
DRAFT NOT FOR ATTRIBUTION 8/04/2002

ORNL/NRC/LTR-

Contract Program or
Project Title:

Subject of this Document:

Type of Document:

Authors:

Date of Document:

Heavy-Section Steel Technology (HSST) Program

Stochastic Failure Model for the Davis-Besse RPV Head

Letter Report

P. T. Williams
B. R. Bass

August 2002

Responsible NRC Individual
and NRC Office or Division

M. T. Kirk
Division of Engineering Technology
Office of Nuclear Regulatory Research

Prepared for the
U. S. Nuclear Regulatory Commission

Washington, D.C. 20555-0001
Under Interagency Agreement DOE I 886-N653-3Y

NRC JCN No. Y6533

OAK RIDGE NATIONAL LABORATORY
Oak Ridge, Tennessee 37831-8056

managed and operated by
UT-Battelle, LLC for the

U. S. DEPARTMENT OF ENERGY
under Contract No. DE-AC05-00OR22725

Inform;' an i Cins rScord was de!eted
;?c. ac-: ., o Freedom of Information
Act, ee.uioD.s 7
FOIA- -OO3-OOi



DRAFT NOT FOR ATTRIBUTION 0tJ04/02

ORNLINRCILTR-

Stochastic Failure Model

for the Davis-Besse RPV Head

P. T. Williams
B. R. Bass

Oak Ridge National Laboratory
Oak Ridge, Tennessee

Manuscript Completed - August 2002
Date Published-

Prepared for the
U.S. Nuclear Regulatory Commission

Office of Nuclear Regulatory Research
Under Interagency Agreement DOE 1886-N653-3Y

NRC JCN No. Y6533

OAK RIDGE NATIONAL LABORATORY
Oak Ridge, Tennessee 37831-8063

managed and operated by
UT-Battelle, LLC for the

U. S. DEPARTMENT OF ENERGY
under Contract No. DE-ACO5-00OR22725

2



DRAFT NOT FOR ATTRIBUTION 0t/04/02

CAUTION

This document has not been given final patent
clearance and Is for Internal use only. If this
document is to be given public release, It must be
cleared through the site Technical Information
Office, which will see that the proper patent and
technical information reviews are completed In
accordance with the policies of Oak Ridge
National Laboratory and UT43attelle, LLC.

This report was prepared as an account of work sponsored by an
agency of the United States government. Neither the United States
government nor any agency thereof, nor any of their employees,
makes any warranty, express or Imnpied, or assumes any legal
lability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not Infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by tade name, trademark, manufacturer, or
otherwise, does not necessarily constitute or imnply Its endorserent.
recommendation, or favoring by the United States government or
any agency thereof. The views and opinions of authors expressed
herein do not necessarily state or reflect those of the United States
government or any agency thereof.

3



DRAFT NOT FOR ATTRIBUTION 08/04/02

Stochastic Failure Model
for the Davis-Besse RPV Head

P. T. Williams and B. R. Bass
Oak Ridge National Laboratory

P. O. Box 2009
Oak Ridge, TN, 37831-8056

Abstract

The development of a stochastic model is described in this report in which the uncertainty associated with
predictions of burst pressure for circular diaphragms using computational or analytical methods is
estimated. It is postulated that the trends seen in predicting the burst pressure with nine experimental disk-
burst tests (using materials, geometries, and pressure loadings relevant to the Davis-Besse analysis) will
be representative of the computational predictions of the burst pressure in the Davis-Besse wastage area
problem. Given a computational prediction of burst pressure for a specific configuration of the wastage
area, the scaled model will provide an estimate of the cumulative probability that the true burst pressure
will be less than any given service pressure.

The stochastic model was developed from the following technical bases:

(1) experimental data obtained during disk-burst tests with loadings, geometries, and materials
relevant to the Davis-Besse pressure loading, wastage-area footprint, and cladding,

(2) nonlinear, large-deformation, elastic-plastic discrete-element analyses of the disk-burst tests,
(3) nonlinear, finite-strain, elastic-plasticflnite-element analyses performed for the current study,

and
(4) a theoretical criterion for plastic instability in a circular diaphragm under pressure loading,

applied to the disk-burst tests.

The resulting Log-Laplace model has the scaled form of

( -JAS4Pr(^f S9SP) = Fl(SP IPop = 2 1l.1057xPp, (SP115x

2(l.1057x ;(SPZ:l.I057xP,,)

Given a computationally-predicted burst pressure, P., the model gives an estimate of the cumulative
probability, FL^ that the true (but unknown) burst pressure P,,,,,,) is less than a specified service
pressure, SP.

As an example application, estimates are provided for a bounding calculation of the "as-found" Davis-
Besse wastage area. The bounding calculation predicted a burst pressure of 6.65 ksi which has a
cumulative probability of failure of (1158. The stochastic model estimates a cumulative probability of
failure of 4.14x1077 at the operating pressure of 2.165 ksi and 2.15x106 at the set-point pressure of
2.5 ksi.
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1. Introduction

1.1. Objective

This report presents a stochastic model of failure for the stainless steel cladding in the wastage area of the
Davis-Besse Nuclear Power Station reactor pressure vessel (RPV) head. For a given internal pressure, the

statistical model provides an estimate of the cumulative probability (probability of nonexceedance) that
the exposed cladding will have failed at a lower pressure. The failure mode addressed by this model is
incipient tensile plastic instability (i.e., plastic collapse) of the cladding.

1.2. Background

The following was taken from ref. [1].

