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Stochastic Failure Model
for the Davis-Besse RPV Head

P. T. Williams and B. R. Bass
Oak Ridge National Laboratory
P. O. Box 2009
Oak Ridge, TN, 37831-8056

Abstract

The development of a stochastic model is described in this report in which the uncertainty associated with
predictions of burst pressure for circular diaphragms using computational or analytical methods is
estimated. It is postulated that the trends seen in predicting the burst pressure with nine experimental disk-
burst tests (using materials, geometries, and pressure loadings relevant to the Davis-Besse analysis) will
be representative of the computational predictions of the burst pressure in the Davis-Besse wastage area
problem. Given a computational prediction of burst pressure for a specific configuration of the wastage
area, the scaled model will provide an estimate of the cumulative probability that the true burst pressure
will be less than any given service pressure.

The stochastic model was developed from the following technical bases:
(1) experimental data obtained during disk-burst tests with loadings, geometries, and materials
relevant to the Davis-Besse pressure loading, wastage-area footprint, and cladding,
(2) nonlinear, large-deformation, elastic-plastic discrete-element analyses of the disk-burst tests,

(3) nonlinear, finite-strain, elastic-plastic finite-element analyses performed for the current study,
and

(4) & theoretical criterion for plastic instability in a circular diaphragm under pressure loading,
applied to the disk-burst tests.

The resulting Log-Laplace model has the scaled form of

1454 :
1f sp
7 ;(0sSP<1.1057
2 l.1057xP,,]‘ (0SSP <1.1057x Py )
Pf(}’cnm) SSP)=F0(SP|P0)= ~11.434
- ) spat10s7xR,)
2{ 1.1057x P,

Given a computationally-predicted burst pressure, Ppp, the model gives an estimate of the cumulative
probability, Fyp, that the true (but unknown) burst pressure Fypiruey is less than a specified service
pressure, SP,

As an example application, estimates are provided for a bounding calculation of the “as-found” Davis-
Besse wastage area. The bounding calculation predicted a burst pressure of 6.65 ksi which has a
cumulative probability of failure of Q158. The stochastic model estimates a cumulative probability of
failure of 4.14x107 at the operating pressure of 2.165 ksi and 2.15x10™ at the set-point pressure of
2.5ksi.
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1. Introduction

I.1. Objective

This report presents a stochastic model of failure for the stainless steel cladding in the wastage area of the
Davis-Besse Nuclear Power Station reactor pressure vessel (RPV) head. For a given internal pressure, the
statistical model provides an estimate of the cumulative probability (probability of nonexceedance) that
the exposed cladding will have failed at a lower pressure. The failure mode addressed by this model is
incipient tensile plastic instability (i.c., plastic collapse) of the cladding.

1.2. Background
The following was taken from ref. [1].

On February 16, 2002, the Davis-Besse facility began a refueling outage that included

inspection of the vessel head penetration (VHP) nozzles, which focused on the inspection of
control rod drive mechanism (CRDM) nozzles, in accordance with the licensee's
commitments to NRC Bulletin 2001-01, “Circumferential Cracking of Reactor Pressure

Vessel Head Penetration Nozzles,” which was issued on August 3, 2001. These inspections
identified axial indications in three CRDM nozzles, which had resulted in pressure boundary
leakage. Specifically, these indications were identified in CRDM nozzles 1, 2, and 3, which
arc located near the center of the RPV head. ... Upon completing the boric acid removal on
March 7, 2002, the licensee conducted a visual examination of the area, which identified a
large cavity in the RPV head on the downhill side of CRDM nozzle 3. Followup
characterization by the ultrasonic testing indicated wastage of the low alloy steel RPV head
material adjacent to the nozzle. The wastage area was found to extend approximately 5 inches
downhill on the RPV head from the penetration for CRDM nozzle 3, with a width of
approximately 4 to 5 inches at its widest part.

See Fig. 1. for a photograph of the Davis-Besse RPV, a schematic of a typical nuclear power reactor, and
a sketch and photographs of the wastage area.

1.3. Scope

In support of the investigation by the United States Nuclear Regulatory Commission’s (NRC) Office of
Nuclear Regulatory Research, the Heavy-Section Steel Technology Program at Oazk Ridge National
Laboratory has developed 2 statistical model of & specific failure mode for the exposed stainless steel -
cladding in the cavity of the Davis-Besse RPV head. Section 2 reviews the technical bases employed in
the development of the model; Section3 presents the details of the stochastic model; Section 4
demonstrates an application of the model to the results of a bounding calculation for the “as found”
condition of the wastage area; and Section 5 provides & summary and conclusions.
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Fig. 1 (continued) (c) schematic of a typical nuclear power reactor showing the relationship of the
CRDM nozzles to the RPV head.
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2. Technical Bases

The technical bases employed in the construction of the stochastic model are:

(1) experimental data obtained during disk-burst tests reported by Riccardella [2] with loadings,
geometries, and materials relevant to the Davis-Besse pressure loading, wastage-area footprint, and
cladding,

(2) nonlinear, large-deformation, elastic-plastic discrete-element analyses of the disk-burst tests also
reported in [2] (GAPL-3 discrete-element code[3]),

(3) nonlinear, finite-strain, elastic-plastic finite-element analyses performed for the current study
(ABAQUS finite-element code[4]) of the nine disk-burst test specimens reported in [2], and

(4) a theoretical criterion for plastic instability in a circular diaphragm under pressure loading, due to
Hill [5] (as cited in [6]), applied to the disk-burst tests.

