REPORT

`.

.

•

.

.

. :

.

.

GEOLOGIC INVESTIGATIONS

PROJECT IV STORAGE CAPACITY EXPANSION NEAR MORRIS, ILLINOIS

THE GENERAL ELECTRIC COMPANY

Prepared by DAMES & MOORE

> August 26, 1977 Job No. 1674-099-07

DAMES & MOORE

August 26, 1977

General Electric Company Nuclear Energy Division 175 Curtner Avenue San Jose, California 95125

Gentlemen:

Re: P.O. 529-JIT-99X Report Geologic Investigations Project IV - Fuel Storage Capacity Expansion Near Morris, Illinois General Electric Company

This letter transmits seven copies of our "Report - Geologic Investigations Project IV - Fuel Storage Capacity Expansion near Morris, Illinois". This report has been revised to include General Electric's comments and represents the completion of the work required by Task A, of the referenced purchase order. Figure 10 has not been returned from the printer and will be sent under separate cover.

If there are any questions regarding this report, or any other work performed for the Morris Facility, please contact us.

Very truly yours,

DAMES & MOORE Lichael L. Kiefe Partner

John S. Trapp Sopior Geologist Marles Lunt

Charles S. Kuntz Staff Ceologist

MLK:JST:CSK:rt Enclosure

TABLE OF CONTENTS

	PAGE
ABSTRACT	iv
INTRODUCTION	1
SCOPE OF WORK	2
DESCRIPTION OF THE SITE	3
PREVIOUS INVESTIGATIONS	4
METHOD OF INVESTIGATION	4
Drilling Program	4
Trenching Program	7
REGIONAL GEOLOGY	8
SITE GEOLOGY	12
Stratigraphy	13 13 14
Geologic Structure	17 17
Geologic Structure of the Proposed Expansion Area	19
SITE GEOLOGIC HISTORY	24
CONCLUSIONS	28
REFERENCES	30

1674-099-07

•

LIST OF FIGURES

NUMBER	TITLE
1.	Site Vicinity Map
2.	Plot Plan
3.	Plot Plan - Proposed Basin Expansion Area
4.0	Key and General Notes for Log of Borings
4.1	Log of Boring B-1
4.2	Log of Boring B-3
4.3	Log of Boring B-4
4.4	Log of Boring B-5
4.5	Log of Boring B-6
4.6	Log of Boring B-7
4.7	Log of Boring B-8
4.8	Log of Boring B-9
4.9	Log of Boring B-10
4.10	Log of Boring B-11
4.11	Log of Boring B-12
4.12	Logs of Borings B-13 & B-14
4.13	Log of Boring B-15
4.14	Log of Boring B-16
4.15	Log of Boring B-17
4.16	Log of Boring B-18
4.17	Logs of Borings D-1, D-2 & D-3
4.18	Logs of Borings D-4 & D-5
5.1	Trench Cross-Section BT-1

LIST OF FIGURES (continued)

NUMBER

TITLE

5.2	Trench Cross-Section BT-2
5.3	Trench Cross-Section BT-3
5.4	Trench Cross-Section CT-1
5.5	Trench Cross-Section CT-2
5.6	Trench Cross-Section CT-3
5.7	Trench Cross-Section CT-4
5.8	Trench Cross-Section CT-5
5.9	Trench Cross-Section CT-6
5.10	Trench Cross-Section CT-7
5.11	Trench Cross-Section CT-8
6.	Regional Geologic Structure Map
7.	Stratigraphic Column
8.	Site Area - Bedrock Lithology Map
9.	Site Area - Structure on top of the Scales Shale Map
10.	Proposed Expansion Area - Geologic Structure Map
11.	Aerial Photograph - Site Area
12.	Lineament Map - Site Area
13.	Correlation of Angle Borings and Trenches

ABSTRACT

A geological investigation was conducted near Morris, Illinois for the General Electric Company to provide geotechnical data required for the design and licensing of the proposed basin expansion; to determine the structural and stratigraphic relationships of a northwest-trending fault zone; and to substantiate the age of faulting at the site.

Field investigations included soil and rock core drilling, borehole water pressure testing, piezometer installation, geophysical surveys, trenching across the fault zone, and geologic mapping of the trenches.

This investigation showed that multiple northwesttrending faults are present in an en echelon pattern instead of a single fault as previously interpreted. Furthermore, it was interpreted that cross faults trend northeasterly and also occur in an en echelon pattern.

Relative movement of the northwest-trending fault zone is down-to-the-southwest. Several faults exposed in trenches have downward displacement to the northeast; however, most individual faults also are displaced down-to-the-southwest. The faults probably converge with depth creating step-like extensional blocks that have variable displacements relative to adjacent blocks as well as rotational displacements. The variability of displacements of fault blocks is characteristic of en echelon gravity faults produced by antithetic tensional forces.

iv

Stratigraphic evidence indicates that major movement occurred prior to deposition of Pennsylvanian sandstone (Spoon Formation) found at the site. Direct conclusive evidence documenting that faulting definitely occurred prior to deposition of the Spoon Formation was found in Trench CT-7 where the Spoon Sandstone extends continuously over several faults. This evidence establishes that faulting at the General Electric site occurred over 280 million years before the present; therefore the faulting is not capable as defined by the United States Nuclear Regulatory Commission in 10CFR100, Appendix A.

i

REPORT

GEOLOGIC INVESTIGATIONS PROJECT IV STORAGE CAPACITY EXPANSION NEAR MORRIS, ILLINOIS

FOR

THE GENERAL ELECTRIC COMPANY

INTRODUCTION

This report presents the results of the geologic investigations recently performed at the site of the proposed basin expansion to General Electric's Morris operation, a spent fuel storage facility near Morris, Illinois (Figure 1). The purpose of this investigation was to provide the geotechnical data required for the design and licensing of the proposed basin expansion to the existing fuel storage facility (Figure 2). The most critical issue of this investigation from a geologic, hydrologic and foundation engineering aspect was the dating and delineation of the northwest-trending fault zone identified by Dames & Moore from boring data initially obtained during a foundation investigation in 1967. The fault zone, southwest of the existing Fuel Storage Building, was studied in detail in 1974, at which time it was shown to have an offset of 35 to 40 feet with the southwest side dropped down in relation to the northeast side. Although the most probable time of faulting was determined to be between late Ordovician and early Pennsylvanian time, conclusive evidence

1674-099-07

Į

1

was not found which would document that the fault was not capable as defined by the United States Nuclear Regulatory Commission (NRC). The detailed geologic structural analyses of the proposed expansion area, and the stratigraphic evidence presented herein conclusively substantiate the age of faulting in the site area as pre-Early Pennsylvanian, i.e. the faults are incapable.

SCOPE OF WORK

The purposes of the investigation were to:

- 1. Determine the structural and stratigraphic relationships of the foundation materials and underlying bedrock;
- Determine the characteristics and location of the northwest-trending normal fault zone and determine its relationship to the proposed structure;
- 3. Substantiate the age of faulting, if possible; and
- 4. Perform field investigations to augment and develop data for use in evaluating the ground-water regime, the geophysical properties of the subsurface materials, and foundation conditions.

Dames & Moore's field investigations consisted of soil and rock core drilling, borehole water pressure testing, piezometer installation, trenching perpendicular to the fault trace, and geologic mapping of the trenches. The locations of the field investigations are shown on Figures 2 and 3. The results of these investigations, which form the basis of our conclusions and document the character and age of the fault zone, are presented herein. Geophysical surveys were also performed and are discussed

2

..

in our report, Geophysical Investigations (1977). Details of the
ground-water conditions found at the site are described in our report, Ground Water Investigation (1977). Foundation recommendations for design parameters were provided from analyses of our work and are given in our report, Evaluation of Foundation Recommendations (1977).

DESCRIPTION OF THE SITE

The site is located east of Morris, Illinois in the southeast 1/4 of Section 35, Township 34 North, Range & East in Grundy County. This is about 1 mile south of the Illinois River and about 1/2 mile west of the Kankakee River on a relatively high area about 30 feet above normal pool level of the Kankakee River (530 feet MSL). The topography of the area is gently rolling and generally reflects the bedrock structure and lithology. The land surface slopes generally gently to the south and east with poorly developed and integrated drainage. Figure 1 shows the site location in relation to local features and the topography near the site.

Soil and overburden deposits range from 0 to a few feet in thickness with a maximum thickness of about 10 feet just west of the fault zone. Within the area of the proposed expansion, the soil is generally less than 2 feet thick.

