ATTACHMENT 1

WCAP-16001, "ANALYSIS OF CAPSULE Y FROM DOMINION SURRY UNIT 2 REACTOR VESSEL RADIATION SURVEILLANCE PROGRAM"

FEBRUARY 2003

Westinghouse Non-Proprietary Class 3

WCAP-16001 Revision 0 February 2003

Analysis of Capsule Y from Dominion Surry Unit 2 Reactor Vessel Radiation Surveillance Program

WESTINGHOUSE NON-PROPRIETARY CLASS 3

WCAP-16001, Revision 0

Analysis of Capsule Y from Dominion Surry Unit 2 Reactor Vessel Radiation Surveillance Program

T.J. Laubham J. Conermann S.L. Anderson

February 2003

1 Approved

J.A. Gresham, Manager Engineering & Materials Technology

> Westinghouse Electric Company LLC Energy Systems P.O. Box 355 Pittsburgh, PA 15230-0355

©2003 Westinghouse Electric Company LLC All Rights Reserved

TABLE OF CONTENTS

- - - ------

LIST	OF TAB	LES	. iv
LIST	OF FIGU	JRES	vi
PREF	ACE	•	viii
EXEC	UTIVE	SUMMARY	. ix
1	SUMN	1ARY OF RESULTS	1-1
2	INTRO	DDUCTION	2-1
3	BACK	GROUND	3-1
4	DESC	RIPTION OF PROGRAM	4-1
5	TESTI 5.1	NG OF SPECIMENS FROM CAPSULE Y	5-1 5-1
	5.2	CHARPY V-NOTCH IMPACT TEST RESULTS	5-3
	5.3	TENSILE TEST RESULTS	5-5
	5.4	WEDGE OPENING LOADING TESTS	5-5
6	RADIA	ATION ANALYSIS AND NEUTRON DOSIMETRY	6-1
	6.1	INTRODUCTION	6-1
	6.2	DISCRETE ORDINATES ANALYSIS	6-2
	6.3	NEUTRON DOSIMETRY	6-7
	6.4	CALCULATIONAL UNCERTAINTIES	5- 8
7	REFER	RENCES	7-1
APPE	NDIX A	LOAD-TIME RECORDS FOR CHARPY SPECIMEN TESTS	\-0
APPE	NDIX B	CHARPY V-NOTCH SHIFT RESULTS FOR EACH CAPSULE PREVIOUS	
		FIT VS. SYMMETRIC HYPERBOLIC TANGENT CURVE-FITTING	
		METHOD (CVGRAPGH, VERSION 4.1)I	3-0
APPE	NDIX C	CHARPY V-NOTCH PLOTS FOR EACH CAPSULE USING SYMMETRIC	
		HYPERBOLIC TANGENT CURVE-FITTING METHOD	2-0
APPEI	NDIX D	VALIDATION OF THE RADIATION TRANSPORT MODELS BASED ON	
		NEUTRON DOSIMETRY MEASUREMENTS CREDIBILITY)-0

.

iiı

LIST OF TABLES

Table 4-1	Heat Treatment History of the Surry Unit 2 Reactor Vessel Surveillance Materials4-3
Table 4-2	Chemical Composition (wt %) of the Surry Unit 2 Reactor Vessel Surveillance Materials (Unirradiated and Irradiated)4-4
Table 5-1	Charpy V-Notch Data for the Surry Unit 2 Lower Shell Plate C4339-1 Irradiated to a Fluence of 2.73 x 10^{19} n/cm ² (E > 1.0 MeV) (Longitudinal Orientation)
Table 5-2	Charpy V-Notch Data for the Surry Unit 2 Lower Shell Plate C4339-1 Irradiated to a Fluence of 2.73 x 10^{19} n/cm ² (E > 1.0 MeV) (Transverse Orientation)
Table 5-3	Charpy V-notch Data for the Surry Unit 2 Surveillance Weld Material Irradiated to a Fluence of 2.73 x 10^{19} n/cm ² (E> 1.0 MeV)
Table 5-4	Charpy V-notch Data for the Surry Unit 2 Heat-Affected-Zone (HAZ) Material Irradiated to a Fluence of $2.73 \times 10^{19} \text{ n/cm}^2$ (E> 1.0 MeV)
Table 5-5	Charpy V-notch Data for the Surry Unit 2 Correlation Monitor Material Irradiated to a Fluence of 2.73 x 10 ¹⁹ n/cm ² (E> 1.0 MeV)
Table 5-6	Instrumented Charpy Impact Test Results for the Surry Unit 2 Lower Shell Plate C4339-1 Irradiated to a Fluence of 2.73 x 10 ¹⁹ n/cm ² (E> 1.0 MeV) (Longitudinal Orientation)
Table 5-7	Instrumented Charpy Impact Test Results for the Surry Unit 2 Lower Shell Plate C4339-1 Irradiated to a Fluence of 2.73 x 10 ¹⁹ n/cm ² (E> 1.0 MeV) (Transverse Orientation)
Table 5-8	Instrumented Charpy Impact Test Results for the Surry Unit 2 Surveillance Weld Metal Irradiated to a Fluence of 2.73×10^{19} n/cm ² (E> 1.0 MeV)
Table 5-9	Instrumented Charpy Impact Test Results for the Surry Unit 2 Heat-Affected-Zone (HAZ) Irradiated to a Fluence of $2.73 \times 10^{19} \text{ n/cm}^2$ (E> 1.0MeV)
Table 5-10	Instrumented Charpy Impact Test Results for the Surry Unit 2 Correlation Monitor Metal Irradiated to a Fluence of 2.73×10^{19} n/cm ² (E> 1.0MeV)
Table 5-11	Effect of Irradiation to 2 73 x 10 ¹⁹ n/cm ² (E> 1.0 MeV) on the Notch Toughness Properties of the Surry Unit 2 Reactor Vessel Surveillance Materials

.

LIST OF TABLES (Cont.)

Table 5-12	Comparison of the Surry Unit 2 Surveillance Material 30 ft-lb Transition Temperature Shifts and Upper Shelf Energy Decreases with Regulatory Guide 1.99	
	Revision 2, Predictions	.5-15
Table 5-13	Tensile Properties of the Surry Unit 2 Reactor Vessel Surveillance Materials Irradiated to 2.73 x 10 ¹⁹ n/cm ² (E> 1.0MeV)	.5-16
Table 6-1	Calculated Neutron Exposure Rates and Integrated Exposures At The Surveillance Capsule Center	.6-12
Table 6-2	Calculated Maximum Neutron Exposure at the Pressure Vessel Inner Radius Clad/Base Metal Interface	.6-20
Table 6-3	Relative Radial Distribution Of Neutron Fluence (E > 1.0 MeV) Within The Reactor Vessel Wall	.6 - 22
Table 6-4	Relative Radial Distribution of Iron Atom Displacements (dpa) Within The Reactor Vessel Wall	.6-22
Table 6-5	Calculated Fast Neutron Exposure of Surveillance Capsules Withdrawn from Surry Unit 2	.6-23
Table 6-6	Calculated Surveillance Capsule Lead Factors	.6-23

LIST OF FIGURES

•

Figure 4-1	Original Arrangement of Surveillance Capsules in the Surry Unit 2 Reactor Vessel4-5
Figure 4-2	Capsule Y Diagram Showing the Location of Specimens, Thermal Monitors, and Dosimeters
Figure 5-1	Charpy V-Notch Impact Energy vs. Temperature for Surry Unit 2 Reactor Vessel Lower Shell Plate C4339-1 (Longitudinal Orientation)
Figure 5-2	Charpy V-Notch Lateral Expansion vs. Temperature for Surry Unit 2 Reactor Vessel Lower Shell Plate C4339-1 (Longitudinal Orientation)
Figure 5-3	Charpy V-Notch Percent Shear vs. Temperature for Surry Unit 2 Reactor Vessel Lower Shell Plate C4339-1 (Longitudinal Orientation)
Figure 5-4	Charpy V-Notch Impact Energy vs. Temperature for Surry Unit 2 Reactor Vessel Lower Shell Plate C4339-1 (Transverse Orientation)
Figure 5-5	Charpy V-Notch Lateral Expansion vs. Temperature for Surry Unit 2 Reactor Vessel Lower Shell Plate C4339-1 (Transverse Orientation)
Figure 5-6	Charpy V-Notch Percent Shear vs. Temperature for Surry Unit 2 Reactor Vessel Lower Shell Plate C4339-1 (Transverse Orientation)
Figure 5-7	Charpy V-Notch Impact Energy vs. Temperature for Surry Unit 2 Reactor Vessel Weld Metal
Figure 5-8	Charpy V-Notch Lateral Expansion vs. Temperature for Surry Unit 2 Reactor Weld Metal
Figure 5-9	Charpy V-Notch Percent Shear vs. Temperature for Surry Unit 2 Reactor Vessel Weld Metal
Figure 5-10	Charpy V-Notch Impact Energy vs. Temperature for Surry Unit 2 Reactor Vessel Heat-Affected-Zone Material
Figure 5-11	Charpy V-Notch Lateral Expansion vs. Temperature for Surry Unit 2 Reactor Vessel Heat-Affected-Zone Material
Figure 5-12	Charpy V-Notch Percent Shear vs. Temperature for Surry Unit 2 Reactor Vessel Heat-Affected-Zone Material
Figure 5-13	Charpy V-Notch Impact Energy vs. Temperature for Surry Unit 2 Reactor Vessel Correlation Monitor Material

LIST OF FIGURES (Cont.)

Figure 5-14	Charpy V-Notch Lateral Expansion vs. Temperature for Surry Unit 2 Reactor Vessel Correlation Monitor Material	5-30
Figure 5-15	Charpy V-Notch Percent Shear vs. Temperature for Surry Unit 2 Reactor Vessel Correlation Monitor Material	5-31
Figure 5-16	Charpy Impact Specimen Fracture Surfaces for Surry Unit 2 Reactor Vessel Lower Shell Plate C4339-1 (Longitudinal Orientation)	5-32
Figure 5-17	Charpy Impact Specimen Fracture Surfaces for Surry Unit 2 Reactor Vessel Lower Shell Plate C4339-1 (Transverse Orientation)	5 -3 3
Figure 5-18	Charpy Impact Specimen Fracture Surfaces for Surry Unit 2 Reactor Vessel Weld Metal	5-34
Figure 5-19	Charpy Impact Specimen Fracture Surfaces for Surry Unit 2 Reactor Vessel Heat- Affected-Zone Metal	5-35
Figure 5-20	Charpy Impact Specimen Fracture Surfaces for Surry Unit 2 Reactor Vessel Correlation Monitor Material	5-36
Figure 5-21	Tensile Properties for Surry Unit 2 Reactor Vessel Lower Shell Plate C4339-1 (Longitudinal Orientation)	5-37
Figure 5-22	Tensile Properties for Surry Unit 2 Reactor Vessel Weld Metal	5-38
Figure 5-23	Fractured Tensile Specimens from Surry Unit 2 Reactor Vessel Lower Shell Plate C4339-1 (Longitudinal Orientation)	5-39
Figure 5-24	Fractured Tensile Specimens from Surry Unit 2 Reactor Vessel Weld Metal	5-40
Figure 5-25	Engineering Stress-Strain Curves for Lower Shell Plate C4339-1 Tensile Specimens V5 and V6 (Longitudinal Orientation)	5-41
Figure 5-26	Engineering Stress-Strain Curves for Weld Metal Tensile Specimens W13 and W14.	5-42
Figure 6-1	Surry Unit 2 r, θ Reactor Geometry at the Core Midplane	6-10
Figure 6-2	Surry Unit 2 r,z Reactor Geometry	. 6-11

.

1

PREFACE

This report has been technically reviewed and verified by:

.

Reviewer:

Sections 1 through 5, 7, 8, Appendices A, B, and C

Section 6 and Appendix D

A.R. Rawluszki (AUU) augusta GK. Roberts GK Poluce

EXECUTIVE SUMMARY

The purpose of this report is to document the results of the testing of surveillance Capsule Y from Surry Unit 2. Capsule Y was removed at 20.3 EFPY and post irradiation mechanical tests of the Charpy V-notch and tensile specimens was performed. A fluence evaluation utilizing the recently released neutron transport and dosimetry cross-section libraries derived from the ENDF/B-VI data-base. Capsule Y received a fluence of 2.73 x 10^{19} n/cm² after irradiation to 20.3 EFPY. The peak clad/base metal interface vessel fluence after 20.3 EFPY of plant operation was 2.15 x 10^{19} n/cm².

This evaluation lead to the following conclusions: 1) The measured 30 ft-lb shift in transition temperature values of the lower shell plate C4339-1 contained in capsule Y (longitudinal & transverse) is greater than the Regulatory Guide 1.99, Revision $2^{[1]}$, predictions. However, the shift value is less than two sigma allowance by Regulatory Guide 1.99, Revision 2. 2) The measured 30 ft-lb shift in transition temperature values of the weld metal contained in capsule Y is less than the Regulatory Guide 1.99, Revision 2, predictions. 3) The measured percent decrease in upper shelf energy for all the surveillance materials of Capsules Y contained in the Surry Unit 2 surveillance program are less than the Regulatory Guide 1.99, Revision 2 predictions 4) All beltline materials, except the intermediate to lower shell girth weld, exhibit a more than adequate upper shelf energy level for continued safe plant operation and are predicted to maintain an upper shelf energy greater than 50 ft-lb throughout the life of the vessel (30.1 EFPY) as required by 10CFR50, Appendix G^[2]. The low USE for the intermediate to lower shell girth weld is justified under the Equivalent Margin Analysis (EMA) in BAW-2192PA & BAW-2178PA.

Lastly, a brief summary of the Charpy V-notch testing can be found in Section 1. All Charpy V-notch data was plotted using a symmetric hyperbolic tangent curve fitting program

1 SUMMARY OF RESULTS

The analysis of the reactor vessel materials contained in surveillance Capsule Y, the fifth capsule removed from the Surry Unit 2 reactor pressure vessel, led to the following conclusions.

- The Charpy V-notch data presented in WCAP-8085^[3], BMI-0975-/SU2^[4] and WCAP-11499^[5] were based on Charpy curves using a hyperbolic tangent curve-fitting routine. The results presented in this report are based on a re-plot of all capsule data using CVGRAPH, Version 4.1, which is a symmetric hyperbolic tangent curve-fitting program. Appendix B presents a comparison of the Charpy V-Notch test results for each capsule based on previous fit vs. symmetric hyperbolic tangent fit. Appendix C presents the CVGRAPH, Version 4.1, Charpy V-notch plots and the program input data.
- Capsule Y received an average fast neutron fluence (E> 1.0 MeV) of 2.73 x 10¹⁹ n/cm² after 20 3 effective full power years (EFPY) of plant operation.
- Irradiation of the reactor vessel lower shell plate C4339-1 (heat number 4339) Charpy specimens, oriented with the longitudinal axis of the specimen parallel to the major working direction (longitudinal orientation), resulted in an irradiated 30 ft-lb transition temperature of 113.11°F and an irradiated 50 ft-lb transition temperature of 157.64°F. This results in a 30 ft-lb transition temperature increase of 114.22°F and a 50 ft-lb transition temperature increase of 124.26°F for the longitudinal oriented specimens. See Table 5-11.
- Irradiation of the reactor vessel lower shell plate C4339-1 (heat number 4339) Charpy specimens, oriented with the longitudinal axis of the specimen perpendicular to the major working direction (transverse orientation), resulted in an irradiated 30 ft-lb transition temperature of 118.27°F and an irradiated 50 ft-lb transition temperature of 174.08°F. This results in a 30 ft-lb transition temperature increase of 106.81°F and a 50 ft-lb transition temperature increase of 122 18°F for the longitudinal oriented specimens. See Table 5-11.
- Irradiation of the weld metal (heat number 0227) Charpy specimens resulted in an irradiated 30 ft-lb transition temperature of 157.84°F and an irradiated 50 ft-lb transition temperature of 247.25°F. This results in a 30 ft-lb transition temperature increase of 178.32°F and a 50 ft-lb transition temperature increase of 224.76°F. See Table 5-11.
- Irradiation of the weld Heat-Affected-Zone (HAZ) metal Charpy specimens resulted in an irradiated 30 ft-lb transition temperature of 75.07°F and an irradiated 50 ft-lb transition temperature of 144.55°F. This results in a 30 ft-lb transition temperature increase of 127.91°F and a 50 ft-lb transition temperature increase of 150.28°F. See Table 5-11.
- Irradiation of the Correlation Monitor Material Plate HSST02 Charpy specimens resulted in an irradiated 30 ft-lb transition temperature of 194.47°F and an irradiated 50 ft-lb transition temperature of 232.43°F. This results in a 30 ft-lb transition temperature increase of 148.02°F and a 50 ft-lb transition temperature increase of 154.12°F. See Table 5-11.

