NRC Assessment of Davis Besse Head Degradation

Jack Grobe,

Chairman of the Davis Besse Restart Panel, Region III Office, United States Nuclear Regulatory Commission

Mark Kirk,

Senior Materials Engineer, Office of Nuclear Reactor Research, Division of Engineering Technology, United States Nuclear Regulatory Commission

Overview of Presentation

- Wastage found in the vessel head
- Scope of analysis performed by RES
- Finite element model (and basis of model)
- Failure criteria
- Next Steps
- Lessons Learned

Reactor Vessel Head

Boric Acid Deposits on Head

Location of Head Corrosion

Nozzle #3 Corrosion Cavity

Initial Repair Proposed

Head Cavity Removal

Removed Head Cavity

Scope of Analysis Performed by RES

- Analysis of vessel in as-found condition
 - Initial deterministic analysis
 - Probabilistic analysis
- Analysis of potential future states
 - Cavity growth leading to cladding failure at pressures in the range of the operating pressure (2165 psi)
 - Estimates of the additional operation time needed to achieve failure at pressures in the range of the operating pressure (2165 psi)

Basis of Finite Element Model

Design of the Head

Finite Element Model

Failure Criteria

Findings & Next Steps

- Complete preliminary analysis to determine probability of failure for the "as found" vessel head condition utilizing simplified configuration
- Further analysis could be performed including definitive measurements of
 - Cavity geometry
 - Cladding thickness & thickness variation
 - Cladding tensile properties made directly on the Davis Besse head
- Calculation of cladding rupture probabilities associated with larger wastage areas
- Estimation of the time needed for the boric acid corrosion to progress from the as-found condition to the size of these larger wastage areas

Lessons Learned

- Significance analysis may need to consider other factors
- Precursors were apparent to plant engineers
 - Increased accumulation of boric acid deposits on head and color changes in these deposits
 - Boric acid deposits in Containment Air Coolers necessitated frequent cleaning
 - Corrosion deposits on Radiation Element Filters caused frequent clogging
- Effective engineering organizations understand the limits of their knowledge and analysis