On February 16, 2002, the Davis-Besse facility began a refueling outage that included
inspection of the vessel head penetration (VHP) nozzles, which focused on the inspection of
control rod drive mechanism (CRDM) nozzles, in accordance with the licensee's
commitments to NRC Bulletin 2001-01, "Circumferential Cracking of Reactor Pressure
Vessel Head Penetration Nozzles," which was issued on August 3, 2001. These inspections
identified axial indications in three CRDM nozzles, which had resulted in pressure boundary
leakage. Specifically, these indications were identified in CRDM nozzles 1, 2, and 3, which
are located near the center of the RPV head. ... Upon completing the boric acid removal on
March 7, 2002, the licensee conducted a visual examination of the area, which identified a
large cavity in the RPV head on the downhill side of CRDM nozzle 3. Followup
characterization by the ultrasonic testing indicated wastage of the low alloy steel RPV head
material adjacent to the nozzle. The wastage area was found to extend approximately 5 inches
downhill on the RPV head from the penetration for CRDM nozzle 3, with a width of
approximately 4 to 5 inches at its widest part.

See Fig. 1. for a photograph of the Davis-Besse RPV, a schematic of a typical nuclear power reactor, and
a sketch and photographs of the wastage area.

1.3. Scope

In support of the investigation by the United States Nuclear Regulatory Commission's (NRC) Office of
Nuclear Regulatory Research, the Heavy-Section Steel Technology Program at Oak Ridge National

Laboratory has developed a statistical model of a specific failure mode for the exposed stainless steel
cladding in the cavity of the Davis-Besse RPV head. Section 2 reviews the technical bases employed in
the development of the model; Section 3 presents the details of the stochastic model; Section 4
demonstrates an application of the model to the results of a bounding calculation for the "as found"
condition of the wastage area; and Section 5 provides a summary and conclusions.

S
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Davis Besse Reactor~esel Head Degradaion Head Cutaway View
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Fig. 1. (a) Davis-Besse Nuclear Power Station RPV and (b) sketch of RIPV head degradation.
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Typical Pressurized Water Reactor

Corol Rod
Drive Mchanbs

Rea"o %Vnet Head
A" dota&U Imap)

FILg. 1 (continued) (c) schematic of a typical nuclear power reactor showing the relationship of the
CRDM nozzles to the RPV head.
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Fig. 1. (continued) (d) photographs of the wastage area with Nozzle 3 removed.
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2. Technical Bases

The technical bases employed in the construction of the stochastic model are:

(1) experimental data obtained during disk-burst tests reported by Riccardella [2] with loadings,

geometries, and materials relevant to the Davis-Besse pressure loading, wastage-area footprint, and

cladding,

(2) nonlinear, large-deformation, elastic-plastic discrete-element analyses of the disk-burst tests also

reported in [2J (GAPL-3 discrete-element code[3]),

(3) nonlinear, finite-strain, elastic-plastic finite-element analyses performed for the current study

(ABAQUS finite-element code[4]) of the nine disk-burst test specimens reported in [2], and

(4) a theoretical criterion for plastic instability in a circular diaphragm under pressure loading, due to

Hill [5] (as cited in [6]), applied to the disk-burst tests.

2.1. Experimental - Disk-Burst Tests

In the early 1970s, constrained disk-burst tests were carried out under the sponsorship of the PVRC

Subcommittee on Effective Utilization of Yield Strength [7]. This test program employed a range of

materials and specimen geometries that were relevant to components in a nuclear power plant steam

supply system'. The geometries of the three test specimens analyzed in [2] are shown in Fig. 2, the test

matrix is shown in Table 1, and the properties of the three materials are presented in Table 2. The nine

disk-burst tests produced three center failures and six edge failures over a range of burst pressures from

3.75 to 15 ksi as shown in Table 1.

Table 1. Test Matrix for Disk-burst Tests 121

I SS 304 A 0.375 0.250 2.625 15 Edge
2 B 0.125 0.125 2.375 6.3 Center
3 C 0.375 0.125 2.625 7.7 Center
4 A533B A 0.375 0.250 2.625 11 Edge
S B 0.125 0.125 2.375 5.3 Edge
6 C 0.375 0.125 2.625 6.7 Center
7 ABS-C A 0.375 0.250 2.625 9.3 Edge
s B 0.125 0.125 2.875 3.75 Edge

9 C 0.375 0.125 2.625 4.94 Edge

t The three materials are representative of reactor core support structures and piping, the reactor pressure vessel, and
plant component support structures [2].

9
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Table 2. Property Data for Materials in Disk-burst Tests 121

SS304 34 84 054 34.07 129.36 0432 162.41 0.27
A-533B 74 96 0.17 74.15 112.32 0.157 139.41 0.12
ABS-C 39 64 0.31 39.08 83.84 0.270 105.20 0.17

The power-law parameters in Table 2 were fitted for the current study where a = KE and a, E are the
effective true stress and effective total true strain, respectively.

Geometry A

Geometry B
,U r .125R

Fig. 2. Geometric descriptions of the three disk-burst specimens used In Ill (all dimensions are
Inches). Images on the right are Photoworks®-rendered views of VS-symmetry solid models
of the three specimens.
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2.2. Computational - Axisymmetric Discrete-Element and Finite-Element Models

The results of a computational study were presented in [2] in which the nine tests were simulated using

the GAPL-3 computer code [3]. GAPL-3 applied the discrete-element method using a two-layered system

of elements: one layer for the strain-displacement field and a second layer for the stress field to perform

an elasto-plastic large-deformation analysis of stresses, strains, loads, and displacements of thin plates or

axisymmetric shells with pressure loading. At each incremental load step, the code iterated to resolve both

geometric and material nonlinearities, thus establishing a condition of static equilibrium. The GAPL-3

code did not account for the reduction in thickness of the diaphragm with increasing load, and, therefore,

was unable to demonstrate the "tailing up" of the experimental center-deflection histories. As discussed in

[2], the thin-shell approximation of the GAPL-3 code is not strictly valid in the fillet region. The GAPL-3

model did include a plastic-hinge type of strain redistribution, but the strain concentration effect due to

the fillet radius was not accounted for, since the predicted strain distribution in the cross-section of the

fillet was linear by assumption. These approximations in the analysis were driven by the limitations of the

computer resources available at the time of the study in 1972.