- The average upper shelf energy of the lower shell plate C4339-1 (longitudinal orientation) resulted in an average energy decrease of 17 ft-lb after irradiation. This results in an irradiated average upper shelf energy of 111 ft-lb for the longitudinal oriented specimens. See Table 5-11.
- The average upper shelf energy of the lower shell plate C4339-1 (transverse orientation) resulted in an average energy decrease of 10 ft-lb after irradiation. This results in an irradiated average upper shelf energy of 94 ft-lb for the longitudinal oriented specimens. See Table 5-11.
- The average upper shelf energy of the weld metal Charpy specimens resulted in an average energy decrease of 33 ft-lb after irradiation. This results in an irradiated average upper shelf energy of 58 ft-lb for the weld metal specimens See Table 5-11.
- The average upper shelf energy of the weld HAZ metal Charpy specimens resulted in an average energy decrease of 22 ft-lb after irradiation. This results in an irradiated average upper shelf energy of 94 ft-lb for the weld HAZ metal. See Table 5-11.
- The average upper shelf energy of the Correlation Monitor Material Plate HSST02 Charpy specimens resulted in an average energy decrease of 23 ft-lb after irradiation This results in an irradiated average upper shelf energy of 100 ft-lb for the weld correlation monitor metal. See Table 5-11.
- A comparison, as presented in Table 5-12, of the Surry Unit 2 reactor vessel surveillance material test results with the Regulatory Guide 1.99, Revision 2^[1] predictions led to the following conclusions:
 - The measured 30 ft-lb shift in transition temperature values of the lower shell plate C4339-1 contained in capsule Y (longitudinal & transverse) is greater than the Regulatory Guide 1.99, Revision 2, predictions. However, the shift value is within two sigma of the predicted value.
 - -- The measured 30 ft-lb shift in transition temperature values of the weld metal contained in capsule Y is less than the Regulatory Guide 1.99, Revision 2, predictions.
 - The measured percent decrease in upper shelf energy for all the surveillance materials of Capsules Y contained in the Surry Unit 2 surveillance program are less than the Regulatory Guide 1 99, Revision 2 predictions
- All beltline materials, except the intermediate to lower shell girth weld, exhibit a more than adequate upper shelf energy level for continued safe plant operation and are predicted to maintain an upper shelf energy greater than 50 ft-lb throughout the life of the vessel (30.1 EFPY) as required by 10CFR50, Appendix G^[2]. The low USE for the intermediate to lower shell girth weld is justified under the Equivalent Margin Analysis (EMA) in BAW-2192PA & BAW-2178PA.

• The calculated end-of-license (30.1 EFPY) neutron fluence (E> 1.0 MeV) at the core midplane for the Surry Unit 2 reactor vessel using the Regulatory Guide 1.99, Revision 2 attenuation formula (i.e., Equation #3 in the guide) are as follows:

*Clad/base metal interface. Value was interpolated between 20.3 and 32 EFPY (From Table 6-2)

2 INTRODUCTION

This report presents the results of the examination of Capsule Y, the fifth capsule removed from the reactor in the continuing surveillance program which monitors the effects of neutron irradiation on the Dominion Generation Surry Unit 2 reactor pressure vessel materials under actual operating conditions.

The surveillance program for the Dominion Generation Surry Unit 2 reactor pressure vessel materials was designed and recommended by the Westinghouse Electric Corporation. A description of the surveillance program and the pre-irradiation mechanical properties of the reactor vessel materials are presented in WCAP-8085, "Virginia Electric & Power Co. Surry Unit No. 2 Reactor Vessel Radiation Surveillance Program"^[3]. The surveillance program was planned to cover the 40-year design life of the reactor pressure vessel and was based on ASTM E185-70, "Recommended Practice for Surveillance Tests for Nuclear Reactor Vessels." Capsule Y was removed from the reactor after 20.3 EFPY of exposure and shipped to the Westinghouse Science and Technology Center Hot Cell Facility, where the post-irradiation mechanical testing of the Charpy V-notch impact and tensile surveillance specimens was performed.

The Charpy V-notch data presented in WCAP-8085^[3], BMI-0975-/SU2^[4] and WCAP-11499^[5] were based on a hand-fit using engineering judgment. The results presented in this report are based on a re-plot of all capsule data using CVGRAPH, Version 4.1, which is a symmetric hyperbolic tangent curve-fitting program. Appendix B presents a comparison of the Charpy V-Notch test results of previous curve fits vs the symmetric hyperbolic tangent fit. Appendix C presents the CVGRAPH, Version 4.1, Charpy V-notch plots and the program input data.

3 BACKGROUND

The ability of the large steel pressure vessel containing the reactor core and its primary coolant to resist fracture constitutes an important factor in ensuring safety in the nuclear industry. The beltline region of the reactor pressure vessel is the most critical region of the vessel because it is subjected to significant fast neutron bombardment. The overall effects of fast neutron irradiation on the mechanical properties of low alloy, ferritic pressure vessel steels such as SA533 Grade B Class 1 (base material of the Surry Unit 2 reactor pressure vessel beltline) are well documented in the literature. Generally, low alloy ferritic materials show an increase in hardness and tensile properties and a decrease in ductility and toughness during high-energy irradiation.

A method for ensuring the integrity of reactor pressure vessels has been presented in "Fracture Toughness Criteria for Protection Against Failure," Appendix G to Section XI of the ASME Boiler and Pressure Vessel Code ^[16]. The method uses fracture mechanics concepts and is based on the reference nil-ductility transition temperature (RT_{NDT}).

 RT_{NDT} is defined as the greater of either the drop weight nil-ductility transition temperature (NDTT per ASTM E-208^[15]) or the temperature 60°F less than the 50 ft-lb (and 35-mil lateral expansion) temperature as determined from Charpy specimens oriented perpendicular (transverse) to the major working direction of the plate. The RT_{NDT} of a given material is used to index that material to a reference stress intensity factor curve (K_{Ic} curve) which appears in Appendix G to the ASME Code^[16]. The K_{Ic} curve is a lower bound of static fracture toughness results obtained from several heats of pressure vessel steel. When a given material is indexed to the K_{Ic} curve, allowable stress intensity factors can be obtained for this material as a function of temperature. Allowable operating limits can then be determined using these allowable stress intensity factors

 RT_{NDT} and, in turn, the operating limits of nuclear power plants can be adjusted to account for the effects of radiation on the reactor vessel material properties. The changes in mechanical properties of a given reactor pressure vessel steel, due to irradiation, can be monitored by a reactor vessel surveillance program, such as the Surry Unit 2 reactor vessel radiation surveillance program^[3], in which a surveillance capsule is periodically removed from the operating nuclear reactor and the encapsulated specimens tested. The increase in the average Charpy V-notch 30 ft-lb temperature (ΔRT_{NDT}) due to irradiation is added to the initial RT_{NDT} , along with a margin (M) to cover uncertainties, to adjust the RT_{NDT} (ART) for radiation embrittlement This ART (RT_{NDT} initial + M + ΔRT_{NDT}) is used to index the material to the K_{Ic} curve and, in turn, to set operating limits for the nuclear power plant that take into account the effects of irradiation on the reactor vessel materials.

4 DESCRIPTION OF PROGRAM

Eight surveillance capsules for monitoring the effects of neutron exposure on the Surry Unit 2 reactor pressure vessel core region (beltline) materials were inserted in the reactor vessel prior to initial plant startup. The eight capsules were positioned in the reactor vessel between the thermal shield and the vessel wall as shown in Figure 4-1. The vertical center of the capsules is opposite the vertical center of the core.

Capsule Y was removed after 20.3 effective full power years (EFPY) of plant operation This capsule contained Charpy V-notch, tensile, and Wedge Opening Loading (WOL) specimens made from lower shell plate C4339-1 (heat number 4339) and submerged arc weld metal fabricated with the same weld wire heat 0227 as used in the reactor vessel intermediate to lower shell circumferential weld seams. In addition, this capsule contained Charpy V-notch specimens from the weld Heat-Affected-Zone (HAZ) metal of plate C4339-1 and SA533 Grade B Class 1 plate correlation monitor material.

Test material obtained from the Lower Shell Plate (after stress relieving) was taken at least one plate thickness from the quenched edges of the plate. Charpy V-notch impact specimens from lower shell plate C4339-1 were machined in the longitudinal orientation (longitudinal axis of the specimen parallel to the major rolling direction) and also in the transverse orientation (longitudinal axis of the specimen perpendicular to the major rolling direction). The core region weld Charpy impact specimens were machined from the weldment such that the long dimension of each Charpy specimen was perpendicular to the weld direction. The notch of the weld metal Charpy specimens was machined such that the direction of crack propagation in the specimen was in the welding direction.

Tensile specimens from lower shell plate C4339-1 were machined in the longitudinal orientation. Tensile specimens from the weld metal were oriented with the long dimension of the specimen perpendicular to the weld direction.

WOL specimens from lower shell plate C4339-1 and weld metal were machined such that the simulated crack in the specimen would propagate normal and parallel to the major working direction for the plate specimen and parallel to the weld direction

The heat treatment of the surveillance materials is presented in Table 4-1. The chemical composition of the unirradiated and irradiated surveillance material^[3,5] is presented in Table 4-2. No chemical analyses were performed for the surveillance materials in capsule Y.

Capsule Y contained dosimeter wires of pure iron, copper, nickel, and aluminum 0.15 weight percent cobalt (cadmium-shielded and unshielded). In addition, cadmium shielded fission monitors of neptunium (Np²³⁷) and uranium (U²³⁸) were placed in the capsule to measure the integrated flux at specific neutron energy levels.

The capsule contained thermal monitors made from two low-melting-point eutectic alloys and sealed in Pyrex tubes These thermal monitors were used to define the maximum temperature attained by the test specimens during irradiation. The composition of the two eutectic alloys and their melting points are as follows

2 5% Ag, 97 5% Pb	Melting Point: 579°F (304°C)
1.75% Ag, 0.75% Sn, 97.5% Pb	Melting Point: 590°F (310°C)

The arrangement of the various mechanical specimens, dosimeters and thermal monitors contained in Capsule Y is shown in Figure 4-2.

Table 4-1 Heat Treatment History of the Surry Unit 2 Reactor Vessel Surveillance Materials ^(a)								
Material,	Temperature (°F)	· . Time (hrs.)	Coolant					
Lower Shell Plate	1625	9	Brine-Quench					
B4339-1	1212	9	Brine-Quench					
	1140	15-1/4	Furnace Cooled					
Weld Metal (heat # 0227)	1140	15-1/4	Furnace Cooled					
Correlation Monitor Material	1675 ± 25	4	Air Cooled					
	1600 ± 25	4	• Water quenched					
	1225 ± 25	4	Furnace Cooled					
	1150 ± 25	40	Furnace Cooled to 600°F					

<u>Notes</u>

(a) This table was taken from WCAP-8085^[3].

Table 4-2 Chemical Composition (wt%) of the Surry Unit 2 Reactor Vessel Surveillance Materials (Unirradiated and Irradiated)									
Element	Lower Shel	Plate C4339-1	Weld	Weld Metal (6)					
	Unirradiated ^(c) C		Unirradiated ^(c)	Capsule V Specimen W-12 ^(d)	Unirradiated ^(c)				
С	0.23	0.258	0 09	0 096	0.22				
Mn	1 30	1 38	1.51	1 56	1.48				
P	0 012	0 0108	0.017	0 0176	0.012				
S	0 014	0.014	0 016	0 012	0.018				
Si	0.25	0.239	0.46	0.448	0.25				
Ni	0.54	0 52	0.56	0 53	0.68				
Cr	0 075	0 091	0.10	0 115					
v	0 001	0.007	0.002	<0 002					
Мо	0.54	0.533	0.41	0.411	0.52				
Co	<0 001 ^(a)	0 007	< 0.001 ^(a)	0 006					
Cu	0 11	0 104	0 19	0 184	0 14				
Sn	0 008		0 005		÷ = -				
Zn	0.005		0 009						
Al	0 035		0.015						
N ₂	0 007		0 010						
Ti	<0.001 ^(a)	<0.001	<0 001 ^(a)	< 0.001 ^(a)					
Zr	<0 001 ^(a)		< 0.001 ^(a)						
As	0 009		0 005						
В	<0.003 ^(a)		< 0.001 ^(a)						
Sb	0.001		0.001						

<u>Notes</u>

(a) Not detected, the number represents the minimum limit of detection.

(b) Surveillance weld fabricated from the same heat of weld wire (0227) and Grau Lo flux (LW320) as used in the vessel intermediate to lower shell girth weld seam.

(c) This information was obtained from WCAP-8085^[3].

(d) This information was obtained from WCAP-11499^[3]

,

r,

Figure 4-1 Original Arrangement of Surveillance Capsules in the Surry Unit 2 Reactor Vessel [Note: Capsule Y was moved from 295° to 165°, Capsule Z was moved from 305° to 254° at the beginning of cycle 13 and Capsule T was moved from 55° to 165° at the beginning of cycle 18,]

SPECIMEN NUMBERING CODE:

V -- SHELL PLATE C4339-1 (LONGITUDINAL ORIENTATION)

T – SHELL PLATE C4339-1 (TRANSVERSE ORIENTATION)

W-WELD METAL

.

H – HEAT AFFECTED ZONE

R – ASTM CORRELATION MONITOR MATERIAL

5 TESTING OF SPECIMENS FROM CAPSULE Y

5.1 OVERVIEW

The post-irradiation mechanical testing of the Charpy V-notch impact specimens and tensile specimens was performed in the Remote Metallographic Facility (RMF) at the Westinghouse Science and Technology Center. Testing was performed in accordance with 10CFR50, Appendices G and H^[2], ASTM Specification E185-82^[6], and Westinghouse Procedure RMF 8402^[11], Revision 2 as modified by Westinghouse RMF Procedures 8102^[12], Revision 1, and 8103^[13], Revision 1.

Upon receipt of the capsule at the hot cell laboratory, the specimens and spacer blocks were carefully removed, inspected for identification number, and checked against the master list in WCAP-8085^[3]. No discrepancies were found

Examination of the two low-melting point 579°F (304°C) and 590°F (310°C) eutectic alloys indicated no melting of either type of thermal monitor. Based on this examination, the maximum temperature to which the test specimens were exposed was less than 579°F (304°C)

The Charpy impact tests were performed per ASTM Specification E23-98^[7] and RMF Procedure 8103 on a Tinius-Olsen Model 74, 358J machine. The tup (striker) of the Charpy impact test machine is instrumented with a GRC 930-I instrumentation system, feeding information into an IBM compatible computer With this system, load-time and energy-time signals can be recorded in addition to the standard measurement of Charpy energy (E_D). From the load-time curve (Appendix A), the load of general yielding (P_{GY}), the time to general yielding (t_{GY}), the maximum load (P_M), and the time to maximum load (t_M) can be determined. Under some test conditions, a sharp drop in load indicative of fast fracture was observed. The load at which fast fracture was initiated is identified as the fast fracture load (P_F), and the load at which fast fracture terminated is identified as the arrest load (P_A).

The energy at maximum load (E_M) was determined by comparing the energy-time record and the load-time record The energy at maximum load is approximately equivalent to the energy required to initiate a crack in the specimen. Therefore, the propagation energy for the crack (E_p) is the difference between the total energy to fracture (E_D) and the energy at maximum load (E_M) .