3

1674-099-07

PREVIOUS INVESTIGATIONS

Several geotechnical investigations have been made at the site in the past by Dames & Moore. The results of these studies, as well as boring and piezometer data, have been used to provide data for this investigation. These Dames & Moore reports are included in the general reference list at the end of this report.

METHOD OF INVESTIGATION

Ine initial field investigation involved drilling nine borings and excavating one trench perpendicular to the anticipated major northwest-trending fault, as interpreted from previous Dames & Moore investigations (1974, 1975). The field data obtained during the early stages of the investigation indicated that multiple faults, rather than one major fault, are present in a step-like pattern which forms a northwest-trending fault zone of multiple blocks positioned at different elevations (Figures 10 and 13). In order to better document and explain this interpretation, the program was revised to include a total of 17 borings and 11 trenches.

The investigation, as executed, is described in the following paragraphs.

DRILLING PROGRAM

1

1674-099-07

A total of 17 borings (B-1 and B-3 through B-18) were drilled between March 26 and April 3, 1976. Five ground-water

4

8.00 - 1 - 1 - 1

observation wells, D-1 through D-5, were also drilled. The locations of the borings and observation wells are shown on Figure 3, Plot Plan - Proposed Basin Expansion Area. Letailed descriptions of the subsurface materials encountered are presented on the boring logs, Figures 4.1 through 4.18.

The drill rig and crew were supplied by Raymond International, Inc., Elk Grove Village, Illinois. The coordinate locations and elevations of the borings were surveyed by George Reiter & Associates of Joliet, Illinois. Dames & Moore geologists supervised the field operations. The borings were drilled to depths ranging from 10.0 to 186.0 feet and were advanced by rotary wash method. Three of the borings (B-1, B-3 and B-4) were drilled at a 60-degree angle from the horizontal across the fault trace (Figure 3). The angle borings were drilled to determine the characteristics and hydrologic conditions within the fault zone, to intersect the fault zone at the foundation grade, and to establish the elevation of the Scales Shale in the borings.

The shallow soil conditions at the site were evaluated by logging cuttings from 4-inch solid flight augers. All soil was classified in the field in accordance with the Unified Soil Classification System. Core recovery and RQD (rock quality designation) of the rock from the borings aided in delineating the location of fracture zones penetrated by the borings and provided further basis for indicating the fault locations shown on Figures 9 and 10.

Fock samples were obtained utilizing NX wireline core barrels 10 feet in length. Coring began in several borings at elevations several feet above the Scales Shale in order to determine the top of the unit for stratigraphic correlation. For each core run, recovery and the RQD were determined. The percent recovery was calculated by dividing the total amount of core obtained by the total length of the core run. RQD was determined by measuring all pieces of core 4 inches or greater in length, summing this quantity and dividing it by the total length of core run. Photographs of the rock core were taken to document the recovery and condition of the core. All core obtained is stored in wooden core boxes at the site.

Pressure testing was performed in eight borings using air inflatable packers with both double-packer, 10-foot spacing and single-packer, variable spacing. Borings B-1 and B-3 through B-9 were tested and the results of the tests are presented on the boring logs as K, permeability in centimeters per second. The values obtained from the pressure tests were used to calculate the permeabilities. Borings on both the upthrown and downthrown side of the fault trace were pressure tested in order to determine the effect of faulting on the novement of ground-water under the site. A discussion of the analysis and the results of the pressure tests are presented in the Ground Water Investigations report (1977).

Ground-water observation wells (D-borings) were drilled with a roller bit. Rock core was not obtained. The tops of

formations encountered in these borings were established by in-

Piezometers were installed in 12 borings (B-1, B-3 through B-7, B-9 and D-1 through D-5) following drilling and pressure testing. In angle borings B-1, B-3 and B-4, 3/4-inch diameter PVC (polyvinyl chloride) pipe was used. All other piezometers installed consisted of 2-inch inside diameter PVC pipe slotted to monitor a specific interval. The pipe was lowered to the selected depth and the annular space around the slotted interval of the pipe was backfilled with clean pea gravel. About 2 feet of clean sand was placed over the pea gravel and from 1 to 2 feet of bentonite balls was placed over the sand to prevent migration of grout into the pea gravel. The remainder of the boring was then backfilled to ground surface with a cementbentonite grout. The PVC pipe was protected with a 5-foot length of embedded steel pipe and a steel cap at the ground surface. Piezometer installation data are presented in the Ground Water Investigations report (1977).

TRENCHING PROGRAM

Three trenches (BT-1, BT-2 and BT-3) were excavated and mapped between March 26 and April 23, 1976. Eight additional trenches (CT-1 through CT-8) were excavated and mapped between May 10 and May 25, 1977. The locations of all the trenches are shown on Figure 3.

The backhoe, capable of excavating to a depth of 12 feet, and operator were supplied by Stark Excavating Company of Morris, Illinois. The coordinate locations and elevations of the trenches were surveyed by George Reiter & Associates of Joliet, Illinois. Dames & Moore geologists directed the field activities and mapped the trenches.

These trenches were excavated to refine the definition of the structural relationships associated with the fault zone adjacent to the proposed expansion, and to determine if stratigraphic evidence was present that would establish the age of faulting. The walls of trenches were mapped to determine the stratigraphic and/or structural relationships and to provide details for use in the interpretation of site geology presented in this report. Where not obscured, floors of trenches were also mapped. Features revealed on the trench floors were oftentimes not apparent on wall profiles. Cross sections of the trenches are shown on Figures 5.1 through 5.11.

REGIONAL GEOLOGY

Regional structures in northern and northeastern Illinois trend northwest and are characterized by asymmetrical folds with steep southwestern limbs and by vertical faults and joints that trend northwesterly. Fracture sets trending northeast also occur within the region.

The site is located on the northeastern flank of the Illinois Basin. The long axis of this elliptical-shaped basin

1674-099-07

ጽ

strikes north-northwest through most of Illinois and is bounded on the east by the Cincinnati Arch and on the north by the Wisconsin Arch.

The LaSalle Anticlinal Belt, a north-northwesterly trending band of asymmetrical en echelon folds, extends from north-central Illinois to extreme southeastern Illinois. The western limb of the LaSalle Anticlinal Belt dips steeply into the center of the Illinois Basin with the eastern limb dipping gently into the eastern shelf area of the basin (Figure 6). The crestal axis of the folded belt plunges to the south-southeast and narrows to only a few miles wide at the southern end where it plunges into the deepest part of the Illinois Basin.

Initial deformation along the LaSalle Anticlinal Belt began in post-Mississippian/pre-Pennsylvanian time at the northern end. Deformation migrated progressively southward with time during the Pennsylvanian (Payne, 1940, p. 7; and Eardley, 1962, p. 45). Renewed activity occurred after Pennsylvanian time, probably at the close of the Paleozoic Era.

Smaller asymmetrical structures have been identified within the LaSalle Anticlinal Belt and include the Herscher Dome, the Herscher Northwest Anticline, and the Ashton Arch. The Herscher Dome and the Herscher Northwest Anticline are both asymmetrical, doubly-plunging anticlines trending north-northwest (Figure 6). In describing the Herscher Dome, Buschbach (1964, p. 63) states that "As in other en echelon structures in the LaSalle

Anticlinal Belt, the strata dip rather steeply on the western flank and more gently on the eastern."

The Ashton Arch is an anticline that trends westnorthwest across northern Illinois from western Kendall County to central Ogle County (Figure 6). Cambrian and lower Ordovician rocks are exposed at the surface along the trend of the arch. The Ashton Arch is bounded on the north by the Sandwich Fault The southwest flank of the arch merges with the LaSalle Zone. Anticlinal Belt and dips steeply into the Illinois Basin. Structural relief on the southwestern side is approximately 1900 feet, and the maximum relief on the northern side is approximately 900 feet (Willman and Templeton, 1951, p. 121). Uplift along the arch was at least post-Silurian and may have taken place at about the same time that movement occurred along the LaSalle Anticlinal Belt in post-Mississippian/pre-Pennsylvanian time, followed by additional, lesser uplift in post-Pennsylvanian time (Willman and Templeton, 1951).