The current study reanalyzed all nine disk-burst tests using the ABAQUS [4] finite-element code. With

current computing power, many of the simplifying assumptions required in 1972 could be removed to

provide a more detailed analysis. The fundamental assumptions made in the current study are:

(1) the material is assumed to be homogenous and isotropic before and throughout plastic defor-
mation;

(2) the material is assumed to be free of pre-existing defects;

(3) the volume of the material undergoing plastic deformation is assumed to be constant (i.e., incorn-
pressible with a Poisson's ratio of 0.5);

(4) the hydrostatic component of the stress tensor has no effect on yielding; and

(5) the plastic deformation follows incremental .2 flow theory (Mises yield criterion) with its
associated flow rule (Levy-Mises) and isotropic strain hardening.

The finite-element meshes shown in Fig. 3 were developed using 8-node quadratic, axisymmetric, solid

elements with reduced integration (ABAQUS element type CAX8M). The material property data given in

Table 2 were used to fit power-law constitutive models for the plastic region of the three materials (see

Fig. 4). The analyses applied a nonlinear finite-strain procedure with an incrementally increasing pressure

load applied from zero up to the load at which numerical instabilities caused ABAQUS to abort the

execution.

11



DRAFT NOT FOR ATTRIBUTION 08/04/02

I

I
I

I

J Gcoinctry A

0.25 in. r= 0.375 in.

I Gcometry B,!n . r. - . .0 ....

II-0. 125 in. r =0. 125 in.'

/ 1.0 in.

1.0 in... I
/

I
1 1 Geometry C

I 1=0.125 in. /
r 0.375 in.

1 ~ ~~~~ 3in. j^~-~~~

T
1.0 in.

I
5 in. I

I I

Fig. 3. Asisymmetric finite-element meshes used in the analyses of disk-burst tests reported in 12].
Quadratic 8-node axisymmetric (CAX8R) elements with reduced integration were used In a
nonlinear finite-strain elastic-plastic analysis of the three disk-burst geometries with three
materials.
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Fig. 4. True stress vs true strain curves of the three materials used in the disk-burst tests compared
to SS308 at 600 "F. These three test material curves were developed using a power-law
strain-hardening model fitted to yield and ultimate strength/strain data for each material
given In 121. (See Table 2).
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2.3. Theory - Hill's Plastic Instability Theory

A plastic instability theory due to Hill [5] for a pressurized circular diaphragm constrained at the edges is

presented in [6]. Figure 5 shows the geometry of the diaphragm, both undeformed and deformed, along
with the nomenclature used in the development of the theory.

The geometry of deformation is assumed to be a spherical dome or bulge of radius, R. The undeformed

ring element defined by its position, width, and thickness, (ro,Or,,h), respectively, is assumed to deform

to an axisymmetric shell element with surface length, 8L, deformed thickness, h, radial position, r, and

angle . The nonuniform thickness of the dome reaches its minimum at the pole with polar height H. For
a spherical coordinate system with its origin at the center of the dome, the principal strains for the thin-

shell (i.e., the strains are assumed constant through the thickness) clement are

o =In -) e =In = (i;6 EA =In ((1)

A geometric relationship exists between the radius and chord of a circle such that

RH +a 2 (2
2H a)

where a is the effective radius of the undeformed diaphragm. Using Eqs. (1) - (2) and the geometry shown

in Fig. 5, ref [6] derives the following relations for the meridional, E., and hoop, E,, strains at any point
on the spherical bulge

e,(zjH,a)=e,(zjH,a)= In1+ (z H )])

where he geometric parameter z is shown in Fig. 5. Applying the constant volume assumption, ie.,
CO + e, + EA = 0, produces the following equation for the radial ("thickness") strain

Eh(z IH,a) = -2e,(z IHa) = In [ ( 2 (4)
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FIg. 5. Spherical geometry of deformation assumed In mill's 151 plastic Instability theory.
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The effective strain then becomes

E.e -E. Y^=gE-e + (E,_E,)I +(E, _E,)2 =-E,,(zjH,a)=2ln 1+( 2 )] (5)

The maximum radial strain, therefore, occurs at the pole of the spherical bulge. Applying the thin-walled

assumption (which is not made in the computational finite-element model) for an axisymmetric shell

element, the equilibrium relation between the meridional, at,. and hoop, a,, membrane stresses and the

internal pressure, pi, loading is

Pi +(6)

For a spherical dome, R = = R, and a state of equibiaxial stress is assumed to prevail near the pole of

the dome with the principal stresses being

or, = ,C = R; a =° (7)
2h'

and the effective stress , =4(-as) +(C.- ,)' + (a-a, is

a=a, =,, = p0 (8)

To establish an instability criterion, a surface can be constructed in pressure, effective stress, and

deformation/strain space by expressing Eq. (8) as a total differential of the form

Bpi =2ha'
Rdp,+ pdR =2hda+26dh (9)

dpf d=d dh dR
pi 67 hR

An unstable condition exists at a point of maximum pressure on the surface where dp = 0. The condition

is unstable because any perturbation from this position always involves a reduction in load (pressure),

even in a rising stress field. The instability criterion for a deformed bulge of radius R is, therefore,

established by the following relation between stress and the deformed geometry for any point on the dome

15
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d6' dR dh
= _ _

a~ R h

or in terms of effective strain

(10)

(11)
I da lI dR
F-F=1+ RdE

If the instability condition is attained, it will first occur at the point of maximum effective strain at the top
of the dome (at z = H) such that Eq. (11) can be stated as

I dU 3 1( 2 E)

0 di' 2 4 E t 2 (12)

Applying a power-law constitutive form to relate effective stress to effective strain in the plastic region,

?F=Ki, 9(13)

the effective strain at instability is, after a great deal of algebraic manipulation,

!,,, = 4 (2n +1)
11

(14)

where n is the power-law exponent in the constitutive equation, Eq. (13).

16
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For a given material and diaphragm geometry (n, a, ho), the pressure at the instability condition (i.e., the

burst pressure) can be determined by the following procedure:

* Calculate the effective critical strain.

* Calculate the corresponding effective critical stress.