The yield stress (σ_{Y}) was calculated from the three-point bend formula having the following expression:

$$\sigma_{\rm r} = (P_{\rm Gr} * L) / [B * (W - a)^2 * C]$$
(1)

where:	L	=	distance between the specimen supports in the impact machine
	В	=	the width of the specimen measured parallel to the notch
	W	=	height of the specimen, measured perpendicularly to the notch
	а	=	notch depth

The constant C is dependent on the notch flank angle (ϕ), notch root radius (ρ) and the type of loading (i.e., pure bending or three-point bending). In three-point bending, for a Charpy specimen in which $\phi = 45^{\circ}$ and $\rho = 0.010$ inch, Equation 1 is valid with C = 1.21. Therefore, (for L = 4W),

$$\sigma_{\rm r} = (P_{\rm Gr} * L) / [B * (W-a)^2 * 1.21] = (3.33 * P_{\rm Gr} * W) / [B * (W-a)^2]$$
(2)

For the Charpy specimen, B = 0.394 inch, W = 0.394 inch and a = 0.079 inch Equation 2 then reduces to:

$$\sigma_{\rm T} = 33.3 * P_{\rm GY} \tag{3}$$

where σ_y is in units of psi and P_{GY} is in units of lbs. The flow stress was calculated from the average of the yield and maximum loads, also using the three-point bend formula.

The symbol A in columns 4, 5, and 6 of Tables 5-6 through 5-10 is the cross-section area under the notch of the Charpy specimens:

$$A = B * (W - a) = 0.1241$$
 sq.in. (4)

Percent shear was determined from post-fracture photographs using the ratio-of-areas methods in compliance with ASTM Specification E23-98 and A370-97a^[8]. The lateral expansion was measured using a dial gage rig similar to that shown in the same specification.

Tensile tests were performed on a 20,000-pound Instron, split-console test machine (Model 1115) per ASTM Specification E8-99^[9] and E21-92 (1998)^[10], and Procedure RMF 8102. All pull rods, grips, and pins were made of Inconel 718. The upper pull rod was connected through a universal joint to improve axiality of loading. The tests were conducted at a constant crosshead speed of 0.05 inches per minute throughout the test.

Extension measurements were made with a linear variable displacement transducer extensometer. The extensometer knife-edges were spring-loaded to the specimen and operated through specimen failure. The extensometer gage length was 1.00 inch The extensometer is rated as Class B-2 per ASTM E83-93^[18].

Elevated test temperatures were obtained with a three-zone electric resistance split-tube furnace with a 9-inch hot zone. All tests were conducted in air. Because of the difficulty in remotely attaching a thermocouple directly to the specimen, the following procedure was used to monitor specimen temperatures. Chromel-Alumel thermocouples were positioned at the center and at each end of the gage section of a dummy specimen and in each tensile machine griper. In the test configuration, with a slight load on the specimen, a plot of specimen temperature versus upper and lower tensile machine griper and controller temperatures was developed over the range from room temperature to 550° F. During the actual testing, the grip temperatures were used to obtain desired specimen temperatures. Experiments have indicated that this method is accurate to $\pm 2^{\circ}$ F.

The yield load, ultimate load, fracture load, total elongation, and uniform elongation were determined directly from the load-extension curve. The yield strength, ultimate strength, and fracture strength were calculated using the original cross-sectional area. The final diameter and final gage length were determined from post-fracture photographs. The fracture area used to calculate the fracture stress (true stress at fracture) and percent reduction in area was computed using the final diameter measurement.

5.2 CHARPY V-NOTCH IMPACT TEST RESULTS

The results of the Charpy V-notch impact tests performed on the various materials contained in Capsule Y, which received a fluence of 2.73×10^{19} n/cm²(E> 1.0 MeV) in 20.3 EFPY of operation, are presented in Tables 5-1 through 5-10 and are compared with unirradiated results^[3] as shown in Figures 5-1 through 5-15.

The transition temperature increases and upper shelf energy decreases for the Capsule Y materials are summarized in Table 5-11 and led to the following results:

Irradiation of the reactor vessel lower shell plate C4339-1 (heat number 4339) Charpy specimens, oriented with the longitudinal axis of the specimen parallel to the major working direction (longitudinal orientation), resulted in an irradiated 30 ft-lb transition temperature of 113.11°F and an irradiated 50 ft-lb transition temperature of 157.64°F. This results in a 30 ft-lb transition temperature increase of 114.22°F and a 50 ft-lb transition temperature increase of 114.22°F and a 50 ft-lb transition temperature increase of 124.26°F for the longitudinal oriented specimens. See Table 5-11.

Irradiation of the reactor vessel lower shell plate C4339-1 (heat number 4339) Charpy specimens, oriented with the longitudinal axis of the specimen perpendicular to the major working direction (transverse orientation), resulted in an irradiated 30 ft-lb transition temperature of 118.27°F and an irradiated 50 ft-lb transition temperature of 174.08°F. This results in a 30 ft-lb transition temperature increase of 106.81°F and a 50 ft-lb transition temperature increase of 122.18°F for the longitudinal oriented specimens. See Table 5-11.

Irradiation of the weld metal (heat number 0227) Charpy specimens resulted in an irradiated 30 ft-lb transition temperature of 157.84°F and an irradiated 50 ft-lb transition temperature of 247.25°F. This results in a 30 ft-lb transition temperature increase of 178.32°F and a 50 ft-lb transition temperature increase of 224.76°F. See Table 5-11.

Irradiation of the weld Heat-Affected-Zone (HAZ) metal Charpy specimens resulted in an irradiated 30 ftlb transition temperature of 75 07°F and an irradiated 50 ft-lb transition temperature of 144.55°F. This results in a 30 ft-lb transition temperature increase of 127.91°F and a 50 ft-lb transition temperature increase of 150.28°F. See Table 5-11.

Irradiation of the Correlation Monitor Material Plate HSST02 Charpy specimens resulted in an irradiated 30 ft-lb transition temperature of 194.47°F and an irradiated 50 ft-lb transition temperature of 232.43°F. This results in a 30 ft-lb transition temperature increase of 148.02°F and a 50 ft-lb transition temperature increase of 154.12°F. See Table 5-11.

The average upper shelf energy of the lower shell plate C4339-1 (longitudinal orientation) resulted in an average energy decrease of 17 ft-lb after irradiation. This results in an irradiated average upper shelf energy of 111 ft-lb for the longitudinal oriented specimens. See Table 5-11.

The average upper shelf energy of the lower shell plate C4339-1 (transverse orientation) resulted in an average energy decrease of 10 ft-lb after irradiation This results in an irradiated average upper shelf energy of 94 ft-lb for the longitudinal oriented specimens. See Table 5-11.

The average upper shelf energy of the weld metal Charpy specimens resulted in an average energy decrease of 33 ft-lb after irradiation. This results in an irradiated average upper shelf energy of 58 ft-lb for the weld metal specimens. See Table 5-11.

The average upper shelf energy of the weld HAZ metal Charpy specimens resulted in an average energy decrease of 22 ft-lb after irradiation. This results in an irradiated average upper shelf energy of 94 ft-lb for the weld HAZ metal. See Table 5-11.

The average upper shelf energy of the Correlation Monitor Material Plate HSST02 Charpy specimens resulted in an average energy decrease of 23 ft-lb after irradiation. This results in an irradiated average upper shelf energy of 100 ft-lb for the weld correlation monitor metal. See Table 5-11.

A comparison, as presented in Table 5-12, of the Surry Unit 2 reactor vessel surveillance material test results with the Regulatory Guide 1.99, Revision $2^{[1]}$ predictions led to the following conclusions:

- The measured 30 ft-lb shift in transition temperature values of the lower shell plate C4339-1 contained in capsule Y (longitudinal & transverse) is greater than the Regulatory Guide 1.99, Revision 2, predictions. However, the shift value is within two sigma of the predicted value.
- The measured 30 ft-lb shift in transition temperature values of the weld metal contained in capsule Y is less than the Regulatory Guide 1.99, Revision 2, predictions.
- The measured percent decrease in upper shelf energy for all the surveillance materials of Capsules Y contained in the Surry Unit 2 surveillance program are less than the Regulatory Guide 1.99, Revision 2 predictions.

The fracture appearance of each irradiated Charpy specimen from the various surveillance Capsule V materials is shown in Figures 5-16 through 5-20 and shows an increasingly ductile or tougher appearance with increasing test temperature.

All beltline materials, except the intermediate to lower shell girth weld, exhibit a more than adequate upper shelf energy level for continued safe plant operation and are predicted to maintain an upper shelf energy greater than 50 ft-lb throughout the life of the vessel (30.1 EFPY) as required by 10CFR50, Appendix G^[2]. The low USE for the intermediate to lower shell girth weld is justified under the Equivalent Margin Analysis (EMA) in BAW-2192PA & BAW-2178PA

The load-time records for individual instrumented Charpy specimen tests are shown in Appendix A.

The Charpy V-notch data presented in WCAP-8085^[3], BMI-0975-/SU2^[4] and WCAP-11499^[5] were based on a hand-fit. The results presented in this report are based on a re-plot of all capsule data using CVGRAPH, Version 4.1^[14], which is a symmetric hyperbolic tangent curve-fitting program. Appendix B presents a comparison of the Charpy V-Notch test results for each capsule based on previous fit vs. symmetric hyperbolic tangent fit. Appendix C presents the CVGRAPH, Version 4.1, Charpy V-notch plots and the program input data.

5.3 TENSILE TEST RESULTS

The results of the tensile tests performed on the various materials contained in Capsule Y irradiated to $2.73 \times 10^{19} \text{ n/cm}^2$ (E> 1.0 MeV) are presented in Table 5-13 and are compared with unirradiated results^[3] as shown in Figures 5-21 and 5-22.

The results of the tensile tests performed on the lower Shell Plate C4339-1 (longitudinal orientation) indicated that irradiation to $2.73 \times 10^{19} \text{ n/cm}^2$ (E> 1.0 MeV) caused approximately a 14 ksi increase in the 0.2 percent offset yield strength and approximately a 10 to 13 ksi increase in the ultimate tensile strength when compared to unirradiated data^[3]. See Figure 5-21.

The results of the tensile tests performed on the surveillance weld metal indicated that irradiation to $2.73 \times 10^{19} \text{ n/cm}^2$ (E> 1.0 MeV) caused approximately a 19 to 21 ksi increase in the 0.2 percent offset yield strength and approximately a 12 to 21 ksi increase in the ultimate tensile strength when compared to unirradiated data^[3]. See Figure 5-22.

The fractured tensile specimens for the Lower Shell Plate C4339-1 material are shown in Figure 5-23, while the fractured tensile specimens for the surveillance weld metal are shown in Figure 5-24. The engineering stress-strain curves for the tensile tests are shown in Figures 5-25 and 5-26.

5.4 WEDGE OPENING LOADING TESTS

Per the surveillance capsule testing contract, the Wedge Opening Loading (WOL) Specimens were not tested and are being stored at the Westinghouse Science and Technology Center Hot Cell facility.

Table 5-1Charpy V-notch Data for the Surry Unit 2 Lower Shell Plate C4339-1 Irradiated to aFluence of 2.73 x 1019 n/cm2 (E> 1.0 MeV)(Longitudinal Orientation)									
Sample	Tempe	erature	Impact	Energy	Lateral E	xpansion	Shear		
Number	ું ે દ ે	°C	ft-lbs	Joules	៉ឺ mils 🍂	`,` ``````````````````````````````````	`````` ```		
V70	0	-18	8	11	2	0.05	2		
V61	10	-12	12	16	4	0 10	5		
V65	100	38	33	45	22	0 56	15		
V64	125	52	37	50	26	0.66	20		
V68	175	79	52	71	38	0.97	45		
V69	200	93	60	81	40	1.02	50		
V66	250	121	100	136	69	1.75	95		
V67	300	149	105	142	74	1.88	100		
V63	325	163	111	151	71	1.80	100		
V62	350	177	116	157	74	1 88	100		

Table 5-2Charpy V-notch Data for the Surry Unit 2 Lower Shell Plate C4339-1 Irradiated to aFluence of 2.73 x 10 ¹⁹ n/cm ² (E> 1.0 MeV). (Transverse Orientation)									
Sample	Temperature		Impact	Energy	' Lateral E	Expansion	Shear		
Number.	.		مَنْ ft-lbs	Joules	mils	mm .			
T62	0	-18	6	8	0	0.00	2		
T67	10	-12	11	15	2	0.05	5		
T70	100	38	28	38	19	0.48	15		
T69	125	52	40	54	27	0.69	20		
T61	175	79	47	64	33	0.84	35		
T63	200	93	46	62	34	0.86	40		
T68	250	121	74	100	57	1.45	90		
T64	300	149	95	129	68	1.73	100		
T66	325	163	95	129	69	1.75	100		
T65	350	177	93	126	68	1.73	100		

Table 5-3 Charpy V-notch Data for the Surry Unit 2 Surveillance Weld Metal Irradiated to a Fluence of 2.73 x 10 ¹⁹ n/cm ² (E> 1.0 MeV)								
Sample	Tempe	erature 🦾 👘	Impact	Energy	Lateral I	Expansion	Shear	
Number	·	°	ft-lbs	Joules	inils in the second s	, mw	%	
W56	72	22	11	15	4	0.10	5	
W53	100	38	18	24	13	0.33	15	
W54	150	66	24	33	15	0.38	25	
W49	175	79	39	53	31	0.79	65	
W55	200	93	36	49	27	0.69	55	
W50	250	121	54	73	43	1.09	98	
W51	350	177	54	73	40	1.02	100	
W52	375	191	66	89	50	1.27	100	

•

,

• • i

Table 5-4	Table 5-4 Charpy V-notch Data for the Surry Unit 2 Heat-Affected-Zone (HAZ) Material Irradiated to a Fluence of 2.73 x 10 ¹⁹ n/cm ² (E> 1.0 MeV)												
Sample	С	erature	Impact	Energy	🗟 Lateral I	Shear							
Number		°Č	Ft-lbs	Joules	mils	mm	` , %						
H56	-50	-46	18	24	7	0.18	15						
H49	-25	-32	25	34	12	0.30	20						
H54	0	-18	12	16	7	0.18	35						
H52	100	38	32	43	27	0.69	55						
H53	150	66	44	60	35	0.89	65						
H55	200	93	66	89	48	1.22	75						
H50	300	149	95	129	66	1.68	100						
H51	325	163	93	126	66	1.68	100						

.

Table 5-5	Table 5-5 Charpy V-notch Data for the Surry Unit 2 Correlation Monitor Material Irradiated to a Fluence of 2.73 x 10 ¹⁹ n/cm ² (E> 1.0 MeV)												
Sample	Tempe	rature	Impact	Energy	Lateral I	Shear							
Number	.	૾૾૾૽૾ૼૼૼ૿૾ૺ૽	Ft-lbs	Joules	mils	a mm, i	· % .						
R51	72	22	7	9	0	0.00	10						
R56	125	52	25	34	15	0.38	15						
R54	175	79	22	30	15	0.38	20						
R52	200	93	34	46	25	0.64	25						
R49	225	107	32	43	23	0.58	30						
R50	250	121	65	88	43	1.09	55						
R53	325	163	93	126	69	1.75	100						
R55	375	191	107	145	69	1.75	100						

Table 5-6	i Instrum Irradia	iented Cha led to a Fli	irpy Impa uence of 2.	ct Test Res 73 x 10 ¹⁹ r	ults for th /cm² (E>1	e Surry U .0 MéV)	nit 2 Lowe (Longitu	r Shell Pla Idinal Orie	te C4339- intation)				
Sample No:	Test Temp. (°F)	Charpy Energy Eo (ft-Ib)	Norr Charpy E _D /A	malized Ene (ft-lb/in ²) Max. E _M /A	rgiës Prop. E _P /A	Yield Load Pcv	Time to Yield toy (msec)	Max. Load P _M (lb)	Time to Max. t _M	Fast Fract. Load Pr	Arrest Load P _A	Yield Stress Sy (ksi)	Flow Stress (ksl)
V70	0	8.3	67	36	30	3603	0.15	3632	0.16	3556	0	120	120
V61	10	12.1	98	54	44	3934	0.16	4433	0.19	4406	0	131	139
V65	100	33.4	269	213	56	3455	0.15	4560	0.48	4521	0	115	133
V64	125	36.0	290	224	66	3310	0.14	4483	0.51	4483	180	110	130
V68	175	51.7	416	303	114	3283	0.15	4396	0.66	4345	1159	109	128
V69	200	59.5	480	308	171	3212	0.15	4460	0.66	4301	1120	107	128
V66	250	99.2	799	312	487	3139	0.15	4474	0.67	3459	2648	105	127
V67	300	102.5	826	303	523	3038	0.15	4387	0.67	N/A	N/A	101	124
V63	325	108.9	878	311	566	3133	0.15	4423	0.68	N/A	N/A	104	126
V62	350	111.4	898	300	598	3105	0.15	4311	0.66	N/A	N/A	103	123

• .

