship of the PVRC
Subcommittee on Effective Utilization of Yield Strength [8]. This test program employed a range of
materials and specimen geometries that were relevant to components in a nuclear power plant steam
supply system’. The geometries of the three test specimens analyzed in [2) are shown in Fig. 2, the test
matrix is shown in Table 1, and the properties of the three materials are presented in Table 2. The nine
disk-burst tests produced three center failures and six edge failures over a range of burst pressures from
3.75 10 15 ksi as shown in Table 1.

] §5304 A 0.375 0.250 2.625 LlS Edge
2 B 0.125 0.125 2.875 6.8 Center
3 _ C 0.375 0.125 2.625 7.7 Center
4 AS533B A 0.375 0.250 2.625 11 Edge
5 B 0.125 0.125 2.875 53 Edge
6 C 0.375 0.125 2.625 6.7 Center
7 ABS-C A 0.375 0.250 2.625 9.8 Edge
8 B 0.125 0.125 2.875 .75 Edge
9 C 0.375 0.125 2.625 4.94 Edge

! The three materials are representative of reactor core support structures and piping, the reactor pressure vessel, and
plant component support structures {2].



Table 2. Property Data for Materlals in Dlsk-burst Tests [2]

S§304 34 84 0.54 34.07 129.36 0.432 16241 0.27
A-533B 74 96 0.17 74.15 11232 - 0.157 13941 0.12
ABS-C 39 64 0.31 39.08 83.84 0.270 10520 0.17

*The power-law parameters in Table 2 were fitted for the current study where o=Ke and G, € are the
effective true stress and effective total true strain, respectively.

Geometry A

—0.378R
250

Geometry B

~—0.125R
/
," 125 —

&0
1.0

Geometry C
,,--D.STSR
128 4

80
10.0

Fig. 2. Geometric descriptions of the three disk-burst specimens used in [1) (all dimensions are
inches). Images on the right are Photoworks®-rendered views of %-symmetry solid models

of the three specimens.
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2.2. Computational ~ Axisymmetric Discrete-Element and Finite-Element Models

The results of a computational study were presented in [2] in which the nine tests were simulated using
the GAPL-3 computer code [3]. GAPL-3 applied the discrete-element method using a two-layered system
of elements: one layer for the strain-displacement field and a second layer for the stress field to perform
an elasto-plastic large-deformation analysis of stresses, strains, loads, and displacements of thin plates or
axisymmetric shells with pressure loading. At each incremental load step, the code iterated to resolve both
geometric and material nonlinearities, thus establishing a condition of static equilibrium. The GAPL-3
code did not account for the reduction in thickness of the diaphragm with increasing load, and, therefore,
was unable to demonstrate the “tailing up” of the experimental center-deflection histories. As discussed in
[2], the thin-shell approximation of the GAPL-3 code is not strictly valid in the fillet region. The GAPL-3
model did include a plastic-hinge type of strain redistribution, but the strain concentration effect due to
the fillet radius was not accounted for, since the predicted strain distribution in the cross-section of the
fillet was linear by assumption. These approximations in the analysis were driven by the limitations of the
computer resources available at the time of the study in 1972.

The current study reanalyzed all nine disk-burst tests using the ABAQUS [4] finite-element code. With
current computing power, many of the simplifying assumptions required in 1972 could be removed to
provide a2 more detailed analysis. The fundamental assumptions made in the current study are:

(1) the material is assumed to be homogenous and isotropic before and throughout plastic defor-
mation;
(2) the material is assumed to be free of pre-existing defects;

(3) the volume of the material undergoing plastic deformation is assumed to be constant (i.e., incom-
pressible with a Poisson’s ratio, v = 0.5), for linear-elastic deformation v = 0.3;

(4) the hydrostatic component of the stress tensor has no effect on yielding; and

(5) the plastic deformation follows incremental J; flow theory (Mises yield criterion) with its
associated flow rule (Levy-Misés) and isotropic strain hardening.

The finite-element meshes shown in Fig. 3 were developed using 8-node quadratic, axisymmetric, solid
elements with reduced integration (ABAQUS element type CAX8R). The material property data given in
Table 2 were used to fit power-law constitutive models for the plastic region of the three materials (see
Fig. 4). The analyses applied a nonlinear finite-strain procedure with an incrementally increasing pressure
load applied from zero up to the load at which numerical instabilities caused ABAQUS to abort the

execution.
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Fig. 3. Axisymmetric finite-element meshes used in the analyses of disk-burst tests reported in [2].
Quadratic 8-node axisymmetric (CAXSR) elements with reduced integration were used in a
nonlinear finite-strain elastic-plastic analysis of the three disk-burst geometries with three

materials.
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Fig. 4. True stress vs true strain curves of the three materials used in the disk-burst tests compared
to SS308 at 600 °F. These three test material curves were developed using a power-law
strain-hardening model fitted to yield and ultimate strength/strain data for each material
given in [2]. (See Table 2).

12



2.3. Theory - Hill’s Plastic Instability Theory

A plastic instability theory due to Hill [S] for a pressurized circular diaphragm constrained at the edges is
presented in [7). Figure 5 shows the geometry of the diaphragm, both undeformed and deformed, along
with the nomenclature used in the development of the theory.