The Sandwich Fault Zone trends west-northwest across northern Illinois to within 6 miles northeast of the site. The zone is mapped on the surface and in the subsurface for nearly 90 miles. The fault zone is essentially vertical and forms the northern boundary of the Ashton Arch. The northern block is downthrown a maximum of 900 feet by the main fault (Templeton and Willman, 1952), and near the northwestern end of the zone there are numerous associated short faults. The throw decreases toward the southeastern end of the zone, and a scissors effect causes

the southwestern block along a subsidiary fault to be downthrown a little more than a hundred feet (Bristol and Buschbach, 1973, Plate 1). Bristol and Buschbach (1971, Figure 3) indicated more than 500 feet of vertical displacement in the basement surface. Movements along the Sandwich Fault Zone are dated as post-Silurian/ pre-Pleistocene. However, major movements along the fault zone may have occurred when the LaSalle Anticlinal Belt was uplifted in post-Mississippian/pre-Pennsylvanian time (Willman and Templeton, 1951, p. 123).

The attitude of the folds and faults of the region indicate that compressive forces were acting along northeastsouthwest lines during deformation in the Paleozoic Era. Faults and joints parallel to the axial planes of folds form at right angles to the maximum compressive force and also form at this attitude as a result of tensional forces on the convex side of folded strata, or anticlines (Billings, 1972). Extension fractures form parallel to maximum compression and shear fractures are symmetrically inclined (angles less than 45°) about the compressive force axis. The continuum from tensional fractures to shear fractures is demonstrated by such examples as the Sandwich Fault, and locally identified faults of lesser magnitude (discussed below and later in this report).

At the Dresden Nuclear Power Station, approximately one-half mile northeast of the site and within 5-1/2 miles of the Sandwich Fault, northwest-trending, near vertical, en echelon

1674-099-07

faults and northeast-trending faults and joints were mapped on the top of the Maquoketa Group by the Illinois State Geological Survey (Ekblau, 1956; Dames & Moore, 1965).

The locations of these faults and others observed within the area between the LaSalle Anticlinal Belt and the Sandwich Fault provide strong evidence for direct relationship between faults mapped adjacent to the site and regional structures (Kempton, 1975). The aerial photograph of the site vicinity (Figure 11) sh we the trace of faults and joint sets that trend northeast and northwest across the region. Figure 12 is a map of these lineaments and delineates the individual features.

SITE GEOLOGY

The subsurface conditions of the site area were determined from borings and trenches drilled and excavated between 1967 and 1977. The data gathered prior to 1976 were reanalyzed and correlated with the results of the current studies. Structures shown in trenches excavated in 1974 may not have been recognized or explained at the time of their initial presentation. Information available prior to 1976 indicated a northwest-trending fault across the site area with downward displacement to the southwest (Dames & Moore, 1974 and 1975). A system of northwestand northeast-trending joint sets and a southeastward plunging anticline were also documented (Dames & Moore, 1975). The fault was documented as cutting through Ordovician-age rocks and was

dated as late Ordovician to early Pennsylvanian since Pennsylvanian sandstone unconformably overlies the Ordovician-age rocks at the site. The Silurian, Devonian and Mississippian systems are not present and were either not deposited or were eroded.

As a result of 1977 data, it was interpreted that multiple faults are present in an en echelon pattern and that a fault zone trends northwest across the site area instead of a single fault, as previously interpreted. Furthermore, it was interpreted that cross faults trend northeasterly and also occur in an en echelon pattern. Conclusive evidence for dating the fault was found and is discussed in this report.

STRATIGRAPHY

The stratigraphy of the site area, previously described in detail by Dames & Moore (1974, 1975), is substantiated by these field investigations and depicted on Figure 7.

Borings drilled in 1976 encountered all the geologic formations previously described by Dames & Moore. Two borings (B-3 and B-4) extended 5.7 feet into the Galena dolomite, and the other 16 borings were terminated in the Scales Shale. Surficial materials and rock formations encountered during the drilling are described below in descending stratigraphic order.

<u>Soil</u>

Boring logs (Figures 4.1 to 4.18) show the thickness of soil encountered in each boring and give a description of the

material. These same deposits were found on the sides of trenches excavated at the site, as seen on Figures 5.1 to 5.11, Trench Cross Sections.

The trench cross sections present a detailed account of the overburden materials, the upper several feet of bedrock, and the structural relationships within the fault zone which are discussed later in this report. The overburden soils encountered in the borings consist of a light brown to brown, clayey silt with sand and gravel underlain by a light brown to brown-gray, silty, fine sand with weathered sandstone fragments throughout. Soil thicknesses determined from borings on the upthrown side of the fault zone ranged from 0 to 3 feet; whereas on the downthrown side of the zone, the range was between 4.5 to about 10 feet.

Bedrock

The areal distribution of rock formations that form the bedrock surface in the site area is shown on Figure 8. The bedrock surface in the area of the proposed expansion is the Fort Atkinson Limestone which extends from the fault zone to include most of the site area. The Spoon Formation is found on the downthrown side of the fault zone, immediately southwest and west of the proposed expansion. Brainard Shale forms the bedrock surface, with occasional areas of Spoon Sandstone probably overlying it, in the southwestern portion of the site area.

<u>Spoon Formation</u> - This unit is Pennsylvanian in age and has previously been called the Pottsville Formation. The Spoon Formation at the site is a light gray, fine- to medium-grained, thia- to medium-bedded sandstone, which contains mica and some clay. The sandstone is locally calcareous and is generally iron stained along bedding planes and fractures. The sandstone is absent in some areas and is in excess of 10 feet in thickness in the southwestern portion of the site.

"Limestone-Clay Rubble" - This rubble, a regolith developed before deposition of the Spoon Formation, is a silty clay and limestone unit that forms a wedge-shaped deposit on the downthrown side of the fault zone. The silty, illitic clay contains 25 to 35 percent angular limestone fragments, that vary from less than 1 inch to 1 foot in diameter, with the average size of less than 3 inches.

Brainard Formation - The Ordovician-age Brainard Shale unconformably underlies the Spoon Formation and is a gray to greenish-gray shale with interbedded light gray, calcareous and argillaceous siltstone. The unit is fossiliferous, thinly laminated, and highly weathered. The Brainard Shale is not found in the vicinity of the proposed expansion since it was removed by erosion prior to deposition of the Spoon Formation. A maximum thickness of 13 feet of Brainard Shale is found in the southern portion of the site area where it conformably overlies the Fort Atkinson Formation (Dames & Moore, 1975).

Fort Atkinson Formation - The Fort Atkinson Formation consists of an upper interbedded, gray shale and limestone unit, and a lower, light gray to white, coarsely crystalline limestone.

1674-099-07

ł

A transitional zone occurs at the base of the formation and consists of a 1- to 5-foot-thick gray, silty limestone interbedded with green-gray, silty clay layers. The Fort Atkinson is generally the upper bedrock unit in the area of the proposed expansion, particularly on the upthrown side of the fault zone, and weathers to a yellowish-reddish-brown limestone with solutioning evident along joint and bedding planes and fractures; clay fillings and secondary calcite also occur in these fractures and bedding planes.

A maximum thickness of 49 feet was penetrated by borings; however, where faulting has affected the unit, repetition of strata has thickened this formation (B-6, B-16 and B-17). Erosion has greatly reduced the interval on the upthrown side of the fault zone.

<u>Scales Formation</u> - Conformably underlying the Fort Atkinson Limestone, is this medium to dark gray, calcareous shale which is locally fossiliferous. Bedding characteristics vary from massive to thinly bedded, depending on the silt content of the shale. Where not influenced by faulting, the average thickness of the Scales Shale is 68 feet.

<u>Galena Group</u> - The upper dolomite unit of the Galena Group unconformably underlies the Scales Shale. The dolomite is medium to light gray, argillaceous, finely crystalline, medium to thick bedded and locally vuggy. The total thickness was not penetrated by the borings.

1674-099-07

16

, ·

GEOLOGIC STRUCTURE

<u>General</u>

The general structure of the site is shown on Figure 9. Regional dip of the bedrock is to the southeast. Structure contours on top of the Scales Shale in the area of the site were prepared and show a southeasterly dip of 138 feet per mile. The Scales Shale is structurally higher at the northwest corner of the site (northeast side of the fault zone), and dips to the southeast with the axis of plunge parallel to the strike of the fault zone. The southeast-plunging anticline is responsible for the variations in dip seen on the structural contours drawn on top of the Scales Shale.

Joint directions exposed in trenches were mapped and indicate two dominant joint trends. One dominant joint set trends nearly parallel to the fault zone (about N40°W, ranging from N10°W to N50°W) and the second dominant joint set trends nearly perpendicular to the fault zone (about N65°E, ranging from N60°E to east-west)(Figure 9). The joints range from closed to solution-widened and filled with silt, clay and sand fill material. Northeast joint sets mapped at the site and regionally identified are extensional features formed perpendicular to fault axes.