2.1. Experimental - Disk-Burst Tests

In the early 1970s, constrained disk-burst tests were carried out under the sponsorship of the PVRC
Subcommittee on Effective Utilization of Yield Strength [7]. This test program employed a range of
materials and specimen geometries that were relevant to components in a miclear power plant steam
supply system'. The geometries of the three test specimens analyzed in [2] are shown in Fig. 2, the test
matrix is shown in Table 1, and the properties of the three materials are presented in Table 2. The nine
disk-burst tests produced three center failures and six edge failures over a range of burst pressures from
3.75 to 15 ksi as shown in Table 1. :

Table 1. Test Matrix for Disk-burst Tests [2] T

S} -
D

0375 | 0.250 2.625 15 Edge
2 B 0.125 | 0.125 2.875 6.8 Center
3 c lo3rs| o12s 2.625 7.1 Center |
r AS33B A 0.375 | 0.250 2.625 11 Edge
s B 0.125 | 0.125 2.875 53 Edge
6 _ [ 0.375 | 0.125 2.625 6.7 Center
7 ABS-C A 0.375 | 0.250 2.625 9.8 Edge
s B 0.125 | 0.25 2.878 3.75 Edge
9 C 0.375 | 0.125 2.625 4.94 Edge

! The three materials are representative of reactor core support structures and piping, the reactor pressure vessel, and
plant component support structures [2). )
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Nl Pomer T awFits

129.
74.15 112.32 0.157
39.08 83.84 0.270

S

162.41
13941 0.12
10520 0.17

*The power-law parameters in Table 2 were fitted for the current study where o=KE and 0, £ are the
effective true stress and effective total true strain, respectively.
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Fig. 2. Geometric descriptions of the three disk-burst specimens used in [1] (all dimensions are
inches). Images on the right are Photoworks®-rendered views of %-symmetry solid models
of the three specimens.
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2.2. Computational — Axisymmetric Discrete-Element and Finite-Element Models

The results of a computational study were presented in [2] in which the nine tests were simulated using
the GAPL-3 computer code [3). GAPL-3 applied the discrete-element method using a two-layered system
of elements: one layer for the strain-displacement field and a second layer for the stress field to perform
an elasto-plastic large-deformation analysis of stresses, strains, loads, and displacements of thin plates or
axisymmetric shells with pressure loading. At each incremental load step, the code iterated to resolve both
geometric and material nonlinearities, thus establishing a condition of static equilibrium. The GAPL-3
code did not account for the reduction in thickness of the diaphragm with increasing load, and, therefore,
was unable to demonstrate the “tailing up” of the experimental center-deflection histories. As discussed in
[2], the thin-shell approximation of the GAPL-3 code is not strictly valid in the fillet region. The GAPL-3
model did include a plastic-hinge type of strain redistribution, but the strain concentration effect due to
the fillet radius was not accounted for, since the predicted strain distribution in the cross-section of the
fillet was lincar by assumption. These approximations in the analysis were driven by the limitations of the
computer resources available at the time of the study in 1972.

The current study reanalyzed all nine disk-burst tests using the ABAQUS [4] finite-clement code. With
current computing power, many of the simplifying assumptions required in 1972 could be removed to
provide a more detailed analysis. The fundamental assumptions made in the current study are:

(1) the material is assumed to be homogenous and isotropic before and throughout plastic defor-
mation;
(2) the material is assumed to be free of pre-existing defects;

(3) the volume of the material undergoing plastic deformation is assumed to be constant (i.e., incom-
pressible with a Poisson’s ratio of 0.5);

(4) the hydrostatic c'omponent of the stress tensor has no effect on yielding; and

(5) the plastic deformation follows incremental J; flow theory (Mises yield criterion) with its
associated flow rule (Levy-Mises) and isotropic strain hardening.

The finite-element meshes shown in Fig. 3 weré developed using 8-node quadratic, axisymmetric, solid
elements with reduced integration (ABAQUS element type CAX8R). The material property data given in
Table 2 were used to fit power-law constitutive models for the plastic region of the three materials (see -
Fig. 4). The analyses applied a nonlinear finite-strain procedure with an incrementally increasing pressure
load applied from zero up to the load at which numerical instabilities caused ABAQUS to abort the

execution.



DRAFT NOT FOR ATTRIBUTION 08/04/02
| Geometry A

b | - :
t=0.25in. =0.375 in./ R , 1.0 in.

A l Gcomctry B

I:-O.lzsin. r=0125in. . - 1 10in

Geomctry C
HEERS

,'f.«)x‘

]t 0.125 in.
r=0375in.

3in.

Tl ] S.i‘n. | .Tll——

Fig. 3. Axisymmetric finite-element meshes used in the analyses of disk-burst tests reported in [2].
Quadratic §-node axisymmetric (CAX8R) elements with reduced integration were used in a
nonlinear finite-strain elastic-plastic analysis of the three disk-burst geometries with three
materials,
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Fig. 4. True stress vs true strain curves of the three materials used in the disk-burst tests compared
to SS308 at 600 °F. These three test material curves were developed using a power-law
strain-hardening model fitted to yield and ultimate strength/strain data for each material
given in [2]. (See Table 2).
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2.3. Theory - Hill’s Plastic Instability Theory

A plastic instability theory due to Hill (5] for a pressurized circular diaphragm constrained at the edges is
presented in [6]. Figure 5 shows the geometry of the diaphragm, both undeformed and deformed, along
with the nomenclature used in the development of the theory.