The geometry of deformation is assumed to be a spherical dome or bulge of radius, R. The undeformed
ring element (defined by its position, width, and thickness, (7,,87,4,), respectively) is assumed to
deform to an axisymmetric shell element with surface length, 6L, deformed thickness, A, radial position,
r, and angle ¢ . The nonuniform thickness of the dome reaches its minimum at the pole with polar height
H. For a spherical coordinate system with its origin at the center of the dome, the principal strains for the
thin-shell (i.e., the strains are assumed constant through the thickness) element are

) oft) ol

A geometric relationship exists between the radius and chord of a circle such that

_H'+d’
2H

R

@

where a is the effective radius of the undeformed diaphragm. Using Egs. (1) - (2) and the geometry shown
in Fig. 5, ref. [7] derives the following relations for the meridional, €,, and hoop, &,, strains at any point
on the spherical bulge

e,(z|H,a)=e,(z|H,a)=1n[1+(:—f)] ')

where the geometric parameter z is shown in Fig. 5. Applying the constant volume assumption, i.e.,
€, + €, +&, =0, produces the following equation for the radial (“thickness™) strain

| |
e lH.0)= 25, IM-'“[TW]. ®
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The effective strain then becomes

£(£,,£,,e,)eJ_J € =) +(£,-e,) +(g,-¢,) =-€,(z|H,a)= 21n[l+(ZH):| 0]

The maximum radial strain, therefore, occurs at the pole of the spherical bulge. Applying the thin-walled
assurnption (which is not made in the computational finite-element model) for an axisymmetric shell
element, the equilibrium relation between the meridional, o,, and hoop, o, , membrane stresses and the

internal pressure, p;, loading is

g
._’+.o_°=ﬂ ©)

For a spherical dome, R, =R, =R, and a state of equibiaxial stress is assumed to prevail near the pole of

the dome with the principal stresses being

0,=0,=="—; 0,=0 @

and the effective stress ,&'=%\£ -Ga)z+(°', "O'r)z +(o, “O'r)z , i

— R
6=0,=0, =!;T (8

To establish an instability criterion, a surface can be constructed in pressure, effective stress, and
deformation/strain space by expressing Eq. (8) as a total differential of the form

Rp,=2hF
Rdp, + p,dR = 2hd +25dh ©
dp, _d5  dh_dR

p,ohR

An unstable condition exists at a point of maximum pressure on the surface where dp, =0. The condition
is unstable because any perturbation from this position always involves a reduction in load (pressure),
even in a rising stress field. The instability criterion for a deformed bulge of radius R is, therefore,
established by the following relation between stress and the deformed geometry for any point on the dome

15
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If the instability condition is attained, it will first occur at the point of maximum effective strain at the top
of the dome (at z= H) such that Eq. (11) can be stated as

145 _3 1(2Y,. €
—— == |14 12
GdE 2 4(3‘I z] 12

Applying a power-law constitutive form to relate effective stress to effective strain in the plastic region,

G=K&" , 13)

the effective strain at instability is, after a great deal of algebraic manipulation,

£, =%(2n+l) (14)

where n is the power-law exponent in the constitutive equation, Eq. (13).

An alternative instability criterion was developed by Chakrabarty and Alexander [6] which was based on
a Tresca yield surface. The critical effective strain was found to be

F = 2(2-n)(1+2n)

et 11-4n (13)

16



For a given material and diaphragm geometry ( n, a, k), the pressure at the instability condition (i.e., the
burst pressure) can be determined by the following procedure:

¢ Calculate the effective critical strain. £,y =-%(2n +1)
¢ Calculate the corresponding effective critical stress. o,.,=KE"
¢ Calculate the critical thickness. b, =hexp(-E,,)
e Calculate the polar height at the critical condition. H_, =a ’exp(f‘z—’-"— )-l
. . H: +d’
e Calculate the corresponding bulge curvature radius. R,= —H
orit

: . 2h 5.,

e Finally, calculate the predicted burst pressure. Py =21

R

17



3. Stochastic Model Development

3.1. Computational and Theoretical Model Results

Computational results using the GAPL-3 code were presented in [2]. Converged solutions were obtained
for eight of the nine tests. Comparison of experimental and computational centerline deflections showed
good agreement for the eight converged cases. In the nonconverged case (ABS-C, geometry C), some
difficulty was reported in getting convergence at high pressures. In all cases the experimental data showed
a “tailing up” as the pressure approached burst pressure, which the computational model was unable to
capture. In general, the prediction of the burst pressure for the eight converged cases showed good
agreement with the experimentally-determined burst pressures. Defining « as the ratio of the
experimental burst pressure to the computationally-predicted pressure at numerical instability, the mean
for @ was 1.19 with a standard error for the mean of 10.0484 and a standard deviation for the sample of
0.137.

The finite-element models using ABAQUS were able to obtain burst pressures for all nine tests, where the
pressure at numerical instability, Py, is defined as the pressure at which a breakdown occurs in the
numerical procedure, causing the run to abort. For a nonlinear, finite-strain, static load step, ABAQUS
uses automatic sizing of the load increment to maintain numerical stability. The number of iterations
needed to find a converged solution for a load increment varies depending on the degree of nonlinearity in
the system. If the solution has not converged within 16 iterations or if the solution appears to diverge,
ABAQUS abandons the increment and starts again with the increment size set to 25% of its previous
value. An attempt is then made at finding a converged solution with this smaller load increment. If the
increment still fails to converge, ABAQUS reduces the increment size again. ABAQUS allows a
maximum of five cutbacks in an increment before aborting the analysis. Therefore, ABAQUS will
attempt a total of 96 iterations with six increments sizes before abandoning the solution. The initial load
size for the failing increment was typically already very small due to difficulties in convergence with the
previous and final successfully-converged load increment.