The location of the northwest-trending en echelon faults along the crest of the anticline (Figure 9) and the direction of the joints measured across the anticline indicate 1) that

tensional forces across the crest of the fold produced the northwest-trending faults and joints, and 2) that extensional forces created the joints perpendicular to the fault. As can be concluded from regional tectonic forces, the compressive conditions that caused the northwest-trending folding are also responsible for faulting and contemporaneous jointing. A strain ellipse diagram shown on Figure 9 gives the orientation of strain axes to the geologic structures found at the site. The major and minor axes of the strain ellipse correspond to the direction of regional tectonic forces previously discussed. From a structural standpoint, the most logical location for the fracture pattern developed at the site is along the crestal high of the anticline, as shown on Figure 9.

The location of the fault zone, the length of segments, displacements, and the trend of the different segments have been inferred from boring data, geophysical surveys, and exposures from trenches excavated at the site (Figure 9). Displacement measured on top of the Scales Shale Formation along the fault zone varies from about 10 feet at the southeast corner of the site area to 45 feet adjacent to the proposed expansion.

Geophysical profiles conducted in 1974 (Dames & Moore, 1975) revealed several anomalous areas which could not be fully explained by the information available at that time. Interpretations from subsequent studies have shown some of these anomalies to be areas where the en echelon segments of the fault zone occur. Recent boring data substantiates this interpretation.

1674-099-07

18

.

The individual segments of the fault zone were found to vary in trend from N40°W to N48°W but average N45°W.

Details of the area outlined by the rectangle (proposed expansion area) in the northwest portion of the map (Figure 9) are shown on Figure 10 and are discussed in the following sections of this report.

Geologic Structure of the Proposed Expansion Area

The proposed expansion area has been extensively studied (Figure 2). Fault locations and relative displacements of the faults are shown on Figure 10. These normal faults are drawn from data obtained directly from borings (Figures 4.1 to 4.18), from trench exposures (Figures 5.1 to 5.11), and from data extrapolated between the trenches and borings. The trench excavations provided the most comprehensive information concerning the detailed structural relationships of the fault zone, including displacements of faults, orientation of faults and joints, and continuity of fault blocks.

Borings revealed a general decrease in elevation of the Scales Shale (Figure 10) and the bedrock surface to the southeast. Elevations on top of the Scales Shale varied from 523.1 feet at Boring 9 to 439.0 feet at B-6 as a result of multiple fault blocks which occur in a step-like pattern between the two borings. The greatest drop in elevation was found across a northwest fault zone that was traced between Borings A-8 and A-9,

between A-2 and B-13, and between A-6 and A-7 (Figures 9 and 10). This trend, in effect, is the trace of several en echelon faults with major displacements on two of the faults (Figure 9). These two major faults, located on each side of A-8, were traced in trench exposures from CT-4 northward for 140 feet to CT-7 and reveal one block about 4 to 6 feet wide between the two faults. Evidence that indicates this trace continues further to the northwest was found in AT-4 and CT-6, excavated outside the fence line of the facility. At these locations faults were not identified within the rocks exposed; however, relationships of the near surface bedrock support the occurrence of structure beneeth or near the excavations.

Two borings, A-8 and B-13, were drilled within this block separating the two faults. Boring A-8 was at the southern part of the proposed expansion area and had an elevation of 501.9 feet for the top of the Scales Shale. The Scales Shale was found at 520.1 feet in Boring A-9, 15 feet northeast of A-8. In Boring B-12, drilled on the same block as A-8, the elevation of the Scales Shale was 501.4 feet. Elevation of the Scales was 518.1 at B-14, 5 feet to the northeast and on the upthrown side of the faults.

Trenches AT-1, AT-2, and AT-3 (T-1 through T-3 of 1974 report) revealed a faulted block of Fort Atkinson Limestone and provided exposures that later supported the presence of sets of multiple fractures in the proposed expansion area (Figure 10). Trenches CT-1 through CT-5, and CT-7 were dug to further delineate this structure and for correlation of previously known fault blocks. During excavation of the CT trenches additional faults were uncovered which were probably several feet below the level of the AT-and BT-series trenches.

Relative displacements of northwest-trending normal faults within the proposed expansion area are predominantly downto-the-southwest. Several faults exposed in Trenches BT-1, CT-1, CT-2, and CT-5 have downward displacements to the northeast on the top of bedrock, and a graben block, exposed in CT-3, exhibited displacement of about 1 foot on the top of bedrock. The variability of displacements of fault blocks and the different amounts of throw measured on the Fort Atkinson Limestone and the Scales Shale are characteristic of en echelon gravity faults produced by antithetic tensiona? forces.

These faults probably converge with depth, creating step-like extensional blocks that have variable displacements relative to adjacent blocks, and may also have moved rotatively in association with individual blocks. Tilted blocks, as seen at CT-3 (Figure 5.6) nave been gravity-induced and are slightly arcuate with depth.

Cross faults and joints in the proposed expansion area are perpendicular to the northwest-trending fault axes and create a series of en echelon down-to-the-southeast blocks that are shown on Figure 10. Their occurrence has resulted in two phenomena evident in the proposed expansion area.

21

.

First, the trend of the northwest-trending en echelon faults changes from N45°W in the southern part of the proposed expansion area to about N25°W north of the two northeast-trending faults near Boring B-6. Based on field data, the N45°W trend is again predominant to the northwest of the proposed basin expansion and demonstrates the local nature of the direction changes of the fault zone's segments.

Secondly, lower elevations of the top of the Scales Shale are found locally on the south side of the northeasttrending faults. This occurrence is evident at Boring 2 (drilled in 1967) and is particularly noticeable at Borings B-6, B-16 and B-17 where 40 feet of downward throw has occurred between the two en echelon, northeast-trending faults. Boring B-6 was drilled early in the field investigation of 1976 and revealed an unusually thick section of Fort Atkinson Limestone (78.6 feet). The elevation of the top of the Scales Shale at B-6 was 439.0 feet which is 36.1 feet lower than at B-15, approximately 12 feet to the northeast; and approximately 75 to 80 feet lower than the formational top on the upthrown side of the fault zone. At Boring B-17, about 12 feet east-southeast of B-6, the top of the Scales Shale was at 440.8 feet with 78 feet of Fort Atkinson present. The top of the Scales in B-16 was at 452.5 feet; whereas on the north side of the northeast-trending cross-fault, the elevation of the Scales Shale at B-15 was 475.1 feet. This relationship indicates a localized structural feature at Borings

B-6, B-16 and B-17 which can be interpreted as a localized, fault-bounded block with maximum downward displacement, or tilt, to the north.

Faults mapped within the trench excavations correlated well with fracture zones measured in the angle borings, B-1, B-3 and B-4. Figure 13 shows the relationship between the boring and trench data and depicts the continuity of the faults across the proposed expansion area. Angle borings were drilled at 60 degrees from horizontal in a direction perpendicular to the fault zone (Figure 10).

The correlation between the trench exposures and the boring logs is indicated by the shaded area on Figure 13. There are two reasons for this shaded area of correlation. First, direction changes, both vertical and horizontal, are unavoidable in any angled drilling operation. Secondly, the fault planes are undoubtedly variable along the trace of the fault and an average value, depicted as a straight line, is shown rather than multiple short segments with variable inclination which are closer to actual conditions. The dip of the faults ranges from 80 degrees (inclined to the southwest) to vertical as measured in the field.

The interpreted sequence of closely spaced, nearsurface faults shown adjacent to the proposed expansion area but not in other parts of the area is the result of extensive field investigations within this area and the lack of near-surface evidence for faults near B-6 and further to the west. Apparently, faults located at B-6 and further west are expressed at

TENIAL

lower elevations than in adjacent areas. Boring data indicate their presence, but the thicker and deeper (relative to ground level) deposits of Spoon Sandstone have covered the faults found within the Fort Atkinson Limestone on the east side of the fault zone.

The faults shown on Figure 10 are in the center of a complex structural zone (Figure 12). This area, which includes the regional fault zone shown on Figure 9, is bounded to the southwest by a graben which extends for about 2000 feet to the southwest where it is bounded by another northwest-trending fault (Figure 12). The upthrown blocks are capped by Fort Atkinson Limestone and the downthrown block is capped by Spoon Sandstone which covers the Fort Atkinson and filled in the topographic low created by the graben.

In order to relate the results of the extensive site investigation to the regional geology, lineaments were mapped from an aerial photograph (Figure 11). Lineaments interpreted as structurally related are often expressed on the ground surface by slight topographic relief and predominantly trend either northwest or northeast. The interpretations of lineaments are presented on Figure 12.