The geometry of deformation is assumed to be a spherical dome or bulge of radius, R. The undeformed
ring element defined by its position, width, and thickness, (r,,8r,,k;), respectively, is assumed to deform
to an axisymmetric shell element with surface length, 6L, deformed thickness, A, radial position, r, and
angle ¢ . The nonuniform thickness of the dome reaches its minimum at the pole with polar height H. For
a spherical coordinate system with its origin at the center of the dome, the principal strains for the thin-
shell (i.e., the strains are assumed constant through the thickness) element are

& =ln(ri} g, =ln[§—:} €, =ln(-,%] 1))

A geometric relationship exists between the radius and chord of a circle such that

H*+4?

R=
2H

2

where a is the effective radius of the undeformed diaphragm. Using Eqgs. (1) - (2) and the geometry shown
in Fig. 5, ref. [6] derives the following relations for the meridional, €, , and hoop, &, strains at any point
on the spherical bulge

e,(z]H,a)=e,(le,a)=ln[l _'{_za_fl_)] QA3)

where he geometric parameter z is shown in Fig. 5. Applying the constant volume assumption, ie.,
€, + &, +¢&, =0, produces the following equation for the radial (“thickness™) strain

£,(z|H,a)==2¢(z|H ,a) ]nl:l+(zH/az)]‘ @

13
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Fig. 5. Spherical geometry of deformation assumed In Hill’s [5] plastic instability theory.
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The effective strain then becomes

E(g, £9:64) = \g J(e, ~&,) +(g,~&) +(& -&,)' =-€.(z|H )= 21n[l +(£az£ ]] &)

The maximum radial strain, therefore, occurs at the pole of the spherical bulge. Applying the thin-walled
assumption (which is not made in the computational finite-element model) for an axisymmetric shell
element, the equilibrium relation between the meridional, ©,, and hoop, &, , membrane stresses and the

internal pressure, p;, loading is

»la

+ 2 B 0]
R k

For a spherical dome, R, =R, =R, and a state of equibiaxial stress is assumed to prevail near the pole of

the dome with the principal stresses being

DR

a,=a,=—2'h—; c,=0 @

and the effective stress , 6=715\,(°'¢ -0, )2 +(o, -t'i',)z +(o, _o_')z i

&=0,=0, =£= | 8)

To establish an instability criterion, & surface can be constructed in pressure, effective stress, and
deformation/strain space by expressing Eq. (8) as a total differential of the form

Rp, =2hG
Rdp, + pdR =2hdG +26dh ®

An unstable condition exists at a point of maximum pressure on the surface where dp, =0. The condition
is unstable because any perturbation from this position always involves & reduction in load (pressure),
even in a rising stress field. The instability criterion for a deformed bulge of radius R is, therefore,
established by the following relation between stress and the deformed geometry for any point on the dome

15
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43 _dR_dh
& R &k
or in terms of effective strain
198141k an
O dE R dE

If the instability condition is attained, it will first occur at the point of maximum effective strain at the top

of the dome (at z = H) such that Eq. (11) can be stated as
(12)

145 _3 l(éIH_%]

Applying a power-law constitutive form to relate effective stress to effective strain in the plastic region,
(13)

F=K§&" ,

the effective strain at instability is, after a great deal of algebraic manipulation,
14

Ep= -lil(Zn +1)

where n is the power-law exponent in the constitutive equation, Eq. (13).

16
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For a given material and diaphragm geometry ( n, a, k), the pressure at the instability condition (i.e., the

burst pressure) can be determined by the following procedure:

- _4

e Calculate the effective critical strain. .= i-l-(Zn +1)
¢ Calculate the corresponding effective critical stress. 0.,.,=KE"
s Calculate the critical thickness. h., =hyexp(-E_,)
e Calculate the polar height at the critical condition. H_, =a "exp(%ﬂ'-)—l
. . H:, +ad°
s Calculate the corresponding bulge curvature radius. R.= T
erit
. . 2k G,
¢ Finally, calculate the predicted burst pressure. Pours =—;"—ﬂ’-
‘orit

An alternative instability criterion was developed by Chakrabarty[8] which was based on & Tresca yield
surface. The critical effective strain was found to be

= _ 2(2=nX1+2n)

E.,= 15
e 11-4n (3

17
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3. Stochastic Model Development

3.1. Computational and Theoretical Model Results

Computational results using the GAPL-3 code were presented in [2]. Converged solutions were obtained
for eight of the nine tests. Comparison of experimental and computational centerline deflections showed
good agreement for the eight converged cases. In the nonconverged case (ABS-C, geometry C), some
difficulty was reported in getting convergence at high pressures. In all cases the experimental data showed
a “tailing up” as the pressure approached burst pressure, which the computational model was unable to
capture. In general, the prediction of the burst pressure for the eight converged cases showed good
agreement with the experimentally-determined burst pressures. Defining « as the ratio of the
experimental burst pressure to the computationally-predicted burst pressure, the mean for a was 1.19
with a standard error for the mean of 10.0484 and a standard deviation for the sample of 0.137.