* Calculate the critical thickness.

eF,, = 4l (2n+l)
11

C,,,, = K E

h.e, = So exp(-E.,,,,)

* Calculate the polar height at the critical condition.

* Calculate the corresponding bulge curvature radius.

* Finally, calculate the predicted burst pressure.

H.*=a E.I
HS = exp( 2)-l

=H2 + a2

2H.,

R,2h
PR.,

An alternative instability criterion was developed by Chakrabarty[8] which was based on a Tresca yield

surface. The critical effective strain was found to be

'2(2 - nX + 2n)
11-4n (15)

17
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3. Stochastic Model Development

3.1. Computational and Theoretical Model Results

Computational results using the GAPL-3 code were presented in (2]. Converged solutions were obtained

for eight of the nine tests. Comparison of experimental and computational centerline deflections showed

good agreement for the eight converged cases. In the nonconverged case (ABS-C, geometry C), some

difficulty was reported in getting convergence at high pressures. In all cases the experimental data showed

a "tailing up" as the pressure approached burst pressure, which the computational model was unable to

capture. In general, the prediction of the burst pressure for the eight converged cases showed good

agreement with the experimentally-determined burst pressures. Defining a as the ratio of the

experimental burst pressure to the computationally-predicted burst pressure, the mean for a was 1.19

with a standard error for the mean of ±0.0484 and a standard deviation for the sample of 0.137.

The finite-element models using ABAQUS were able to obtain burst pressures for all nine tests, where the

predicted burst pressure is defined as the pressure at which a breakdown occurs in the numerical

procedure, causing the run to abort. For a nonlinear, finite-strain, static load step, ABAQUS uses

automatic sizing of the load increment to maintain numerical stability. The number of iterations needed to

find a converged solution for a load increment varies depending on the degree of nonlinearity in the

system. If the solution has not converged within 16 iterations or if the solution appears to diverge,

ABAQUS abandons the increment and starts again with the increment size set to 25% of its previous

value. An attempt is then made at finding a converged solution with this smaller load increment. If the

increment still fails to converge, ABAQUS reduces the increment size again. ABAQUS allows a

maximum of five cutbacks in an increment before aborting the analysis. Therefore, ABAQUS will

attempt a total of 96 iterations with six increments sizes before abandoning the solution. The initial load

size for the failing increment was typically already very small due to difficulties in convergence with the

previous and final successfully-converged load increment.

Equivalent plastic strain contours are shown in Fig. 4 for the geometry A (ABS-Ccarbon steel) specimen

(Test No. 7) at the point of numerical instability. The experimental burst pressure for this specimen was

9.8 ksi and numerical instability of the solution occurred at approximately 9.05 ksi, for an a= 1.083.

Highly localized plastic staining can be observed near the fillet, thus predicting an edge failure for this

specimen which did in fact fail at its edge.
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Ref. P. C. Riccardella, Elasto-Plastic Analysis of Constrained Disk Burst Tests.'
ASME Paper No. 72-PVP-I2, ASME Pressure Vessels end Piping Conference, NewOrleans, LA, September 17-21, 1972.(a)

GeometryA
ABSC

Predicted BP = 9.05 ksi
Experimental BP = 9.8 ksi
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Fig. 4. Equivalent plastic strain contours for the Geometry A (ABS-C carbon steel) specimen at the
point of numerical instability. Highly localized plastic straining provides a precondition for
plastic collapse at the edge of the specimen. (ABAQUS analysis results)
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Figure 5 compares the predicted centerline deflection load histories with the experimentally-observed

deflections at failure (estimated from Figs. 3 and 4 in [2]). The "tailing up" of the experimental deflection
curves near the point of failure is predicted by the model, indicating that the computational simulations
are capturing the final localized "necking" of the diaphragm. For the nine ABAQUS predictions, the
mean for a was 1.055 with a standard error for the mean of ±0.0331 and a standard deviation for the
sample of 0.0993.

The results of applying Hill's failure criterion are presented in Table 3. The mean for a was 1.058 with a
standard error for the mean of ±0.0374 and a standard deviation for the sample of 0.1123. The
calculations were repeated using the theoretical critical strain of Chakrabarty and Alexander (8], Eq. (15),
with the resulting burst pressures being essentially identical to those given in Table 3.

Table 3. Application of Hill's Instability Theory to Nine Disk-burst Tests

_ Ea, H,* R.* CF.* he P,, PI,,W) a
Cm.) (n.) Orsi) (in.) (ksi) (ksi)

1 162.41 0.27 2.625 0.250 0.561 1.493 3.054 138.84 0.1427 12.98 15 1.156
2 162.41 0.27 2.875 0.125 0.561 1.635 3345 138.84 0.0714 5.92 6.8 1.148
3 162.41 0.27 2.625 0.125 0.561 1.493 3.054 138.84 0.0714 6.49 7.7 1.187
4 139.41 0.12 2.625 0.250 0.449 1.316 3.276 126.96 0.1596 12.37 11 0.889
5 139.41 0.12 2.875 0.125 0.449 1.441 3.588 126.96 0.0798 5.65 5.3 0.938
6 139.41 0.12 2.625 0.125 0.449 1.316 3.276 126.96 0.0798 6.19 6.7 1.083
7 105.20 0.17 2.625 0.250 0.490 1.383 3.183 92.95 0.1532 8.95 9.8 1.095
8 105.20 0.17 2.875 0.125 0.490 1.514 3.486 92.95 0.0766 4.08 3.75 0.918
9 105.20 0.17 2.625 0.125 0.490 1.383 3.183 92.95 0.0766 4.47 4.94 1.104

A summary of all 26 burst pressure predictions is given in Table 4. Combining the 26 cases into a single
sample gives a mean for a of 1.098 with a standard error for the mean of i0.0251 and a standard
deviation for the sample of 0.1281. Even though Hill's theory is applicable only for center failures, the
good agreement between the experiments (including those that failed at the edges) suggests that, for the
edge-failure cases, the specimens were also close to a condition of plastic collapse at the center when they
failed first at the edge.
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Fig. 5. (continued) (d) ABAQUS FEM vertical deflection histories at the center of Geometry C, all

three materials compared to specimen failure.
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Table 4. Comparison of Experimental Burst Pressures to Three Predictions