Equivalent plastic strain contours are shown in Fig. 4 for the geometry A (ABS-C carbon steel) specimen
(Test No. 7) at the point of numerical instability. The experimental burst pressure for this specimen was
9.8 ksi, and numerical instability of the solution occurred at approximately 9.05 ksi, for an & =1.083. .
Highly localized plastic straining can be observed near the fillet, thus predicting an edge failure for this
specimen which did in fact fail at its edge.

18
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point of numerical instability. Highly localized plastic straining provides a precondition for
plastic collapse at the edge of the specimen. (ABAQUS analysis results)
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Figure 5 compares the predicted centerline deflection load histories with the experimentally-observed
deflections at failure (estimated from Figs. 3 and 4 in [2]). The “tailing up” of the experimental deflection
curves near the point of failure is predicted by the model, indicating that the computational simulations
are capturing the final localized “necking” of the diaphragm. For the nine ABAQUS predictions, the
mean for & was 1.055 with a standard error for the mean of 10.0331 and a standard deviation for the
sample of 0.0993. .
The results of applying Hill’s failure criterion are presented in Table 3. The mean for & was 1.058 with a
standard error for the mean of +0.0374 and a standard deviation for the sample of 0.1123. The
calculations were repeated using the theoretical critical strain of Chakrabarty and Alexander [6], Eq. (15),
with the resulting burst pressures being essentially identical to those given in Table 3.

Table 3. Application of Hill’s Instability Theory to Nine Disk-burst Tests

Hey  Rew  Ooy hew Py Pousepy @ -
ks)E oGy syl ) o) s . Gh). o Gksi) o (ksi) .ol
16241 027 2.625 0.250] 0.561 1.493 3.054 138.84 0.1427 1298 15  1.156
16241 027 2.875 0.125| 0.561 1.635 3345 138.84 00714 592 68  1.148
16241 027 2.625 0.125] 0.561 1.493 3.054 138.84 00714 649 7.7  1.187
13941 0.12 2.625 0.250] 0.449 1316 3276 12696 0.1596 1237 11 0.889
139.41 0.12 2.875 0.125| 0449 1.441 3.588 12696 00798 5.65 53 0938
139.41 0.2 2.625 0.125| 0449 1316 3276 12696 00798 6.19 67  1.083
10520 0.17 2.625 0250| 0.490 1.383 3.183 92.95 0.1532 895 98  1.095
10520 0.17 2.875 0.125| 0.490 1.514 3486 0295 00766 4.08 375 0918
10520 0.17 2.625 0.125] 0.490 1.383 3.183 9295 0.0766 447 494 1.104

O 00 -3 WU s WN -

A summary of all 26 Py; values is given in Table 4. Combining the 26 cases into a single sample gives a
mean for @ of 1.098 with a standard error for the mean of 10.0251 and a standard deviation for the
sample of 0.1281. Even though Hill’s theory is applicable only for center failures, the good agreement
between the experiments (including those that failed at the edges) suggests that, for the edge-failure cases,
the specimens were also close to a condition of plastic collapse at the center when they failed first at the
edge.
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Fig. 5. Comparison of experimental centerline vertical deflections at failure to ABAQUS FEM

vertical deflection histories at the center of the Geometry A and B specimens for (a) SS 304,
(b) AS33-B, and (c) ABS-C materials, and
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1 A Edge 12.3 12,98 Center L16 13.29 Edge 113
2 B 6.8 Center 4.8 Edge 1.42 5.92 Center 115 6.22 Edge 1.09
3 C 1.7 Center 14 Center 1.04 6.49 Center 1.19 6.59 Center 1,17
4 AS33B A n Edge 9.8 Edge 112 1237 Center 0.89 12.26 Edge 0.90
5 B 53 Edge 42 Edge 1.26 5.65 Center 0.94 5.24 Edge 1.0!
6 C 6.7 Center 6.8 Center 0.99 6.19 Center 1.08 6.03 Edge L1l
7 ABS-C A 9.8 Edge 8 Edge 1.23 8.95 Center 1.10 9.05 Edge 1.08
8 B 3.75 - Edge 3 Edge 125 4,08 Center 092 4.19 Edge 0.89
9 C 4.94 Edge 447 Center 1,10 4.46 Edge/Center 1.1]
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3.2. Development of Stochastic Model of Failure

The development of several stochastic models is described in this section in which the uncertainties
associated with predictions of burst pressure for circular diaphragms using computational or analytical
methods are estimated. It is postulated that the trends observed in the ratios of experimentally-observed
failure pressures in the nine disk-burst tests in [2] to calculated Py; values will be representative of the
predictive accuracy of computational estimates of the burst pressure in the Davis-Besse wastage-area
problem. Given a calculated Py, for a specific configuration of the wastage area, the scaled stochastic
models will provide estimates of the cumulative probability that the true burst pressure will be less than a
given service pressure, specifically providing a failure pressure with its associated probability. This
postulated linkage of the test specimens to the Davis-Besse problem is obviously an approximation, since
the wastage area footprints are not identical to the circular diaphragms used in the tests. The
appropriateness of this linkage is in part, therefore, dependent on the ability of the finite-element models
to capture, as accurately as is feasible and based on the best current knowledge, the actual geometry of the
wastage area footprint. Accurate material properties are also an important input to the analysis.