SITE GEOLOGIC HISTORY

The geologic history of the site area since the Ordovician Period has been described and documented in previous Dames & Moore reports (1975). Studies prior to 1977 provided

24

1674-099-07

evidence that indirectly indicated that major movement of the fault zone occurred prior to deposition of the Pennsylvanian sandstone (Spoon Formation), based on three spatial relationships.

First, deposits of Pennsylvanian sandstone fill solution-widened joints at the site and grade outward to argillaceous siltstone and/or clayey silts. These siltstones and clayey silts apparently represent the original pre-Pennsylvanian joint fill that was later cut and filled with Spoon Sandstone.

Secondly, a regolith, consisting of silty clay and limestone fragments and formed prior to sandstone deposition, cover the surface of the exposed Fort Atkinson Limestone. It was during this period of erosion (non-deposition) that the wedgeshaped deposit of clay-limestone rubble, over which the Spoon Formation was deposited, was laid on the downthrown, southwest side of the fault zone. This clay-limestone rubble was deposited as a colluvium shortly after faulting, and shortly before the Spoon Sandstone was deposited. If this was not the case, erosion and material slope development would have removed this temporal unconsolidated deposit after a short span of geologic time. Either during and/or shortly after deposition of the sandstone, differential compaction and slumping probably occurred in the wedge of unconsolidated regolith, which resulted in gentle sagging of the overlying Spcon Formation bedding and increased the inclination of the beds

Thirdly, in the northwest corner of the site area, sandstone overlies the basal 7.5 feet of Fort Atkinson Limestone on the upthrown side of the fault zone; the remaining section has been eroded. The sandstone on the downthrown side of the fault zone overlies 42 feet of Fort Atkinson Limestone.

These three relationships provide stratigraphic evidence that indirectly demonstrates pre-Spoon Formation faulting. More specifically, the presence of the clay-limestone rubble as a colluvial regolith places the time of faulting shortly before deposition of the Spoon Sandstone -- i.e., Early Desmoisian (earliest Pennsylvanian) to post-Chesterian (latest Mississippian). This time interval (approximately 280 million years b.p.) for faulting is further supported by the lack of comparable offsets in the Colchester Coal (Middle Desmoisian) which is the lowest unit in the Carbondale Formation and overlies the Spoon Formation in the area. The Colchester Coal (also termed the No. 2 Coal) has been extensively mined where present south of the site area, and numerous mine exposures and pit slopes have shown no significant structural displacement associated with faulting (Buschbach, 1977).

The Illinois State Geological Survey in 1975 performed X-ray diffraction analyses on Pleistocene glacial till samples which directly overlie the fault planes in several trenches. Their analyses dated the material at 15,000 to 17,000 years (b.p.) and definitely shows that faulting occurred at least before this time since the in-situ Pleistocene strata were undisturbed (Dames & Moore, 1975).

1674-099-07

Potassium-argon radiometric analyses of clay taken from the fault plane exposed in BT-1 were made in 1977 (Krueger, 1977). Results dated the clay at 457 million years (b.p.) \pm 16 million years. The results indicate that the clay is the same age as the surrounding Ordovician Limestone (430 - 500 million years. Willman and others, 1975) also exposed in the trench, and thus were not substantiating.

Field work in 1977, however, provided direct, conclusive evidence documenting that faulting definitely occurred prior to deposition of the Spoon Sandstone. This evidence was found in the exposure of Trench CT-7 (Figure 5.10). At this locality, the Spoon Sandstone extends continuously bedded from the southwest end of the trench to within 5 feet of the northern edge of the trench. Within this 50-foot interval, the sandstone is nearly horizontally badded over the Fort Atkinson Limestone on the downthrown side of one fault, continues at a slight dip over the wedge-shaped clay-limestone rubble adjacent to the upthrown block formed by the fault movement, and directly overlies the fault plane and adjacent upthrown block. The sandstone is found over the width of this fault block and continues to a second fault that bounds the block to the north (Figure 5.10). The perspective of the trench wall shown on Figure 5.10 gives the apparent view that the sandstone overlaps the uppermost fault block. The sandstone does not lie over this block as determined from field inspection; however, due to the oblique angle of the trench to the strike of the fault plane, this relationship is not apparent when shown as a two-dimensional profile.

CONCLUSIONS

The evidence of the Spoon Sandstone directly overlying a fault and fault block of Fort Atkinson Limestone conclusively dates the fault as having occurred no later than pre-early or early Desmoisian. The presence of the clay-limestone rubble as a colluvial wedge-shaped deposit along the fault block supports a probable post-Chesterian age of faulting. This age of faulting (post-Chesterian/early-Desmoisian) at the site is supported further by the regional geologic history. Initial deformation along the LaSalle Anticlinal Belt and the major movements of the Sandwich Fault occurred during post-Mississippian/pre-Pennsylvanian time (Payne, 1940; Willman and Templeton, 1951) and is equivalent to the age of site deformation.

Continued uplift within the area occurred after Pennsylvanian time, but this renewed activity was of less magnitude (Willman and Templeton, 1951) and may be partially responsible for warping or increased inclination of bedding planes within the Spoon Formation during its unlithified, unconsolidated state. No displacement or offset is found within the beds of the Spoon Formation at the site.

The NRC criteria for faulting as defined in 10CFR100 requires that a fault has not moved in the last 35,000 years or has no history of recurrent movement in the last 500,000 years. The stratigraphic evidence found throughout the site, both in this and previous investigations, indicates a pre-Spoon deposition age for faulting. The relationships observed in Trench

ıļ

:

44

1 2 2

CT-7 provide substantiated proof that the faulting occurred in post-Chesterian to early Desmoisian time (approximately 280 million years before the present). Therefore, the faulting at the site is not capable.

Expansion of the storage basin at the site will involve excavation of the area shown in Figure 3. This excavation will be mapped by Dames & Moore personnel in order to fulfill NRC regulations regarding mapping and documentation of safety-related excavations for nuclear facilities.

--00000--

The attached tables and figures complete this report.

Respectfully submitted,

DAMES & MOORE

Michael L. Kiefer

Partner

John S. Trapp Senior Geologist

Charles S. Kuntz Staff Geologist

1674-099-07

- - ----

MLK/JST/CSK/CH:1hk
REFERENCES

Billings, M.P., 1972, Structural geology: Prentice-Hall, Inc., Englewood Cliffs, New Jersey, third ed., 606 p.

Bristol, H.M. and Buschbach, T.C., 1971, Structural features of the eastern interior region of the United States in Background materials for Symposium on future petroleum potential of NPC Region 9 (Illinois Basin, Cincinnati Arch, and northern part of Mississippi Embayment); Ill. State Geol. Surv., Ill. Pet. 96, p. 21-28.

, 1973, Ordovician Galena Group (Trenton) of Illinois structure and oil fields: Ill. State Geol. Surv., Ill. Pet. 99, 38 pp., 1 plate.

Buschbach, T.C., 1964, Cambrian and Ordovician strata of northeastern Illinois: Ill. State Geol. Surv., Rept. of Invest. 218 90 p.

____, 1977, Letters to Dr. John Trapp, Dames & Moore (June 27 and July 12).

Dames & Moore, 1965, Report, Site evaluation study, Phase I part 1, Proposed Dresden Unit 2, Grundy County, Illinois: Prepared for the General Electric Company (April 13).

___, 1967, Report of Foundation investigation, Proposed FRO plant project near Morris, Grundy County, Illinois: Prepared for the General Electric Company (December 13).

____, 1970, Report, Subsurface water investigation, FRO plant project, Morris, Illinois: Prepared for the General Electric Company, Fluor P.O. 4204-0-014 (February 25).

____, 1971, Report of drainage well pumping tests, FRO plant project, Midwest Fuel Reprocessing Plant, near Morris, Illinois: Prepared for the General Electric Company (January 11).

, 1974, Report of fault investigation at the Midwest Fuel Reprocessing Plant, near Morris, Illinois: Prepared for the General Electric Company (October 1).

_, 1975, Report of geological and ground water investigation, Proposed Spent Fuel Storage Facility, near Morris, Illinois: Prepared for the General Electric Company (September 3).

2

ł

1

REFERENCES (continued)

Dames & Moore, 1977, Letter report of evaluation of foundation recommendations, Project IV - Fuel Storage Capacity Expansion, near Morris, Illinois: Prepared for the General Electric Company (May 12).