•

Table 5	Table 5-7 Instrumented Charpy Impact Test Results for the Surry Unit 2 Lower Shell Plate C4339-1 Irradiated to a Fluence of 2.73 x 10 ¹⁹ n/cm ² (E>1.0 MeV) (Transverse Orientation)													
Sample, No.	Test Temp. (°F)	Charpy Energy En	Norr Charpy E _D /A	malized Ene (ft-lb/ín²) Max, E _M /A	rgies Prop.	Yield Load Pgy (lb)	Time to Yield t _{GY} (msec)	Max, Load P _M (lb)	Time to Max. t _M (msec)	Fract. Load Pr	Arrest Load PA	Xield Stress Sy (ksi)	Flow Stress (ksi)	
T62	0	6	52	27	25	3035	0.14	3040	0.14	3020	0	101	101	
T67	10	10	84	45	39	3862	0.16	4108	0 18	3957	0	129	133	
T70	100	28	228	166	61	3309	0.14	4420	0.40	4412	150	110	129	
T69	125	40	323	234	89	3358	0.15	4467	0.53	4435	533	112	130	
T61	175	46	372	226	146	3249	0.14	4419	0.51	4187	1187	108	128	
T63	200	46	367	220	147	3192	0.15	4362	0.51	4308	1747	106	126	
T68	250	74	599	219	380	3026	0.14	4245	0.52	3770	2730	101	121	
T64	300	95	766	302	464	3025	0.14	4335	0.67	N/A	N/A	101	123	
T66	325	94	760	295	465	3068	0.15	4259	0.67	N/A	N/A	102	122	
T65	350	91	729	289	440	2874	0.15	4211	0.67	N/A	N/A	96	118	

.

Table 5-8 Instrumented Charpy Impact Test Results for the Surry Unit 2 Surveillance Weld Metal Irradiated to a Fluence of 2.73 x 10 ¹⁹ n/cm ² (E>1.0 MeV)													
Sample, No.	Test ATemp. (°F)	Charpy Energy En (ft-lb)	Charpý * En/A ,	nalized Enc. (ft-lb/in²) Max. E _N /A	rgles Prop. E _P /A	Yield Load Pgy. (lb)	Time to Yield t _{Gy} (msec)	Máx. Load P _M (1b)	Time to Max. t _M	Fast Fract. Load P _F	Arrest Load P _A (lb)	Yield Stress Sy (Ksl)	Flow Stress (ksi)
W56	72	11	92	54	39	3608	0.15	4237	0.19	4183	0	120	131
W53	100	20	158	73	85	3530	0.14	4425	0.23	4264	266	118	132
W54	150	24	195	69	127	3318	0.14	4243	0.22	4143	1033	110	126
W49	175	39	314	172	143	3211	0.14	4189	0.42	4165	2057	107	123
W55	200	36	290	175	115	3148	0.14	4109	0.43	4099	1530	105	121
W50	250	54	436	189	247	3259	0.14	4214	0.45	3935	2494	109	124
W51	350	53	428	162	266	3022	0.14	4016	0.41	N/A	N/A	101	117
W52	375	66	529	192	336	2956	0.15	4039	0.49	N/A	N/A	98	116

· •

Table 5-9 Instrumented Charpy Impact Test Results for the Surry Unit 2 Heat-Affected-Zone (HAZ) Metal Irradiated to a Fluence of 2.73 x 10 ¹⁹ n/cm ² (E>1.0 MeV)													
	Test	Charpy Energy En	Nori	nalized Ene (ft-lb/in²)	rgies	Yield	Time to	Max	Time to Max.	Fast Fract.	Arrest	Yield :	Flow
Sample No.	Temp.	(ft-lb)	Charpy E _D /A	Max. E _M /A	Prop. Ep/A	P _{GY} (lb)	Yield t _{QY} (msec)	Load P _M (lb)	(msec)	Load Pr (lb)	Load P _A (lb)	Stress Sy (ksi)	Stress (ksi)
H56	-50	18	144	74	70	3773	0.15	4637	0.23	4622	0	126	140
H49	-25	25	201	73	129	3805	0.15	4665	0.22	4507	0	127	141
H54	0	12	96	35	62	3408	0.14	3523	0.16	3508	689	113	115
H52	100	33	264	67	197	3343	0.14	4183	0.22	4107	1542	111	125
H53	150	44	357	178	179	3342	0.15	4282	0.43	4277	2263	111	127
H55	200	65	527	236	291	3321	0 15	4390	0.54	2540	879	111	128
H50	300	94	759	305	454	3079	0 15	4311	0.68	N/A	N/A	103	123
H51	325	90	723	227	496	3217	0.15	4293	0.53	N/A	N/A	107	125

.

.

Table 5-1	Table 5-10 Instrumented Charpy Impact Test Results for the Surry Unit 2 Correlation Monitor Metal Irradiated to a Fluence of 2.73 x 10 ¹⁹ n/cm ² (E>1.0 MeV)													
Sample. No.	Test Temp. (°F)	Charpy Energy E _D (ft-lb)	Charpy E _D /A	nalized Ene (ft-1b/in²) Max, E _M /A	rgles Prop. E _p /A	Yield Load Pov	Time to Yield t _{GY} (msec)	Max. Load P _M	Time to Max, t _M (msec)	Fast Fract. Load Pr (lb)	Arrest Load P _A (lb)	Yield Siress Sy (ksi)	Flow Stress (ksi)	
R51	72	6	52	26	25	2914	0.13	2965	0.14	2956	0	97	98	
R56	125	25	199	150	49	3205	0.14	4128	0.38	4094	0	107	122	
R54	175	22	176	62	115	3122	0.14	3910	0.22	3854	502	104	117	
R52	200	33	267	167	101	2989	0.14	4052	0.43	3928	1246	100	117	
R49	225	32	255	154	101	2993	0.14	4073	0.40	4063	1212	100	118	
R50	250	65	523	220	303	3066 [·]	0.15	4240	0.52	4030	2233	102	122	
R53	325	91	729	294	435	3034	0.14	4213	0.66	N/A	N/A	101	121	
R55	375	105	842	290	552	3037	0.16	4154	0.68	N/A	N/A	101	120	

-

Table 5-11 Effect Surve	Table 5-11 Effect of Irradiation to 2.73 x 10 ¹⁹ n/cm ² (E>1.0 MeV) on the Capsule V-Notch Toughness Properties of the Surry Unit 2 Reactor Vessel Surveillance Materials ^(c)												
Material	Avera "Transition	ge 30 (ft-lb) Tcmperatu	(a) re (°F)	Average Expansion	35 mil Late Temperatu	ral ^(b) re (°F)	Aver: Transition	age 50 ft-lb ^{(a} Temperatur	re (°F)	Average En	ergy Absorj Shear (ft-ll	ption(*) b)	
	Unirradiated	Irradiated	ΔΤ	Unirradiated	Irradiated	ΔΤ	Unirradiated	Irradiated	Δr	Unirradiated	"Irradiated"	ΔE	
Lower Shell Plate C4339-1 (Long)	-1.11	113.11	114.22	26.92	161.52	134.6	33.38	157.64	124.26	128	111	-17	
Lower Shell Plate C4339-1 (Trans)	11.46	118.27	106.81	41.73	178.53	136.79	51.9	174.08	122.18	104	94	-10	
Weld Metal (heat # 0227)	-20.48	157.84	178.32	-1.88	218.35	220.24	22.48	247.25	224.76	91	58	-33	
IIAZ Metal	-52 83	75.07	127.91	-8.73	144.04	152 77	-5 72	144.55	150 28	116	94	-22	
Correlation Monitor Material	46.44	194.47	148.02	58.96	235.59	176.63	78.3	232.43	154.12	123	100	-23	

a. "Average" is defined as the value read from the curve fit through the data points of the Charpy tests (see Figures 5-1, 5-4, 5-7, 5-10 and 5-13).

b. "Average" is defined as the value read from the curve fit through the data points of the Charpy tests (see Figures 5-2, 5-5, 5-8, 5-11 and 5-14).

c. Any difference in unirradiated properties reported in this Table in comparison to WCAP-8085, BMI-0975-/SU2 and WCAP-11499, are due to now using a symmetric hyperbolic tangent curve fitting of the Charpy data versus the method used in the previous analyses. See Appendix B.

Table 5-12 Comparison of the Surry Unit 2 Surveillance Material 30 ft-lb Transition Temperature Shifts and Upper Shelf Energy Decreases with Regulatory Guide 1.99, Revision 2, Predictions											
			30 ft-lb T Tempera	Upper Sh	Upper Shelf Energy Decrease						
Material	Material Capsule		Predicted	Measured (°F) ^(b)	Predicted (%) (*)	Measured (%) ^(¢)					
Lower Shell Plate	x	0.297	49.03	59.08	15	5					
C4339-1	v	1.89	86.17	79.12	23	5					
(Longitudinal)	Y	2.73	93.07	114.22	26	13					
Lower Shell Plate	х	0.297	49.03	48 67	15	10					
C4339-1	v	1.89	86 17	63.6	23	10					
(Transverse)	Y	2.73	93.07	106.81	26	10					
Surveillance Program	x	0.297	99.73	95.65	25	22					
Weld Metal	v	1.89	175.28	140.21	38	34					
	Y	2 73	189.31	178.32	41	36					
Heat Affected Zone	x	0.297		29.22		13					
Material	v	1.89		51.23		19					
	Y	2.73		127.91		19					
Correlation Monitor	x	0.297		62.19		16					
Material	v	1.89		116.55		17					
	Y	2.73		148.02		19					

5,

Notes:

(a) Based on Regulatory Guide 1.99, Revision 2, methodology using the mean weight percent values of copper and nickel of the surveillance material The best estimate copper/nickel values for the surveillance plate and weld were 0.11/0 54 and 0.19/0.55, respectively.

(b) Calculated using measured Charpy data plotted using CVGRAPH, Version 4.1 (See Appendix C)

(c) Values are based on the definition of upper shelf energy given in ASTM E185-82.

(d) The fluence values presented here are the calculated fluence values, not the best estimate. For best estimate values see Appendix D of this report
Table 5-13 Tensile Properties of the Surry Unit 2 Capsule V Reactor Vessel Surveillance Materials Irradiated to 2.73 x 10 ¹⁹ n/cm ² (E > 1.0 MeV)										
Material	Sample	Test	0.2%	Ultimate	Fracture	Fracture	Fracture	Uniform	Z. Total 🐇 -	Reduction
	Number	Temp. (°F)	Yield Strength (ksi)	Strength (ksi)	Load (kip)	Stress (ksi)	Strength (ksi)	Elongation (%)	Elongation	in Area (%)
Lower Shell Plate C4339-1 (Long.)	V 5	300	75.7	96.7	3.20	200.4	65.2	9.0	21.5	67
	V 6	550	71.3	98.6	3.50	159.8	71.3	10.5	19.5	55
Weld Metal (Heat # 0227)	W 13	300	84.5	98.8	3.58	167.2	72.8	9.0	18.5	56
	W 14	550	80.5	97.0	3.60	160.5	73.3	8.5	17.5	54

5-16

Figure 5-1 Charpy V-Notch Impact Energy vs. Temperature for Surry Unit 2 Reactor Vessel Lower Shell Plate C4339-1 (Longitudinal Orientation)

5-17

84.7

Figure 5-2 Charpy V-Notch Lateral Expansion vs. Temperature for Surry Unit 2 Reactor Vessel Lower Shell Plate C4339-1 (Longitudinal Orientation)

Figure 5-3 Charpy V-Notch Percent Shear vs. Temperature for Surry Unit 2 Reactor Vessel Lower Shell Plate C4339-1 (Longitudinal Orientation)

Figure 5-4 Charpy V-Notch Impact Energy vs. Temperature for Surry Unit 2 Reactor Vessel Lower Shell Plate C4339-1 (Transverse Orientation)

Figure 5-5 Charpy V-Notch Lateral Expansion vs. Temperature for Surry Unit 2 Reactor Vessel Lower Shell Plate C4339-1 (Transverse Orientation)

Figure 5-6 Charpy V-Notch Percent Shear vs. Temperature for Surry Unit 2 Reactor Vessel Lower Shell Plate C4339-1 (Transverse Orientation)

Figure 5-7 Charpy V-Notch Impact Energy vs. Temperature for Surry Unit 2 Reactor Vessel Weld Metal

Figure 5-8 Charpy V-Notch Lateral Expansion vs. Temperature for Surry Unit 2 Reactor Vessel Weld Metal

Figure 5-9 Charpy V-Notch Percent Shear vs. Temperature for Surry Unit 2 Reactor Vessel Weld Metal

Figure 5-10 Charpy V-Notch Impact Energy vs. Temperature for Surry Unit 2 Reactor Vessel Heat-Affected-Zone Material

Figure 5-11 Charpy V-Notch Lateral Expansion vs. Temperature for Surry Unit 2 Reactor Vessel Heat-Affected-Zone Material

Figure 5-12 Charpy V-Notch Percent Shear vs. Temperature for Surry Unit 2 Reactor Vessel Heat-Affected-Zone Material

Figure 5-13 Charpy V-Notch Impact Energy vs. Temperature for Surry Unit 2 Reactor Vessel Correlation Monitor Material

Figure 5-14 Charpy V-Notch Lateral Expansion vs. Temperature for Surry Unit 2 Reactor Vessel Correlation Monitor Material

Figure 5-15 Charpy V-Notch Percent Shear vs. Temperature for Surry Unit 2 Reactor Vessel Correlation Monitor Material

Testing of Specimens from Capsule Y

Figure 5-17 Charpy Impact Specimen Fracture Surfaces for Surry Unit 2 Reactor Vessel Lower Shell Plate C4339-1 (Transverse Orientation)

Figure 5-19 Charpy Impact Specimen Fracture Surfaces for Surry Unit 2 Reactor Vessel Heat-Affected-Zone Metal

R50, 250°F

R53, 325°F

R55, 375°F

Figure 5-20 Charpy Impact Specimen Fracture Surfaces for Surry Unit 2 Reactor Vessel Correlation Monitor Material

Figure 5-21 Tensile Properties for Surry Unit 2 Reactor Vessel Lower Shell Plate C4339-1 (Longitudinal Orientation)

Figure 5-22 Tensile Properties for Surry Unit 2 Reactor Vessel Weld Metal

Specimen V5 Tested at 300°F

Specimen V6 Tested at 550°F

Figure 5-23 Fractured Tensile Specimens from Surry Unit 2 Reactor Vessel Lower Shell Plate C4339-1 (Longitudinal Orientation)

Specimen W14 Tested at 550°F

Figure 5-24 Fractured Tensile Specimens from Surry Unit 2 Reactor Vessel Weld Metal

Figure 5-25 Engineering Stress-Strain Curves for Surry Unit 2 Lower Shell Plate C4339-1 Tensile Specimens V5 and V6 (Longitudinal Orientation)

Figure 5-26 Engineering Stress-Strain Curves for Weld Metal Tensile Specimens W13 and W14

5-42

6 RADIATION ANALYSIS AND NEUTRON DOSIMETRY

6.1 INTRODUCTION

This section describes a discrete ordinates S_n transport analysis performed for the Surry Unit 2 reactor to determine the neutron radiation environment within the reactor pressure vessel and surveillance capsules. In this analysis, fast neutron exposure parameters in terms of fast neutron fluence (E > 1.0 MeV) and iron atom displacements (dpa) were established on a plant and fuel cycle specific basis. An evaluation of the most recent dosimetry sensor set from Capsule Y, withdrawn at the end of the seventeenth plant operating cycle, is provided. In addition, to provide an up-to-date data base applicable to the Surry Unit 2 reactor, the sensor sets from the previously withdrawn capsules (X, W, V, and S) were re-analyzed using the current dosimetry evaluation methodology. These dosimetry evaluations with the analytical predictions served to validate the plant specific neutron transport calculations. These validated calculations subsequently formed the basis for providing projections of the neutron exposure of the reactor pressure vessel for operating periods extending to 54 Effective Full Power Years (EFPY).