‘The finite-element models using ABAQUS were able to obtain burst pressures for all nine tests, where the
predicted burst pressure is defined as the pressure at which a breakdown occurs in the numerical
procedure, causing the run to abort. For a nonlinear, finite-strain, static load step, ABAQUS uses
automatic sizing of the load increment to maintain numerical stability. The number of iterations needed to
find a converged solution for a load increment varies depending on the degree of nonlinearity in the
system. If the solution has not converged within 16 iterations or if the solution appears to diverge,
ABAQUS abandons the increment and starts again with the increment size set to 25% of its previous
value. An attempt is then made at finding a converged solution with this smaller load increment. If the
increment still fails to converge, ABAQUS reduces the increment size again. ABAQUS eallows a
maximum of five cutbacks in an increment before sborting the analysis. Therefore, ABAQUS will
attempt a total of 96 iterations with six increments sizes before abandoning the solution. The initial load
size for the failing increment was typically already very small due to difficulties in convergence with the
previous and final successfully-converged load increment.

Equivalent plastic strain contours are shown in Fig. 4 for the geometry A (ABS-C carbon steel) specimen
(Test No. 7) at the point of numerical instability. The experimental burst pressure for this specimen was
9.8 ksi, and numerical instability of the solution occurred at approximately 9.05 ksi, for an or=1.083.
Highly localized plastic straining can be observed near the fillet, thus predicting an edge failure for this
specimen which did in fact fail at its edge.
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Ref. P. C. Riccardella, *Elasto-Piastic Analysis of Constrained Disk Burst Tests,”
ASME Paper No. 72-PVP-12, ASME Pressure Vessels and Piping Conference, New
(a) C)dean;. LA, September 17-21, 1972.
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Fig. 4. Equivalent plastic strain contours for the Geometry A (ABS-C carbon steel) specimen at the
point of numerical instability, Highly localized plastic straining provides a precondition for
plastic collapse at the edge of the specimen. (ABAQUS analysis results)
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Figure 5 compares the predicted centerline deflection load histories with the experimentally-observed
deflections at failure (estimated from Figs. 3 and 4 in [2]). The “tailing up” of the experimental deflection
curves near the point of failure is predicted by the model, indicating that the computational simulations
are capturing the final localized “necking” of the diaphragm. For the nine ABAQUS predictions, the
mean for & was 1.055 with a standard error for the mean of 10.0331 and a standard deviation for the
sample of 0.0993. '

The results of applying Hill's failure criterion are presented in Table 3. The mean for @ was 1.058 with a
standard error for the mean of 10.0374 and a standard deviation for the sample of 0.1123. The
calculations were repeated using the theoretical critical strain of Chakrabarty and Alexander [8], Eq. (15),
with the resulting burst pressures being essentially identical to those given in Table 3.

Table 3. Application of Hill’s Instability Theory to Nine Disk-burst Tests

e o

| €t Hoi Row Okt Rt P Pourseyy @
8 ) Y51 in) (in. i)  (in. i i
16241 027 2.625 0.250| 0.561 1.493 3.054 138.84 0.1427 12.98 15 1.156
16241 027 2.875 0.125] 0.561 1.635 3.345 138.84 0.0714 5.92 6.8 1.148
162.41 027 2.625 0.125] 0.561 1.493 3.054 138.84 0.0714 6.49 1.7 1.187
13941 0.12 2.625 0.250] 0.449 1316 3.276 12696 0.1596 12.37 11 0.889
0449 1.441 3.588 126.96 0.0798 5.65 53 0.938
13941 0.12 2.625 0.125] 0.449 1.316 3.276 12696 0.0798 6.19 6.7 1.083
105.20 0.17 2.625 0.250] 0.490 1.383 3.183 9295 0.1532 8.95 9.8 1.095
105.20 0.17 2.875 0.125] 0.490 1.514 3.486 9295 0.07656 4.08 3.75 0918
105.20 0.17 2.625 0.125] 0.490 1.383 3.183 9295 0.0766 4.47 4.94 1.104
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A summary of all 26 burst pressure predictions is given in Table 4. Combining the 26 cases into a single
sample gives a mean for @ of 1.098 with & standard error for the mean of $0.0251 and & standard
deviation for the sample of 0.1281. Even though Hill’s theory is applicable only for center failures, the
good agreement between the experiments (including those that failed at the edges) suggests that, for the
edge-failure cases, the specimens were also close to a condition of plastic collapse at the center when they
failed first at the edge.

20
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Fig. 5. Comparison of experimental centerline vertical deflections at fatlure to ABAQUS FEM
vertical deflection histories at the center of the Geometry A and B specimens for (a) SS 304,
(b) A533-B, and (c¢) ABS-C materials, and

21



ORAFT NOT FOR ATTRIBUTION 08/04/02
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Fig. 5. (continued) (d) ABAQUS FEM vertical deflection histories at the center of Geometry C, all
three materials compared to specimen faflure.
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Table 4. Comparison of Experimental Burst Préssures to Three Predictions

;

JRR L KA KN 3. ‘B, g R FERTENY, ANt
1 A Edge 123 Edge 1.2 Center 1.16 1339 Edge 1.13
2 B 68 Center ‘48 Edge 142 S 1 Center 115 62 Edge 1.09
3 c 1.7 Center 74 Center 1,04 1 Center 1.19 6.59 Center .17
4 | AS33B A 1 ~ Edge 93 Edge 1.12 Center 0.89 12.26 Edge 0.90
s B 53 Bdge 42 Edge 1.26 S Center 0.94 5.24 Edge 1.01
6 c 6.7 Center 63 Center 0.99 . Center 1.08 6.03 Edge L1
7 | ABSC| A 98 Edge ] Edge 1.3 X Center 1.10 9.05 Edge 1.08
] B 375 Edge 3 Edge 125 ) Center 0.92 4.19 Edge 0.89
9 C 494 Edge Center 1.10 4.46 Edge/Center 111
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3.2. Development of Stochastic Model of Failure