_____, 1977, Report of geophysical investigations, Project IV -Fuel Storage Capacity Expansion, near Morris, Illinois: Prepared for the General Electric Company (July 22).

_____, 1977, Report of ground water investigations, Project I^V -Fuel Storage Capacity Expansion, near Morris, Illinois: Prepared for the General Electric Company (August 3).

Eardley, A.J., 1962, Structural geology of North America: . Harper & Row, New York, 2nd edition, 743 p.

- Ekblau, G.E., 1956, Letter to Mr. T.H. Smith, Project Engineer, Power Division, Bechtel Corporation, Chicago, Illinois in Dames & Moore Report, Site evaluation study - Phase I -Part 1, Proposed Dresden Unit 2, Grundy County, Illinois, for the General Electric Company, dated April 23, 1965: Ill. State Geol. Surv., Urbana, Illinois.
- Kempton, J.P., 1975, Letter to Mr. John Trapp, Dames & Moore, Park Ridge, Illinois, in Dames & Moore Report, Geological and Ground-Water Investigations, Proposed Spent Fuel Storage Facility near Morris, Illinois, for the General Electric Company, dated September 3, 1975: Ill. State Geol. Surv., Urbana, Illinois.

Krueger, H.W., 1977, Letter and report to Dr. John S. Trapp, Dames & Moore (April 4).

- Payne, J.N., 1940, The age of the LaSalle Anticline; Ill. State Geol. Surv., Circ. 60, pp. 5-7, reprinted from Transactions, Ill. State Acad. of Science, v. 32, no. 2, pp. 171-173.
- Templeton, J.S., and Willman, H.B., 1952, Central northern Illinois - Guidebook for the 16th annual field conference of the Tri-State Geological Society; Ill. State Geol. Surv., Guidebook Series 2, 47 p.
- Willman, H.B., and others, 1975, Handbook of Illinois stratigraphy: Ill. State Geol. Surv. Bull. 95.
- Willman, H.B., and Templeton, J.S., 1951, Cambrian and lower Ordovician exposures in northern Illinois: Transactions, Illinois Academy Science, v. 44, pp. 104-125.

1674-099/101-07

.

.

.

1674-099-07

DAMES & MOORE

5

I.

674-099

LOG OF BORINGS

DAMES & MOORS

LOG OF BORINGS SHEET 2 OF 2

.

DANKS & MOORE

LOG OF BORINGS SHEET 2 OF 2

dames s moore

SURFACE ELEVATION 531.3 COORDINATES \$ 795.2 E 222.0

	0-			SYMPOLS DESCRIPTIONS		
	-			GP GRAVEL SURFACE FILL ML DAAK BROWN CLAYEY SILT WITH TRACE SAND	- 530	
	5-			CL BROWN SAMOY SILTY CLAY WITH TRACE FINE GRAVEL LIGHT GRAY SILTY FINE SAND WITH HIGHLY MEATHERED SANDSTONE GRAVEL		
			•	PENNSYLVANIAN SYSTEM SPOON FORMATION	- 525	
	10-		84 {40}	SANDSTORE: LIGHT BROWNISH-GRAY; FINE TO MEDIUM "ERLITED; HIGHLY MEATHERED. ORDOVICIAN SYSTEM MAQUDKETA GROUP FORT ATKINSON FORMATION INTEREODED SHALE AND LIMESTORE: SHALE: MEDIUM DARK	- 520	
	15 -	2	-	GRAY; ELAYEY; THINEY LAMIMATEO; STETY; FOSSILIFEROUS; HODERATELY TO SLIGHTLY WEATHERED, LIMESTOME; LIGHT GRAY; FINE TO HEDIUM GRAINED; THIN TO HEDIUM BEDDEO; FOSSILIFEROUS; SLIGHTLY MEATHERED,	- 515	
	20 -		95 (63)	THE STORE, LIGHT GRAY: FINE TO REDIUM CRYSTALLINE: NEDTON TO THICK RECOOD: FOSSILIFEADOUS, SLIGHTLY LEATHERED ALONG SHALE PARTINGS; OCCASIONAL INTEGULAR THIN SHALE PARTINGS; GREEN; CLAYEY; OCCASIONAL CALCITE FILLED VUGS; OCCASIONAL CALCITE MEALED SUMMON 2001TAL FRACTURES; TRACE PYRITE: OCCASIONAL STYLDUITIC SURFACES;	- 510	r
L	25 -		-		- 505	755
DEPTH IN FEET	30-	1-01161	100 (98)	GRADES LOCALLY SLIGHTLY ARGILLACEOUS	- 500	TION IN
	35 -			ACOERATELY MEATHERED BEDOING PLANE AT \$7.3 FEFT	- 495	ELEVA
	40-	100 	100 (96)	1.0 FOOT SUBVENTICAL TIGHT, CALCITE HEALED FRACTURE VUCCY, HORCHATELY MEATHERED BEODING PLANE AT 50.0 FEET 1.8 FOOT SUBVENTICAL CALCITE, PTRITE AND SMALE	- 490	
	45 -		100 (95)	LINED HEALED FLACTING FAON 40,6 FEET CRADES WITH HORE SHALE PARTINES C. FOOT CREE, SHALE SEAN FROM 44,1 FEET SRADES "ITH LOCALLY 15 TO 20% PHOPOINT TO 0,02 WUCS AND TRACE PTRITE INCLUSIONS	- 485	
	50-	38.10-7 -07 -0	•	GRADES WITH LESS THAN 57 YUGS	- 480	
	55 -		SCHEESTORIALIDH SCHEESTORIALIDH SCHEESTORIALIDH SCHEESTORIALIDH SCHEESTORIALIDH SCHEESTORIALIDH SCHEESTORIALIDH INCLEASIONAL CLAYEY SEAN, OCLASIONAL 200 TO 300 FRACTURES. CRADES LESS FOSSILIFEROUS	- 475		
	60 -		100 (68)	A5° OPEN SLICKEWSIDED FRACTURE FROM 50.1 FEET 55° OPEN FRACTURES FROM 50.8 61.0 AND 62.2 FEET 3EVERAL 30° OPEN FRACTURES FROM 61.0 TO 61.7 FEET	470	
	65 J			NOT THE CONFLETED AT 62.5 FEET ON A-1-76.		

CASING USED TO A DEPTH OF S.O FEET. GROWTER LEVEL RECORDED AT 8.5 FEET ON 4-2-76, PIEZONETER INSTALLED BETWEEN 3.5 AND 9.5 FEET ON 4-7-76.

LOG OF BORINGS

danus s moors

٠

1674-099-07

-

.

DAX520 8 000075

LOG OF BORINGS SHEET 2 OF 2

.

DAMES & MOONS

FIGURE A

DÓM

PANES & MOORE

-----. ----

DAMES & MOORE

DAMSE & MOORE

DAMES & MOORE

BORING B-16

SURFACE ELEVATION 530.0 COORDINATES \$ 708.1 E 105.3

	0-	SYMBOLS DESCRIPTIONS _ 530
	•	BROWN CLAYEY SILT WITH TRACE FINE TO COARSE SAND
	5-	AND GRAVEL: STIFF MUL AND GRAVEL: STIFF MUTTLED LIGHT BROWN AND GRAY SILTY FINE SAND WITH TRACE CLAY AND SOME SANDSTONE FRAGMENTS; MEDIUM DENNSYLVANIAN SYSTEM SPOON FORMATION SANDSTORE: MEDIUM LIGHT GRAY; FINE TO MEDIUM GRAINED;
	10-	HOUERATELY WEATHERED. OPJOVICIAN SYSTEN MADINIKETA GROUP FORT ATKINSON FORMATION FORT ATKINSON FORMATION
	15 -	THIERBOUGD LINESTONE AND SHALES CHESTONE IN THE INFORMATION SHALES CHESTONE AND SHALES CHESTONE AND SHALES THE INFORMATION AND
	20-	- 5/0
EE T	25 -	LIMESTONE; LIGHT GRAY: FINE TO COARSE CRYSTALLINE.
TH IN F	30-	GRADES WITH DARK GRAY SHALE PARTINGS FROM 27.0 TO - 500
DEP1	35 -	- 495
	40 -	SHALL; LIGHT GREEN; CLAYSY; LOCALLY DISTORTED STRUCTURE; NUMEROUS LIMISTONE INTEREDS; LIGHT GREY; FINE TO MCDIUM CRYSTALLINE; PYRITIC; FRESH, BEDDING AT 27' TO 33'
	45 -	90 15C ¹ - 485
	50 -	47 (10) GRADES MITH BEDDING OF 30° TO 40°; LESS LINESTONE - 480
	55 -	GRADES GREENISH-GRAY WITH BRECCIATED AND PARTIALLY - 475 HEALED STRUCTURE (80)
	60	LIMESTONE: LIGHT GRAY: FINE TO COARSE CRYSTALLINE: NEUTOR BEDDED: "AESH: OCCASIONAL GREEP AND GRAY CLAYEY SHALE PARTINGS AN" SEA'S; TRACE PTRITE INCLUSIONS.