The use of fast neutron fluence (E > 1.0 MeV) to correlate measured material property changes to the neutron exposure of the material has traditionally been accepted for the development of damage trend curves as well as for the implementation of trend curve data to assess the condition of the vessel. In recent years, however, it has been suggested that an exposure model that accounts for differences in neutron energy spectra between surveillance capsule locations and positions within the vessel wall could lead to an improvement in the uncertainties associated with damage trend curves and improved accuracy in the evaluation of damage gradients through the reactor vessel wall.

Because of this potential shift away from a threshold fluence toward an energy dependent damage function for data correlation, ASTM Standard Practice E853, "Analysis and Interpretation of Light-Water Reactor Surveillance Results," recommends reporting displacements per iron atom (dpa) along with fluence (E > 1.0 MeV) to provide a data base for future reference. The energy dependent dpa function to be used for this evaluation is specified in ASTM Standard Practice E693, "Characterizing Neutron Exposures in Iron and Low Alloy Steels in Terms of Displacements per Atom." The application of the dpa parameter to the assessment of embrittlement gradients through the thickness of the reactor vessel wall has already been promulgated in Revision 2 to Regulatory Guide 1.99, "Radiation Embrittlement of Reactor Vessel Materials."

All of the calculations and dosimetry evaluations described in this section and in Appendix D were based on the latest available nuclear cross-section data derived from ENDF/B-VI and made use of the latest available calculational tools. Furthermore, the neutron transport and dosimetry evaluation methodologies follow the guidance and meet the requirements of Regulatory Guide 1.190, "Calculational and Dosimetry Methods for Determining Pressure Vessel Neutron Fluence."^[19] Additionally, the methods used to develop the calculated pressure vessel fluence are consistent with the NRC approved methodology described in WCAP-14040-NP-A, "Methodology Used to Develop Cold Overpressure Mitigating System Setpoints and RCS Heatup and Cooldown Limit Curves," January 1996.^[20] The specific calculational methods applied are also consistent with those described in WCAP-15557, "Qualification of the Westinghouse Pressure Vessel Neutron Fluence Evaluation Methodology."^[21]

1

6.2 DISCRETE ORDINATES ANALYSIS

A plan view of the Surry Unit 2 reactor geometry at the core midplane is shown in Figure 4-1. Eight irradiation capsules attached to the thermal shield are included in the reactor design to constitute the reactor vessel surveillance program. The capsule holders are located at azimuthal angles of 165° and 285° (15° from the core cardinal axes), 65°, 245° and 295° (25° from the core cardinal axes), 55° and 305° (35° from the core cardinal axes), and at 45° as shown in Figure 4-1. The stainless steel specimen containers are nominally 1 inch square and 56 inches in height The containers are positioned axially such that the test specimens are centered on the core midplane.

From a neutronic standpoint, the surveillance capsules and associated support structures are significant The presence of these materials has a marked effect on both the spatial distribution of neutron flux and the neutron energy spectrum in the water annulus between the core barrel and the reactor vessel. In order to determine the neutron environment at the test specimen locations, the capsules themselves must be included in the analytical model

The fast neutron exposure evaluations for the Surry Unit 2 reactor vessel and surveillance capsules were based on a series of fuel cycle specific forward transport calculations that were combined using the following three-dimensional flux synthesis technique:

$$\phi(r,\theta,z) = \phi(r,\theta) \times \frac{\phi(r,z)}{\phi(r)}$$

where $\phi(r,\theta,z)$ is the synthesized three-dimensional neutron flux distribution, $\phi(r,\theta)$ is the transport solution in r, θ geometry, $\phi(r,z)$ is the two-dimensional solution for a cylindrical reactor model using the actual axial core power distribution, and $\phi(r)$ is the one-dimensional solution for a cylindrical reactor model using the same source per unit height as that used in the r, θ two-dimensional calculation. This synthesis procedure was carried out for each operating cycle at Surry Unit 2.

For the Surry Unit 2 transport calculations, the r, θ model depicted in Figure 6-1 was utilized since the reactor is octant symmetric (with the exception of the surveillance capsules). This r, θ model includes the core, the reactor internals and core barrel, explicit representations of the surveillance capsules at 15°, 25°, 35°, and 45°, the pressure vessel cladding and vessel wall, the insulation external to the pressure vessel, and the shield tank external to the pressure vessel. This r, θ model was utilized in the synthesis procedure to perform the surveillance capsule dosimetry evaluations and subsequent comparisons with calculated results, in addition to calculating the maximum neutron exposure levels at the pressure vessel wall. In developing this analytical model, nominal design dimensions were employed for the various structural components.

Water temperatures, and hence, coolant densities in the reactor core and downcomer regions of the reactor were taken to be representative of full power operating conditions. The coolant densities were treated on a fuel cycle specific basis The reactor core itself was treated as a homogeneous mixture of fuel, cladding, water, and miscellaneous core structures such as fuel assembly grids, guide tubes, et cetera. The geometric mesh description of the r, θ reactor model consisted of 156 radial by 83 azimuthal intervals Mesh sizes were chosen to assure that proper convergence of the inner iterations was achieved on a pointwise basis.

The pointwise inner iteration flux convergence criterion utilized in the r,θ calculations was set at a value of 0.001.

The r,z model used for the Surry Unit 2 calculations (see Figure 6-2) extended radially from the centerline of the reactor core out to a location interior to the shield tank and over an axial span from an elevation 1-foot below the active fuel to approximately 1-foot above the active fuel. As in the case of the r, θ model, nominal design dimensions and full power coolant densities were employed in the calculations. In this case, the homogenous core region was treated as an equivalent cylinder with a volume equal to that of the active core zone. The stainless steel formers located between the core baffle and core barrel regions were also explicitly included in the model. The r,z geometric mesh description of the reactor model consisted of 148 radial by 90 axial intervals. As in the case of the r, θ calculations, mesh sizes were chosen to assure that proper convergence of the inner iterations was achieved on a pointwise basis. The pointwise inner iteration flux convergence criterion utilized in the r,z calculations was also set at a value of 0.001.

The one-dimensional radial model used in the synthesis procedure consisted of the same 148 radial mesh intervals included in the r,z model. Thus, radial synthesis factors could be determined on a meshwise basis throughout the entire geometry.

The core power distributions used in the plant specific transport analysis were supplied by Dominion Generation for each operating cycle of Surry Unit 2. The data used in the calculations represented cycle dependent fuel assembly enrichments, burnups, and axial power distributions. This information was used to develop spatial and energy dependent core source distributions averaged over each individual fuel cycle. Therefore, the results from the neutron transport calculations provided data in terms of fuel cycle averaged neutron flux, which when multiplied by the appropriate fuel cycle length, generated the incremental fast neutron exposure for each fuel cycle. In constructing these core source distributions, the energy distribution of the source was based on an appropriate fission split for uranium and plutonium isotopes based on the initial enrichment and burnup history of individual fuel assemblies. From these assembly dependent fission splits, composite values of energy release per fission, neutron yield per fission, and fission spectrum were determined.

All of the transport calculations supporting this analysis were carried out using the DORT discrete ordinates code Version $3.1^{[22]}$ and the BUGLE-96 cross-section library.^[23] The BUGLE-96 library provides a 67 group coupled neutron-gamma ray cross-section data set produced specifically for light water reactor (LWR) applications. In these analyses, anisotropic scattering was treated with a P₅ legendre expansion and angular discretization was modeled with an S₁₆ order of angular quadrature. Energy and space dependent core power distributions, as well as system operating temperatures, were treated on a fuel cycle specific basis.

Selected results from the neutron transport analyses are provided in Tables 6-1 through 6-6. In Table 6-1, the calculated exposure rates and integrated exposures, expressed in terms of both neutron fluence (E > 1.0 MeV) and dpa, are given at the radial and azimuthal center of the irradiation capsules comprising the reactor vessel materials surveillance program

In the case of the Surry Unit 2 surveillance program, eight capsules were initially inserted into the reactor prior to plant startup as follows:

Capsules X and V 15° Capsules U, W, and Y 25° Capsules T and Z 35° Capsule S 45°

At the conclusion of cycle 12, Capsule Y was moved from the 25° to the 15° azimuthal position and Capsule Z was repositioned from the 35° to the 25° azimuth Likewise, at the conclusion of cycle 17, Capsule T was moved from the 35° to the 15° holder location. The irradiation history of these eight surveillance caspules is summarized as follows:

Capsule	Location	Irradiation History				
X	15°	Cycle 1 (Withdrawn)				
W	25°	Cycles 1-4 (Withdrawn)				
v	15°	Cycles 1-8 (Withdrawn)				
S	45°	Cycles 1-13 (Withdrawn)				
Y	25°/15°	Cycles 1-12 at 25°; Cycles 13-17 at 15° (Withdrawn)				
U	25°	Cycles 1-17 (In reactor)				
Т	35°/15°	Cycles 1-17 at 35°; Future cycles at 15° (In reactor)				
Z	35°/25°	Cycles 1-12 at 35°; Cycles 13-17 at 25° (In reactor)				

The data listed in Table 6-1 provides the exposure history of all capsules located at each of the four azimuthally symmetric holder positions (15°, 25°, 35°, and 45°) throughout the entire course of irradiation. In addition, based on these irradiation histories, composite exposure projections for Capsules Y, T, and Z were also computed and are likewise included in Table 6-1. The results given in Table 6-1 are representative of the axial midplane of the active core and establish the calculated exposure of the surveillance capsules withdrawn to date as well as projected into the future.

In Table 6-2, cycle specific maximum integrated neutron exposures, expressed in terms of both neutron fluence (E > 1.0 MeV) and dpa, are given at the pressure vessel clad base metal interface at azimuthal angles of 0°, 15°, 30°, and 45° relative to the core major axis. These data are representative of the axial location of the maximum neutron exposure of the pressure vessel.

Both calculated fluence (E > 1.0 MeV) and dpa data are provided in Tables 6-1 and 6-2. These data tabulations include both plant and fuel cycle specific calculated neutron exposures at the end of the seventeenth operating fuel cycle as well as projections to 54 effective full power years of operation. The projections were based on the assumption that the reactor power level and spatial power distribution averaged over cycles 11 through 17 was representative of future operation. The average relative radial power distribution used in performing these projections is summarized as follows:

	8	9	10	11	12	13	14	15
Н	1.111							
J	1.155	1.149						
К	1.174	1.267	1.224					
L	1.288	1.227	1.342	1.228				
Ν	1.185	1.333	1.236	1.272	0 762			
Ν	1.254	1.157	1.200	1.008	0.387			
Р	0.846	0.995	0.548	0.324				
R	0.343	0.277						

As depicted, the average relative radial power distribution is shown in the southeast quadrant of the reactor.

Based on this average core power distribution, the maximum calculated fast neutron flux (E > 1.0 MeV) incident on the Surry Unit 2 reactor pressure vessel was $2.53e+10 \text{ n/cm}^2$ and occurred along the 0 degree azimuth. The contribution of individual fuel assemblies to that overall maximum is summarized as follows:

	Fast Neutron Flux (E > 1.0 MeV) per Unit Assembly Power									
	8	9	10	11	12	13	14	15		
н	2.00e+04									
J	5.80e+04	8.34 c+ 04								
К	2.52e+05	5.76e+05	2.27e+05							
L	1.53e+06	3.59e+06	1.61e+06	5.26e+05						
N	1.23e+07	2.51e+07	1.21e+07	4.05 e+ 06	1.03e+06					
N	1.42 c+ 08	2.56 c+ 08	1.00e+08	2.96e+07	6.02 c+ 06					
P	2.04 c+ 09	2.92e+09	8.11e+08	2.25e+08						
R	2.85e+10	3.47e+10								

The data as presented include the effects of symmetry along both the 0° and 45° axes. These importance functions can be used in a multiplicative fashion with actual future fuel cycle designs in order to estimate the impact of these future designs on the maximum vessel exposure relative to the projections based on the average power distribution.

6-5

Radial gradient information applicable to fast (E > 1.0 MeV) neutron fluence and dpa are given in Tables 6-3 and 6-4, respectively. The data, based on the cumulative integrated exposures from cycles one through seventeen, are presented on a relative basis for each exposure parameter at several azimuthal locations. Exposure distributions through the vessel wall may be obtained by multiplying the calculated exposure at the vessel inner radius by the gradient data listed in Tables 6-3 and 6-4.

The calculated fast neutron exposures for the five surveillance capsules withdrawn from the Surry Unit 2 reactor are provided in Table 6-5. These assigned neutron exposure levels are based on the plant and fuel cycle specific neutron transport calculations performed for the Surry Unit 2 reactor

Updated lead factors for the Surry Unit 2 surveillance capsules are provided in Table 6-6. The capsule lead factor is defined as the ratio of the calculated fluence (E > 1.0 MeV) at the geometric center of the surveillance capsule to the corresponding maximum calculated fluence at the pressure vessel clad/base metal interface. In Table 6-6, the lead factors for capsules that have been withdrawn from the reactor were based on the calculated fluence values for the irradiation period corresponding to the time of withdrawal for the individual capsules. For the capsules remaining in the reactor, the lead factors correspond to the calculated fluence values at the end of cycle seventeen.

6.3 NEUTRON DOSIMETRY

The validity of the calculated neutron exposures previously reported in Section 6.2 is demonstrated by a direct comparison against the measured sensor reaction rates and via a least squares evaluation performed for each of the capsule dosimetry sets However, since the neutron dosimetry measurement data merely serves to validate the calculated results, only the direct comparison of measured-to-calculated results for the most recent surveillance capsule removed from service is provided in this section of the report. For completeness, the assessment of all measured dosimetry removed to date, based on both direct and least squares evaluation comparisons, is documented in Appendix D.

The direct comparison of measured versus calculated fast neutron threshold reaction rates for the sensors from Capsule Y, that was withdrawn from Surry Unit 2 at the end of the seventeenth fuel cycle, is summarized below.

i v in Die vir seit	Reaction Rat	<u>}</u> M/C	
Reaction	Measured	Calculated	Ratio
⁶³ Cu(n,α) ⁶⁰ Co (Cd)	3.21E-17	3.27E-17	0.98
⁵⁴ Fe(n,p) ⁵⁴ Mn	3.04E-15	3.35E-15	0.91
²³⁸ U(n,f) ¹³⁷ Cs (Cd)	1.36E-14 1.54E-15		0.88
²³⁷ Np(n,f) ¹³⁷ Cs (Cd)	1.28E-13 1.11e-13		1.15
		Average:	0.98
	[·] Sam	ple % Standard	12.4
		Deviation [.]	

The measured-to-calculated (M/C) reaction rate ratios for the Capsule Y threshold reactions range from 0.88 to 1.15, and the average M/C ratio is $0.98 \pm 12.4\%$ (1 σ).

The intent of this comparison along with the additional M/C data provided in Appendix D is to demonstrate that the plant specific dosimetry from the Surry Unit 2 surveillance program supports the overall calculational uncertainty estimate described in Section 6.4. In addition, based on discussions in Regulatory Guide 1.190, it is expected that fast neutron measurements fall within \pm 20% of the qualified calculation. The full set of threshold foil M/C data for the five surveillance capsules withdrawn from Surry Unit 2 shows this to be true. As a result, these comparisons are considered to validate the current analytical results provided in Section 6.2.

6.4 CALCULATIONAL UNCERTAINTIES

The uncertainty associated with the calculated neutron exposure of the Surry Unit 2 surveillance capsule and reactor pressure vessel is based on the recommended approach provided in Regulatory Guide 1.190. In particular, the qualification of the methodology was carried out in the following four stages

- 1 Comparison of calculations with benchmark measurements from the Pool Critical Assembly (PCA) simulator at the Oak Ridge National Laboratory (ORNL).
- 2 Comparisons of calculations with surveillance capsule and reactor cavity measurements from the H. B. Robinson power reactor benchmark experiment.
- 3 An analytical sensitivity study addressing the uncertainty components resulting from important input parameters applicable to the plant specific transport calculations used in the neutron exposure assessments.
- 4 Comparisons of the plant specific calculations with all available dosimetry results from the Surry unit 2 surveillance program.