The development of a stochastic model is described in this section in which the uncertainty associated
with predictions of burst pressure for circular diaphragms using computational or analytical methods is
estimated. It is postulated that the trends observed in estimating the burst pressure with the nine disk-burst
tests in [2] will be representative of the predictive accuracy of computational estimates of the burst
pressure in the Davis-Besse wastage-area problem. Given a prediction of burst pressure for & specific
configuration of the wastage area, the scaled stochastic model will provide an estimate of the cumulative
probability that the true burst pressure will be less than a given service pressure. This postulated linkage
of the test specimens to the Davis-Besse problem is obviously an approximation, since the wastage area
footprints are not identical to the circular diaphragms used in the tests. The appropriateness of this linkage
is in part, therefore, dependent on the ability of the finite-clement models to capture, as accurately as is
feasible and based on the best current knowledge, the actual geometry of the wastage area footprint.

Table 5 summarizes some descriptive statistics’for the ratio of experimental burst pressure to predicted
burst pressure, @, for the three predictive methods discussed in the previous section. Also shown in the
table are the results of combining the three samples into one larger sample of 26 data points. This
combined sample was used to develop a stochastic model with @ treated as a random variate. Combining
the three sets into a single sample produced a sample size large enough for the application of the
computer program Expert Fif® [9]. Also given in Table 6 is & ranking of the 26 data points where the
median rank order statistic is

I (e
The Expert Fif® [9] computer program was used to develop a stochastic model of the sample data
presented in Table 6. Using a combination of heuristic criteria and Goodness of Fit statistics, twenty six
- nonnegative continuous distributions were tested with the results shown in ranked order in Table 7. The
point-estimation procedures noted in Table 7 include Maximum Likelihood (ML), Method of Moments
(MM), and Quantile Estimates. Table 8 compares three Goodness of Fit statistics (Anderson-Darling, 2°,
and Kolmogorov-Smirnoff (K-S)) for the top five distributions. None of these distributions were rejected
by the tests. Figure 6 shows & density/histogram overplot of the top three distributions.
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Table S. Descriptive Statistics for the Ratio of Experimental Burst Pressure
to Predicted Burst Pressures

Sample Slze

Mean 1.1902 1.0576 1.0549 1.0975
Standard Error 0.0484 0.0374 0.0331 0.0251
Median 1.2223 1.0953 1.0939 1.1057
Standard Deviation 0.1368 0.1123 0.0993 0.1281
Sample Variance 0.0187 0.0126 0.0099 0.0164
Kurtosis -0.0506 -1.4799 -0.4349 0.2593
Skewness 0.0007 -0.5892 -0.9683 0.1714
Range 0.4314 0.2979 0.2739 0.5277
Minimum 0.9853 0.8889 0.8943 0.8889
Maximum 1.4167 1.1868 1.1682 1.4167
Confidence Level(95.0%) 0.1144 0.0863 0.0764 0.0517

Table 6. Combined Sample Used in Development of Stochastic Model

" 0.889

1 Hill's Theory A533B A 0.0265
2 ABAQUS Soln. ABS-C B 0.8943 0.0644
3 ABAQUS Soln. AS33B A 0.8972 0.1023
4 Hill's Theory ABS-C B 0.9180 0.1402
5 Hill's Theory AS533B B 0.9382 0.1780
6 Ricarrdella (1972)  AS33B C 0.9853 0.2159
7 ABAQUS Soln. A533B B 1.0119 0.2538
g Ricarrdella (1972)  SS304 C 1.0405 0.2917
9 ABAQUS Soln. ABS-C A 1.0827 0.3295
10 Hill's Theory AS33B C 1.0829 0.3674
11 ABAQUS Soln. SS 304 B 1.0939 0.4053
12 Hill's Theory ABS-C A 1.0953 0.4432
13 Hill's Theory ABS-C C 1.1042 0.4811
14 ABAQUS Soln. ABS-C C 1.1072 0.5189
15 ABAQUS Soln. AS33B C L1104 0.5568
16 Ricarrdella (1972)  AS33B A 11224 0.5947
17 ABAQUS Soln. SS304 A 1.1288 0.6326
18 Hill's Theory S§S304 B L1479 0.6705
19 Hill's Theary SS304 A 1.1560 0.7083
20 ABAQUS Soln. SS304 C 1.1682 0.7462
21 Hill's Theory SS 304 C 1.1868 0.7841
2 Ricarrdella (1972) SS304 A 12195 0.8220
23 Ricarrdelfla (1972) ABS-C A 1.2250 0.8598
A4 Ricarrdella (1972) ABS-C B 1.2500 0.8977
25 Ricarrdella (1972) AS33B B 12619 0.9356
26 Ricarrdella (1972)  SS304 B 1.4167 0.9735

.a=ExperitmalBursthsurdPredictedBursthmre
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Table 7. Non-negative Bounded Continuous Distributions Investigated —

Ranked by Goodness of Fit
mmramwwmm

e a s Modd R TwlY
1 - Log-Laplace

2.Beta

3.Gamma

4 - Erlang

5 - Log-Logistic

6 - Weibull

7 - Lognormal

8 - Random Walk

9 - lnverse Gaussian
10+ Pearson Type V
11 « Inverted Weibull
12 - Weibull(E) .