1674-099-07

LOG OF BORINGS SHEET | OF 2

.

LOG OF BORINGS SHEET 2 OF 2

,

DAMES & MOORE

BORING B-17

.

SURFACE ELEVATION 530.1 COORDINAT'S \$ 702.1 E 111.4

	0-	STABULS DESCRIPTIONS	- 530
	•	GP GRAVEL SUBFACE FILL BROWN CLAYEY SILT WITH SOME SAND AND FINE GRAVEL: MULT ML STIFF	
	5-	LIGHT BROWNISH-GRAY SILTY FING SAND WITH TRACE CLAY AND SONC SANDSTONE FRAGMENTS; MEDIUM DENSE TO DENSE NET DENSES WITH WEATHERED SANDSTONE FRAGMENTS STOP DENNESY UNALIAN SYSTEM	- 525
	10-	SPOON FORMATION SANDSTONE: LIGHT BROWNISH-GRAY: FINE TO MEDIUM GRAINED: SLIGHTLY SILT; MODERATELY TO SLIGHTLY WEATHERED.	- 520
	15 -	TO DADOVICIAN SYSTEM MAQUACETA GROUP FORT ATKINSON FORMATION FORT ATKINSON FORMATION INTERBEDOCO LINESTONE AND SHALE; (IMESTONE: LIGHT MITERBEDOCO LINESTONE AND SHALE; (IMESTONE: LIGHT GRAT; FINE TO HEDIUM CRYSTALLIN; THIN TO MEDIUM SEDDOD; LOCALLY ANGILLACCOUS; SLIGHTLY WEATHERED TO FRESH, SHALE; PEDIUM DARK GRAY; THINLY LAMINATED; TOSSTLIFEROUS; SLIGHTLY WEATHERED.	- 515
	20 -		- 510
	25 -	LIMISTONE; LIGHT GRAY; FINE TO COARSE CRYSTALLINE; HEDTUR BEDDED, SHALE; I CHT GREEN; CLAYEY; THINLY LAMINATED TO THI BEDDED; OCASIONAL LIMESTONE INCLUSION; SOME GREE SILTSTONE INTERBEDS; LOCALLY DISTORTED TRUCTURE,	505
DEPTH IN FEET	30-	GRADES WITH LINESTONE FROM 31.7 TO 32.5 FEET	- 500
	35 -	GRADIS WITH SILTSTONE INTERSIDDING AND OCCASIOAA	- 495 NOI 18
	40-	97	- 490 Ere A
	45 -	DE 31	- 485
	50 -	LIMESTONE: LIGHT GRAY: FINE TO COARSE CRYSTALLINE: HEDTUR & EDDED: TRACE PYRITE: FRACTURED WITH DCCATIONAL TILTED FLOCKS: FRACTURES AND PARTIMES	- 480
	55 -	(31) CLAY FILLED LIMESTONE ZONES.	- 475
	60-	COMPETENT LINESTONE FROM 59.3 TO 61.3 FEET 3.4 FOOT DISTORTED CLAY AND SILTSTONE SEAN WITH TRACE LINESTONY INCLUSIONS FROM 51.3 FEET	- 470
	65 -	(65) CRADES DCCASIONAL BEDS OF COMPETENT LIMISTONE INTIMEEDED WITH HIGHLY FRACTURED AND CLAY FILL PISCES OF LIMESTONE	£0 - 465
	70-	93 (12) 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	- 460
	75		ł

1674-099-07

۲

LOG OF BORINGS SHEET 2 OF 2

.

DANSES & FROOMS

1674-399-07

1674 - 099 - 07

- 522

ON :	
	FILL: BLACK ORGANIC CLAY AND SILT WITH CONSTRUCTION MATERIAL,
1005	TILL: DARK BROWN AND BROWNISH-YELLOW SIL CLAY MATRIX; WITH 40% ROUNDED GRAVELS; CALCAREQUS; POORLY SORTED; QCCASIONAL ANGULAR AND SUB-ANGULAR SANDSTONE SLAB'
	SANDSTONE. LIGHT GRAY WITH YELLOWISH-RED LARTHATIONS; FINE TO MEDIUM GRAINED; TI BEODED; MICACEOUS; FRESH TO MODERATELY WEATHERED; INCLINED BEDDING SW FROM IMMEDIATE VICINITY OF FAULT.
.;	LIMESTONE CLAY 'AUBBLE': LIGHT GRAYISH-BI SILTY ELAY PJTRIY WITH ANGULAR FRAGMEN LIMESTONE UP TO I FOOT; VERY CALCAREOU POORLY SORTED, POORLY GRADED; OCCASION, WEATHERED CHERT FRAGMENTS,
HH	LIMESTONE: LIGHT GRAY; COARSE CRYSTALLIN, ROUTUR TO THICK BEDDED; WEATHERS YELLON BROWN, MODERATELY WEATHERED AND OCCASION CLAY-FILLED ALONG BEDDING PLANES, JOIN FRACTURES; FOSSILIFEROUS; OCCASIONAL C; CRYSTALS ALONG JOINT SURFACES.
3	LIMESTONE: MIGHLY WEATHERED
- .	SILTY CL' : GREENISH-GRAY; OCCASIJWALLY CONTAINS INCLUSIONS OF EVENEMEN WEATHERED INFESTORE FRAGMENTS

EXTREMELY WEATHERED LINESTONE FRAGMENT: FOUND WITHIN FRACTURES AND ALONG LINES' BEODING PLANES; WEATHERS YELLOWISH-BROD

JOINT

4850

DIP AND DIRECTION OF BEDDING PLANE

HOTES;

1

- TRENCH PROFILES ARE SHOW FROM THE SAME DIRECTION, LOOKING NORTHWEST. ۲,
- SOME FREATURES SEEN ON PROFILES OF TRENCHES ARE DESCURED ON FLOOR AND DO 107 APPEAR. 2.
- 3. DATA SHOWN BELOW TRENCH FLOOR IS INTERPRETE BASED ON BORING DATA AND VISUAL INSPECTION OF TRENCHES.

TRENCH CROSS-SECTIO BT - 1 SHEET 2 OF 2

DAMES & MC

--------FIGURE 5

NORTH WALL

OUTH WALL

- FROM THE STAR DIFLETION LOOKING NONTHWEST.

+ EDD- IT INT TPRET O BASED ON BORING DATA

TPENCH CROSS-S BT - 2

DAMES & I

PROFILES ARE SHOWN FROM THE SAME DIRECTION, LOOKING NOATHWEST.

TRENCH CROSS-SI BT - 3

-

I.

SOUTH WALL

TRENCH CROSS-SI CT - 1

DAMES & I

Marina 🕹 M

FIGURE

EXPLANATION:

.

TILL: BROWN SANDY CLAY WITH SOME GRAVEL; OCCASIONAL ROTTLING.

TILL: BROWN SANDY SILT WITH SOME CLAY AND GRAVE; MUMERE TARGE INTACT THINLY BEDGED SANDSTONE FRAGMENTS; OCCASI MOTTLING.

FILL: BLACK ORGANIC CLAY AND SILT WITH CONSTRUCTION MATERIAL.

US: TILL: DARK BROWN AND BROWNISH-YELLOW SILTY CLAY MATRIX; DD: WITH 40% ROUNDED GRAVELS; CALCAREDUS; MOORLY SOATED; OCCASIONAL ANGULAR AND SUB-ANGULAR SANOSTONE SLADS.

SANDSTONE, GRAY WITH YELLOWISH-RED LARINATIONS; FIRE TO HEDILY GRAINED: THIN BEDDED: MICACE, US; FRESH TO MODEL WEATHERED. IN IRREGULAR CONTACT WITH TILL ABOVE AND LINESTONE RUBBLE BELOW.

LINESTONE CLAY "RUBBLE": LIGHT GRATISH-BROWN SILTY CLAY NATURE WITH ANGULAR FRAGMENTS OF LINESTONE UP TO I FOU YERY CALCAREDUS; POORLY SORTES, POORLY GRADED; OCCASII METHERED CHERT FRAGMENTS.