The first phase of the methods qualification (PCA comparisons) addressed the adequacy of basic transport calculation and dosimetry evaluation techniques and associated cross-sections. This phase, however, did not test the accuracy of commercial core neutron source calculations nor did it address uncertainties in operational or geometric variables that impact power reactor calculations. The second phase of the qualification (H. B. Robinson comparisons) addressed uncertainties in these additional areas that are primarily methods related and would tend to apply generically to all fast neutron exposure evaluations. The third phase of the qualification (analytical sensitivity study) identified the potential uncertainties introduced into the overall evaluation due to calculational methods approximations as well as to a lack of knowledge relative to various plant specific input parameters. The overall calculational uncertainty applicable to the Surry unit 2 analysis was established from results of these three phases of the methods qualification.

The fourth phase of the uncertainty assessment (comparisons with Surry Unit 2 measurements) was used solely to demonstrate the validity of the transport calculations and to confirm the uncertainty estimates associated with the analytical results. The comparison was used only as a check and was not used in any way to modify the calculated surveillance capsule and pressure vessel neutron exposures previously described in Section 6.2 As such, the validation of the Surry Unit 2 analytical model based on the measured plant dosimetry is completely described in Appendix D.

The following summarizes the uncertainties developed from the first three phases of the methodology qualification Additional information pertinent to these evaluations is provided in Reference 3.

and the second secon	-Capsule 🔌	/ Vessel IR 🗤
PCA Comparisons	3%	3%
H. B. Robinson Comparisons	3%	3%
Analytical Sensitivity Studies	10%	11%
Additional Uncertainty for Factors not Explicitly Evaluated	5%	5%
Net Calculational Uncertainty	12%	13%

The net calculational uncertainty was determined by combining the individual components in quadrature. Therefore, the resultant uncertainty was random and no systematic bias was applied to the analytical results.

The plant specific measurement comparisons described in Appendix D support these uncertainty assessments for Surry Unit 2. The plant specific measurement comparisons described in Appendix D support these uncertainty assessments for Surry Unit 2.

Surry Unit 2 r, θ Reactor Geometry at the Core Midplane

Radiation Analysis and Neutron Dosimetry

- -

Table 6-1

		2 (a a 2) 2 2 3 3 3 4	Contra		T	(E) 1036.3	r75.
			Cumulative	1 1	eutron riux	$(\mathbf{E} > \mathbf{I} \cdot \mathbf{U})$	v)
	Lycie	Irradiation	Irradiation			<u>m~-sj 3888</u>	····
- 11 T	Length	lime	lime	1 2 3 4			».
Cycle	[EFPS]	EFPS]	[EFPY]	15°	<u>∞ 25°</u>	jor 35°∵⇒	<u>, 3* 45°</u>
1	3.71E+07	3.71E+07	1.2	8.01E+10	5.26E+10	3 57E+10	2 79E+10
2	2 28E+07	5.98E+07	1.9	8.24E+10	5.45E+10	3.80E+10	3.03E+10
3	2 37E+07	8.36E+07	2.6	8.06E+10	5.56E+10	3.85E+10	3.01E+10
4	3 48E+07	1.18E+08	38	8.09E+10	5.32E+10	3.62E+10	2.81E+10
5	3.55E+07	1.54E+08	49	6.58E+10	4.31E+10	3.00E+10	2.44E+10
6	4.07E+07	1.95E+08	62	6.46E+10	4.37E+10	2.96E+10	2.34E+10
7	3.77E+07	2.32E+08	7.4	6.63E+10	4.01E+10	2.82E+10	2.29E+10
8	3.40E+07	2.66E+08	8.4	5.49E+10	3.79E+10	2.70E+10	2.20E+10
9	4.01E+07	3.06E+08	9.7	5.34E+10	3.57E+10	2.46E+10	1.96E+10
10	3.82E+07	3.45E+08	10.9	5.57E+10	3.80E+10	2.60E+10	1.99E+10
11	4.76E+07	3.92E+08	12.4	4.50E+10	3.09E+10	2.30E+10	1.89E+10
12	4.75E+07	4.40E+08	13.9	4.72E+10	3.18E+10	2.27E+10	1.83E+10
13	3.25E+07	4.72E+08	15 0	4 98E+10	3.19E+10	2.10E+10	1.65E+10
14	4.01E+07	5.12E+08	16.2	4 55E+10	3.23E+10	2.28E+10	1 80E+10
15	4.47E+07	5.57E+08	17.7	4.42E+10	3.22E+10	2.36E+10	1.89E+10
16	4.09E+07	5.98E+08	18.9	4.38E+10	3.21E+10	2.31E+10	1.83E+10
17	4 15E+07	6.39E+08	20 3	4.25E+10	3.11E+10	2.18E+10	1.68E+10
Future	3 70E+08	1.01E+09	32.0	4.60E+10	3.23E+10	2.30E+10	1.84E+10
Future	5.06E+08	1.51E+09	48.0	4.60E+10	3.23E+10	2.30E+10	1.84E+10
Future	1 89E+08	1.70E+09	54.0	4.60E+10	3.23E+10	2.30E+10	1.84E+10

Calculated Neutron Exposure Rates and Integrated Exposures At the Surveillance Capsule Center

ł

•

		Cumulative	Cumulative	Neutron Flux (E > 1.0 MeV)			
	Cycle	Irradiation	Irradiation		[n/cm ² -s]	i sa na s	
	Length	Time	Time	Composite	Composite	Composite	
Cycle	[EFPS]	[EFPS]	EFPY	Capsule Y	Capsule T	Capsule Z	
1	3.71E+07	3.71E+07	1.2	5.26E+10	3.57E+10	3.57E+10	
2	2.28E+07	5.98E+07	1.9	5.45E+10	3.80E+10	3.80E+10	
3	2.37E+07	8.36E+07	2.6	5.56E+10	3.85E+10	3.85E+10	
4	3.48E+07	1.18E+08	3.8	5.32E+10	3.62E+10	3.62E+10	
5	3.55E+07	1.54E+08	4.9	4.31E+10	3.00E+10	3.00E+10	
6	4.07E+07	1.95E+08	6.2	4.37E+10	2.96E+10	2.96E+10	
7	3.77E+07	2.32E+08	7.4	4.01E+10	2.82E+10	2.82E+10	
8	3.40E+07	2.66E+08	8.4	3.79E+10	2.70E+10	2.70E+10	
9	4.01E+07	3.06E+08	9.7	3.57E+10	2.46E+10	2.46E+10	
10	3.82E+07	3.45E+08	10.9	3.80E+10	2.60E+10	2.60E+10	
11	4.76E+07	3.92E+08	12.4	3.09E+10	2.30E+10	2.30E+10	
12	4.75E+07	4.40E+08	13.9	3.18E+10	2.27E+10	2.27E+10	
13	3.25E+07	4.72E+08	15.0	4.98E+10	2.10E+10	3.19E+10	
14	4.01E+07	5.12E+08	16.2	4.55E+10	2.28E+10	3.23E+10	
15	4.47E+07	5.57E+08	17.7	4.42E+10	2.36E+10	3.22E+10	
16	4.09E+07	5.98E+08	18.9	4.38E+10	2.31E+10	3.21E+10	
17	4.15E+07	6.39E+08	20.3	4.25E+10	2.18E+10	3.11E+10	
Future	3.70E+08	1.01E+09	32.0	4.60E+10	4.60E+10	3.23E+10	
Future	5.06E+08	1.51E+09	48.0	4.60E+10	4.60E+10	3.23E+10	
Future	1.89E+08	1.70E+09	54.0	4.60E+10	4.60E+10	3.23E+10	

Calculated Neutron Exposure Rates and Integrated Exposures At the Surveillance Capsule Center

		Cumulative	Cumulative	Neutron Fluence (E > 1.0 MeV)			
	Cycle	Irradiation	Irradiation	,, ,, ,, _{>}	<u></u>	cm²]	
Cycle	EFPS]	- Time [EFPS]	Time ↔ } [EFPY]	15%	25°	35°	45°
1	3.71E+07	3.71E+07	12	2.97E+18	1.95E+18	1.32E+18	1.03E+18
2	2.28E+07	5.98E+07	1.9	4.85E+18	3.19E+18	2.19E+18	1.72E+18
3	2.37E+07	8.36E+07	2.6	6.76E+18	4 51E+18	3.10E+18	2.44E+18
4	3.48E+07	1.18E+08	3.8	9.57E+18	6.36E+18	4.36E+18	3.42E+18
5	3.55E+07	1.54E+08	4.9	1 19E+19	7.90E+18	5 43E+18	4 28E+18
6	4 07E+07	1.95E+08	6.2	1.45E+19	9.67E+18	6 63E+18	5.23E+18
7	3.77E+07	2.32E+08	7.4	1.70E+19	1.12E+19	7.69E+18	6.10E+18
8	3.40E+07	2.66E+08	84	1.89E+19	1.25E+19	8.61E+18	6.84E+18
9	4.01E+07	3.06E+08	9.7	2.11E+19	1.39E+19	9.60E+18	7.63E+18
10	3.82E+07	3.45E+08	10.9	2 32E+19	1 54E+19	1.06E+19	8.39E+18
11	4.76E+07	3.92E+08	12.4	2 53E+19	1.68E+19	1.17E+19	9 29E+18
12	4.75E+07	4.40E+08	13.9	2.76E+19	1.83E+19	1.28E+19	1.02E+19
13	3.25E+07	4.72E+08	15.0	2.92E+19	1.94E+19	1 34E+19	1.07E+19
14	4.01E+07	5.12E+08	16.2	3.10E+19	2.07E+19	1.44E+19	1.14E+19
15	4.47E+07	5.57E+08	17.7	3.30E+19	2.21E+19	1.54E+19	1.23E+19
16	4.09E+07	5.98E+08	18.9	3.48E+19	2.34E+19	1.64E+19	1.30E+19
17	4.15E+07	6.39E+08	20.3	3 65E+19	2.73E+19	1.73E+19	1 37E+19
Future	3.70E+08	1 01E+09	32.0	5 36E+19	3 67E+19	2.58E+19	2 05E+19
Future	5.06E+08	1 51E+09	48.0	7.68E+19	5 30E+19	3.74E+19	2 98E+19
Future	1.89E+08	1.70E+09	54.0	8.55E+19	5.91E+19	4 18E+19	3.33E+19

Calculated Neutron Exposure Rates and Integrated Exposures At the Surveillance Capsule Center

, ⁻

	;;x`~, i >6	Cumulative	Cumulative	Neutron Fluence(E > 1.0 MeV)			
	Cycle	Irradiation	Irradiation		[n/cm ²]	. 1, (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	
, à	Length	Time	Time	Composite	Composite	Composite	
Cycle -	FFPS	EFPS]	[EFPY]	Capsule Y	Capsule T	Capsule Z	
1	3.71E+07	3.71E+07	1.2	1.95E+18	1.32E+18	1.32E+18	
2	2.28E+07	5.98E+07	1.9	3.19E+18	2.19E+18	2.19E+18	
3	2.37E+07	8.36E+07	2.6	4.51E+18	3.10E+18	3.10E+18	
4	3.48E+07	1.18E+08	3.8	6.36E+18	4.36E+18	4.36E+18	
5	3.55E+07	1.54E+08	4.9	7.90E+18	5.43E+18	5.43E+18	
6	4.07E+07	1.95E+08	6.2	9.67E+18	6.63E+18	6.63E+18	
7	3.77E+07	2.32E+08	7.4	1.12E+19	7.69E+18	7.69E+18	
8	3.40E+07	2.66E+08	8.4	1.25E+19	8.61E+18	8.61E+18	
9	4.01E+07	3.06E+08	9.7	1.39E+19	9.60E+18	9.60E+18	
10	3.82E+07	3.45E+08	10.9	1.54E+19	1.06E+19	1.06E+19	
11	4.76E+07	3.92E+08	12.4	1.68E+19	1.17E+19	1.17E+19	
12	4.75E+07	4.40E+08	13.9	1.83E+19	1.28E+19	1.28E+19	
13	3.25E+07	4.72E+08	15.0	2.00E+19	1.34E+19	1.38E+19	
14	4.01E+07	5.12E+08	16.2	2 18E+19	1.44E+19	1.51E+19	
15	4.47E+07	5.57E+08	17.7	2.38E+19	1.54E+19	1.65E+19	
16	4.09E+07	5.98E+08	18.9	2.56E+19	1.64E+19	1.78E+19	
17	4.15E+07	6.39E+08	20.3	2.73E+19	1.73E+19	1.91E+19	
Future	3.70E+08	1.01E+09	32.0	4.43E+19	3.43E+19	3.11E+19	
Future	5.06E+08	1.51E+09	48.0	6.76E+19	5.75E+19	4.74E+19	
Future	1.89E+08	1.70E+09	54.0	7.63E+19	6.62E+19	5.35E+19	

Calculated Neutron Exposure Rates and Integrated Exposures At the Surveillance Capsule Center

.

	· · · · · · · · · · · · · · · · · · ·	Cumulative	Cumulative	Iron Atom Displacement Rate			
	Cycle	Irradiation	Irradiation	i	<u> </u>	na/s] 🖄 👘	(, [*] ,
17 - 18 - 18 - 18 - 18 - 18 - 18 - 18 -	Length	Time	Time			ŝ,st.	
	EFPS	[EFPS]	EFPY	<u>% 15° · · ·</u>	25° 🔅	35°.	45°
1	3.71E+07	3 71E+07	1.2	1.34E-10	8.56E-11	5.77E-11	4.48E-11
2	2 28E+07	5.98E+07	1.9	1.38E-10	8.87E-11	6.14E-11	4.87E-11
3	2.37E+07	8.36E+07	2.6	1 35E-10	9.06E-11	6.23E-11	4.85E-11
4	3.48E+07	1.18E+08	3.8	1 35E-10	8.67E-11	5.85E-11	4.53E-11
5	3.55E+07	1.54E+08	4.9	1.10E-10	7.00E-11	4.84E-11	3.92E-11
6	4.07E+07	1.95E+08	6.2	1.08E-10	7.10E-11	4.77E-11	3.75E-11
7	3.77E+07	2.32E+08	74	1.11E-10	6.51E-11	4.55E-11	3.67E-11
8	3.40E+07	2 66E+08	84	9.14E-11	6.15E-11	4 36E-11	3.53E-11
9	4.01E+07	3.06E+08	9.7	8.89E-11	5.80E-11	3.97E-11	3.15E-11
10	3 82E+07	3.45E+08	10.9	9.27E-11	6.17E-11	4.19E-11	3.20E-11
11	4 76E+07	3.92E+08	12.4	7.48E-11	5.02E-11	3 71E-11	3 04E-11
12	4.75E+07	4.40E+08	13.9	7.85E-11	5.17E-11	3.66E-11	2.94E-11
13	3.25E+07	4.72E+08	15.0	8.28E-11	5.17E-11	3.39E-11	2 65E-11
14	4.01E+07	5.12E+08	16 2	7.56E-11	5.24E-11	3.68E-11	2.90E-11
15	4.47E+07	5.57E+08	17.7	7.34E-11	5.24E-11	3.80E-11	3.04E-11
16	4.09E+07	5.98E+08	18.9	7.26E-11	5 21E-11	3.73E-11	2.94E-11
17	4.15E+07	6.39E+08	20 3	7.04E-11	5.05E-11	3.51E-11	2.70E-11
Future	3.70E+08	1.01E+09	32.0	7 64E-11	5.24E-11	3.71E-11	2.95E-11
Future	5.06E+08	1 51E+09	48.0	7.64E-11	5.24E-11	3.71E-11	2.95E-11
Future	1.89E+08	1.70E+09	54.0	7.64E-11	5.24E-11	3.71E-11	2.95E-11

Calculated Neutron Exposure Rates and Integrated Exposures At the Surveillance Capsule Center