13 - Raykcigh(E)
14 - Erlang(E)

15 - Gamma(E)

16 - Exponential(E)

17 «Paarson Type VI(E)
18 - Lognormal(E)

19 - Random Walk(E)

20~ ParetofE)
21 - Chi-Square
2.Wald

23 - Rayleigh
24 - Exponential

NOT FOR ATTRIBUTION

Location

Scale

Shape

Lower endpoint

Shape #1

Location

25 - Wald(E)

26

Defaukt

ML estimate
ML estimate
MOM estimate
MOM estimate
MOM estimate
MOM estimate

ML estimate
ML estimate
Defiult

ML estimate
ML estimate

ML estimate
ML estimate

ML estimate
ML estimate

ML estimate

ML mnme

ML estimate
Quantile estimate
ML estimate

ML estimate
Quantile estimate
ML estimate

ML estimate

ML estimate
ML esti
Q‘ﬁkm‘ lllt

ML estimate
ML estimate
Quantile estimate
ML estimate
ML estimate
Qmﬁlcmm

L IOS‘I
11.45441
0.61449
1.78866
7.95564
11.38552
0
0.01444
76.01293
[]
0.01444
76
0
1.09586
15.21867
0
1.15383
9.03948
[]
0.08641
0.11516
0
0.92335
69.13788
0
1.09747
8223451
0
81.42582
75.1846
[ ]
1.02827
8.38835
0.88834
0.21562
1.15868
0.83884
0.24352
0.83384
0.20862
1
0.88384
021819
0.95616
0.8389
0.20857
0.88884
]
1.00117
5.43892
0.83384
21414
1.86365
0.83384
69932509
4.82644
0.883%
4.8976
0.83834
0.72313
0
48.03951
0
1.10463
0
1.09747
0.83384
1.43E-03
8.89E-04
0.20862
1.44E-03
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Table 8. Goodness of Fit Statistics for Top Five Stochastic Models
ﬂi’v’i’#ﬂg« frrit e J?.i e T TTE ¥ g N .*eir‘taéggi’;
=1 “Log-Laplace 0.44952 215385 0.59218
2 Beta 0.44697 492308 0.81037
3 Gamma 0.46050 3.53846 0.81894
4 Erlang 0.46050 3.53846 0.81897
5 Log-Logistic 0.46271 2.15385 0.74682
Density/Histogram Overplot
035
030 /Log-Laplaoe

Density/Proportion

1.07
Interval Midpoint for a

Fig. 6. Overplot of probability densities with histogram for top three fitted stochastic models.
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The general three-parameter Log-Laplace continuous distribution has the following probability density
function, fzp, and cumulative distribution function, Fyp,

c(x-aY"
— ja<x<b
5)
-c=}
< ""’) x2b
26\ b
l(x—a) ;a<x<bh
2\ b
1{x-a)*
l—-[ ) 1x2b
20 b
and the percentile function (inverse cumulative distribution function) is

a+bexp{ln(zp)} s P<0.5

0ir(Plabc)=x= _ _ for (0<P<1) (18)
a+bexp{—[2£l—P)-1} ;P>0.5

Jis(xlab,c)= fora20, (b,c)>0

an

P(X <x)=F,(x|a,b,c)= foraz0, (b,c)>0

where a is the location parameter, b is the scale parameter, and c is the shape parameter.

Figures 7 and 8 compare the probabilities and the cumulative distribution functlons, respectively, of the
top-three ranked models.
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Probability-Probability Plot
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‘6.0 [X] 0.2 3 04 [X]3 0.6 [%] [T3 (1] 1.0

. Sample Value
Sl Rangs of sample 1 1 -LogLaplace {discrepancy=0.06447) [ 2 < Bets {Sacrepancy=0.08105) {3 3- Ganwns (discrepancy=0 ATT20}

Fig. 7. Probability-probability plot comparing top three fitted distributions.
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Fig. 8. Log-Laplace statistical faflure mode! ( = 26) compared to a beta and gamma cumulative
distribution functions.
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From the Expert Fit® [9] analysis, the optimal (Log-Laplace) stochastic model of failure has the following
form

10.4544]
5.17971( 1057 ) ; 0<a<1.1057
Jir(@]0,1.1057,11.45441) = 24t
5.17971(l 1‘557) ; @21.1057
19
1 11.45441
5( 05 ) ; 0<ar<1.1057
P(X <a)=F_(|0,1.1057,11.4544]) = 1asaa
1-1_2 ) : @21.1057
2\1.1057
where @ is the ratio of the true (but unknown) burst pressure to the calculated burst pressure. The
percentile function is given by
1. 1057cxp{M} ;P<05
(P10,1.1057,11.4544 143t for 0<P<1) (20)
0,:(P10,1.1057,11.4544) == or (0<P<
~Inf2(1-P
1.1057exp{—lg4(574)]} ;P>0.5

This stochastic model will be used to provide statistical estimates of the expected predictive accuracy of
computational methods applied to burst pressure calculations for constrained diaphragms.
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4. Application of Stochastic Model to Bounding Calculation

A bounding calculation was carried out for the “as-found” condition of the wastage area in the
Davis-Besse head. The finite-element model used in the analysis is shown in Fig. 9. An adjusted stress-
strain curve (see Fig. 10) was constructed to lower-bound the available data for the cladding material. The
geometry of the wastage area footprint was taken from Fig. 13 in the Root Cause Analysis Report [10]. As
an estimate of the uncertainty in the current wastage area measurements, the footprint was extended by
approximately 0.25 inches (se¢ Table 9 and Fig. 11 for a geometric description of the adjusted footprint).
A uniform cladding thickness of 0.24 inches (the minimum cladding thickness value shown in Fig. 14 of
ref. [10]) was assumed in the model. The finite-element model was then loaded with increasing pressure
until the point of numerical instability at an internal pressure of 6.65 ksi (see Fig. 12).