I SS 304 A is MEe 12.3 Edge 12 12.98 Center 1.16 13.29 Edge 1.132 B 6.8 Cee 4.3 Edg 1.42 5.92 Center 1.15 6.22 Edge 1.093 C 7.7 Center 7.4 Center 1.04 6.49 C 1.19 6.59 Center 1.174 A5333 A it Edge 9.1 Edge 1.12 12.37 Center 0.89 12.26 Edge 0.905 B 5.3 Edg 4.2 Edge 1.26 5.65 Center 0.94 5.24 Edge 1.016 C 6.7 Cene 6. Center 0.99 6.19 Center 1.08 6.03 Ed 1.117 ABS-C A 9.8 Edge 8 Edge 1.23 8.95 Center 1.10 9.05 Edge 1.08I B 3.75 Edge 3 Edge 1.25 4.03 Center 0.92 4.19 Edge 0.S99 C 4.94 Edp I 4.47 Center 1.10 4.46 Edge/Center 1.11
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3.2. Development of Stochastic Model of Failure

The development of a stochastic model is described in this section in which the uncertainty associated

with predictions of burst pressure for circular diaphragms using computational or analytical methods is

estimated. It is postulated that the trends observed in estimating the burst pressure with the nine disk-burst

tests in [2] will be representative of the predictive accuracy of computational estimates of the burst

pressure in the Davis-Besse wastage-area problem. Given a prediction of burst pressure for a specific

configuration of the wastage area, the scaled stochastic model will provide an estimate of the cumulative

probability that the true burst pressure will be less than a given service pressure. This postulated linkage

of the test specimens to the Davis-Besse problem is obviously an approximation, since the wastage area

footprints are not identical to the circular diaphragms used in the tests. The appropriateness of this linkage

is in part, therefore, dependent on the ability of the finite-element models to capture, as accurately as is

feasible and based on the best current knowledge, the actual geometry of the wastage area footprint.

Table 5 summarizes some descriptive statisticsifor the ratio of experimental burst pressure to predicted

burst pressure, a, for the three predictive methods discussed in the previous section. Also shown in the

table are the results of combining the three samples into one larger sample of 26 data points. This

combined sample was used to develop a stochastic model with at treated as a random variate. Combining

the three sets into a single sample produced a sample size large enough for the application of the

computer program Expert File [9]. Also given in Table 6 is a ranking of the 26 data points where the

median rank order statistic is

i-0.3
p-- ) II * (16)

The Expert Fite [9] computer program was used to develop a stochastic model of the sample data

presented in Table 6. Using a combination of heuristic criteria and Goodness of Fit statistics, twenty six

nonnegative continuous distributions were tested with the results shown in ranked order in Table 7. The

point-estimation procedures noted in Table 7 include Maximum Likelihood (ML), Method of Moments

(MM), and Quantile Estimates. Table 8 compares three Goodness of Fit statistics (Anderson-Darling, X,

and Kolmogorov-Smirnoff (K-S)) for the top five distributions. None of these distributions were rejected

by the tests. Figure 6 shows a density/histogram overplot of the top three distributions.
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Table 5. Descriptive Statistics for the Ratio of Experimental Burst Pressure
to Predicted Burst Pressures

.......zr.. a k'1¶ .- a,,-..f n- -, ~ lf*nns-f,,na.n~rtr...et~.t2.f

.wuA.Aam;.' c ; AA

Sample Size
Mean
Standard Error
Median
Standard Deviation
Sample Variance
Kurtosis
Skewness
Range
Minimum
Maximum
Confidence Level(95.0O%)

8
1.1902
0.0484
1.2223
0.1368
0.0187
-0.0506
0.0007
0.4314
0.9853
1A167
0.1144

9
1.0576
0.0374
1.0953
0.1123
0.0126
-1.4799
-0.5892
0.2979
0.8889
1.1868
0.0863

9
1.0549
0.0331
1.0939
0.0993
0.0099
-0.4349
-0.9683
0.2739
0.8943
1.1682
0.0764

26
1.0975
0.0251
1.1057
0.1281
0.0164
0.2593
0.1714
0.5277
0.8889
1.4167
0.0517

Table 6. Combined Sample Used in Development of Stochastic Model

00 31
I Hills hy A533B
2 ABAQUS Soln. ABS-C
3 ABAQUIS Soln. A533B
4 Hil's Theoy ABS-C
5 Iiilrs They A533B
6 Riaurrdella (1972) A533B
7 ABAQIS Sdn. A533B
8 Ricala (1972) SS 304
9 ABAQI.E San. ABS-C
10 Hill's Thbay A533B
11 ABAQLS Soln. SS 304
12 Hill's Theary ABS-C
13 HilrsThey ABS-C
14 ABAQT.S Sdn. ABS-C
15 ABAQUS Soiln. A533B
16 Ricardella (1972) A533B
17 ABAQLlS Socn. SS 304
18 Hif's hory SS 304
19 HllrsTheory SS304
20 ABAJQUS Soln. SS 304
21 iil'sfheory SS304
22 Riarrdeda (1972) SS 304
23 Riorrdella (1972) ABS-C
24 Rikandela (1972) ABS-C
25 Ricardella (1972) A533B
26 Ricammrdla (1972) SS 304

A 0.8889
B 0.8943
A 0.8972
B 0.9180
B 0.9382
C 0.9853
B 1.0119
C 1.0405
A 1.0827
C 1.0829
B 1.0939
A 1.0953
C 1.1042
C 1.1072
C 1.1104
A 1.1224
A 1.1288
B 1.1479
A 1.1560
C 1.1682
C 1.1868
A 1.2195
A 1.220
B 1.2500
B 1.2619
B 1A167