' ¥

١

~

Calculated Neutron Exposure Rates and Integrated Exposures At the Surveillance Capsule Center

· · · · · ·	·	Cumulative	Cumulative	Iron Atom Displacement Rate				
· ·	Cycle	Irradiation	Irradiation	Mer din	2 ' [dpa/s]			
, , , , , , , , , , , , , , , , , , ,	Length	Time	Time 🕺	Composite	Composite	Composite		
Cycle	EFPS]	EFPS]	[EFPY]	Capsule Y	Capsule T	Capsule Z		
1	3.71E+07	3.71E+07	1.2	8.56E-11	5.77E-11	5.77E-11		
2	2.28E+07	5.98E+07	1.9	8.87E-11	6.14E-11	6.14E-11		
3	2.37E+07	8.36E+07	2.6	9.06E-11	6.23E-11	6.23E-11		
4	3.48E+07	1.18E+08	3.8	8.67E-11	5.85E-11	5.85E-11		
5	3.55E+07	1.54E+08	4.9	7.00E-11	4.84E-11	4.84E-11		
6	4.07E+07	1.95E+08	6.2	7.10E-11	4.77E-11	4.77E-11		
7	3.77E+07	2.32E+08	7.4	6.51E-11	4.55E-11	4.55E-11		
8	3.40E+07	2.66E+08	8.4	6.15E-11	4.36E-11	4.36E-11		
9	4.01E+07	3.06E+08	9.7	5.80E-11	3.97E-11	3.97E-11		
10	3.82E+07	3.45E+08	10.9	6.17E-11	4.19E-11	4.19E-11		
11	4.76E+07	3.92E+08	12.4	5.02E-11	3.71E-11	3.71E-11		
12	4.75E+07	4.40E+08	13.9	5.17E-11	3.66E-11	3.66E-11		
13	3.25E+07	4.72E+08	15.0	8.28E-11	3.39E-11	5.17E-11		
14	4 01E+07	5.12E+08	16 2	7.56E-11	3.68E-11	5.24E-11		
15	4.47E+07	5.57E+08	17.7	7.34E-11	3.80E-11	5.24E-11		
16	4.09E+07	5.98E+08	18.9	7.26E-11	3.73E-11	5.21E-11		
17	4.15E+07	6.39E+08	20.3	7.04E-11	3.51E-11	5.05E-11		
Future	3.70E+08	1.01E+09	32.0	7.64E-11	7.64E-11	5.24E-11		
Future	5.06E+08	1.51E+09	48.0	7.64E-11	7.64E-11	5.24E-11		
Future	1.89E+08	1.70E+09	54.0	7.64E-11	7.64E-11	5.24E-11		

		Cumulative	Cumulative	Iron Atom Displacements			
	Cycle	Irradiation	Irradiation		[d	lpa]	
	Length	Time	Time			-	
Cycle	[EFPS]	[EFPS]	[EFPY]	15°	25°	35°	45°
1	3.71E+07	3.71E+07	1.2	4.97E-03	3.17E-03	2.14E-03	1.66E-03
2	2.28E+07	5.98E+07	1.9	8.10E-03	5.19E-03	3.54E-03	2.77E-03
3	2.37E+07	8.36E+07	26	1.13E-02	7.35E-03	5.02E-03	3.92E-03
4	3.48E+07	1.18E+08	38	1.60E-02	1.04E-02	7.05E-03	5.49E-03
5	3.55E+07	1.54E+08	49	1.99E-02	1.29E-02	8.77E-03	6.89E-03
6	4.07E+07	1.95E+08	62	2.43E-02	1.57E-02	1.07E-02	8.41E-03
7	3.77E+07	2.32E+08	7.4	2.85E-02	1.82E-02	1.24E-02	9.80E-03
8	3.40E+07	2.66E+08	8.4	3.16E-02	2.03E-02	1.39E-02	1.10E-02
9	4.01E+07	3.06E+08	9.7	3.51E-02	2.26E-02	1.55E-02	1.23E-02
10	3.82E+07	3.45E+08	10.9	3.87E-02	2.50E-02	1.71E-02	1.35E-02
11	4.76E+07	3.92E+08	12.4	4.22E-02	2.74E-02	1.89E-02	1 49E-02
12	4.75E+07	4.40E+08	13.9	4.60E-02	2.98E-02	2.06E-02	1.63E-02
13	3.25E+07	4.72E+08	15.0	4.87E-02	3.15E-02	2.17E-02	1 72E-02
14	4.01E+07	5.12E+08	16.2	5.17E-02	3.36E-02	2.32E-02	1.84E-02
15	4.47E+07	5.57E+08	17.7	5.50E-02	3.59E-02	2.49E-02	1.97E-02
16	4.09E+07	5.98E+08	18.9	5.79E-02	3.81E-02	2.64E-02	2.09E-02
17	4.15E+07	6.39E+08	20.3	6.09E-02	4.02E-02	2.79E-02	2.20E-02
Future	3.70E+08	1.01E+09	32.0	8.92E-02	5.96E-02	4.16E-02	3.30E-02
Future	5.06E+08	1.51E+09	48.0	1.28E-01	8.60E-02	6.04E-02	4.78E-02
Future	1.89E+08	1.70E+09	54.0	1.42E-01	9.59E-02	6.74E-02	5.34E-02

Calculated Neutron Exposure Rates and Integrated Exposures At the Surveillance Capsule Center

* 1

		Cumulative	Cumulative	Iron Atom Displacements				
1	Cycle	Irradiation	Irradiation		[dpa]			
	Length	Time	Time	Composite	Composite	Composite		
Cycle	[EFPS]	[EFPS]	[EFPY]	Capsule Y	Capsule T	Capsule Z		
1	3.71E+07	3.71E+07	1.2	3.17E-03	2.14E-03	2.14E-03		
2	2.28E+07	5.98E+07	1.9	5.19E-03	3.54E-03	3.54E-03		
3	2.37E+07	8.36E+07	2.6	7.35E-03	5.02E-03	5.02E-03		
4	3.48E+07	1.18E+08	3.8	1.04E-02	7.05E-03	7.05E-03		
5	3.55E+07	1.54E+08	4.9	1.29E-02	8.77E-03	8.77E-03		
6	4.07E+07	1.95E+08	6.2	1.57E-02	1.07E-02	1.07E-02		
7	3.77E+07	2.32E+08	7.4	1.82E-02	1.24E-02	1.24E-02		
8	3.40E+07	2.66E+08	8.4	2.03E-02	1.39E-02	1.39E-02		
9	4.01E+07	3.06E+08	9.7	2.26E-02	1.55E-02	1.55E-02		
10	3.82E+07	3.45E+08	10.9	2.50E-02	1.71E-02	1.71E-02		
11	4.76E+07	3.92E+08	12.4	2.74E-02	1.89E-02	1.89E-02		
12	4.75E+07	4.40E+08	13.9	2.98E-02	2.06E-02	2.06E-02		
13	3.25E+07	4.72E+08	15.0	3.25E-02	2.17E-02	2.23E-02		
14	4.01E+07	5.12E+08	16.2	3.55E-02	2.32E-02	2.44E-02		
15	4.47E+07	5.57E+08	17.7	3.88E-02	2.49E-02	2.67E-02		
16	4.09E+07	5.98E+08	18.9	4.18E-02	2.64E-02	2.89E-02		
17	4.15E+07	6.39E+08	20.3	4.47E-02	2.79E-02	3.10E-02		
Future	3.70E+08	1.01E+09	32.0	7.30E-02	5.62E-02	5.04E-02		
Future	5.06E+08	1.51E+09	48.0	1.12E-01	9.47E-02	7.68E-02		
Future	1.89E+08	1.70E+09	54.0	1.26E-01	1.09E-01	8.67E-02		

Calculated Neutron Exposure Rates and Integrated Exposures At the Surveillance Capsule Center

Table 6-2

		Cumulative	Cumulative	Neutron Fluence (E > 1.0 MeV)			
	Cycle	Irradiation	Irradiation		[n/e	cm ²]	
	Length	Time	Time				
Cycle	[EFPS]	[EFPS]	[EFPY]	0°	15°	30°	45°
1	3.71E+07	3.71E+07	1.2	1 86E+18	8.56E+17	4.98E+17	3.10E+17
2	2.28E+07	5.98E+07	1.9	2 99E+18	1.39E+18	8.12E+17	5.13E+17
3	2.37E+07	8.36E+07	26	4.11E+18	1.93E+18	1.15E+18	7.24E+17
4	3 48E+07	1.18E+08	38	5 87E+18	2.74E+18	1.62E+18	1.02E+18
5	3.55E+07	1.54E+08	49	7 37E+18	3.41E+18	2.01E+18	1.27E+18
6	4.07E+07	1.95E+08	62	9 03E+18	4.16E+18	2.46E+18	1.56E+18
7	3.77E+07	2.32E+08	74	1 07E+19	4.88E+18	2.84E+18	1.82E+18
8	3.40E+07	2.66E+08	84	1 18E+19	5.41E+18	3.18E+18	2.04E+18
9	4 01E+07	3.06E+08	9.7	1 29E+19	6.01E+18	3.54E+18	2.27E+18
10	3.82E+07	3.45E+08	10.9	1 42E+19	6.62E+18	3.90E+18	2.49E+18
11	4.76E+07	3.92E+08	12.4	1 55E+19	7.22E+18	4.28E+18	2.76E+18
12	4.75E+07	4.40E+08	13.9	1 67E+19	7.84E+18	4.66E+18	3.01E+18
13	3.25E+07	4.72E+08	15 0	1 76E+19	8.29E+18	4.91E+18	3.17E+18
14	4.01E+07	5.12E+08	16.2	1 86E+19	8.80E+18	5.24E+18	3.38E+18
15	4.47E+07	5.57E+08	17.7	1.97E+19	9.35E+18	5.61E+18	3.62E+18
16	4.09E+07	5.98E+08	189	2.06E+19	9.86E+18	5.95E+18	3.84E+18
17	4.15E+07	6.39E+08	20 3	2.15E+19	1.04E+19	6.28E+18	4.05E+18
Future	3.70E+08	1.01E+09	32 0	3 08E+19	1.51E+19	9.31E+18	6.04E+18
Future	5.06E+08	1.51E+09	48 0	4.35E+19	2.16E+19	1.34E+19	8.74E+18
Future	1.89E+08	1.70E+09	54 0	4.82E+19	2.40E+19	1.50E+19	9.76E+18

Calculated Maximum Neutron Exposure at the Pressure Vessel Inner Radius Clad/Base Metal Interface

		Cumulative	Cumulative	Iron Atom Displacements			
	Cycle	Irradiation	Irradiation		[d	lpa]	
	Length	Time	Time			-	
Cycle	[EFPS]	[EFPS]	[EFPY]	<u>0°</u>	15°	<u> </u>	45°
1	3.71E+07	3.71E+07	1.2	2.99E-03	1.44E-03	8.03E-04	5.13E-04
2	2.28E+07	5.98E+07	1.9	4.81E-03	2.33E-03	1.31E-03	8.48E-04
3	2.37E+07	8.36E+07	2.6	6.61E-03	3.24E-03	1.85E-03	1.20E-03
4	3.48E+07	1.18E+08	3.8	9.43E-03	4.60E-03	2.61E-03	1.68E-03
5	3.55E+07	1.54E+08	4.9	1.18E-02	5.72E-03	3.24E-03	2.10E-03
6	4.07E+07	1.95E+08	6.2	1.45E-02	6.99E-03	3.96E-03	2.57E-03
7	3.77E+07	2.32E+08	7.4	1.72E-02	8.20E-03	4.59E-03	3.00E-03
8	3.40E+07	2.66E+08	8.4	1.89E-02	9.09E-03	5.12E-03	3.37E-03
9	4.01E+07	3.06E+08	9.7	2.08E-02	1.01E-02	5.70E-03	3.75E-03
10	3.82E+07	3.45E+08	10.9	2.28E-02	1.11E-02	6.29E-03	4.12E-03
11	4.76E+07	3.92E+08	12.4	2.49E-02	1.21E-02	6.91E-03	4.55E-03
12	4.75E+07	4.40E+08	13.9	2.69E-02	1.32E-02	7.52E-03	4.97E-03
13	3.25E+07	4.72E+08	15.0	2.83E-02	1.39E-02	7.93E-03	5.23E-03
14	4.01E+07	5.12E+08	16.2	2.99E-02	1.48E-02	8.45E-03	5.58E-03
15	4.47E+07	5.57E+08	17.7	3.16E-02	1.57E-02	9.05E-03	5.99E-03
16	4 09E+07	5 98E+08	18.9	3.31E-02	1.65E-02	9.60E-03	6.35E-03
17	4.15E+07	6 39E+08	20.3	3.46E-02	1.74E-02	1.01E-02	6.69E-03
Future	3.70E+08	1.01E+09	32.0	4.95E-02	2.53E-02	1.50E-02	9.97E-03
Future	5.06E+08	1.51E+09	48.0	6.99E-02	3.62E-02	2.17E-02	1.44E-02
Future	1.89E+08	1.70E+09	54.0	7.75E-02	4.03E-02	2.42E-02	1.61E-02

Calculated Maximum Neutron Exposure at the Pressure Vessel Inner Radius Clad/Base Metal Interface

Table 6-3

RADIUS	AZIMUTHAL ANGLE						
(cm)	0°	15°	30°	45°			
199 95	1.000	1 000	1.000	1.000			
204.95	0.576	0.593	0.578	0 592			
209.95	0.293	0.312	0.297	0.313			
214.95	0.143	0.158	0.147	0.159			
219.95	0.066	0.078	0.073	0 081			
Note:	Base Metal In	ner Radius =	199.95 c	m			
	Base Metal 1/4	4T =	204.95 c	m			
	Base Metal 1/2	2T =	209.95 c	m			
	Base Metal 3/4	4T =	214.95 c	m			
	Base Metal Ou	iter Radius =	219.95 c	m			

Relative Radial Distribution of Neutron Fluence (E > 1.0 MeV) Within The Reactor Vessel Wall

Table 6-4

Relative Radial Distribution of Iron Atom Displacements (dpa) Within The Reactor Vessel Wall

RADIUS	AZIMUTHAL ANGLE						
(cm)	0°	15°	30°	45°			
199.95	1.000	1.000	1 000	1.000			
204.95	0.630	0.640	0.631	0.636			
209.95	0.374	0.391	0.377	0.384			
214.95	0.217	0.235	0.223	0.230			
219.95	0.111	0.130	0.122	0.129			
Note:	Base Metal In	ner Radius =	199.95 c	m			
	Base Metal 1/4	4T =	204.95 c	m			
	Base Metal 1/2	2T =	209.95 c	m			
	Base Metal 3/4	4T =	214.95 c	m			
	Base Metal Ou	iter Radius =	219.95 c	m			

Table 6-5

Capsule	Irradiation Time [EFPY]	Fluence (E > 1.0 MeV) [n/cm ²]	Iron Displacements [dpa]
X	1.2	2.97E+18	4.97E-03
W	38	6.36E+18	1.04E-02
v	8.4	1.89E+19	3.16E-02
S	15.0	1.07E+19	1.72E-02
Y	20.3	2.73E+19	4.47E-02

Calculated Fast Neutron Exposure of Surveillance Capsules Withdrawn from Surry Unit 2

Table 6-6

Calculated Surveillance Capsule Lead Factors

Capsule ID		
And Location	Status	Lead Factor
X	Withdrawn EOC 1	1.60
W	Withdrawn EOC 4	1.08
v	Withdrawn EOC 8	1.61
S	Withdrawn EOC 13	0 61
Y	Withdrawn EOC 17	1 27
U	In Reactor	1.15
Т	In Reactor	0.80
Z	In Reactor	0.89

Notes:(1) Lead factors for capsules remaining in the reactor are based on cycle specific exposure calculations through the last completed fuel cycle, i.e., Cycle 17.