LINESTONE: LIGHT GAAY; COARSE CRYSTALLINE; HEDIUM TO TH BEDDED; WEATHERS YELLOWISH-BROWN; MODERATELY -EATHERE OCCASIONALLY CLAY-FILLED ALONG BEDDING PLANES, JOINTS FRACTURES; FOSSILIFEROUS; OCCASIONAL CALEITE CRYSTALS JOINT SURFACES.

LIMESTONE: HIGHLY WEATHERED.

SILTY CLAY: GREENISH-GRAY; DCCASIONALLY CONTAINS INCLUS OF EXTREMELY WEATHERED LINESTONE FRAGMENTS; FOUND WIT FRACTURES AND ALONG LINESTONE BEDDING PLANES; WEATHER YELLONISH-BROM.

JOINT

DIP AND DIRECTION OF BEDDING PLANE

HOTES:

- 1. TRENCH PROFILES ARE SHOWN FROM THE SAME DIRECTION, LOOKING " OR
- 2. SOME FEATURES SEEN ON PROFILES OF TRENCHES ARE OBSCURED ON FLO AND DO NOT APPREAR.
- 3. DATA SHOWN BELOW TRENCH FLOOR IS INTERPRETED BASED ON BORING D AND VISUAL INSPECTION OF TRENCHES.

TRENCH CROSS-S CT - 3 SHEET 1 OF 2

dames (

10-600-415.

EXPLANATION

11

1.1

٠

FILL: BLACK DRGANIC CLAY AND SILT WITH CONSTRUCTION MATERIAL.
TILL: BROWN SANDY SILT WITH SOME CLAY AND GRAVEL: NUMEROUS LARGE INTACT 7.118 / BEDDED SANDSTONE FRAGMENTS; GCCASIONAL MOTTLING.

TILL: BROWN SANDY CLAY WITH SOME GRAVEL: OCCASIONAL MOTTLING.

- TILL: DARK BROWN AND BROWNISH-YELLOW SILTY CLAY MATRIX; WITH 40% ROUNDED GRAVELS; CALCAREOUS; POORLY SORTED; OCCASIGNAL AWGULAR AND SUB-ANGULAR SANDSTONE SLABS. 0.000
- SANDSTONE: GRAY WITH YELLOWISH-RED LAMINATIONS: FINE TO HEDION GRAINED: THIN BEOPED, MICACEOUS: FRESH TO MCDERATELY WEATHERED. IN IRREGULAR CONTACT WITH TILL ABOVE AND LIMESTONE RUBBLE BEITW. • • • • • Fig: pi
- LIMESTONE CLAY 'AUBBLE': LIGHT GRAYISH-BROWN SILTY CLAF MATRIX WITH ANGULAR 'RAGM'NTS OF LIMESTONE UP TO 1 FOUT; YERY CALCAPEOUS; POCKLY SORTED, POORLY GRADED; OCCASIONAL WEATHRED CHERT FRAGMENTS.
 - LINESTONE: LIGHT GRAY; COARSE CRYSTALLINE; MEDIUM TO THICK BEDDED; WEATHERS YELLOWISH-BROWN, MOUERATCLY WEATHERED AND OCCASIONALLY CLAY-FILLED ALONG BEDDING PLANES, JOINTS AND FRACTURES; FOSSILIFERGUS; OCCASIONAL CALCITE CRYSTALS ALONG JOINT SUFFACES.
 - LIMESTONE: HIGHLY WEATHERED.
 - SILTY CLAY: GREENISH-GRAY, CCCASIONALLY CONTAINS INCLUSIONS DF EXTREMELY WEATHERED LIMESTONE FRAGMENTS; FOUND WITHIN FRACTURES AND ALONG LIMESTONE BEDDING PLAXES, WEATHERS YELLDWISH-BROWN.

ş JOINT

DIP AND DIRECTION OF BEDDING PLANE

NOTES:

- I. TRENCH PROFILES ARE SHOWN FROM THE SAME DIRECTION, LOOKING NORTHWEST.
- 2. SOME FEATURES SEEN ON PROFILES OF TRENCHES ARE ORSCURED ON FLOOR AND DO NOT APPREAR.
- 3. DATA SHOWN BELOW TRENCH FLOOP IS INTEPPRETED BASED ON BORING DATA AND VITTAL INSPECTION OF TRENLMES.

FLET C 2 1 NO VERTICAL EXAGGERATION

TRENCH CROSS-SECTIO CT - 3SHEET 2 OF 2

DAMES & MOOI

- --- -

	FILL- BLACK CLAY, BLOCKY.
<i>?///////</i> ///	CONCRETE: POURED AROUND UTILIT. CONDUIT.
	SANDSTONE: LIGHT GRAY WITH YELLOWISH-RED LAMINATIONS; TTRE TO MEDIUM SPAINED, I INLY BEDDED; MICACEOUS; FRESH TO MODERATLEY MEARMHED; INCLINED BEDDING SW FROM IMMEDIATE JICINITY OF FAULT.
	LINESTONE CIAY 'RUBBLE'. LIGHT CRAYISH-BPOWN SILTY CLAY
포효	YERY CALCAPICUS; POOPLY SCHILD, POORLY GRADED; OCCASIONAL TATHERED CHERT FRACHFUTS; OCCASIONAL GRADATIONAL ZONES OF
	NUMERDUS LIMESTONE FRAGMENTS.
	LINESTONE: LIGHT GRAY; COAPSE CRYSTALLINE: MEDIUM TO THICK
	OCCASIONALLY CLASSFILLD ALONG BEDDING PLANES, JOINTS AND
•••••••	JOINT SUPFACES AND FRACTURES.
	LIPESTONE: HIGHLY MEATHEREE.
†	10111
	DIP AND DIPLITION OF BEEDING PLANCE

*) * · ·

EXPLANATIONS

- 1. TRENCH PROFILES ARE SHOWN FROM THE SAME DIPECTION, LOOKING NORTHWEST,
- 2. SOME FEATURES SEEN ON PROFILES OF SEFNEMES ARE DESCUPED ON FLOOR AND DO NOT APPREAP.
- .. DATA SHOWN BLIOW TRUNCH FLODA IS 11," PPR (10 BASED ON BORING "ATA AND VISUAL INSPECTION OF TRENCHES.

TRENCH CROSS-SECTI CT - 4

DAMES & MO

1674

ORTH WALL

'CH FLOOR PLAN

THE POPILES OF TRENCHES ARE DESCURED ON FLOOR

TINCH FLOOP IS INTERPRETED BASED ON BORING DATA

TRENCH CROSS-SEC

CT - 5

WEST WALL

EAST WALL

VERTICAL EXAGGERATION: 2X

TRENCH CROSS-SE CT - 6

DAM## 8 1

NORTHEA

·•• ·

T WALL

TH FLOUR IS INTERPRETED BASED ON BORING DATA

TRENCH CROSS-S CT - 7

1674 - 099 - 07

1674-099/101-07

EXPLANATION

STRUCTURE CONTOURS ON TOP OF THE GALENA GROUP CONTOUR INTERVAL 100 FEET; DATUM SEA LEVEL

> MAQUOKETA ABSENT, TOP OF GALENA ERODED

FAULT, DOWNTHROWN SIDE

APPROXIMATE BOUNDARY OF THE LA SALLE ANTICLINAL BELT

REFERENCE: MODIFIED FROM

BRISTOL, H.M. AND BUSCHBACH, T.C 1973, ORDOVICIAN GALENA GROUP (TRENTON) OF ILLINOIS-STRUCTURE AND OIL FIELDS; ILLINOIS STATE GEOLOGICAL SURVEY, ILL. PET. 99, PLATE 1.

REGIONAL STRUCTURE /

DAMES & I

Certificate of Authenticity

This is to certify that microphotographs appearing on this film were produced in the normal course of business.

General Electric Company Nuclear Energy Division 175 Curtner Avenue San Jose, California

Microfilm Requested By	Component	No. 810				
Microfilm Title REPORT-GEOLOGIC	INVESTIGATIONS F	FOR PROJ.1V	AUG.1977NED0-21326 APPENBIX B.14			
Microfilm is complete and accurate as submitted by requestor.						
Camera Operator: <u>k</u> .						
Date Produced: 9-6-77						

Place: San Jose, California

1

St. St. States

t

FIGURE

AERIAL PHOTOGRAPH - SITE AI

I MILE

DAMES & MO

1674-099-07

DAMAGE IS I

、

•

• •

•

-

•