Table 5 summarizes some descriptive statistics for the ratio, &, of experimental burst pressure to the
calculated pressure at numerical instability for the three predictive methods discussed in the previous
section. Also shown in the table are the results of combining the three samples into one larger sample of
26 data points. This combined sample was used to develop the stochastic models with o treated as a
random variate. Combining the three sets into a single sample produced a sample size large enough to
make a reasonably thorough statistical analysis of a range of continuous distributions feasible. Also given
in Table 6 is a ranking of the 26 data points where the median rank order statistic is

_i-03

® n+04

16)

The Expert Fit® [9] computer program was used to develop several stochastic models of the sample data
presented in Table 6. Using a combination of heuristic criteria and Goodness of Fit statistics, twenty-six
continuous distributions were tested with the results shown in ranked order in Table 7. The point-
estimation procedures noted in Table 7 include Maximum Likelihood (ML), Method of Moments (MM),
and Quantile Estimates. Table 8 compares three Goodness of Fit statistics (Anderson-Darling, x?, and
Kolmogorov-Smirnoff (K-S)) for the top six distributions. None of these distributions were rejected by the
Goodness of Fit tests, and all received an absolute rating of Good by the Expert Fit® computer program.

The remaining twenty distributions investigated were either rejected by one or more of the Goodness of
Fit tests at some significance level and/or received a less than Good heuristic absolute rating by the
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Expert Fif® software. Figure 6 shows a density/histogram overplot of the six candidate continuous
distributions.

Table 5. Descriptive Statistics for the Ratio of Experimental Burst Pressure
to Predicted Burst Pressures

[Descriptive Statistics® < [Rie = Hill's X heory. 'VA'BAQUS Combined:*
Sample Size 9 26
Mean 1.0576 1 .0549 1.0975
Standard Error 0.0374 0.0331 0.0251
Median 1.0953 1.0939 1.1057
Standard Deviation 0.1123 0.0993 0.1281
Sample Variance 0.0126 0.0099 0.0164
Kurtosis -1.4799 -0.4349 0.2593
Skewness -0.5892 -0.9683 0.1714
Range 0.2979 0.2739 0.5277
Minimum 0.8889 0.8943 0.8889
Maximum 1.1868 1.1682 1.4167
Confidence Level(95.0%) 0.0863 0.0764 0.0517

Table 6. Combined Sample Used in Development of Stochastic Model
EEY e SR s
. Ordér Stau c

1 Hill's Theory A533B A 0.8889 0.0265
2 ABAQUS Soln. ABS-C B 0.8943 0.0644
3 ABAQUS Soln. A533B A 0.8972 0.1023
4 Hill's Theory ABS-C B 0.9180 0.1402
5 Hill's Theory AS33B B 0.9382 0.1780
6 Ricarrdella (1972)  AS533B C 0.9853 0.2159
7 ABAQUS Soln. A533B B 1.0119 0.2538
8 Ricarrdella (1972) SS304 C 1.0405 0.2017
9 ABAQUS Soln. ABS-C A 1.0827 0.3295
10 Hill's Theory AS33B C 1.0829 0.3674
11 ABAQUS Soln. SS304 B 1.0939 0.4053
12 Hill's Theory ABS-C A 1.0953 0.4432
13 Hill's Theory ABS-C C 1.1042 0.4811
14 -ABAQUS Soln. ABS-C C 1.1072 0.5189
15 ABAQUS Soln. AS33B C 1.1104 0.5568
16 Ricarrdella (1972)  AS533B A 1.1224 0.5947
17 ABAQUS Soln. SS 304 A 1.1288 0.6326
18 Hill's Theory SS 304 B 1.1479 0.6705
19 Hill's Theory SS304 A 1.1560 0.7083
20 ABAQUS Soln. SS304 C 1.1682 0.7462
21 Hill's Theory 55304 Cc 1.1868 0.7841
22 Ricarrdella (1972)  SS 304 A 1.2195 0.8220
23 Ricarrdella (1972)  ABS-C A 1.2250 0.8598
24 Ricarrdella (1972)  ABS-C B 1.2500 0.8977
25 Ricarrdella (1972)  AS33B B 1.2619 0.9356
26 Ricarrdella (1972)  SS 304 B 1.4167 0.9735

o = Experimental Burst Pressure/Prssure at Numerical Instability
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Table 7. Continuous Distributions Investigated — Ranked by Goodness of Fit

E T Mode]

Point Estimator:

arameter Vaines .

1- og-Laf;lace

2 - Beta

3 - Gamma
4 - Log-Logistic

5 - Normal

6 - Weibull

7 - Lognormal

8 - Random Walk

9 - Inverse Gaussian

10 - Pearson Type V

11- lnvengd Weibull
12 - Weibull(E)

13 - Rayleigh(E)

14 - Erlang(E)
15 - Gamma(E)

16 - Exponential(E)

17 - Pearson Type VI(E)

Shape

Lower endpoint
Upper endpoint

Shape #1
Shape #2
Location
Scale
Shape
Location
Scale
Shape
Mean

Standard Dev.

Location
Scale
Shape
Location
Scale
Shape
Location
Scale
Shape
Location
Scale
Shape
Location
Scale
Shape
Location
Scale
Shape
Location
Scale
Shape
Location
Scale
Location
Scale
Shape
Location
Scale
Shape
Location
Scale
Location
Scale
Shape #1