For the predicted burst pressure of 6.65 ksi, the Log-Laplace statistical failure model can be scaled to
provided estimates of cumulative probability of failure (or probability of nonexceedance) as a function of
internal service pressure for the specific condition of the wastage area simulated by the finite-element
analysis. An example of the scaled Log-Laplace model is shown in Fig. 13. The scaled Log-Laplace
model has the following form

517971 —S2___
1.1057xP,
fu(SP‘Pu) =

SP ~12.4544]
517971 ———— ; SP21.1057x B,
1.1057xF,,

10.45441
] ; 0<SP<1.1057x P,

@n

11.4544]
Y__SP V' . o<sp<1i057xB,
2\ 110575,

-11.45441
-4 5P ; SP21.1057% P,
2| 1.1057x B,

Pr(Pippney S SP) = Fy(SP| Pyp) =

where, SP, is the service pressure under consideration, Ppp is the predicted burst, and Prginie is the
unknown true burst pressure. The scaled percentile function is

In(2P) }
1.1057x P, expd 2Dl . p<os
"“"{11.45441

-1n[2(1-P)]
11.45441

0..(P10,1.1057x F,,,11.45441) = SP = for (0< P<1)(22)

1.1057xP,,exp[ } ; P>05
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Table 9. Wastage-Area-Footprint Geometry Data
R 1T ¥} Centrond © Washape T A B Momenty L Inlcr i A | AR eavalc
G e : { e P

As-Found Footprint I 3536] 3036 | 164122 -0.1194 [ 9889 969933 -117.16(7526 197.4] <0.9004, 0.4351> <0.4351, 0.9004>

Adjusted Footprint 025in. | 40.06] 3178 | 164301 -0.1255 |129.02 11031.81 -14135|99.00 24571 | <0.894), -0.4476> <0.4476,0.8943>
for Bounding Calculation}

Footprint centroid is in globa! coordinates.

Giobal coordinate system has its z-axis aligned with the vertical centerline of the vessel.
The x-y plane of the global coordinate system is s horizonta} plane

with the x-axis along the linc between the centerlines of Nozzles 3 snd 11.

“Adjusted” Footprint
a=0.25In.
Area =40.06 in’
Perimeter = 31.78 in.

Centroid of

x; = -r, cos($)
ety = st
Perimeter = 30.36 in.
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Table 9 (continued) Details of Wastage Area Footprint Before Adjustment for Bounding
Calculation (Figure taken from Fig. 13 ref. [10])

/ Area sl INeridow Irering Pans ot Oyete

H i .
'—4/ . ‘ = Bernaimog Homtivn ) Gigeun ¢ Weld
) ¢

Tnitsadl $oak vint
(drBlar o Nozsle I

;..41"'

0 X .

1 -0.334 -2.280 25 7.500 0.483
2 0.000 -2.235 -26 7.000 0.582
3 0.500 -2492 - 27 6.500 0.822
4 1.000 -2.522 28 - 6.000 1.046
5 1.500 -2482 29 5.500 1.303
6 2000 -2.581 30 5.000 1.778
7 2500 -2.730 31 4.500 2.460
8 3.000 -2.769 32 4.000 3.023
9 3.500 -2.759 a3 3.500 3.300
10 4.000 -2.789 34 3.000 3.221
1 4.500 -2.819 35 2.500 3.250
12 5,000 -2.819 36 2.000 3.300
13 6500 -2.759 37 1.500 3.349
14 6.000 -2700 . 38 1.000 3.240
15 6.500 -2.621 39 0.500 3.122
16 7000 -2.512 40 0.000 3.000
17 7500 -2.364 41 -0.210 2.578
18 8.000 -2216 42 -0.364 2.000
19 8.500 -2.087 43 -0.242 1.985
20 9.000 -1.712

21 9.135 -1.000

22 9.000 -0.555

23 8500 0.137

Origin of local coordinate system located at centerline of Nozzle 3. (inches)
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16,935 elements
52,887 nodes

ALY
LA :
fAnTINNEY
e R s
TR “8 G
R T e g M

Nozzles 3, 11,
15, and 16

Base Material
refined cladding with Wastage Area
model to resolve
through<hickness ptw 6/4:2002
straln gradients

(®)
Fig. 9. Finite-element global and submodels of the Davis-Besse head and wastage area. The
displacements at the vertical side boundaries of the submodel are driven by the global
model. Both models are exposed to the same internal pressure loading.
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Global Mode! of Davis-Besse
RPV Head and Closure Flange

{
H
sl = Davis-Besse RPV Head
- . and Clesure Flange
“;0“ } [ SOVUCINON 80 NOT SCALE Prawalls

Fig 9. (continued) (c) geometry of RPV head and closure flange used in global model,
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Computational Sciences Ozk Ridge National Laboratory
and Engineering Division
: Heavy-Section Steel Technology Program
17g and Simutation Group UT-Battelle, LLC
DREY: P.T.Waisms 82 [Tme Onvis-Besta RPY Hesd DVG NO. REV |
A Footprint of Wastage Arva
e SCALE | oare marruaoce  [enem