0.0265
0.0644
0.1023
0.1402
0.1780
0.2159
0.2538
0.2917
0.3295
0.3674
0.4053
0.4432
0.4811
0.5189
0.5568
0.5947
0.6326
0.6705
0.7083
0.7462
0.7841
0.8220
0.8598
0.8977
0.9356
0.9735

ca = ExperixmM Burst Pressurd~redicted Bus Pressure
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Table 7. Non-negative Bounded Continuous Distributions Investigated -
Ranke odness of Fit

I -Lag-Laplace Locatian Deiault 0
Scale ML estimate 1.1057
Shape MLestimate 11.45441

2-Beua Lower endpoint MOM estimntae 0.61449
Upper endpoint MOM estimate 1.73866
Shape oI MOM estimate 7.95564
Shape #2 MOM estimate 11.33552

3-Gamma Locatien Defult 0
Scale ML esimate 0.01444
Shape ML estimate 76.01293

4. Eflang Location Defiult 0
Scale ML estimate 0.01444
Shape ML estimate 76

5. Log-Loistic Location Deliaut 0
Scale MLestimate 1.095S6
Shtape ML estimate 15.21867

6 -Wetbull Locatien Delmult 0
Scale MLestimate 1.15333
Shape ML estimate 9.03948

7.-Lognormal Location Default 0
Scale MLestimate 0.08641
Shape ML wtimate 0.11516

* RaIndom Walk Location Default 0
Scale ML estiae 0.92335
Shape MLestitate 69.1St

9.11sent Gausn Location DeAu 0
Scale ML estimate 1.09747
Shape MLestimate 3-23451

10. n Pason Tpe V Lacation Default 0
Scale ML estimate SIA2582
Shape MLudimate 75.1346

II. I-swrted Weibull Loatoln Default 0
Scale ML estmate l.02327
Shape MLortimatc S38335

12- Weibul(E) Location Quandle estimate 0.33S4
Scale MLestimate 0.21562
Shape MLe te 1.15S68

13 -ayeiggh(E) Location Quantleestimate 0.33w
Scale ML estimate 0.24352

14- Ekng(E) Location Qun1ti etimate 0.3tU
Scale MLutiemte 0.2062
Shape NL tlmate I

15-G3amaE Location uantileestinate .38334
Scale ULimate 0.21819
Shape MLW&mte 095616

16 -. aponncial(E) Location ML eim-e 0.8Q39
Scale ML imate 0Q2057

17 -rearacn Type V(E) Location Qtlemtinate 0.33834
Scale Dsth I
Shape4l MLstimate 1.00117
Shpe #2 MLestimate 5.43892

isL-ogneM=aE) Location Quantle etimate 0.38834
Scale MLtimat 4.17414
Shape ML estimate 1.6365

19 -Rando WdkE) Location Quanic estimate 0.33334
Scale ML temate 699.32509
Shape MLetmate 4.32644

2 --Pardo(E) Location MLestimate UQS9
Shape ML etimate 4.976

21 .atSquam Location Qissa estimate 0.Q3S4
4C l. tate 0.72313

22 -Wald Location Deftult a
Shape ML Climate 48.03951

23-Raleigh Location DW t 0
Scale MLostimate 1.10463

24- Exponential Location Ddauh 0
Scale ML stimate 1.09747

25-WWdd Lcation Quntile estimate QSSSU
Shape ML simte 1.43E-03

26. lInerse GaussianE) Location Qatie timate 0.89E.04
Scale MLestimate 0e20E
Shape ML estimate 1.44E-03
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Table 8. Goodness of Fit Statistics for Top Five Stochastic Models

1 Log-Laplace 0.44952 2.15385 0.59218
2 Beta 0.44697 4.92308 0.81037
3 Gamma 0.46050 3.53846 0.81894
4 Erlang 0.46050 3.53846 0.81897
5 Log-Logistic 0.46271 2.15385 0.74682

Density/Histogram Overplot

0.3C

C em
e:

o 0.2

2 @
% 0.11

C
o 0.10 I

6.05

1.31

Interval Midpoint for a
Fig. 6. Overplot of probability densities with histogram for top three fitted stochastic models.
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The general three-parameter Log-Laplace continuous distribution has the following probability density

function,fi,, and cumulative distribution function, Fu,

I r (Y-oA
-- ;a<x<b

fxp(xlasb~c)= 2b( b fora) ;ax

c x-a) ;x2tb

Pr(X < x) = FP (x I a,b,c)=j for a

and the percentile function (inverse cumulative distribution function) is

a+bexp {In(2P) ;P O.5

QJp(P lab,c) =x= x-(n[2(1-P)]1
a+bexp | ;P>0.5

b,c) > O

(17)

20, (b,c)>0

for (O<P<I) (18)

where a is the location parameter, b is the scale parameter, and c is the shape parameter.

Figures 7 and 8 compare the probabilities and the cumulative distribution fiunctions, respectively, of the
top-three ranked models.
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Probability-Probability Plot

1.01 1 - . .____ 1ii*

0.7

0.21 [ , / ______.,

Samiple Who

PA0 Ofg .tmyI. El.L~q.La~g&-aw" d-wspc".uu al-w1 denp.q.-aS1Ol O3S- ts~w~psa4AflTW

Fig. 7. Probability-probability plot comparing top three fitted distributions.
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Fig. 8. Log-Laplace statistical failure model (n - 26) compared to a beta and gamma cumulative

distribution functions.
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From the Expert Fito [9] analysis, the optimal (Log-Laplace) stochastic model of failure has the following
form

10 .4544 1

5.17971 a
fLp(a 10,1.1057,11A5441)= 5 (1.710-) 7

9710 -1.1057)

; 0<a<1.1057

; a21.1057

(19)
1 a 4

2 1.1057)

,-I a -1'45
2 1.1057)

; 0<a<1.1057

441
; a21.1057

where a is the ratio of the true (but unknown) burst pressure to the calculated burst pressure. The
percentile function is given by

QL,(P10,1.1057,11.A5441)=a= I
e05 In(2p) ;1P0.5

1. 1057exp {l[2( -P)]. ;P>0.5
for (O<P<1) (20)