26

Default

ML estimate

ML estimate
MOM estimate
MOM estimate
MOM estimate
MOM estimate
Default

ML estimate

ML estimate
Default

ML estimate

ML estimate

ML estimate

ML estimate
Default

ML estimate

ML estimate
Default

ML estimate

ML estimate
Default

ML estimate

ML estimate
Default

ML estimate

ML estimate
Default

ML estimate

ML estimate
Default

ML estimate

ML estimate
Quantile estimate
ML estimate

ML estimate
Quantile estimate
ML estimate
Quantile estimate
ML estimate

ML estimate
Quantile estimate
ML estimate

ML estimate

ML estimate

ML estimate
Quantile estimate
Default

ML estimate

0
1.1057
11.45441
0.61449
1.78866
7.95564
11.38552
0
0.01444
76.01293
0
1.09586
15.21867
1.09747
0.12811
0
1.15383
9.03948
0
0.08641
0.11516
0
0.92335
69.18788
0
1.09747
82.23451
0
81.42582
75.1846
0
1.02827
8.88835
0.88834
0.21562
1.15868
0.88884
0.24352
0.88884
0.20862
1
0.88884
0.21819
0.95616
0.8889
0.20857
0.88884
1
1.00117



Parameters

:Point Estimatc

18 - Lognormal(E)

19 - Random Walk(E)

20 - Pareto(E)
21 - Chi-Square
22 - Wald

23 - Rayleigh
24 - Exponential
25 - Wald(E)

26 - Inverse Gaussian(E)

Shape #2
Location
Scale
Shape
Location
Scale
Shape
Location
Shape
Location
df
Location
Shape
Location
Scale
Location
Scale
Location
Shape
Location
Scale
Shape

27

ML estimate
Quantile estimate
ML estimate

ML estimate
Quantile estimate
ML estimate

ML estimate

ML estimate

ML estimate
Quantile estimate
ML estimate
Default

ML estimate
Default

ML estimate
Default

ML estimate
Quantile estimate
ML estimate
Quantile estimate
ML estimate

ML estimate

Parameter Values
5.43892
0.88884
-2.17414
1.86865
0.88884
699.32509
4.82644
0.8889
4.8976
0.88884
0.72313
0
48.03951
0
1.10463
0
1.09747
0.88884
1.43E-03
8.89E-04
0.20862
1.44E-03




Density/Proportion

Table 8. Continuous Distribﬁtions That Passed All Goodness of Fit Tests

Rk T TR SHafive Score v Rating ...+ Anderson-Dariing. L 9 Smbshe 7. TR
1 Log-Laplace 98 Good 0.44952 2.15385 0.59218
2 Beta 93 Good 0.44697 4.92308 0.81037
3 Gamma 89 Good 0.46050 3.53846 0.81894
4 Normal 83 Good 0.39325 1.23077 0.74664
5 Random Walk 75 Good 0.50448 3.53846 0.85840
6 Inverse Gaussian 71 Good 0.50514 3.53846 0.85891

Density/Histogram Overplot
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Fig. 6. Overplot of probability densities with histogram for fitted stochastic models.
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The six distributions in Table 8 have the following analytical forms:

Log-Laplace Distribution

The Log-Laplace distribution has the highest relative ranking among the twenty-six distributions
investigated. The general three-parameter Log-Laplace continuous distribution has the following
probability density function, f7», and cumulative distribution function, Fip,

2\ b

~c—}
< (x—a) forx2b

2| b
l[x-a) fora<x<b

o
c(x—a) fora<x<b

Sir(x|a,b,c)= fora20, (b,c)>0

a7

2l b

l__;_(x;a) for x2b

Pr(X S x)=F(x|a,b,c)= fora20, (b,c)>0

where a is the location parameter, b is the scale parameter, and c is the shape parameter.

Beta Distribution
The Beta distribution has the following probability density function, fz., and cumulative distribution

function, Fj.,
’(x_a )q-l[l-(x-aJ]az-l
Sa(x]ab,0,,0,) = b-a b=a))  fora<x<b

(b-a)B(a, ;)
0 otherwise

18)

F, (x|a,b,0,0,) =1 If.,(-ila,b,a,,az) d¢ fora<x<b
Be 23Uy 549 p

0 otherwise

1
where B(a,,a,)=ju""'(l-u)“’"du, a is the lower endpoint, b is the upper endpoint, @, is the first’
[}

shape parameter, and @, is the second shape parameter.
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Gamma Distribution
The Gamma distribution has the following probability density function, f,, and cumulative distribution
function, Fg,,

,

e/ N
fa.(xla,ﬁ,y)mm"‘l’[ ( B J] forx>y

0 otherwise

19
[fulEleBr)dE  forx>y

0 otherwise

Fe(xla,B,7) =

where a is the shape parameter, B is the scale parameter, y is the location parameter, and
I(x)= Iexp(—u)u"'du .

0
Normal Distribution

The Normal distribution has the following probability density function, fy, and cumulative distribution
function, Fy,

-(x-p)’
20?

] for all real numbers x

1
SHlxlpn,o)= exp[
J2mor | 20)

Fy(x|1,0)=0()= [ £,§10)df forz=(x-p)/o

where p is the mean (location parameter) and o is the standard deviation (scale parameter).
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Random Walk Distribution

The Random Walk distribution has the following probability density function, fzs, and cumulative

distribution function, Fgp

a 1/2
S (xlaBor)= (21:(::—7)) o {

F,,,.(xla,ﬁ,y)m [20)0{
exp TP

-e[1-B(x-7)]

28 (x-7)

0 otherwise

} forx>y

[ﬁ(xl— 2 + l]\/a(x - 7)} forx>y

0 otherwise

@n

where a is the shape parameter, B is the scale parameter, 7 is the location parameter, and @ is defined

in Eq. (20).

Inverse Gaussian Distribution

The Inverse Gaussian distribution has the following probability density function, fig, and cumulative

distribution function, Fg

fo(xle,B,y)=4 | 2x(x~7)°

0

. x—}'_ (1 4 .2£ _ x-y ’T ]
Fg(x|a;B,y)=1 q’[( B l)V‘X—Y \+exp|: B ]‘D[ [ ; +1 x-y] forx>y
; 0

'[_a_]"',xp[__-‘;g:_'s)’] for x>

otherwise

otherwise

@2)

where a is the shape parameter, B is the scale parameter, y is the location parameter, and @ is defined

in Eq. (20).