Fig 9. (continued) (d) relative location of submodel within full RPV head,
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Computetional Sciences

Oak Ridge National Laboratory

end Engineering Division
Modeling and Simutation Group Heavy-SectioJT ?éea‘igl eed\&%!ogy Program
CABY. P.T.V/Fiam ":‘ TmeE :;msm«w:mm OWG NO. REV
Ger: scALE | oare az1e SHEET

73

Fig 9. (continued) (¢) geometry of submodel relative to Nozzles 3, 11, 15, and 16.
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[ e S e g g gy
80+ Framatome (5 =114.992 £02%5 _ -
| §S308 Curve '™ 99 8‘""'; - i
600 °F — .
AP e A .
_ e N ST, = 69.65ksi |
— PL s &
e .‘(f:":r‘-’.’ i
£ 60 P Gu = 61.64 ksi
2] I [ % 3 'j - \ -
4 o a Adjusted SS308 Curve
= L& ¥/ o for Bounding Calculation .
‘g 401 For both SS308 curves g, =94.359 g%
c O steerrasy™ 30.96 ksi .
- uniform elongation = 11.15% $s 308 i
e SS 308 (adjusted
y -—o — ABW-101 .
1 - =r = ABW-102
20} Ateoo°F C—e = ABWA103 -
s E=25571 ksi - —0 — ABW-104 .
¢+ v=0.295 - —e — ABW-105 i
< =e = ABW-106
ASW data at 550 °F 7
0 i 1 1 i 1 i B N I i 2 i 1 i ! i " 1 1
0 0.05 0.1 0.15 0.2
True Strain () 06/10/2002.K1 ptw

Fig. 10. Adjusted SS308 stress vs. strain curve used in the bounding-case calculations compared to
curves from a range of ABW heats. Strain hardening in the adjusted curve was reduced to
lower-bound all of the data. The offset yleld strength and strain at ultimate strength were
retained from the unadjusted SS308 curve received from Framatome.
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(@)

(b)

Fig. 12. Effective plastic-strain histories at two high-strain locations in the wastage area: () near
the center and (b) near Nozzle 3.
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Internal Pressure (ksi)
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Fig. 13. Application of the failure statistical criterion produces a cumulative probability of failure
(based on a Log-Laplace distribution) curve for the Bounding Case condition. Cumulative
probability of failure as a function of internal pressure.
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As discussed above, the bounding calculation predicted a burst pressure of 6.65ksi which has a
cumulative probability of failure of 0.158. The stochastic model estimates a cumulative probability of
failure of 4.14x107 at the operating pressure of 2.165 ksi and 2.15x10™ at the set-point pressure of
2.5 ksi. See Table 10 for additional estimates.

2.165 4.14E-07
2.175 4.36E-07
2.185 4.60E-07
2:195 4.84E-07
2.205 5.10E-07
2215 5.37E-07
2.225 5.66E-07
2.235 5.96E-07
2.245 6.27E-07
2.255 6.60E-07
2.265 6.94E-07
2.275 7.30E-07
2.285 7.67E-07
2.295 8.07E-07
2.305 8.48E-07
2315 8.91E-07
2.325 9.36E-07
2.335 9.83E-07
2.345 1.03E-06
2.355 1.08E-06
2.365 1.14E-06
2375 1.19E-06
2.385 1.25E-06
2.395 131E-06
2.405 1.38E-06
2415 1.45E-06
2425 1.52E-06
2435 1.59E-06
2.445 1.67E-06
2.455 1.75E-06
2.465 1.83E-06
2475 1.92E-06
2485 2.01E-06
2495 2.10E-06
2.500 2.15E-06
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5. Summary and Conclusions

A stochastic model of the probability of failure associated with a computational prediction of the plastic

collapse of the exposed cladding in the wastage area of the Davis-Besse RPV head has been developed
from the following technical bases:

(5) experimental data obtained during disk-burst tests reported by Riccardella [2] with loadings,
geometries, and materials relevant to the Davis-Besse pressure loading, wastage-area
footprint, and cladding,

(6) nonlinear, large-deformation, elastic-plastic discrete-element analyses of the disk-burst tests
also reported in [2] (GAPL-3 discrete-element code[3]),

(7) nonlinear, finite-strain, elastic-plastic finite-element analyses performed for the current study
(ABAQUES finite-element code[4]) of the nine disk-burst test specimens reported in [2], and

(8) & theoretical criterion for plastic instability in a circular diaphragm under pressure loading,
due to Hill [5] (as cited in [6]), applied to the disk-burst tests.

The resulting Log-Laplace model has the scaled form of

11.4544)
1{ sp
o — ; 0<SP<1.1057x P,
2(1.1057xP,,) nl

~11.45441
-L__SP ; SP21.1057xP,,
2| 1.1057x B,

Pt[ Py SSP]= Fp(SP| By) = (23)

Given a computationally predicted burst pressure, Pyp, and service pressure, SP, the mode! gives an
estimate of the cumulative probability of nonexceedance of the true but unknown burst pressure, B,

i€, Pr[ Py SSP]. |

As an example application, estimates are provided for a bounding calculation of the “as-found” Davis-

Besse wastage area. The bounding calculation predicted a burst pressure of 6.65 ksi which has a

cumulative probability of failure of 0.158. The stochastic model estimates a cumulative probability of
failure of 4.14x107 at the operating pressure of 2.165 ksi and 2.15x10° at the set-point pressure of
2.5 ksi.
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