This stochastic model will be used to provide statistical estimates of the expected predictive accuracy of
computational methods applied to burst pressure calculations for constrained diaphragms.
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4. Application of Stochastic Model to Bounding Calculation

A bounding calculation was carried out for the "as-found" condition of the wastage area in the
Davis-Besse head. The finite-element model used in the analysis is shown in Fig. 9. An adjusted stress-
strain curve (see Fig. 10) was constructed to lower-bound the available data for the cladding material. The
geometry of the wastage area footprint was taken from Fig. 13 in the Root Cause Analysis Report [10]. As

an estimate of the uncertainty in the current wastage area measurements, the footprint was extended by
approximately 0.25 inches (see Table 9 and Fig. 11 for a geometric description of the adjusted footprint).
A uniform cladding thickness of 0.24 inches (the minimum cladding thickness value shown in Fig. 14 of
ref. [10]) was assumed in the model. The finite-element model was then loaded with increasing pressure
until the point of numerical instability at an internal pressure of 6.65 ksi (see Fig. 12).

For the predicted burst pressure of 6.65 ksi, the Log-Laplace statistical failure model can be scaled to
provided estimates of cumulative probability of failure (or probability of nonexceedance) as a function of
internal service pressure for the specific condition of the wastage area simulated by the finite-element
analysis. An example of the scaled Log-Laplace model is shown in Fig. 13. The scaled Log-Laplace
model has the following form

5 .17971( Sp 10.45441

S.791057 P r.24S

5.1797.1057xPI_ _

; O<SP<1.1057xP,.

; SP21.1057xP,,

(21)

i(1.057xPJ,) ; 0<SP<1.1057xPp
PrP,()gSP) =FL.p(SP I PP) =I SP IllAM41

where, SP, is the service pressure under consideration, Psp is the predicted burst, and Ppf(Q,.,) is the
unknown true burst pressure. The scaled percentile function is