Figures 7 and 8 compare the probabilities and the cumulative distribution functions, respectively, of the

top-three ranked models.
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Probability-Probability Plot
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Fig. 7. Probability-probability plot comparing top three fitted distributions.
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Fig. 8. Log-Laplace statistical failure model (# = 26) compared to a beta and gamma cumulative
distribution functions.
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As a specific example from the Expert Fif® [9] analysis, the Log-Laplace stochastic model of failure has
the following form

105

o
1.10

10.45441
5.17971( ] ; 0<a <1.1057
fur(]0,1.1057,11.45441) =

5.17971

—12.45441

= ) ; 21,1057

l 11.4544] (23)
E(l 1057) ; 0<a <1.1057

Pr(X S @)= F,,(|0,1.1057,11.45441) = s
1-1( o ) : @ 21.1057

1.1057

where o is the ratio of the true (but unknown) burst pressure to the calculated pressure at numerical
instability, Py;. The percentile function is given by
0,,(2|0,1.1057,11.45441) =
In(2p)

In(1.1057)+ . p<0.5
°"p[ (1.1057) 1145441] P

i eXP[ln(l.1057) _b{20-p)] ] iosrsy

11.45441

@4

The stochastic models in Table 8 can be used to provide statistical estimates of the expected predictive
accuracy of computational methods applied to burst pressure calculations for service pressures within the
range of the data used to develop the model, i.e., 0.8889x P, < SP £1.4167x B,,, where, SP, is a service
pressure, and Py is the calculated pressure at numerical instability for the condition under investigation.
Extrapolating significantly beyond the range of the data becomes somewhat problematic due to the small
sample size of twenty-six data points. All six models in Table 8 are plausible candidates to describe the
population from which the sample in Table 6 was drawn, but the relative ranking of these distributions
may be sensitive to sample size. Due to the small sample size (n = 26) used in the stochastic model
development, no definitive claim can be made that one distribution is significantly superior to the other
five; however, the Log-Laplace is shown to have the highest ranking given the available data, and it
produces the highest failure probabilities when extrapolating to service pressures well below the range of
the data, e.g., to the nominal operating pressure or safety-valve set-point pressure.

Table 9 provides an example of the sensitivity of the fitting process to the sample size for the case of the

“as-found” cavity condition (to be discussed in the next section). Normal distributions were fitted to two
samples from the predictions of the disk-burst tests: (1) the ABAQUS finite-element results (n = 9) and
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(2) the combined data set (n = 26). The two stochastic models were then scaled by the calculated Py; of
6.65 ksi for the “as-found” condition. Extrapolating beyond the range of the data for the “as-found” case
study produces approximately three orders-of-magnitude difference in estimated failure probability at the
operating pressure of 2.165 ksi. This difference in estimated failure probability decreases as the service
pressure increases towards the range of data used to develop the models.

Table 9. Sensitivity of Cumulative Probability of Failure to Sample Size:
“As-Found” Condition (see Sect. 4)

T I RERIR TR

Tt

Ncim@lf] ,

6.65 0.2902 0.2233

2.155 1.04E-12 7.81E-10
2.165 1.17E-12  8.40E-10
2200  1.53E-13 1.08E-09
2225  2.02E-13 1.30E-09
2250  2.68E-13 1.55E-09
2.275  3.53E-13 1.85E-09
2300  4.66E-13 2.21E-09
2325  6.13E-13  2.64E-09
2,350  8.05E-13 3.14E-09
2.375 1.06E-12 3.75E-09
2400 1.39E-12 4.46E-09
2425 1.81E-12 5.30E-09
2450  237E-12 6.30E-09
2475  3.09E-12 7.48E-09
2.500  4.03E-12 8.87E-09
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4. Application of Stochastic Model to Bounding Calculation

A bounding calculation was carried out for the *“as-found” condition of the wastage area in the
Davis-Besse head. The finite-element model used in the analysis is shown in Fig. 9. An adjusted stress-
strain curve (see Fig. 10) was constructed to lower-bound the available data [10, 11] for the cladding
material. The geometry of the wastage area footprint was taken from Fig. 13 in the Root Cause Analysis
Report [12]. As an estimate of the uncertainty in the current wastage area measurements, the footprint was
extended by approximately 0.25 inches (see Table 10 and Fig. 11 for a geometric description of the
adjusted footprint). A uniform cladding thickness of 0.24 inches (the minimum cladding thickness value
based on ultrasonic testing (UT) measurements on a % inch grid as depicted in Fig. 14 of ref. [12]) was
assumed in the model. The finite-element model was then loaded with increasing pressure until the point
of numerical instability at an internal pressure of 6.65 ksi (see Fig. 12) was attained. Decreasing the
cladding thickness from 0.24 inches to 0.1825 inches (the minimum design allowable) resulted in a
calculated pressure at numerical instability of 5.18 ksi. In the following, an example is provided of how
the statistical distributions in Table 8 can be scaled and applied to the analysis of failure of the cladding in

the wastage area.