7 **REFERENCES**

- 1. Regulatory Guide 1.99, Revision 2, *Radiation Embrittlement of Reactor Vessel Materials*, U.S. Nuclear Regulatory Commission, May, 1988.
- 2. Code of Federal Regulations, 10CFR50, Appendix G, Fracture Toughness Requirements, and Appendix H, Reactor Vessel Material Surveillance Program Requirements, U.S. Nuclear Regulatory Commission, Washington, D.C.
- 3. WCAP-8085, Virginia Electric & Power Co. Surry Unit No. 2 Reactor Vessel Radiation Surveillance Program, S.E. Yanichko, et al., dated June 1973.
- 4. BMI-0975-/SU2, Surry Unit No. 2 Pressure Vessel Irradiation Capsule Program: Examination and Analysis of Capsule X, J.S Perrin, et. al., dated September 2, 1975.
- 5. WCAP-11499, Analysis of Capsule V from the Virginia Electric and Power Company Surry Unit 2 Reactor Vessel Radiation Surveillance Program, S E Yanichko, et. al., dated June 1987.
- 6. ASTM E185-82, Standard Practice for Conducting Surveillance Tests for Light-Water Cooled Nuclear Power Reactor Vessels.
- 7. ASTM E23-98, Standard Test Method for Notched Bar Impact Testing of Metallic Materials, ASTM, 1998.
- 8. ASTM A370-97a, Standard Test Methods and Definitions for Mechanical Testing of Steel Products, ASTM, 1997.
- 9. ASTM E8-99, Standard Test Methods for Tension Testing of Metallic Materials, ASTM, 1999.
- 10. ASTM E21-92 (1998), Standard Test Methods for Elevated Temperature Tension Tests of Metallic Materials, ASTM, 1998.
- 11. Procedure RMF 8402, Surveillance Capsule Testing Program, Revision 2.
- 12. Procedure RMF 8102, Tensile Testing, Revision 1.
- 13. Procedure RMF 8103, Charpy Impact Testing, Revision 1.
- 14. WCAP-14370, Use of the Hyperbolic Tangent Function for Fitting Transition Temperature Toughness Data, T. R. Mager, et al, May 1995.
- 15. ASTM E208, Standard Test Method for Conducting Drop-Weight Test to Determine Nil-Ductility Transition Temperature of Ferritic Steels, in ASTM Standards, Section 3, American Society for Testing and Materials, Philadelphia, PA

- 16. Section XI of the ASME Boiler and Pressure Vessel Code, Appendix G, Fracture Toughness Criteria for Protection Against Failure.
- 17. ASTM E185-70, Recommended Practice for Surveillance Tests for Nuclear Reactor Vessels.
- 18. ASTM E83-93, Standard Practice for Verification and Classification of Extensometers, in ASTM Standards, Section 3, American Society for Testing and Materials, Philadelphia, PA, 1993.
- 19. Regulatory Guide RG-1 190, Calculational and Dosimetry Methods for Determining Pressure Vessel Neutron Fluence, U. S. Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, March 2001.
- 20. WCAP-14040-NP-A, Revision 2, Methodology Used to Develop Cold Overpressure Mitigating System Setpoints and RCS Heatup and Cooldown Limit Curves, January 1996.
- 21. WCAP-15557, Revision 0, Qualification of the Westinghouse Pressure Vessel Neutron Fluence Evaluation Methodology, August 2000.
- 22. RSICC Computer Code Collection CCC-650, DOORS 3.1, One, Two- and Three-Dimensional Discrete Ordinates Neutron/Photon Transport Code System, August 1996
- RSIC Data Library Collection DLC-185, "BUGLE-96, Coupled 47 Neutron, 20 Gamma-Ray Group Cross Section Library Derived from ENDF/B-VI for LWR Shielding and Pressure Vessel Dosimetry Applications," March 1996

APPENDIX A

LOAD-TIME RECORDS FOR CHARPY SPECIMEN TESTS

- Specimen prefix "V" denotes Lower Plate, Longitudinal Orientation
- Specimen prefix "T" denotes Lower Plate, Transverse Orientation
- Specimen prefix "R" denotes Correlation Monitor Material
- Specimen prefix "W" denotes Weld Material
- Specimen prefix "H" denotes Heat-Affected Zone material
- Load (1) is in units of lbs
- Time (1) is in units of milli seconds

V61, 10°F

V65, 100°F

V64, 125°F

V69, 200°F

V66, 250°F

V67, 300°F

V63, 325°F

V62, 350°F

T62, 0°F

T67, 10°F

T69, 125°F

.

T63, 200°F

.

T68, 250°F

T64, 300°F

Appendix A

T66, 325°F

T65, 350°F

R51, 72°F

R56, 125°F

•

٠

R52, 200°F

R50, 250°F

Appendix A

•

R53, 325°F

R55, 375°F

W53, 100°F

W49, 175°F

W50, 250°F

Appendix A

W51, 350°F

W52, 375°F

H56, -50°F

H49, -25°F

ł

H54, 0°F

H52, 100°F

•

H55, 200°F

H50, 300°F

H51, 325°F

APPENDIX B

ł

CHARPY V-NOTCH SHIFT RESULTS FOR EACH CAPSULE PREVIOUS FIT VS. SYMMETRIC HYPERBOLIC TANGENT CURVE-FITTING METHOD (CVGRAPH VERSION 4.1)

 TABLE B-1

 Changes in Average 30 ft-lb Temperatures for Lower Shell Plate C4339-1 (Longitudinal Orientation)

 Hand Fit vs. CVGRAPH 4.1

Capsule	Unirradiated	Hand Fit	ΔΤ30	Unirradiated	CVGRAPH	Δ́Τ ₃₀
x	-5°F	50°F	55°F	-1.11°F	57.97°F	59.08°F
v	-5 °F	70°F	75°F	-1.11°F	78.01°F	79.12°F
Y	-5°F			-1.11°F	113.11°F	114.22°F

TABLE B-2 Changes in Average 50 ft-lb Temperatures for Lower Shell Plate C4339-1 (Longitudinal Orientation) Hand Fit vs. CVGRAPH 4.1

Capsule	Unirradiated	Hand Fit	Δ Τ 50	Unirradiated	CVGRAPH Fit	Δ Τ 50
Х	35°F	90°F	55°F	33.38°F	89.01°F	55.63°F
V	35°F	115°F	80°F	33.38°F	118.95°F	85.57°F
Y	35°F			33.38°F	157.64°F	124.26°F

TABLE B-3Changes in Average 35 mil Lateral Expansion Temperatures for Lower Shell Plate C4339-1
(Long. Orientation) Hand Fit vs. CVGRAPH 4.1

Capsule	Unirradiated	Hand Fit	Δ T 35	Unirradiated	CVGRAPH Fit	Δ T 35
x	25°F	Not Reported	Not Reported	26.92°F	68.85°F	41.93°F
v	25°F	105°F	80°F	26.92°F	100.35°F	73.43°F
Y	25°F			26.92°F	161.52°F	134.6°F

 TABLE B-4

 Changes in Average Energy Absorption at Full Shear for Lower Shell Plate C4339-1

 (Longitudinal Orientation) Hand Fit vs. CVGRAPH 4.1

Capsule	Unirradiated	Hand Fit	ΔĒ.,	Unirradiated		ΔΕ,,
X	125 ft-lb	120 ft-lb	-5 ft-lb	128 ft-lb	122 ft-lb	-6 ft-lb
v	125 ft-lb	121 ft-lb	-4 ft-lb	128 ft-lb	121 ft-lb	-7 ft-lb
Y	125 ft-lb			128 ft-lb	111 ft-lb	-17 ft-lb

 TABLE B-5

 Changes in Average 30 ft-lb Temperatures for Lower Shell Plate C4339-1 (Transverse Orientation)

 Hand Fit vs. CVGRAPH 4.1

Capsule	Unirradiated	Hand Fit	ΔΤ 30	Unirradiated	CVGRAPH Fit	Δ Τ₃₀
x	5°F	50°F	45°F	11.46°F	60.13°F	48.67°F
v	5°F	80°F	75°F	11 46°F	75.06°F	63 6°F
Y	5°F			11.46°F	118 27°F	106 81°F

 TABLE B-6

 Changes in Average 50 ft-lb Temperatures for Lower Shell Plate C4339-1 (Transverse Orientation) Hand Fit vs. CVGRAPH 4.1

Capsule	Unirradiated	Hand Fit	Δ Τ 30	Unirradiated	CVGRAPH Fit	ΔΤ ₅₀
x	50°F	100°F	50°F	51 9°F	[.] 104.81°F	52.91°F
v	50°F	125°F	75°F	51.9°F	124 07	72.17°F
Y	50°F			51.9°F	174 08°F	122 18°F

 TABLE B-7

 Changes in Average 35 mil Lateral Expansion Temperatures for Lower Shell Plate C4339-1

 . (Transverse Orientation) Hand Fit vs. CVGRAPH 4.1

Capsule	Unirradiated	Hand Fit	Δ T 35	Unirradiated	CVGRAPH Fit	ΔT ₃₅
x	40°F	Not Reported	Not Reported	41.73°F	69.15°F	27.41°F
v	40°F	130°F	90°F	41.73°F	122.35°F	80.61°F
Y	40°F			41.73°F	178.53°F	136.79°F

TABLE B-8Changes in Average Energy Absorption at Full Shear for Lower Shell Plate C4339-1(Transverse Orientation) Hand Fit vs. CVGRAPH 4.1

Capsule	Unirradiated	Hand Fit	ί	Unirradiated	CVGRAPH Fit	ΔĒ
x	105 ft-lb	95 ft-lb	-10 ft-lb	104 ft-lb	94 ft-lb	-10 ft-lb
v	105 ft-lb	94 ft-lb	-11 ft-lb	104 ft-lb	94 ft-lb	-10 ft-lb
Y	105 ft-lb		•••	104 ft-lb	94 ft-lb	-10 ft-lb

TABLE B-9 Changes in Average 30 ft-lb Temperatures for Surveillance Weld Material Hand Fit vs. CVGRAPH 4.1

Capsule	Unirradiated	Hand Fit	Δ Τ ₃₀	Unirradiated	CVGRAPH Fit	Δ Τ ₃₀
x	-2 0°F	75°F	95°F	-20.48°F	75.16°F	95.65°F
v	-20°F	125°F	145°F	-20.48°F	119.73°F	140.21°F
Y	⁻ - 20°F		* * *	-20.48°F	157.84°F	178.32°F

TABLE B-10
Changes in Average 50 ft-lb Temperatures for Surveillance Weld Material
Hand Fit vs. CVGRAPH 4.1

Capsule	Unirradiated	Hand Fit	ΔT ₅₀	Unirradiated	CVGRAPH Fit	Δ Τ 5θ
x	35°F	125°F	90°F	22 48°F	124 66°F	102.17°F
v	35°F	210°F	175°F	22.48°F	222.71°F	200.22°F
Y	35°F			22.48°F	247.25°F	224.76°F

 TABLE B-11

 Changes in Average 35 mil Lateral Expansion Temperatures for Surveillance Weld Material Hand Fit vs. CVGRAPH 4 1

Capsule	Unirradiated	Hand Fit	Δ T 35	Unirradiated	CVGRAPH Fit	Δ Τ 35
x	5°F	Not Reported	Not Reported	-1 88°F	86.99°F	88 88°F
v	5°F	160°F	155°F	-1 88°F	165 31°F	167.19°F
Y	5°F			-1.88°F	218.35°F	220.24°F

 TABLE B-12

 Changes in Average Energy Absorption at Full Shear for Surveillance Weld Material Hand Fit vs. CVGRAPH 4.1

Capsule	Unirradiated	Hand Fit	Δ Ε . \$	Unirradiated	CVGRAPH - Fit	Δ E
X	90 ft-Ib	70 ft-lb	-20 ft-lb	91 ft-lb	71 ft-lb	-20 ft-lb
v	90 ft-lb	60 ft-lb	-30 ft-lb	91 ft-lb	60 ft-lb	-31 ft-lb
Y	90 ft-lb			91 ft-lb	58 ft-lb	-33 ft-lb

TABLE B-13
Changes in Average 30 ft-lb Temperatures for the Heat-Affected-Zone Material
Hand Fit vs. CVGRAPH 4.1

Capsule	Unirradiated	🐐 Hand Fit	Δ T 30	Unirradiated	CVGRAPH Fit	Δ Τ 3θ
x	-40°F	-30°F	10°F	-52.83°F	-23.61°F	29.22°F
v	-40°F	20°F	60°F	-52.83°F	-1.6°F	51.23°F
Y	-40°F			-52.83°F	75.07°F	127.91°F

 TABLE B-14

 Changes in Average 50 ft-lb Temperatures for the Heat-Affected-Zone Material Hand Fit vs. CVGRAPH 4.1

Capsule	Unirradiated	Hand Fit	ΔT ₅₀	Unirradiated	CVGRAPH Fit	Δ Τ 50
Х	5°F	5°F	0°F	-5.72°F	3 6°F	9.32°F
v	5°F	80°F	75°F	-5.72°F	68 18°F	73.9°F
Y	5°F			-5.72°F	144.55°F	150.28°F

TABLE B-15 . Changes in Average 35 mil Lateral Expansion Temperatures for the Heat-Affected-Zone Material Hand Fit vs. CVGRAPH 4.1

Capsule	Unirradiated	' Hand Fit	ΔT _{3s}	Unirradiated	CVGRAPH Fit	ΔT ₃₅
x	0°F	Not Reported	Not Reported	-8.73°F	-4.43°F	4.3°F
v	0°F	90°F	90°F	-8.73°F	51.95°F	60.68°F
Y	0°F			-8.73°F	144.04°F	152.77°F

 TABLE B-16

 Changes in Average Energy Absorption at Full Shear for the Heat-Affected-Zone Material

 Hand Fit vs. CVGRAPH 4.1

Capsule	Unirradiated	Hand Fit	ΔΕ	Unirradiated	CVGRAPH Fit	ΔĒ ;:
x	115 ft-lb	100 ft-lb	-5 ft-lb	116 ft-lb	101 ft-lb	-15 ft-lb
v	115 ft-lb	94 ft-lb	-21 ft-lb	116 ft-lb	94 ft-lb	-22 ft-lb
Y	115 ft-lb			116 ft-lb	94 ft-lb	-22 ft-lb

TABLE B-17 Changes in Average 30 ft-lb Temperatures for the Correlation Monitor Material Hand Fit vs CVGRAPH 4.1

Capsule	Unirradiated	Hand Fit	Δ Τ .30	Unirradiated	CVGRAPH Fit	Δ Τ 30,
x	40°F	100°F	60°F	46.44°F	108 64°F	62.19°F
v	45°F	165°F	120°F	46 44°F	162.99°F	116.55°F
Y	45°F			46 44°F	194 47°F	148 02°F

TABLE B-18Changes in Average 50 ft-lb Temperatures for the Correlation Monitor Material
Hand Fit vs. CVGRAPH 4.1

Capsule	Unirradiated	Hand Fit	ΔΤ ₅₀	Unirradiated	CVGRAPH. Fit	Δ Τ 59., ,
x	70°F	145°F	75°F	78.3°F	140 6°F	62.3°F
v	75°F	200°F	125°F	78.3°F	201.2°F	122.89°F
Y	75°F			78.3°F	232 43°F	154.12°F

TABLE B-19 Changes in Average 35 mil Lateral Expansion Temperatures for the Correlation Monitor Material Hand Fit vs. CVGRAPH 4.1

Capsule	Unirradiated	Hand Fit	ΔT35	Unirradiated	CVGRAPH Fit	Δ T 35
X	60°F	Not Reported	Not Reported	58.96°F	113.61°F	54.65°F
v	60°F	195°F	135°F	58.96°F	188 47°F	129.51°F
Y	60°F			58.96°F	235.59°F	176.63°F

TABLE B-20 Changes in Average Energy Absorption at Full Shear for the Correlation Monitor Material Hand Fit vs CVGRAPH 4.1

Capsule	Unirradiated	Hand Fit	ΔE A	Unirradiated	CVGRAPH Fit	ΔE
X	125 ft-lb	115 ft-lb	-10 ft-lb	123 ft-lb	103 ft-lb	-20 ft-lb
v	125 ft-lb	102 ft-lb	-23 ft-lb	123 ft-lb	102 ft-lb	-21 ft-lb
Y	125 ft-lb			123 ft-lb	100 ft-lb	-23 ft-lb