Qp(PI0Jl.I057xpb, 11.45441) =SP= I
°.057xPpexp {f ln(2P)1} ; P < 0.5

P-ln[2(1-P)] for (O|P<1)(22)
1.1057xP,,exp 11.45441 ;P>O35
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Table 9. Wastage-Area-Footprint Geometry Data

~~~Jm MUNI- r > 1

As-Found Footpqnt I 3536 3036 16A122 4.1194 98J9 969933 -117.16 75.26 197.41 cO.904.O,43S> cO.4351.0.9004>

AdjustedFootprint 0.25i. 40.06 31.78 16.4301 4.1255 129.02 11031J1 -14135 99.O0 245.71 <0.943.4.4476> <0.4476.0.94P3
f1r Bounding Calculation

Fooqprint enraid is in global eordinates.
Global coordinat aysteq his its zas aligned with die vetical centerline ofahe vessel.
The x-y plane ofthe global coordinate systeau is a boz aal phsoe
widt hie x-s dalong tbelebtween die enerlines oNozzsle 3 nd I.

,'Adjusted" Footprint
a - 25 In.

Area - 40.06 In'
Perimeter- 31.78 In.

Centroid of
I /Footprint EM

E~,

"As Found" Footprint /
Area - 35.36 In'

Perimeter - 3036 in.

r,=ra + a
x;= -r, cos(4,)

Y, = r, sin(C,)

32



D5 A,1r DNOT FOR ATTRIBUTION 08/04/02

Table 9 (continued) Details of Wastage Area Footprint Before Adjustment for Bounding
Calculation (Figure taken from Fig. 13 ref. 1101)

Amn ofA1 to critm 1hg,Vi Pans -1 lCycle

t'' 2 fIPOAM D ' , ns

i.,Ii . I

0 -0.639 -1.895
1 -0.334 -2.280
2 0.000 -2.235
3 0.500 -2A92
4 1.000 -2.522
5 1.500 -2.482
6 2.000 -2.581
7 2.500 -2.730
8 3.000 -2.769
9 3.500 -2.759
10 4.000 -2.789
11 4.500 -2.819
12 5.000 -2.819
13 5.500 -2.759
14 6.000 -2.700
15 6.500 -2.621
16 7.000 -2.512
17 7.500 -2.364
18 8.000 -2.216
19 8.500 -2.087
20 9.000 -1.712
21 9.135 -1.000
22 9.000 -0.555
23 8.500 0.137

24
25

*26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

8.000 0.334
7.500 0.483
7.000 0.582
6.500 0.829
6.000 1.046
5.500 1.303
5.000 1.778
4.500 2.460
4.000 3.023
3.500 3.300
3.000 3.221
2.500 3.250
2.000 3.300
1.500 3.349
1.000 3.240
0.500 3.122
0.000 3.000
-0.210 2.578
-0.364 2.000
-0.242 1.985

Origin of local coordinate system located at centerline of Nozzle 3. (inches)
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(a)

Submodel of Wastage Area

16,935 elements
52,887 nodes

Nozzles 3, 11,
15, and 16

Base Material
with Wastage Area

pWw W4WZ2

(b) V
Fig. 9. Finite-element global and submodels of the Davis-Besse head and wastage area. The

displacements at the vertical side boundaries of the submodel are driven by the global
model. Both models are exposed to the same Internal pressure loading.
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. I_. _-.; . ;;.
. -_ . . .. . I- ...-... . ... ___.,

_L ,

Global Model of Davis-Besse
RPV Head and Closure Flange

L4
SECTMoNA

(c) l . . .

Oak Endge Hatonal Laboaty

___~~ S_ B

. O __ __

G us|_ % r _ __ ._ _ OM __ S -

Davis-Besse RPV Head
and Cosmre Flange

in_ --- - 1_-- -- i

Fig 9. (continued) (c) geometry of RPV head and closure flange used In global model,
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Fig 9. (continued) (d) relative location of submodel within full RPV head,
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Fig 9. (continued) (e) geometry of submodel relative to Nozzles 3, 11, 15, and 16.
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- T' -' '' ''j ..-.. t - -''' ' ' ' '' 't' ' - ' 1 ' ' -J.- -- I - - ! - *! -- ! --

D8/04/02

80 V Framatome a = 114.992 C0-21
sce'nR gsV true 61z"

600 OF

7

X

a,
()

2

601--

2,, = 69.65 ksi

- ~c- ,, 61.64 ksi

Adjusted SS308 Curve
for Bounding Calculation

DScurves q,, = 94.359 ELX940 For both SS3(

uniformelongat 3(
uniform elongati

).96 ksi
on= 1.15% - SS 308

a ~ q AnlR itj i

20

0j
0

-At 600 OF
E - 25,571 ksl
v- 0.295

*-. - A8W-101
-- , - A8W-102

* -- - A8W-103
-0 - A8W-104

.-- *- A8W-105
- -- - ABW-106

ASW data at 550 IF

LA

- - - I II . . I I - . I I I. . .

0.05 0.1

True Strain (-)
0.15 0.2

06/10/2002.K1 ptw

Flg. 10. Adjusted SS308 stress vs. strain curve used In the bounding-case calculations compared to
curves from a range of ASW heats. Strain hardening In the adjusted curve was reduced to
lower-bound all of the data. The offset yield strength and strain at ultimate strength were
retained from the unadjusted SS308 curve received from Framatome.
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Fig. 11. Geometry of adjusted wastage area footprint. Lower figure Is a Photoworks®-renderedImage of the submodel with the adjusted "as-found' footprint.
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12.

I
Io

(a)

*AO add- A

'm

120

l 1

b) fs e

Fig. 12. Effective plastic-strain histories at two high-strain locations In the wastage area: (a) near
the center and (b) near Nozzle 3.
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Internal Pressure (ksi)
5 6 7 8 9 10 11

, .:, , , , ... ... .... ...... .. . . ... .. ..... ;-- r -,:-:-... .. -

0.9 _ Predicted
Burst ..i--.f........... .

a 0.8 Pressure= . :.
' . 6.65 ksi
LL0.7 . .7 . . . ..... . .. .. . .... . . . . . . . . . . ... ..

L0.6 . . . .3 ..

. . . . . . . . . Log-Laplace.0 0.6 5 .. .
2 . ......................... ..... .. Median = 1.1057

Mean = 1.1142
Variance = 0.01959

0.3 . . j. . St0.13998-

0.2

0.1. . .. .... ... .1

0 . . .

0.8 1 1.2 1.4 1.6
Experimental BP/Predicted BR, a0O8/04/2002.K3 Ptw

Fig. 13. Application of the failure statistical criterion produces a cumulative probability of failure
(based on a Log-Laplace distribution) curve for the Bounding Case condition. Cumulative
probability of failure as a function of Internal pressure.
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As discussed above, the bounding calculation predicted a burst pressure of 6.65 ksi which has a
cumulative probability of failure of 0.158. The stochastic model estimates a cumulative probability of
failure of 4.14x10-7 at the operating pressure of 2.165 ksi and 2.15x10 4 at the set-point pressure of
2.5 ksi. See Table 10 for additional estimates.

Table 10. Estimated Cumulative Probability of Failures for the Bounding Calculation

2.155 3.92E-07
2.165 4.14E-07
2.175 4.36E-07
2.185 4.60E-07
2.195 4.84E-07
2.205 5.10E-07
2.215 5.37E-07
2.225 5.66E-07
2.235 5.96E-07
2.245 6.27E-07
2.255 6.60E-07
2.265 6.94E-07
2.275 7.30E-07
2.285 7.67E-07
2.295 8.07E-07
2.305 8.48E-07
2.315 8.91E-07
2.325 9.36E-07
2.335 9.83E-07
2.345 1.031E-06
2.355 L.08E-06
2.365 1.14E-06
2375 1.19E406
2.385 1.25E-06
2.395 1.31E-06
2.405 1.38E-06
2.415 1.45E-06
2.425 1.52E-06
2.435 1.59E-06
2.445 1.67E-06
2.455 1.75E-06
2.465 1.83E-06
2.475 1.92E-06
2.485 2.01E-06
2.495 2.10E-06
2.500 2.15E-06
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5. Summary and Conclusions

A stochastic model of the probability of failure associated with a computational prediction of the plastic
collapse of the exposed cladding in the wastage area of the Davis-Besse RPV head has been developed
from the following technical bases:

(5) experimental data obtained during disk-burst tests reported by Riccardella [2] with loadings,
geometries, and materials relevant to the Davis-Besse pressure loading, wastage-area
footprint, and cladding,

(6) nonlinear, large-deformation, elastic-plastic discrete-element analyses of the disk-burst tests
also reported in [2] (GAPL-3 discrete-element code[3]),

(7) nonlinear, finite-strain, elastic-plasticflnite-element analyses performed for the current study
(ABAQUS finite-element code[4]) of the nine disk-burst test specimens reported in [2], and

(8) a theoretical criterion for plastic instability in a circular diaphragm under pressure loading,
due to Hill (5] (as cited in (6]), applied to the disk-burst tests.

The resulting Log-Laplace model has the scaled form of

2 l.lO57xP,, ) ; 0<SP<1.1057xprPrLPpp , S SP]=F,,(SPIP,,)= I1 SP 4  (23)

1. ; 1SP2l.057xP,,

Given a computationally predicted burst pressure, Pap, and service pressure, SP, the model gives an
estimate of the cumulative probability of nonexceedance of the true but unknown burst pressure, P,,..),
i.e., Pr[P,,(-) S SP].

As an example application, estimates are provided for a bounding calculation of the 'as-found" Davis-
Besse wastage area. The bounding calculation predicted a burst pressure of 6.65 ksi which has a
cumulative probability of failure of 0.158. The stochastic model estimates a cumulative probability of
failure of 4.14xl0 7 at the operating pressure of 2.165 ksi and 2.15x04V at the set-point pressure of
2.5 ksi.
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