As an example, the Log-Laplace statistical failure model can be scaled to provide estimates of cumulative
probability of failure (or probability of nonexceedance) as a function of internal service pressure for the
specific condition of the wastage area simulated by the finite-element analysis. The scaled Log-Laplace
model (see Fig. 13) has the following form

Sp 1045441 ,
517197 — ; 0<SP<1.1057x P,
1.1057x B,
S (SP|Py)= —12.45441
5.17971 __SP ; SP21.1057% Py,
1.1057x B,

25

l SP 11.4544)
—— ;0<SP<1.1057x P,
2(1.1057x P,

Pr(BP,,.., S SP)=F,(SP|F,)=
1 SP

~]1.45441
1-of —=—— ; SP21.1057x P,
2| 1.1057x B,

where, SP, is the service pressure under consideration, Py, is the calculated pressure at numerical

instability, and BP ) is the unknown true burst pressure. To calculate as estimated burst (failure)
pressure, BP, , with probability, p, the scaled percentile function is applied
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0,,(»(0,1.1057% P,,,11.45441) =
(26)

In(2p) ]
In(1.1057%x P, }+—22P) | . <ps
°XP[ ( w)* Tasaar]| 7

BP =
[ , m[2(1-
exp 111(1.1057><}",,,)—-Ju:l ;p>05

11.45441

for (0<p<1)

<0.9004, -0.4351> <0.4351, 0.9004>

1 3536] 3036 | 164122 -0.1194 | 98.89 969933 -117.16]7526 19741
16.430]  -0.)255 |129.02 11031.8] -14135]995.00 24571 <8943, 0.4476> <0.4476, 0.8943>

As-Found Footprint

Adjusted Footprint 025in. [40.06] 2J1.78
for Bounding Calculation

“Faotprint centroid i in global coordinates.
Global coordinate system has its z-axis aligned with the vertical eenterline of the vessel.
The x-y plane of the global coordinate system is a horizontal plane

with the x-axis along the line between the centerlines of Nozzles 3 and 11.

“Adjusted” Footprint
o =0.25in.

Area = 40.06 in’
Perimeter = 31.78 in.

Centroid of
Footprint
?(IMIZ,-G.II”

x;=-r; cos($))

“As Found” Feotprint = :
Area = 3536 in’ Y= risin(¢)

Perimeter = 30.36 in.

36 .



Table 10 (continued) Details of Wastage Area Footprint Before Adjustment for Bounding
Calculation (Figure taken from Fig. 13 ref. [12])

Arcers of Overtlow During Pans ol Cycle
|

i .
e Revnuainiop §

T
i
ortiug bl §-Gen e “;\‘eid

tnitiol Leak Poit
vl 0 Nazzde 3

7.‘.
-

Point: - kL aX
-0.639 -1.895 24 8.000 0.334
-0.334 -2.280 25 7.500 0.483
0.000 -2.235 26 7.000 0.582
0.500 -2.492 27 6.500 0.829
1.000 -2.522 28 6.000 1.046
1.500 -2.482 29 5.500 1.303
2.000 -2.581 30 5.000 1.778
2500 -2.730 31 4,500 2.460
3.000 -2.769 32 4.000 3.023
3.500 -2.75%9 33 3.500 3.300
4.000 -2.789 34 3.000 3.221
4500 -2.81% 35 2.500 3.250
5.000 -2.819 36 2.000 3.300
5500 -2.759 37 1.500 3.349
6.000 -2.700 38 1.000 3.240
6.500 -2.621 39 0.500 3.122
7.000 -2.512 40 0.000 3.000
7500 -2.364 41 -0.210 2.578
8.000 -2.216 42 -0.364 2.000
8.500 -2.087 43 -0.242 1.985

ﬁ.
]

EZPoint:

24

BNRNFEIsaRanidee~oarenao

9.000 -1.712
9.136 -1.000
9.000 -0.555
8.500 0.137

Origin of local coordinate system located at centerline of Nozzle 3. (inches)
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16,835 elements
52,887 nodes

Nozzles 3, 11,
15, and 16

Base Material
with Wastage Area

ptw 8/18/2002

{0.24 in. thick)

refined cladding
model to resolve
through-thickness
strain gradients

(b)
Fig. 9. Finite-element global and submodels of the Davis-Besse head and wastage area. The
displacements at the vertical side boundaries of the submodel are driven by the global
model. Both models are exposed to the same internal pressure loading.
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Fig 9. (continued) (c) geometry of RPV head and closure flange used in global model,
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Fig 9. (continued) (d) relative location of submodel within full RPV head,
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Fig 9. (continued) (e) geometry of submodel relative to Nozzles 3, 11, 15, and 16.
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Fig. 10. Adjusted SS308 stress vs. strain curve used in the bounding-case calculations compared to
curves from a range of ASW heats. Strain hardening in the adjusted curve was reduced to
lower-bound all of the data. The ofiset yield strength and strain at ultimate strength were
retained from the unadjusted SS308 curve received from Framatome.
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as ead thickness = 0.24 in. {constant)
bounding case
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£.T. Wilams 1000002

(a)
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Fig. 12. Effective plastic-strain histories at two high-strain locations in the wastage area: (a) near
the center and (b) near Nozzle 3.
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Fig. 13. Application of the failure statistical criterion produces a cumulative probability of failure
(based on a Log-Laplace distribution) curve for the Bounding Case condition. Cumulative
probability of failure as a function of internal pressure.
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As discussed above, the “as-found” bounding calculation predicted a Py; value of 6.65 ksi which has a
cumulative probability of failure of 0.158 for the Log-Laplace model. Additional predicted burst pressure
percentiles can be calculated including from Eq. 26):

1% - BP,,, = 5.226 ksi
5% - BP,,, = 6.015 ksi
50% - BP,,, = 7.353 ksi
95% - BF,,, = 8.990 ksi
99% - BP, ,, =10.346 ksi

The Log-Laplace stochastic model also estimates 2 cumulative probability of failure of 4.14x107 at the
operating pressure of 2.165ksi and 2.15x10™ at the safety-valve set-point pressure of 2.5 ksi. See
Table 11 for additional estimates from all six models. For the six distributions in Tables 8 and 11, the
average probability of failure is 6.91x10™ at 2.165 ksi, 3.60x10™" at 2.5 ksi, and 0.2155 at 6.65 ksi.

Note in Table 11, that as the internal pressure decreases from Py; down to a nominal operating pressure,
the variability in the failure probability estimates increases significantly. The standard deviation of the six
estimates, when normalized by the sample mean, increases from 0.13 at 6.65 ksi to 2.44 at 2.165 ksi. The
average values in Table 11 are dominated (at the lower tail) by the Log-Laplace distribution. For this
reason, we recommend adopting the Log-Laplace model for future studies as the most appropriate
distribution based on the available data. Note also that the Log-Laplace model produces the highest
failure probabilities of the six candidates when extrapolating down into the lower tail of the distribution.

Table 11. Estimated Cumulative Probabﬂity of Failures for the Boundmg Calculatien

"’""?'fml obab

Log-Laplace Location Default 0 98 4 l‘E-O? Z.ISE-06 0.I582
Scale ML estimate 1.1057
Shape ML estimate 11.45441

Beta Lower endpoint  MOM estimate 0.61449 93 ] 0 02340
Upper endpoint  MOM estimate 1.78866
Shape #] MOM estimate 7.95564

Shape #2 MOM estimate 11.38552 _

Gamma Location Default 0 89 §.17E-19 1.50E-15 0.2236
Scale ML estimate 0.01444
_Shape ML estimate 76.01293

Normal Mean ML estimate 1.09747 83.33 - 8.44E-10 8.90E-09 0.2234
Standard Dev. ML estimate 0.12811

Random Walk Location Default 0 75 0 0 0.2269
Scale ML estimate 0.92335
Shape ML estimate 69.18788

Inverse Gaussian Location Default 0 n 4.01E-29 1.79E-22 0.2269
Scale ML sstimate 1.09747
Shape ML estimate 82.23451

Average=  6.91E-08 3.60E-07 0.2155
StdDev=  1.69E-07 $.77E-07 0.0283
SudDev/Average= 24 244 0.13
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5. Summary and Conclusions

Six stochastic models of the probability of failure associated with a computational prediction of the
plastic collapse of the exposed cladding in the wastage area of the Davis-Besse RPV head have been
developed from the following technical bases:

(1) experimental data obtained during disk-burst tests reported by Riccardella [2] with loadings,
geometries, and materials relevant to the Davis-Besse pressure loading, wastage-area
footprint, and cladding,

(2) nonlinear, large-deformation, elastic-plastic discrete-element analyses of the disk-burst tests
also reported in [2] (GAPL-3 discrete-element code[3]),

(3) nonlinear, finite-strain, elastic-plastic finite-element analyses performed for the current study
(ABAQUS finite-element code[4]) of the nine disk-burst test specimens reported in [2], and

(4) a theoretical criterion for plastic instability in a circular diaphragm under pressure loading,
due to Hill [5] (as cited in [7]), applied to the disk-burst tests.

Among the twenty-six continuous distributions investigated, six passed all of the heuristic and Goodness
of Fit tests applied in the analysis. The six distributions ranked in relative order are: (1) Log-Laplace,
(2) Beta, (3) Gamma, (4) Normal, (5) Random Walk, and (6) Inverse Gaussian. As an example of how the
stochastic models may be applied to the Davis-Besse wastage area problem, the top-ranked Log-Laplace

model has the scaled form of

11.45441
M__SP__ :0< SP<1.1057x P,
2| 1.1057x B,

1 SP ~11.45441
l-of ——— ; SP21.1057x P,
2| 1.1057x R,

Pr[ Poriney S SP]= Fp(SP| Pyy) = @7

Given a computationally-determined pressure at numerical instability, Py;, and service pressure, SP, the
model gives an estimate of the cumulative probability of nonexceedance of the true but unknown burst

pressure, Fppip s i-€.y Pr[Pmm, SSP].

Due to the small sample size (n = 26) used in the stochastic model development, no definitive claim can
be made that one distribution is significantly superior to the other five; however, the Log-Laplace is
shown to have the highest ranking given the available data, and it produces the highest failure
probabilities when extrapolating to service pressures well below the range of the data, e.g., to the nominal
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operating pressure or safety-valve set-point pressure. The Log-Laplace stochastic model is, therefore, the
recommended candidate for future applications to the Davis-Besse wastage-area problem.

As an example application, estimates are provided for a bounding calculation of the “as-found” Davis-
Besse wastage area. The bounding calculation predicted a Py, value of 6.65 ksi. From the Log-Laplace
stochastic model, the corresponding median failure pressure is 7.35 ksi. Taking the average of the
estimates from all six distributions produces a probability of failure of 6.91x10™® at 2.165 ksi, 3.60x10™
at 2.5 ksi, and 0.2155 at 6.65 ksi.

These results for the “as-found” Davis-Besse wastage area can be considered bounding due to the
following factors:

(a) The modeled wastage-area footprint is slightly larger than the exposed-cladding area reported
in[12).

(b) The minimum cladding thickness of 0.24 inches reported in [12] was used in this analysis.

(c) A lower-bound stress-strain curve was constructed from the available tensile data for the
cladding material.

(d) The reinforcing effect of the J-groove weld was not included in the simulation.
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